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MULTI-MODAL EFFECTS OF THE REPELLENT DEET ACROSS PROTOSTOMIA 

Emily Jane Dennis, Ph.D.

The Rockefeller University 2018

DEET (N, N-diethyl-m-toluamide) is the most broadly effective and widely used 

personal repellent available, yet we do not understand what makes it so effective. Even 

in well-studied species like Drosophila melanogaster flies and Aedes aegypti mosqui-

toes, many mysteries remain as to how DEET can affect behavior in these species. 

For example, Ae. aegypti mosquitoes are attracted to human arms. When an 

arm is covered in DEET, wild-type mosquitoes are not attracted to the arm, while mutant 

mosquitoes that lack the odorant receptor co-receptor (orco), approach the arm, but 

rarely bite. We investigated this orco-independent DEET repellency in Ae. aegypti and 

found that these mosquitoes can sense DEET with their tarsi as well as their proboscis. 

The tarsi are required for mosquitoes to be repelled after contact with a DEET-treated 

arm. The proboscis is required for the rejection of DEET-laced liquid food. These results 

suggest that DEET acts on multiple sensory modalities to repel insects.

Both this work and most prior literature has focused on studying how DEET 

affects Arthropods, yet one of the major open questions in the field is how DEET can 

be effective across so many different species. To identify genes and neurons required 

for DEET-sensitivity outside of Arthropoda, we turned to the nematode C. elegans. 

Here, we demonstrated that DEET affects chemotaxis to some odors but not others. 

We used this behavior as the basis for a forward genetic screen, and identified two 

genes as candidates required for complete DEET-sensitivity. We identified a natural 

isolate of C. elegans that was also resistant to DEET, and found that it contains a large 

deletion in one of the hits from our screen, the G protein-coupled receptor str-217. 

This gene is required for DEET-sensitivity in both wild-type and wild isolate strains. 

str-217 is expressed in a single pair of chemosensory neurons called ADL, which are 



required for complete DEET sensitivity, and respond to DEET as assayed by calcium 

imaging. Although we identified additional sensory neurons that respond to DEET, their 

behavioral contributions are unknown. Both ADL and str-217 are required for a specific, 

DEET-induced behavior during chemotaxis and exploration: an increase in average 

pause duration. Through optogenetic stimulation of ADL, we demonstrated that ADL 

activity alone is sufficient to increase average pause duration. 

Taken together, these experiments provide insights into the genetic and neu-

ral mechanisms underlying DEET-sensitivity in C. elegans, and allow for comparisons 

across Protostomes. We also establish C. elegans as a model non-Arthropod species 

for further investigation into the effects of DEET.
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CHAPTER 1

INTRODUCTION

1.1 The discovery of DEET

“From [the] beginning [humankind] has been prey to the lusts and 

appetites of hordes of insects. Very early in history [humans] devised 

methods of combatting these pests to which [they were] host. More often 

than not manual dexterity in the form of slapping and picking, as practiced 

in true anthropoid fashion, constituted, as it does in large measure to this 

day, the prime instrument of insect control… [Eventually, humans] learned 

that some substances applied to the body discouraged insect aggression. 

Thus originated the idea of repellents.” (Dethier 1947)

1.1.1 Mosquito repellents 

One of the first written mentions of insect repellents can be found in Natural His-

tory by Pliny the Elder, published between 77–79 AD. He took note of several practices 

at the time, from co-planting with leeks to deter caterpillars to the use of animal dung, 

ashes, decoction of wormwood, and burning galbanum plants to guard against garden 

pests and flies (Elder 1855).

Oral traditions tell us that humans have been using plants and plant-based ex-

tractions applied to the skin or smoked to protect against biting animals long before 

Pliny wrote down his local practices. The Lenape People of Manahatta, the land where 

this thesis work was completed, use Winkimakwsko (Hierochloe odorata), also known 

as sweetgrass, and Winakw oil (Sassafras albidum), also known as sassafrass, as 

insect repellents and have used these for generations (PaddlesUpstream 2017). Tradi-

tional knowledge has provided many of the plant oils used as insect repellents, and con-

1



tinues to provide new compounds for commercialization. For example, the Confederated 

Salish Peoples also use sweetgrass (Hierochloe odorata) as a repellent, and recently 

worked with a group of scientists to identify active compounds in this species. Phytol 

and coumarin were identified as the active compounds that deter biting of Ae. aegypti 

mosquitoes, and these plants were effective repellents in laboratory assays (Cantrell et 

al. 2016).

Smoking plants and pungent plant odors can be effective local repellents, but the 

United States (US) military has long been interested in the identification of long-lasting, 

low-odor, and smoke-free alternatives because smoke and odors can give away tacti-

cal positions. In 1900, the US military launched the Yellow Fever Commission to Cuba, 

which determined Aedes mosquitoes were responsible for the transmission of yellow 

fever in the Spanish-American War. This marks the beginning of the US military’s ac-

tive involvement in the development and use of insecticides and arthropod repellents 

(Kitchen 2009). In addition to effective but environmentally misguided efforts to curb 

insect-transmitted disease through the heavy use of the insecticide and environmen-

tal toxin DDT, the military funded several large scale chemical screens that produced 

today’s most-used repellents. 

1.1.2 A large chemical screen leads to DEET

Before World War II, Japan was the major exporter of both quinine — a com-

pound isolated from cinchona bark and used as an anti-malarial drug — and pyrethrins 

— insecticidal compounds derived from pyrethrum or chrysanthemum flowers (Ware 

1978; NIM 2003). After Japan joined World War II, the US military invested in identifying 

alternative synthetic repellents that could be produced in large quantities and funded 

large-scale efforts to identify such compounds. From 1942 – 1947, 6,241 chemicals 

were tested as mosquito repellents using Ae. aegypti mosquitoes. Many were also 

2



tested for effectiveness against Anopheles quadrimaculatus in the laboratory, and in the 

field against Aedes taeniorhynchus (Fig. 1.1). The test consisted of “covering the fore-

arm (wrist to elbow)… with a chemical or treated cloth and then exposing them in cages 

containing 2,000 to 4,000 hungry mosquitoes… Arms were exposed in the cages for 3 

minutes at 30-minute intervals, or until the mosquitoes bit” (Morton 1947). These com-

pounds were tested on 250 different subjects, and 9% were effective for at least three 

hours. All solid chemicals and many of the more effective liquid chemicals were tested 

for efficacy when applied to women’s mercerized cotton hose and tested the following 

day for 1-2 minutes in a cage of mosquitoes. This screen identified several putative 

repellents, including N,N-diethylbenzamide (Table 1.1, Item No. 2690). Many N,N-di-

alkylamides were identified as putative repellents in this study, and three were chosen 

for use by the United States military: N,N-diethylsuccinamate, o-chloro-N,N-diethylben-

zamide, and o-ethoxy-N,N-diethylbenzamide and were patented for broad use from 

1951-1953 (McCabe et al. 1954)

3



Figure 1.1 Testing efficacy of chemicals applied to skin. An example 
of the assay used to test efficacy of 1 mL of individual compounds applied 
to skin. Reprinted from Morton et al 1947.

4



Although N,N-diethylbenzamide (CID: 15542) was effective, it often led to rashes 

when applied to skin (NCBI 2017). To identify additional compounds with better safety 

profiles, a follow-up study tested 33 ring-substitution derivatives of N,N-diethylben-

zamide (McCabe et al. 1954). Each compound was applied to skin or cloth and the 

efficacy of repellency was rated as “excellent”, “very good”, “good”, “fair”, “little activity”, 

and “neg[ative]”. N,N-diethyl-meta-toluamide (which would later be re-named DEET) 

was highly effective on both skin and cloth in these assays (Table 1.2). What may look 

like a small change -- adding a methyl group --dramatically changed the safety proper-

ties while retaining efficacy. 

5

Table 1.1 Isolation of N,N-diethylbenzamide, a pre-cursor to DEET An 
excerpt from a table indicating the effectiveness of many chemicals as lou-
sicides, miticides, and repellency to Ae. aegypti adult female mosquitoes 
when applied to skin (S) or cloth (C). All compounds were scored from 1 
(un-effective) to 4 (very effective). N,N-diethylbenzamide is the last entry 
in this table excerpt, number 2690. Reprinted from Morton et al 1947. 



DEET
N,N-Diethyl-meta-toluamideN,N-Diethylbenzamide

O

N

O

N

Figure 1.2 Chemical structures of N,N-diethylbenzamide and N,N-di-
ethyl-meta-toluamide This figure demonstrates the structural difference 
between these two compounds is the toluene ring (a toluene is a benzene 
ring with a methyl group).

1.2 DEET across Protostomia

After its discovery, DEET was first used by the US military, then marketed for 

public use in 1957 (“Reregistration Eligibility Decision DEET”  1998). The name was 

shortened from N,N-diethyl-meta-toluamide to DEET in 1960 (Smith 1960). Although 

identified as a repellent for Ae. aegypti mosquitoes, DEET has become the gold stan-

dard repellent against many species.

6

Table 1.2 DEET identified as an “excellent” repellent DEET is listed 
here as ‘m-Toluic’ because this table refers to the base acid used (here 
m-Toluic acid) to make the N,N-diethylbenzamide ring substitutions. Table 
reprinted from McCabe et al 1954. 



1.2.1 The effectiveness of DEET beyond Arthropoda

Studies on the effectiveness of DEET have focused largely on blood-feeding ar-

thropods. However, there are a few reports of other species responding to DEET. 

Within Deuterostomia, humans have reported that DEET tastes bitter, though 

ingestion is not recommended and can lead to toxicity in high amounts (Ambrose 1959). 

In a study evaluating the safety properties of DEET in rats, DEET delivered in food pel-

lets at greater than 400 mg/kg/day decreased food consumption, indicating taste aver-

sion (“Review of the Toxicology Literature for the Topical Insect Repellent Diethyl-m-tolu-

amide (DEET)”  2002). 

Within Lophotrocozoa, a few studies have found DEET to be effective against 

several species of land leeches (Nath et al. 2002; Tawatsin et al. 2006). 

Within Spiralia, DEET was effective in preventing infection of mice by the parasit-

ic fluke Schistosoma mansoni in laboratory assays (Salafsky et al. 1998; Cooper et al. 

2004) and in the field protected humans from infection. 

It is difficult to make broad generalizations based on these data, but the effects of 

DEET appear to be far reaching across Animalia. It would be interesting to test addition-

al species within Protostomia, including Onychophoran velvet worms or tardigrades. It 

may also be informative to branch out and test other lineages within Amoebozoa — like 

Dictyosetliidan slime molds — or plants — either with unicellular animals like Chamydo-

monas or multicellular plants like the Venus fly trap Dionaea muscipula. 

1.2.2 The effectiveness of DEET in Arthropoda

The evidence for DEET-sensitivity is lacking across non-Dipteran arthropods 

and the existing evidence is largely concentrated on ticks and mites, both members 

of the taxon Acari. DEET is effective against ticks including the dog tick Dermacantor 
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variabalis, the lone star tick Amblyomma americanum, the South African bont tick Am-

blyomma hebraeum, and the deer tick Ixodes scapularis (Bissinger, Apperson, et al. 

2009). The exact mode of repellency is unknown. One study proposed that in both the 

deer tick and lone star tick, DEET can act as a repellent at a distance when separated 

from DEET-treated skin by gauze but provided enhanced protection when contact was 

possible (Carroll et al. 2005). Another study demonstrated that deer ticks would spend 

less time in an air stream with DEET, providing further evidence of an olfactory effect of 

DEET (Romashchenko et al. 2012). It seems likely that ticks exhibit both contact and 

olfactory repellency. 

Several mite species are DEET-sensitive. DEET disrupts attraction to host odor 

for the honey bee parasite Verroa destructor (Singh et al. 2014). DEET is effective 

against Trombiculidae chiggers both in laboratory assays (Hanifah et al. 2010) and in 

the field (Niebuhr et al. 2014) as well as Sarcoptes scabiei scabies infection (Fang et al. 

2015). These data demonstrate that multiple Acari species are sensitive to DEET, but it 

would be interesting to test other Arthropod lineages such as millipedes and soil bugs.

1.2.3 The effectiveness of DEET in Diptera

The bulk of our understanding of how DEET works comes from Dipterans. Of 

blood-feeding Dipterans, DEET is effective against Rhodnius prolixus and Triatoma 

infestans kissing bugs (Buescher et al. 1985; Alzogaray et al. 2000); several species of 

Aedes, Anopheles, and Culex mosquitoes (Syed et al. 2008; McIver 1981; Bernier et al. 

2005); Phlabatomous papatsi sand flies (Klun et al. 2006), Glossina morsitans tsetse 

flies (Wirtz et al. 1985), and Pediculus humanus lice (Canyon et al. 2007). DEET even 

delayed the colonization of pig carcasses by blowflies (Shelomi et al. 2012). 

There are far fewer studies of how DEET affects non-blood-feeding insects, 

with a few notable exceptions. Apis mellifera honey bees can taste DEET, as DEET 
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can be used as an unconditioned stimulus during proboscis extension-based learning 

(Abramson et al. 2010). The German cockroach, Blatellica germanica, avoids contact 

with DEET-treated filter paper (Sfara et al. 2016). Infestation of the flour beetle Triboli-

um castaneum and booklouse Liposcelis bostrychophila is similarly inhibited by DEET 

(Zhang et al. 2011). Drosophila melanogaster exhibits both olfactory (Ditzen et al. 2008) 

and anti-feedant (Lee et al. 2010) effects. The core of our understanding of the molecu-

lar mechanisms of DEET repellency come from one of these insects, Drosophila melan-

ogaster, and are further explored later in this chapter. 

1.3 Our understanding of DEET has advanced alongside our understanding of 

Dipteran chemosensation

Initial work studying DEET focused on its efficacy and safety for military use. 

Although its effectiveness against ticks was apparent by 1976 (Grothaus et al. 1976), 

the majority of studies focused on insects, especially Ae. aegypti. As new techniques for 

studying chemosensation and neuroscience emerged, new effects of DEET were dis-

covered and hypotheses have progressed alongside these new findings.	

1.3.1 Early DEET hypotheses

Initial work studying DEET focused on its efficacy and safety for military use. It 

was registered for public use in 1957 and re-named DEET in 1960 (Smith 1960). Al-

though its effectiveness against ticks was apparent by 1976 (Grothaus et al. 1976), the 

majority of studies focused on insects, especially Ae. aegypti. 

Lactic acid, a component of human sweat, was the first individual human-derived 

molecule identified as an attractant for Ae. aegypti (Acree et al. 1968). Edward Davis 

(Davis 1976a) identified lactic acid sensitive neurons, and examined how DEET affects 

these cells. In insects, peripheral olfactory sensory neurons reside in head appendag-
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es—the antennae, maxillary palps, and occasionally the proboscis—and insert den-

drites into small hairs called sensilla. These sensilla have pores that are permeable to 

odorants. It is possible to record extracellular spikes that originate from these sensory 

neurons by inserting an electrode into the sensillum. Davis identified two neurons in 

antennal grooved-peg sensilla that were sensitive to lactic acid: the spike frequency of 

one neuron was increased by lactic acid, and the other decreased. The lactic acid-inhib-

ited cell was further inhibited by DEET, and the lactic acid excited cell was attenuated by 

DEET (Davis 1976a). Over subsequent years, several behaviorally active compounds 

were identified as host cues and oviposition cues. The neurons responding to these 

cues were also identified, and DEET proved to be effective inhibitor for many of these 

neurons that respond to behaviorally-active compounds (Davis 1976b; Davis 1985). 

This led to a hypothesis that DEET masks the attractive odors of humans by inhibiting 

the activation of sensory neurons that mediate attraction.

Based on these electrophysiological and behavioral data, several hypotheses 

arose to explain how repellents in general and DEET specifically may affect insects. 

Repellents may activate the response of sensory neurons required for behaviors like 

oviposition (Davis 1976b), repellents may inhibit the response of sensory neurons to 

normally attractive stimuli like lactic acid and make the host “invisible” (Davis 1976a), or 

repellents may activate a labeled line repellency that makes the animal avoid the host, 

or they may “jam” the sensory information system by activating several different recep-

tor neuron types and change how the host is perceived (Davis 1985). Susan McIver pro-

posed that DEET, as a highly lipophilic molecule, interacts with the lipid cell membranes 

and perturbs them in such a way that the normal responses to attractants are altered. 

This unique hypothesis allows for both labeled line repellency and the “jamming” of sen-

sory information (McIver 1981). However, without genetic access to these organisms, 

and lacking the ability to identify receptors or manipulate neurons, it was not possible in 
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the 1980s to directly test these hypotheses.

1.3.2 Molecular revolution

The discovery of the insect Odorant Receptors (ORs) (Clyne et al. 1999; Vosshall 

et al. 1999) and subsequent finding that the functional OR is a complex of a ligand-se-

lective OR and the odorant receptor co-receptor orco (Larsson et al. 2004) allowed for 

renewed investigation into the effects of DEET in insects. 

DEET inhibits behavioral attraction of D. melanogaster flies to food odors. This 

preference requires intact antennae and orco (Ditzen et al. 2008), indicating that the 

odorant receptors are required for DEET to inhibit attraction to food odors. Additionally, 

sensilla recordings demonstrated that DEET can potentiate or inhibit odor-evoked activ-

ity and can inhibit odor-evoked suppression of activity (Pellegrino et al. 2011). Together, 

these data support the “jamming” or “confusant” hypothesis: many neurons are affect-

ed by DEET, and this confuses the aggregate signal that may form the percept for the 

animal. 

In addition to confusing the odor code at the periphery, it is possible that DEET 

also acts as a true repellent in some species. DEET alone can increase the spiking 

activity in some neurons in Culex quinquefasciatus (Syed et al. 2008), and DEET gen-

erates an aggregate, electroantennographic response (Costantini et al. 2001; Leal et 

al. 1998) as measured by extracellular recordings of receptor potentials across a whole 

antenna. Behaviorally, Cu. quinquefasciatus animals show a preference for solvent 

over DEET in a two-choice assay, but animals injected with dsRNA against CuOR136 

lose this preference (Xu et al. 2014). In this assay, two heating elements are present, 

with a blood-soaked cotton ball placed on top, and a ring of DEET- or solvent-treated 

paper surrounds the element about three centimeters away. Animals are individually 

videotaped and the time spent on each side is scored. RNAi-mediated knockdown of 
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CuOR136 also decreased the electroantennographic response to DEET, and can confer 

DEET-sensitivity to oocytes. In Cu. quinquefasciatus, there may be an additional volatile 

repellent effect of DEET. 

1.4 Investigating orco-independent DEET sensitivity in and beyond Arthropoda.

This thesis describes a quest toward understanding why DEET is so effective 

across so many different species, and how we can further probe that question using the 

tools available today. We begin in the mosquito Ae. aegypti, identifying and isolating 

multiple effects of DEET just within this one species (Chapter 2). We then describe a 

quantitative assay to test DEET avoidance in terrestrial animals, and demonstrate its ef-

fectiveness across Arthropoda (Chapter 3). We then establish the nematode C. elegans 

as an ideal organism for studying the effects of DEET, and describe the effects of DEET 

on chemotaxis in this species (Chapter 4). Next, we delve into the genetic (Chapter 5) 

and related neuronal (Chapter 6) requirements for this effect on chemotaxis behavior. 

Finally, we use single-animal tracking and optogenetics to detect and artificially repro-

duce specific contributions to the chemotaxis defect (Chapter 7), opening up this spe-

cies for further investigation discussed in Chapter 8. 
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CHAPTER 2

CONTACT DEET REPELLENCY IN THE AE. AEGYPTI MOSQUITO IS INDEPEN-

DENT OF BITTER TASTE AND REQUIRES THE TARSI.

Within seconds of inserting a human arm into a cage of female, Ae. aegypti 

mosquitoes, hundreds of animals cover the skin, and within minutes most have 

extracted enough blood to use the digested protein to produce and lay over one 

hundred eggs each. Female mosquitoes need blood to develop these large clutches 

of offspring, and therefore host-seeking and blood-feeding are important aspects of a 

female mosquito’s life. If the arm is first covered in DEET, very few animals take flight, 

even though they are inches away from a perfectly good blood meal (DeGennaro et 

al. 2013). Are they “repelled” by the smell of DEET? Does DEET mask the scent of 

the arm? Or does the DEET alter the mosquito’s perception of the scent of the arm 

by acting as a “confusant”? These are the prevailing hypotheses for how DEET acts 

in the volatile phase. If the cage is instead filled with orco mutant females, a buzz of 

activity ensues after the arm is inserted. The mosquitoes approach the arm, but shortly 

after contact the animals leave so that the majority of animals do not blood feed. In 

this example, volatile repellency occurs at a distance and only in the orco mutant 

mosquitoes do we see that DEET has an additional effect as a contact chemo-repellent. 

With the development of orco mutant mosquitoes, we gained access to this 

mechanistically distinct, orco-independent DEET repellency. Our objective was to (1) 

observe this new phenomenon, (2) identify similarities and differences between this 

behavior and reported results in other species, and (3) investigate the appendages 

required for this repellency.
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2.1 Ae. aegypti orco mutants land on DEET-treated arms and are insensitive 

to volatile DEET

Volatile DEET repellency occurs at a distance, preventing most wild-type mosqui-

toes from approaching a DEET-treated arm. In contrast, orco mutant mosquitoes remain 

attracted to DEET treated arms placed next to a cage (~2.5 cm away), but they do not 

blood-feed when the arm is inserted into the cage (DeGennaro et al. 2013). We knew 

that orco mutants were being repelled by DEET within 2-3 cm of the arm, but when 

observing arms inserted into cages, the animals moved too quickly for us to see by eye 

what was happening. Therefore, we needed a way to observe every interaction of each 

mosquito with DEET-treated skin, so we restricted the available skin area. Subjects 

wore a long latex glove with a small (2.5 cm) hole cut in it. We focused a digital video 

camera on this area of skin (Fig. 2.1) and then manually scored each video. From these 

videos, we were able to gather data on how often mosquitoes contacted the skin, how 

long they spent contacting the skin, and what appendages they used to contact to skin. 
A

LandingApproach Take-off

0 ms 60 ms 120 ms

B C

camera

side view top view

Figure 2.1: Schematic of video-based assay and example landing
(A) Side view of the assay set up, without the camera included. (B) Top 
view of the assay. (C) Cropped stills from an example video showing an 
example female orco mutant mosquito landing on a human arm.

We found that the orco mutants landed on DEET-treated arms as often as 

solvent treated arms (Fig. 2.2A), but rarely blood-fed or bit the arm (Fig. 2.2B). This 

both provided additional confirmation that orco mutants are attracted to DEET-treated 

arms but rarely bite them, and also provided evidence that DEET may act as a contact 
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repellent in the absence of volatile, orco-mediated avoidance. 
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Figure 2.2: Female orco mutant Ae. aegypti mosquitoes are repelled 
by DEET on contact. (A) The average number of landings per mosquito 
in each 10 minute video landing on human skin treated with either etha-
nol solvent (black) or 10% DEET (blue). (B) The average number of biting 
events per mosquito in each video. (Bonferroni corrected t-test comparing 
solvent and DEET for each genotype. *p<0.0125; N=9 assays, n=23-25 
female mosquitoes per assay)

Although male mosquitoes do not blood-feed and cannot bite humans (Lee 

1974), we wanted to see if males were also repelled by DEET on contact. In the wild, 

male Ae. aegypti mosquitoes aggregate around human hosts. Attraction to humans is 

likely the primary way they find sexually mature mates (Hartberg 1971). Male attraction 

to human hosts was fortuitous for this study: we found that in this arm-in-cage assay, 

male mosquitoes would land on human skin, allowing us to ask if males also exhibit 

DEET-sensitivity in this assay (Fig. 2.3A). Similar to female mosquitoes, DEET is an 

effective volatile repellent for wild-type and heterozygous genetic controls, but orco mu-

tant males landed on both solvent- and DEET-treated arms (Fig. 2.3B). Because males 

cannot blood-feed, we could not compare how many bites occurred in these videos. 

Instead, we noted the amount of time they spent on the arm and found that male mos-

quitoes spent significantly less time on DEET-treated arms, regardless of genotype (Fig. 
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2.3C). These data confirm that DEET is an effective volatile repellent for both male and 

female Ae. aegypti mosquitoes and that this volatile repellency requires orco. This work 

also provides evidence that there is an additional, orco-independent, likely contact-me-

diated repellency in both males and females.
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Figure 2.3 Male orco mutant Ae. aegypti mosquitoes are repelled by 
DEET on contact. (A) A male mosquito on an exposed portion of a sol-
vent-treated human arm (B) The average number of landings per mosquito 
in each video landing on human skin treated with either ethanol solvent 
or 10% DEET. (B) The average time spent on the skin per landing in each 
video. (Bonferroni corrected, one-sided permutation test comparing sol-
vent and DEET for each genotype. *p<0.0167; N=4 assays, n=23-25 male 
mosquitoes per assay)

2.2 Orco-independent DEET repellency is independent of bitter taste in Ae. 

aegypti.

Previous work in the honey bee Apis mellifera demonstrated that DEET can be 

used as an aversive, unconditioned stimulus when mixed with sucrose and delivered as 

a tastant (Abramson et al. 2010). In Lymantria dispar moth larvae, DEET applied to red 

oak leaves, a food source, is able to deter feeding, and neurons on the maxillary palps 

of these larvae are sensitive to DEET and bitters (Sanford et al. 2014). Another study in 

D. melanogaster also identified an orco-independent, anti-feedant effect of DEET that 

requires bitter-sensitive gustatory neurons and three bitter Gustatory Receptors (GRs): 
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Gr66a, Gr32a, and Gr33a (Lee et al. 2010). 

In this experiment from the Montell group, 18-24 hour starved flies were given 

access to a 96-well plate with sucrose-laden agar food sources. Half of the available 

food contained 5 mM sucrose mixed with 0.2% DEET and food coloring, and the other 

half contained 1 mM sucrose with solvent and another color. Without DEET present, 

flies preferred the higher sucrose food. With the addition of DEET, animals, including 

orco mutants, strongly preferred the lower-sucrose food which lacks DEET. Bitter GR 

mutants (Gr33a1, Gr66aex83, and Gr32a∆) showed a significantly shifted preference to-

ward the high-sucrose DEET food. However, these animals did not return to non-DEET 

levels of strong preference for higher sucrose, indicating that they may still be able to 

sense DEET. It would be interesting to repeat these experiments with the same concen-

tration of sucrose in each solution, and determine if there are other receptors in flies that 

may be required for avoiding DEET. This group was also able to record from neurons 

that express these bitter gustatory receptors and found that these neurons are also 

DEET-sensitive, and their response requires expression of these receptors. These data 

from D. melanogaster present the bitter gustatory neurons as interesting candidates for 

orco-independent DEET-sensitivity in Ae. aegypti. 

Bitter gustatory neurons are tantalizing candidates, especially when considering 

another study from the Dickens lab that identified bitter- and DEET-sensitive neurons in 

the labella of Ae. aegypti mosquito mouthparts (Sanford et al. 2013). The Dickens group 

recorded from medium length hairs on the tip of the proboscis of female Ae. aegypti 

mosquitoes. These hairs contain neurons that are sensitive to DEET and bitter com-

pounds, like quinine. Although these neurons are intriguing based on their electrophys-

iological responses and their location at the tip of the proboscis, the behavioral function 

of these neurons is unknown. 
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To investigate if bitter taste can explain orco-independent contact DEET repel-

lency, we wanted to first determine if Ae. aegypti mosquitoes avoid bitter compounds 

and DEET when presented in conjunction with an appetitive stimulus like sucrose. To do 

this, we used a mosquito-adapted version of the CAFE assay (Ja et al. 2007; Liesch et 

al. 2013), and gave starved female mosquitoes a choice between drinking 10% sucrose 

with solvent or 10% sucrose with 1% DEET or two intensely bitter compounds (1 mM lo-

beline or 5 mM quinine) added. Ae. aegypti mosquitoes avoided both bitters and DEET 

in this assay (Fig. 2.4).
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Figure 2.4 Both bitters and DEET are effective anti-feedants in a 
sucrose feeding assay. (A) Schematic of the mosquito CAFE assay. 
(B) Preference indices for the solvent-containing capillary in each vial of 
animals compared to the DEET-containing capillary [SOLVENT - COM-
POUND/TOTAL]. (C) Preference indices for the solvent-containing capil-
lary compared to the lobeline-containing capillary. (D) Preference indices 
for the solvent-containing capillary compared to the quinine-containing 
capillary (N=14-17 vials, n=5 animals per vial. Student’s t-test, *p<0.05). 
These data were collected by Vineeta Reddy, a high school student.

These data demonstrate that in mosquitoes — like flies and bees — DEET 

and bitter tastants can induce avoidance of an otherwise attractive sucrose solution. 

Once we identified behaviorally-relevant bitter compounds, we wanted to know if these 
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compounds could mimic DEET as a repellent on skin. Towards this goal, we used the 

arm-in-cage assay (Fig. 2.5A) and found that even at 10-fold higher concentrations, 

bitters do not deter orco mutant mosquitoes from blood-feeding on bitter-treated 

arms (Fig 2.5). DEET is effective in both the CAFE and arm-in-cage assay at 1% 

concentration (52 mM).
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Figure 2.5 Lobeline and quinine are not effective contact repellents 
on human skin. (A) Schematic of the arm-in-cage assay. (B) Percent of 
animals blood-feeding on a human arm. Different letters indicate signifi-
cant differences, *p<0.05, one-way permutation ANOVA with Tukey’s post-
hoc test. (N=3-5 assays, n=22-25 mosquitoes per assay).

When we tried to reconcile how bitters can be effective anti-feedants in sugar 

but not on skin, we developed two hypotheses. First, the labella may only be used to 

evaluate sources of sugar, but it may not be the primary source of information during 

host-seeking and blood-feeding. Second, it is possible that DEET is a stronger nega-

tive stimulus, and there may be positive taste cues on the skin that can override the 

bitter taste, but cannot override the potent taste of DEET. Although we attempted to 

avoid this by increasing the bitter concentration 10-fold between the CAFE assay and 

the blood-feeding assay while keeping the DEET concentration constant, it is possi-
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ble that DEET is more than 10-fold more potent. If this is the case, using a taste-free 

blood-feeding system should allow bitter compounds to repel mosquitoes and decrease 

blood-feeding in the absence of any competition with attractive compounds on the skin. 

To test this hypothesis, we used a Glytube feeding assay. The Glytube assay 

uses a piece of Parafilm as a skin-substitute, covering a small amount of warmed ani-

mal blood (Costa da Silva 2013). This allows us to deliver DEET and quinine specifically 

on the surface or in the blood (Fig. 2.6). In this assay, we saw that both DEET and qui-

nine were effective anti-feedants when mixed into blood, and that only DEET was able 

to decrease feeding when applied to the surface (Fig. 2.6C). This agrees with recent 

results from Cu. quinquefasciatus, demonstrating that animals spent less time feeding 

on cotton balls soaked in blood with DEET and covered with Parafilm than cotton balls 

soaked in blood with solvent and covered in Parafilm (Lu 2017). 

Our results disagree with previous work from Bar-Zeev and Schmidt (Bar-Zeev et 

al. 1959), which showed that Ae. aegypti rarely land on membranes containing DEET-

laced blood. This study used animal intestine membranes to deliver P32 labeled blood, 

laced with DEET, and measured radiation levels in mosquito tarsi, and proboscis to 

determine if the animals landed and left, bit and rejected, or blood-fed. However, the in-

testinal membranes are semi-permeable, and could allow DEET to permeate the barrier 

and act as a volatile repellent when mixed with the blood and membrane odors, which 

would account for the discrepancies in landing events between our results. 
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Figure 2.6 Quinine is an anti-feedant, but not an effective contact 
repellent, in a skin-free blood-feeding assay. (A) Example of a Glytube 
feeder. Image © Alex Wild, used with permission. (B) Schematic of Gly-
tube assembly. DEET or quinine was added to either the blood (“In blood”) 
or the outer Parafilm layer (“On surface”). (C) Percent of animals that 
blood-fed on DEET or quinine applied to the surface or delivered in the 
blood. Different letters indicate statistically significant differences between 
groups by two-way permutation ANOVA and Tukey’s post-hoc test (N=5 
assays, n=12-16 mosquitoes per assay, *p<0.05).

This work provides evidence against the idea that animals are ignoring bitter 

cues because they are in a blood-feeding state, as quinine can still act as an anti-feed-

ant when mixed with blood (Fig. 2.6C). Because the surface is made of Parafilm and no 

skin cues are added, this also provides evidence against the hypothesis that positive 

tastants are overriding a bitter taste, though we cannot entirely rule out the possibili-

ty that some tastants from the blood are permeating the Parafilm barrier. These data 

instead support the hypothesis that contact DEET repellency is independent of bitter 

taste, and that an unknown, orco-independent mechanism is at work in Ae. aegypti 

mosquitoes. 
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In D. melanogaster feeding experiments, even bitter receptor mutant animals 

showed some residual bitter-independent DEET repellency (Lee et al. 2010). In the fly, 

it is difficult to parse these different effects as the flies are drinking and walking on the 

same substance (sucrose-laden agarose). We were able to clearly separate these ef-

fects in the mosquito because female mosquitoes land on the skin, while drinking blood 

below the skin, allowing us to experimentally separate the delivery of tastant cues (Fig. 

2.7D-E). 

 Here we also provide evidence that there may be bitter- and DEET-sensitive 

neurons in the stylet of mosquitoes, in addition to the previously identified bitter- and 

DEET-sensitive neurons on the labellar lobes (Sanford et al. 2013). The stylet is a spe-

cialized feeding appendage that functions similar to a saw and needle, sawing through 

dermis and feeding from the blood underneath through the fascicle (Fig. 2.7A). The 

labellar lobes stay on the surface of the skin, and therefore cannot be the appendage 

detecting the DEET and quinine in the blood behind the parafilm barrier in the Glytube 

assay (Fig. 2.7G).
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Figure 2.7 Bitter taste and DEET repellency may require different ap-
pendages (A) Diagram of the elements of an Ae. aegypti female probos-
cis. (B) Image of a female mosquito feeding from a 10% sucrose solution 
in a capillary. C) Schematic of the labellar lobes contacting the surface of 
the sucrose solution during feeding. (D) Image of a female mosquito feed-
ing on a human arm. (E) Schematic of the stylet underneath the skin and 
the labellar lobes on the surface. (F) Image of a female mosquito feeding 
from a Glytube under a mesh. (G) Schematic of the stylet feeding from the 
blood-underneath the Parafilm surface. Photos in D and F © Alex Wild.
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2.3 The proboscis is not sufficient for contact DEET repellency in Ae. aegypti.

Using orco mutant mosquitoes, we are now able to study orco- and bitter-

independent DEET repellency. Although we have referred to this as “contact repellency”, 

it is also possible that this behavior does not require contact itself, but requires 

closeness to the skin only achieved during landing events. If contact is actually required, 

the proboscis or tarsi should be required for contact-mediated repellency, as they are 

the only appendages to contact the skin during landing (Fig. 2.8). Both the proboscis 

and the tarsi are covered in sensory hairs and propose intriguing candidate appendages 

for contact DEET repellency in orco mutant mosquitoes.

Hindlegs

A B

Tarsi
Tibia

Femur

Forelegs

Midlegs

Figure 2.8 The proboscis and tarsi are the only appendages to con-
tact the skin during blood-feeding (A) Image of a mosquito blood-feed-
ing on a human arm. Image  © Alex Wild, used with permission. (B) Illus-
tration of the mosquito leg pair names (left) and segments (right).

To test if the proboscis is required for contact DEET repellency, we restricted the 

area of skin available for the mosquitoes to contact. The 1.5 mm diameter available skin 

is smaller than the distance between a mosquito’s forelegs, and therefore a mosquito 

cannot touch the skin with both her proboscis and her tarsi at the same time (Fig. 2.9D). 

In this assay, orco mutant mosquitoes blood-feed equally on solvent- and DEET-treated 
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arms suggesting that they are unable to sense DEET if only the proboscis touches the 

skin (Fig. 2.9E).
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Figure 2.9 The proboscis is not sufficient for contact DEET repellen-
cy (A) Schematic of the arm-against-cage assay. (B) Illustration of a fe-
male mosquito feeding on a ~2.5 cm diameter area of human skin against 
the side of a cage. (C) The average number of biting events per animal in 
each video on DEET- or solvent-treated skin during the 10 minute assay. 
(D) Illustration of a female mosquito feeding on a 1.5 mm area of human 
skin against the side of a cage. (E) The average number of biting events 
per animal in each video on DEET- or solvent-treated skin. (N= 9 assays, 
n=23-25 female mosquitoes, Student’s t-test, *p<0.05)

2.4 The tarsi are required for contact DEET repellency in Ae. aegypti.

These data provide evidence that the proboscis is not sufficient to confer 

DEET-sensitivity to orco mutant mosquitoes. (Fig. 2.9E). The tarsi are the only other 

appendages that contact the skin during blood-feeding, and we carried out experiments 

that asked whether some or all leg appendages mediate DEET contact chemorepellen-

cy. Attempts at removing all of the tarsi were not fruitful: the tarsi are important append-

ages that the mosquito requires to produce the necessary force and leverage to pierce 

the skin (Jones J. C. 1973). Therefore, we needed a way to disrupt tarsal chemosensa-

tion without removing the tarsi. Toward this goal, we covered the tarsi in UV-curing glues 

(Fig. 2.10), which have been used previously to occlude sensilla in taste organs (Olsen 

et al. 2008) and antennae (Wasserman et al. 2013) in D. melanogaster. 
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BA

tarsal segment

occluded tarsal segment

Figure 2.10 Gluing tarsal segments can effectively occlude the che-
mosensory sensilla on the legs. (A) Schematic of mosquito with focus 
on the fifth tarsal segment. (B) Example images of unglued (top) and 
glue-occluded (bottom) fifth tarsal segments.

When all tarsi were occluded, mosquitoes bit DEET-treated arms and solvent-

treated arms at similar levels. Animals sham-treated or with their tibia glued were still 

repelled by DEET on contact (Fig. 2.11). Additionally, leaving any pair of tarsi un-glued 

was sufficient to significantly decrease biting events (Fig. 2.12). 
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Figure 2.11 Tarsi are required for contact DEET repellency, and any 
pair of tarsi is sufficient to confer DEET-sensitivity. (A) Schematic of 
the gloved arm-in-cage assay. (B) Average number of bites per animal 
observed when all of the tarsi, tibia, or no appendages were glue-occlud-
ed. (C) Average number of bites per animal observed when a single pair 
of tarsi were left un-occluded (N=9 assays, n=4-5 female mosquitoes per 
assay, Bonferroni-corrected Student’s t-test).
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Figure 2.12 Animals with any pair of tarsi un-occluded remain sensi-
tive to DEET. (A) Schematic of the gloved arm-in-cage assay. (B) Average 
number of bites per animal observed when specific pairs of tarsi were 
left un-occluded. (C) Average number of bites per animal observed when 
a single pair of tarsi were left un-occluded (N=8-9 assays, n=4-5 female 
mosquitoes per assay, *p<0.0125, Bonferroni-corrected Student’s t-test).

Impressed with the effects of DEET, we wondered whether three recently identi-

fied compounds structurally related to DEET (Boyle et al. 2016), and another common 

repellent Picaridin, may have similar broad effects (Fig. 2.13). The three recently identi-

fied compounds were selected cheminformatically, based on the structures of DEET and 

another commonly used synthetic repellent, Picaridin, which is also branded as Icaridin 

in Europe. Picaridin has been shown to be effective against ticks, mosquitoes, and sand 

flies, but its mechanism of action has not been investigated. (Klun et al. 2006; Bissinger, 

Zhu, et al. 2009). We first asked how Picaridin performed in our arm-in-cage assay, and 

whether like DEET it had both volatile and non-volatile mechanisms of action. We were 

surprised to see that this compound is a primarily contact-based repellent: wild-type 

animals landed on both Picaridin- and solvent-treated arms. 
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Figure 2.13 Picaridin is a primarily contact-mediated repellent in 
Ae. aegypti. (A) The average number of landings per mosquito in each 
video of female mosquitoes landing on either a solvent (blue) or Picari-
din (green) treated arm. (B) The average length (seconds) of the landing 
events in each video. (C) The average number of bites per mosquito 
for each video. (N=8-9 assays, n=23-25 female mosquitoes per assay, 
*p<0.0167, Bonferroni-corrected Student’s t-test).

We then evaluated the effectiveness, orco-dependence, and olfactory contri-

bution to repellency for the three cheminformatically identified compounds (Fig. 2.14). 

Although these data are preliminary, we identified several trends from these data. Each 

of these compounds was at least partially effective, as they all decreased the number 

of bites received from wild-type mosquitoes (filled bars, Fig. 2.14C). By this standard, 

EA was the most effective, and appears to act as a contact repellent, as wild-type and 

orco mutant mosquitoes both land on the skin, but rarely blood feed (Fig. 2.14B and C). 

DA exhibited intermediate effects: both wild-type and orco mutant mosquitoes landed 

on DA-treated arms, and both genotypes did occasionally blood feed, but not as often 

as controls. The BA results were particularly intriguing: BA appears to be an orco-medi-

ated, contact-based repellent. Wild-type and orco mutant mosquitoes often landed on 

BA-treated arms. Wild-type mosquitoes rarely bit BA-treated arms, but orco mutants bit 
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BA-treated arms as often as solvent-treated arms. Unlike D. melanogaster flies, which 

do not seem to express any odorant receptors in their tarsi, a few odorant receptors are 

expressed in an RNAseq-generated transcription profiles of mosquito tarsi (Matthews 

2016). These receptors could be mediating contact- or close-range avoidance of BA and 

would be interesting targets for future work. While these are all preliminary data, these 

compounds do highlight the uniqueness of DEET: even highly similar compounds can 

only mimic some of the effects of DEET, even within just one species.
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Figure 2.14 Cheminformatically identified repellents each mimic a 
subset of the effects of DEET. (A) Chemical structures of the repellents 
used in this assay. (B) The average number of landings per mosquito in 
each video of either wild-type (solid bars) or orco-mutant (open bars) mos-
quitoes landing on solvent- (black) or repellent- (green) treated arms. (C) 
The average number of bites per mosquito for each video. (N=3-4 assays, 
n=23-25 female mosquitoes per assay)

We then returned our focus on DEET and these behavioral data presented in 

this chapter. Looking to follow up on our results, we reasoned that there must exist 

DEET-sensitive neurons in the tarsi of Ae. aegypti male and female mosquitoes that 

can respond to DEET. We ruled out the primary candidate receptor neurons proposed in 
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the literature, the bitter gustatory receptor neurons. As we had no other obvious candi-

dates, we turned to available RNAseq data set that profiled each pair of legs in female 

and male Ae. aegypti mosquitoes (Matthews 2016). Using these data, we hoped to find 

a small subset of genes expressed in both males and females, and in all pairs of tar-

si. However, this resulted in thousands of candidates. We further narrowed down the 

candidates to include only genes with two or more predicted transmembrane domains 

not predicted to be in the endoplasmic reticulum or mitochondria, and over five hundred 

candidates remained, far too many for reverse genetic approaches. Given these difficul-

ties, we did not attempt to identify candidate receptors mediating DEET contact chemo-

repellency, but our data do allow us to conclude that the tarsi are required for contact 

DEET repellency in orco mutant mosquitoes, any pair of tarsi are sufficient to confer 

contact DEET repellency, and that this repellency is independent of bitter taste. DEET is 

unique in its ability to affect all of these modes of behavior. 
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CHAPTER 3

A SCALABLE ASSAY FOR STUDYING CONTACT DEET REPELLENCY IN 

TERRESTRIAL INVERTEBRATES

The suggestion that DEET acts on a highly conserved family of receptors is an 

appealing hypothesis to explain its broad effectiveness across a multitude of species. 

Yet the experimental evidence for “effectiveness” differs wildly across species, making it 

difficult to compare experiments. 

For many DEET-sensitive species, all of the published work focuses on DEET’s 

effectiveness as a personal repellent. The World Health Organization defines the gold 

standard for evaluating mosquito repellents as requiring both laboratory assays and 

field studies (WHO 2009). They suggest that laboratory experiments should be used 

to determine effective doses providing 50% and 99.9% protection, and to estimate the 

length of time between application of the repellent and the first mosquito landing. 20% 

DEET should be used as a positive control. A minimum of two field tests are recom-

mended, using human volunteers collecting mosquitoes landing on the skin. In practice, 

many species we consider ‘DEET-sensitive’ lack sufficient evidence by this definition. 

For example, in the tsetse fly — Glossina morsitans, the primary vector of the para-

site that causes sleeping sickness —  the evidence that DEET is an effective repellent 

rests largely on two studies. First, a laboratory assay using rabbits found DEET to be 

an effective biting deterrent even when compared to other repellents (Wirtz et al. 1985). 

Second, a field study where volunteers wore “repellents while riding in a vehicle that 

was driven slowly (4-6km/h), with the windows and rear door open, through fly-infested 

areas” (Sholdt et al. 1989). While these types of studies are useful to travelers, they do 

not tell us about how DEET is working: is DEET acting at a distance as a volatile repel-
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lent, on the skin as a contact repellent, or in yet another way? Additionally, there are 

currently no guidelines for evaluating effects against non-blood-feeding animals, nor 

the contact effects of repellents. WHO guidelines are focused on time until landing in 

blood-feeding species only. 

As demonstrated in Chapter 2, it is possible to separate volatile and contact ef-

fects experimentally during blood- and sugar- feeding. Together with a rotation student, 

Vikram Chandra, we set out to determine if we could study contact DEET repellency 

across species in a comparable and rigorous way. 

3.1 Design and testing of the split Petri dish assay

We wanted to develop an assay that allowed us to control for volatile repellen-

cy and could be scaled up or down to accommodate different sized animals. We also 

wanted to test specifically for the avoidance of DEET itself, which is more likely to indi-

cate active sensation, rather than a difference in attraction to food. This is in contrast to 

the anti-feedant effects seen in D. melanogaster flies (Lee et al. 2010), A. mellifera bees 

(Abramson et al. 2010), and presented here in Ae. aegypti mosquitoes (Fig. 2.4). To-

wards this goal, we developed a 3D-printed split Petri dish and removable mesh spacer 

layer (Fig. 3.1). We used standard Petri dish plate sizes and used the lids of commer-

cially available Petri dishes, though a laser cut acrylic cover would also be effective if 

intermediate sizes were required. 
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10cm Petri dish bottom

Optional mesh (to test volatile)
One mosquito (or other animal)

3D printed split Petri dish
filled with agarose mixtures

10cm Petri dish bottom

3D printed split petri dish
filled with agarose mixtures

One mosquito (or other animal)

A

B

Figure 3.1 A scalable assay for studying contact DEET repellency (A) 
A schematic of a variation of the component pieces of the assay for testing 
the effects of volatile DEET. (B) A schematic of the component pieces of 
the contact DEET repellency assay. 

To test this assay, we used wild-type (w1118) and orco2 mutant D. melanogas-

ter flies and asked if they spend less time on 1% DEET in 2% agar mixture or ethanol 

solvent in 2% agar. Both wild-type and orco mutant flies were repelled by DEET in this 

assay (Fig. 3.2). Previous work from the Montell group showed that wild-type and orco 

mutant flies shifted their preference from high sucrose to low sucrose food when DEET 

was added to the high sucrose food (Lee et al. 2010). Our data demonstrate that D. 

melanogaster will avoid contact with DEET alone, and this repellency is not limited to 
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rejection of food or suppression of food intake, but extends to contact avoidance in gen-

eral and is orco-independent. 
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Figure 3.2 D. melanogaster are repelled by DEET on contact (A) Each 
data point represents the side preference of a single animal. (# frames 
on stimulus side - # frames on control side / total frames). (B-C) A single 
frame (left), and summary of automatic identification (right) of a video of a 
single fly either on a control (B) or DEET (C) split Petri dish. Blue ellipses 
are computer-identified body outlines from each frame. Data collected by 
Vikram Chandra.

3.2 Testing contact DEET repellency in terrestrial arthropods

After we confirmed that orco-independent contact DEET repellency can be tested 

with this assay, we then asked if DEET repellency can be tested in different terrestrial 

arthropods with different body sizes. We chose species were available for purchase, 

non-invasive, and represented different branches of Arthropoda. We chose at least one 

member of each extant class of Arthropoda to test the effectiveness of DEET across 

different species and the flexibility of this assay (Fig. 3.3). We were particularly intrigued 

by the possibility of studying pill bugs and sow bugs as they are crustaceans that have 

adapted to live on land independently from insects.
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Hexapoda Insects, bristletails, silverfish
Crustacea  Pillbugs, sowbugs, shrimp
Pauropoda  Soil bugs
Diplopoda  Millipedes
Chilopoda  Centipedes

Symphyla  Garden pests
Arachnida  Spiders, ticks
Eurypterida  Extinct
Xiphosura  Horseshoe crab
Pycnogonida  Sea spiders
Trilobites  Extinctx

x

Class Select examplesA

Published DEET-sensitivity

Tested in this assay

�y   60mm
mozzie, pillbug 100mm
centipede, spider 150mm

Figure 3.3 Evidence of DEET sensitivity in Arthropoda (A) Evolutionary 
tree highlighting species either with published DEET-sensitivity (blue) or 
tested in this chapter (red). (Regier et al. 2010; Letunic et al. 2016).

We scaled each assay such that the circumference of the assay was at least 

8-fold longer than the animal. The purpose of this scaling was to allow for exploration 

of the arena and enough space for turning. Through these experiments we identified 

DEET-sensitivity in three of the four groups of animals tested for avoidance of 1% DEET 

in agar (Fig. 3.4). Notably, pill bugs appeared to be insensitive to these concentrations 

of DEET. It is possible that this species is completely DEET-insensitive. Because these 

animals are wild-caught and we lack many key details about them, therefore it is also 

possible that these animals are all one sex or one life stage and that particular attribute 

contributes to their DEET-sensitivity. Finally, it is also possible that at higher concentra-

tions of DEET, we would see DEET-sensitivity in this species. All other classes of animal 

tested were sensitive to DEET. 
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Centipede Pill bug Sow bug Wolf spider

Family LycosidaeGenus PorcellioGenus ArmadilliumClass Chilopoda
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Figure 3.4 Contact DEET repellency in multiple Protostomes Prefer-
ence indices for animals indicated above, with most accurate scientific 
name available below. Each data point represents the side preference of a 
single animal. (# frames on stimulus side - # frames on control side / total 
frames). (N=3-10 animals tested, *p<0.05, Student’s t-test).

While these data are preliminary, they demonstrate that the split-Petri dish is 

a robust assay and opens up several avenues for future work. In D. melanogaster, 

it is now feasible to separate the anti-feedant effects of DEET and the avoidance of 

DEET-laced sucrose. It is conceivable that avoidance of DEET on contact in this split-

Petri dish agarose assay requires the Gr33a, Gr32a, and Gr66a receptors, or that a 

distinct set of receptors is required for this DEET sensitivity. It is tempting to consider 

that the active avoidance of DEET may require a different set of receptors, and may 
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also explain the inability of bitter taste receptor mutants to return to wild-type levels 

of preference for high sucrose in the presence of DEET. It should be possible, using 

this assay or a similar one, to complete a screen for neurons or receptors required 

for DEET sensitivity in D. melanogaster. If this could be completed in a Gr33a genetic 

background, for example, this could be a powerful method for identifying new, additional 

DEET receptors.

More broadly, these data show that under comparable conditions in a highly 

similar assay, DEET affects animals across Athropoda. It would be interesting to 

expand these data to include non-Arthropod Ecdysozoans, like Onychophora velvet 

worms, non-Ecdysozoan Protostomes like Helix aspersa snails and to expand the 

characterization of each species with a dose-response curve. Using this simple, 

scalable assay, we open up the possibility of studying a specific aspect of DEET 

sensitivity with a consistent, comparable method across all terrestrial animals.
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CHAPTER 4

THE EFFECTS OF DEET IN THE MODEL ORGANISM CAENORHABDITIS 

ELEGANS

DEET is an effective personal repellent for a diverse set of animals, and in Chap-

ter 3 we demonstrated the broad effectiveness of DEET across Arthropoda in a con-

tact-based assay. This repellency could require a single, well-conserved DEET-sensitive 

receptor or receptor family that is necessary for all of these species to sense DEET, or 

DEET could interact with many different receptors with very few similarities. It is also 

possible that the answer lies somewhere in between: that many receptors can be affect-

ed by DEET, but they all have some homologous region or shared function. To tackle 

this question comprehensively, one would want to identify all of the DEET-sensitive re-

ceptors for each DEET-sensitive behavior in every species affected by DEET. It is pos-

sible that this analysis would reveal a single conserved receptor or receptor family, or 

perhaps DEET does not have a single mechanism of action, and instead the similarities 

across organisms require similar cell types, membranes, or neuronal connectivity. 

While there is certainly more work to be done to gain a complete understanding 

of DEET-sensitivity in D. melanogaster and Ae. aegypti, we currently do not know of a 

single candidate chemoreceptor gene required for DEET-sensitivity outside of Arthrop-

oda, making any inferences across taxa impossible. To learn more about how DEET 

may work outside of insects and Arthropods, one would want to study a non-Arthropod 

species with tools for forward genetics, reverse genetics, neuronal manipulation, and 

neuronal observation. In the following chapters we show that the nematode C. elegans 

fulfills all of these requirements, and we use this species to discover a receptor, a pair of 

neurons, and a partial mechanism for DEET’s activity in a non-insect invertebrate.
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The nematode C. elegans belongs to the phyla Ecdysozoa, which include the 

sister group to Arthropoda (Dunn et al. 2008). Their compact, well-studied genomes and 

ability to self-fertilize make forward genetic screens possible (Brenner 1974) and mod-

ern tools make reverse genetics feasible (Arribere et al. 2014). An adult hermaphrodite 

has 302 neurons deriving from a fixed, mapped cellular lineage and a “connectome” has 

been available for decades, identifying nearly all of the connections between individual 

neurons (Sulston 1988; White et al. 1986). Additionally, the ability to inject transgenes 

that can be transmitted to offspring allows for the identification of gene expression pat-

terns, expression of calcium indicators for imaging, and access to subsets of cells for 

manipulation (Mello et al. 1991). Together, these characteristics make C. elegans the 

ideal species for this work, but only if these worms are indeed DEET-sensitive. 

In 2013, we received an email from Dr. Phil Hartman that set us down the path 

that would ultimately become the primary focus of this thesis: Dr. Hartman and his 

students identified DEET as a potent modifier of C. elegans chemotaxis behavior and 

learned that a forward genetic screen for DEET-resistance could be effective, but he 

could not follow up on these preliminary results. Thanks to his email, we knew that there 

was something interesting to study here, and set out to find it.

4.1 Testing old hypotheses in a new species

To begin, we used standard chemotaxis assays (Bargmann et al. 1991; Troemel 

et al. 1997; Cho et al. 2016) (Fig. 4.1A) to explore how C. elegans nematodes respond 

to DEET. There are currently three competing hypotheses about the mechanism of 

DEET based on work in insects: “Smell-and-repel” —DEET is detected by olfactory 

pathways that trigger avoidance (Abramson et al. 2010; Syed et al. 2008; Xu et al. 2014; 

Syed et al. 2011), “masking” —DEET selectively blocks olfactory pathways that mediate 

attraction (Dogan et al. 1999; Ditzen et al. 2008; Syed et al. 2008), and “confusant” —
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DEET modulates multiple olfactory sensory neurons to scramble the perception of an 

otherwise attractive stimulus (Pellegrino et al. 2011; DeGennaro et al. 2013). Inspired by 

these hypotheses, we tested how DEET may interfere with olfactory behaviors in nema-

todes to identify similarities and differences with work in insects. 
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Figure 4.1 DEET is not a volatile repellent and does not mask attrac-
tive odor (A) Schematic of the chemotaxis assay. Chemotaxis of wild-type 
animals with point source stimuli of DEET alone (B) or DEET with isoamyl 
alcohol (C). We observed no chemotaxis to nor away from DEET alone, 
and no significant effect on isoamyl chemotaxis. Each dot represents a 
chemotaxis index of a single population assay [NEAR ODORANT - NEAR 
CONTROL / DISPERSED]. Horizontal lines indicate mean ± s.e.m. n.s. in-
dicates no statistical significance. (N=10 experiments, n= 50-250 animals 
per experiment, *p>0.05, Student’s t-test)

To test the smell-and-repel hypothesis, we presented DEET as a volatile point 

source. DEET was not repellent alone even at high concentrations of 50% (Fig. 4.1B), 

similar to previous results in D. melanogaster flies (Ditzen et al. 2008) and Ae. aegypti 

mosquitoes (DeGennaro et al. 2013). To address the possibility that DEET could be 

masking responses to attractive odorants (Dogan et al. 1999; Ditzen et al. 2008) or 

directly inhibiting their volatility (Syed et al. 2008), we presented DEET alongside the 

attractant isoamyl alcohol, both as point sources, and found that it had no effect on at-
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traction (Fig. 4.1C).

In considering alternate ways to present DEET, and following personal communi-

cation from Dr. Philip Hartman, we mixed low doses of DEET uniformly into the chemo-

taxis agar and presented isoamyl alcohol as a point source (Fig. 4.2A). In this configu-

ration, DEET-agar reduced chemotaxis to isoamyl alcohol in a dose-dependent manner 

(Fig. 4.2B). 
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Figure 4.2 DEET interferes with C. elegans chemotaxis to isoamyl 
alcohol (A) Schematic of chemotaxis assay on solvent- and DEET-agar 
plates. (B) Wild-type chemotaxis to isoamyl alcohol on DEET-agar plates 
of the indicated concentrations. Each dot represents a chemotaxis index 
of a single population assay. Horizontal lines indicate mean ± s.e.m. Data 
labelled with different letters indicate significant differences (N=10-13 as-
says, n=50-250 animals per assay, *p<0.05, One-way ANOVA and Tukey’s 
Post-hoc test).

4.2 DEET interferes with chemotaxis to some odors and not others

To ask if DEET has a general effect on chemotaxis, we tested two additional 

attractants, butanone and pyrazine, as well as the volatile repellent 2-nonanone. Behav-

ioral responses to butanone requires overlapping primary sensory neurons as isoamyl 
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alcohol (AWC), while pyrazine and 2-nonanone require two different pairs of primary 

sensory neurons (AWA and AWB, respectively) (Troemel et al. 1997; Bargmann et al. 

1993). DEET eliminated both attraction to butanone and avoidance of 2-nonanone, in-

dicating that it can affect responses to both positive and negative chemosensory stimuli 

(Fig. 4.3A). In contrast, DEET-agar had no effect on chemotaxis toward the attractant 

pyrazine, an AWA odorant, but had an effect on diacetyl, another AWA odorant. The ob-

servation that pyrazine chemotaxis remains intact on a DEET-agar plate demonstrates 

that DEET is not having a general non-specific effect on their health or ability to move, 

but is instead selectively interfering with chemotaxis to some odors and not others. 
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Figure 4.3 DEET interferes with C. elegans chemotaxis to several, but 
not all, odorants (A) Chemotaxis of wild-type animals on solvent-agar 
(grey) or DEET-agar (blue) in response to the indicated odorants. Each 
dot represents a chemotaxis index of a single population assay. Horizontal 
lines indicate mean ± s.e.m. Data labelled with different letters indicate 
significant differences (N=11-24 assays, n=50-250 animals per assay, 
*p<0.05, Two-way ANOVA and Tukey’s Post-hoc test).

What makes pyrazine different from these other odors? One hypothesis is that 

AWA chemotaxis is less affected by DEET, either at the primary sensory level or down-
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stream. However, diacetyl is affected by DEET, and diacetyl also requires AWA neurons 

for chemotaxis (Bargmann et al. 1993). 

AWA sensory neurons respond to diacetyl as assayed by calcium imaging and 

are required for attraction to diacetyl (Bargmann et al. 1993; Larsch et al. 2015). Ad-

ditional data suggest that AWB, ASK, and AWC neurons respond to the removal of 

1:10,000 diacetyl as seen in calcium imaging experiments, and ablations of ASK and 

AWB decrease chemotaxis to diacetyl at 1:1000 and 1:10,000 concentrations respec-

tively (Hale et al. 2017). Because attraction to diacetyl is already affected in these ablat-

ed animals, we did not further investigate their potential contribution to DEET-sensitivity. 

However, AWC neurons are not required for chemotaxis to these concentrations of 

diacetyl, but AWC neurons do respond to the removal of diacetyl as monitored by calci-

um imaging (Hale et al. 2017). To rule out a potential effect of AWC on diacetyl chemo-

taxis, we used odr-1 mutants, which are defective in in chemotaxis to all AWC-sensed 

odorants but exhibit normal chemotaxis to attractive odors sensed by the AWA olfactory 

neurons (Bargmann et al. 1993) and found odr-1 mutant animals are still affected by 

DEET (Fig. 4.4). 
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Figure 4.4 The effects of DEET on diacetyl chemotaxis are AWC-inde-
pendent. (A) Chemotaxis of odr-1 mutant animals on DEET-agar in re-
sponse to diacetyl. Different letters indicate significant differences. (N=19 
and 16 assays, n=50-250 animals per assay. p<0.05, Student’s t-test).

It is possible that pyrazine is able to overcome the effects of DEET simply be-

cause it is a much more potent or attractive odorant at the concentrations tested. To ad-

dress this, we decreased the concentration of pyrazine 10- and 100-fold, and increased 

the concentration of isoamyl alcohol 10- and 100-fold. At all concentrations, the same 

patterns held: attraction to isoamyl alcohol was affected by DEET at all concentrations 

and attraction to pyrazine on DEET- and solvent-agar was statistically indistinguishable 

at all three concentrations (Fig. 4.5B).
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Figure 4.5 The differential effects of DEET on pyrazine and isoamyl 
alcohol chemotaxis are independent of odorant concentrations used 
over three orders of magnitude. (A) Chemotaxis of wild-type animals 
chemotaxing to increasing concentrations of isoamyl alcohol. (B) Chemo-
taxis of wild-type animals chemotaxing to decreasing concentrations of 
isoamyl alcohol. Each dot represents a chemotaxis index of a single pop-
ulation assay. Horizontal lines indicate mean ± s.e.m. Data labelled with 
different letters indicate significant differences. (n=50-250 animals, N=6-
10 assays per condition, p<0.05, Two-way ANOVA and Tukey’s Post-hoc 
test).
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Figure 4.6 DEET acts as a behavioral confusant, and pyrazine is able 
to overcome the effects of DEET. Chemotaxis of wild-type animals che-
motaxing to 20μL of bacteria, with either solvent, isoamyl alcohol, or pyra-
zine. Each dot represents a chemotaxis index of a single population assay 
(50-250 animals, N=7-11 assays per condition). Horizontal lines indicate 
mean ± s.e.m. Data labelled with different letters indicate significant differ-
ences (p<0.05, Two-way ANOVA and Tukey’s Post-hoc test).

These results are reminiscent of the “confusant” hypothesis in insects, although 

the molecular and neuronal details by which DEET acts differ markedly between nem-

atodes and insects. In insects, DEET alters responses of individual sensory neurons to 

attractive odorants (Pellegrino et al. 2011; Ditzen et al. 2008), thereby interfering with 

behavioral attraction. Our data in C. elegans are consistent with a mechanism where 

DEET can inhibit responses to some stimuli but not others by decreasing avoidance of 

2-nonanone, decreasing attractiveness to multiple odorants, and leaving pyrazine be-

havioral responses intact. In both D. melanogaster flies and Ae. aegypti mosquitoes, the 

major behavioral effect of volatile DEET is inhibiting attraction to food odorants present-

ed as mixtures, like food odor or human odor. To determine if DEET could similarly dis-

rupt chemotaxis to a relevant mixed-odor stimulus, we used bacterial food as a chemo-
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taxis stimulus for C. elegans (Fig. 4.6). These data demonstrate that DEET can interfere 

with chemotaxis to bacterial odor (Fig. 4.6A) and that pyrazine, but not isoamyl alcohol, 

is able to overcome this inhibition (Fig 4.6.B-C). We conclude that DEET chemosensory 

interference is odor-selective, can affect both attractive and repulsive stimuli, and is not 

a result of non-specific or toxic effects of DEET. 

These data demonstrate that C. elegans is DEET-sensitive, and provide a robust 

assay to further explore the genes that underlie this behavior. 
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CHAPTER 5

GENETIC MECHANISMS OF DEET RESISTANCE AND SENSITIVITY IN C. 

ELEGANS

Many have been interested in identifying genes required for DEET-sensation. A 

forward genetic approach in Drosophila melanogaster flies yielded an X-linked DEET-in-

sensitive mutant (Reeder et al. 2001) and a population genetics approach in mosquitoes 

identified a dominant genetic basis for DEET-insensitivity (Stanczyk et al. 2010), but 

neither study identified the genes underlying these behavioral phenotypes. Reverse 

genetic experiments in D. melanogaster flies and three mosquito species have identified 

the insect odorant receptors as a molecular target of DEET (Ditzen et al. 2008; Xu et al. 

2014; Liu et al. 2010; Pellegrino et al. 2011; DeGennaro et al. 2013). However, this che-

mosensory gene family is not found outside of insects (Missbach et al. 2014; Robertson 

et al. 2003), raising the question of what pathways are required for DEET-sensitivity in 

non-insect invertebrates. 

5.1 A forward genetic screen for DEET-resistant C. elegans

To gain insights into the mechanisms of DEET repellency in C. elegans, we car-

ried out a forward genetic screen for mutants capable of chemotaxing toward isoamyl 

alcohol on DEET-agar plates (Fig. 5.1A). Following ethyl methanesulfonate (EMS) mu-

tagenesis, we obtained five DEET-resistant animals, three of which produced offspring 

that consistently chemotaxed toward isoamyl alcohol on DEET-agar plates (Fig. 5.1B) 

even after four generations of outcrossing to the wild-type strain (Fig. 5.1C). 
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Figure 5.1 A genetic screen for DEET-resistance. (A) Schematic of 
forward genetic screen with hypothetical DEET-resistant mutants circled. 
(B-C) Chemotaxis of wild-type (black), LBV003 mutant (pink), and two ad-
ditional isolated strains (open bars) before (B) and after 4 generations of 
outcrossing (C). For all plots, the height of the bar indicates the mean and 
vertical bars the s.e.m. Data labelled with different letters indicate signif-
icant differences (N=3-8 population assays of 30-180 animals per assay, 
p<0.05, One-way ANOVA and Tukey’s Post-hoc test). 

We next used whole-genome sequencing to identify candidate mutations in these 

strains (Sarin et al. 2010) using the methods outlined in Figure 5.2. We failed to identify 

mutations in LBV001 that were homozygous in all chemotaxing offspring. It is possible 

that there is a single, large-effect mutation that was missed in the original sequencing 

and analysis, that there are many mutations each with small effects that cannot be sep-

arated further using these methods, or that the mutation(s) are in regulatory regions and 

were excluded from our analyses. 
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Figure 5.2 Schematic of the mapping strategy used to identify hits 
from the screen. (A) Whole genome sequencing after backcrossing 
identified 7 and 27 candidate non-synonymous mutations. (B) Diagram of 
the crosses producing animals whose offspring were tested and pooled to 
produce the example subset of data in (C).

We were able to narrow down our putative candidates to a single gene containing 

a non-synonymous mutation each in LBV003 and LBV004. LBV003 mapped to str-

217, a G-coupled protein receptor (GPCR), and LBV004 mapped to nstp-3, a predicted 

sugar:proton symporter with homology to the SLC transporter family (‘Wormbase web 

site’). str-217 was of immediate interest as it is a member of the str family of predicted 
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chemosensory GPCRs. The missense mutation isolated from the EMS mutagenesis 

screen is predicted to replace a proline in the C-terminal cytoplasmic tail segment of the 

protein with a serine. This was of particular interest because the mutation is predicted 

to change a Cys-Pro-Ser-Cys motif to Cys-Ser-Ser-Cys. The presence of these cyste-

ines within 13-16 residues from the last transmembrane domain often indicates a site of 

thio-acylation of GPCRs (Escribá et al. 2007). In rhodopsins, thio-acylation of a similar 

sequence leads to incorporation of the palmitate into the plasma membrane, creating an 

additional intracellular loop. Although we do not have any data indicating the wild-type 

protein topology for str-217, we speculate that these cysteine residues are a candidate 

site for lipid interactions. Additionally, the Pro>Ser change was an exciting result as pro-

line residues are known to be ‘helix breakers’ (Li et al. 1996) therefore it is possible that, 

without the wild-type proline residue, the mutated tail gains a helical conformation that 

could alter any binding properties or lipid interactions otherwise found in the wild-type 

protein.
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of the EMS-induced mutation. (C) The predicted protein highlighting the 
non-synonymous mutation.
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5.2 str-217 is required for complete DEET sensitivity in a wild-isolate of C. elegans

In deciding how to follow up on these two genes, we discovered that a divergent 

strain of C. elegans isolated in Hawaii, CB4856 (Hawaiian), is naturally resistant to 

DEET (Fig. 5.4B-C). This Hawaiian strain contains a 138-base pair deletion in str-217 

(str-217HW) that affects exons 2 and 3 and an intervening intron, leading to a mutant 

strain with a predicted frame shift insertion-deletion (indel) and early stop codon (Fig. 

5.4A and 5.6C). Although we did not test them for their DEET-sensitivity, many other 

natural isolates contain deletions or predicted missense and early stop mutations in str-

217 (Fig. 5.5). 
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Figure 5.4 A wild isolate strain is DEET-resistant. (A) str-217 genomic 
locus indicating the deletion in the Hawaiian strain in orange. (B) Schemat-
ic of chromosome V in each strain: wild-type (white), Hawaiian (black), str-
217+/+ (grey), str-217HW (orange). (C) Chemotaxis of the indicated strains 
(N=16-24). Each dot represents a chemotaxis index of a single population 
assay (50-250 animals). Horizontal lines indicate mean ± s.e.m. Data la-
belled with different letters indicate significant differences (p<0.05 ANOVA 
and Tukey’s Post-hoc test).
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Figure 5.5 str-217 varies in multiple wild-isolates of C. elegans. (A) 
Schematic depicting the large deletions overlapping the str-217 locus 
across several natural isolates of C. elegans. (B) Schematic at a closer 
scale, depicting the predicted protein-disrupting changes identified in the 
wild-isolates. If there are large deletions not yet fixed in the population, 
any other mutations in the sequences are depicted on a white, instead of 
gray, background. Hawaiian strain (CB4856) is highlighted in orange. Data 
from CeNDR (Cook et al. 2017).

 To confirm that the Hawaiian DEET resistance maps to str-217HW, we tested 

three near-isogenic lines with a single, homozygous genomic segment of Hawaiian 

chromosome V introgressed into a wild-type (Bristol N2) background (Fig. 5.4B) (Doro-

szuk et al. 2009). Only the ewIR74 line contains str-217HW and, like the parent Hawai-

ian strain, is DEET-resistant (Fig. 5.4C). To provide further confirmation that str-217 is 

required for DEET sensitivity in these strains, we generated two additional genetic tools: 
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an engineered predicted null mutant produced by CRISPR-Cas9 genome-editing (str-

217-/-) (Fig. 5.6D), and a rescue/reporter plasmid that expresses both wild-type str-217 

and green fluorescent protein (GFP) under control of the predicted str-217 promoter 

(Fig. 5.4A). The LBV003 strain (Fig. 5.6B), Hawaiian introgressed strain ewIR74 (Fig. 

5.6C), and the str-217-/- engineered mutant strain (Fig. 5.6D) all showed chemotaxis on 

DEET-agar. Expression of a rescue/reporter construct in these three strains rendered all 

three DEET-resistant mutants fully sensitive to DEET, in that none chemotaxed to iso-

amyl alcohol on DEET-agar (Fig. 5.6B-D).
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Figure 5.6 str-217 is required for complete DEET-sensitivity (A) Sche-
matic of str-217 rescue construct. (B-D) Chemotaxis indices of the indicat-
ed strains. Predicted STR-217 protein topology of each mutant is indicated 
below each plot. Each dot represents a chemotaxis index of a single pop-
ulation assay. Horizontal lines indicate mean ± s.e.m. Data labelled with 
different letters indicate significant differences (N=6-9 assays, n=50-250 

animals in each assay, p<0.05 two-sided Student’s t-test).
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These data identify two candidate genes required for complete DEET-sensitivity. 

One of these genes, str-217, is also required for DEET-sensitivity in an engineered str-

217 mutant and a wild isolate of C. elegans. This gene is part of a C. elegans-specific 

expansion of G-coupled protein receptors (GPCRs) and is not orthologous to any of the 

receptors required for DEET-sensitivity in insects (Robertson et al. 2006). We next want-

ed to determine where this gene is expressed, and to use it to learn more about how 

DEET is affecting chemotaxis behavior. 
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CHAPTER 6

CELLULAR MECHANISMS OF DEET RESISTANCE AND SENSITIVITY IN 

C. ELEGANS

We next turned to the neuronal mechanism by which DEET disrupts chemotaxis 

in C. elegans. In insects, DEET interacts directly with chemosensory neurons and this 

effect requires the odorant receptors that they express (Ditzen et al. 2008; Liu et al. 

2010; Pellegrino et al. 2011; DeGennaro et al. 2013; Xu et al. 2014). To identify similar-

ities and differences between insects and C. elegans, we wanted to evaluate DEET’s 

effects on both the primary sensory neurons required for chemotaxis and also further 

investigate how str-217 can disrupt the effects of DEET.

6.1 DEET affects AWC independent of str-217

In C. elegans, the primary sensory neuron for isoamyl alcohol is AWC (Bargmann 

et al. 1993). To ask if DEET modulates primary sensory detection of isoamyl alcohol, we 

used in vivo calcium imaging to monitor AWC activity in the presence and absence of 

DEET. 
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Figure 6.1 str-217-independent responses of chemosensory neuron 
AWCON to DEET. (A) Top: stimulus protocol. 30 second pulses of isoamyl 
alcohol (dark grey) were delivered in buffer, buffer with solvent (light grey), 
or buffer with 0.15% DEET (blue). Bottom: Average traces of GCaMP 
activity in AWCON in wild-type (black) and str-217-/- (red) animals over a 36 
minute experiment, used for analysis in B and C. (B) Response magni-
tudes of the isoamyl alcohol response before, during, and after DEET. c, 
Response magnitude of the increase in calcium in AWC at DEET onset 
(N=23 str-217, N=31 wild-type animals in 3-4 experiments over 2-3 days). 
In b and c, each dot represents responses of single animals and the hori-
zontal lines represent the mean and s.e.m. Data labelled with different let-
ters indicate significant differences (p<0.05, two-way ANOVA and Tukey’s 
Post-hoc test in B, and two-tailed Student’s t-test in C). Data collected by 
May Dobosiewicz.
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AWC responded to the addition of DEET with a rapid increase in calcium that 

decreased to baseline over the course of 11 minutes of chronic DEET stimulation (Fig. 

6.1 A and C). In the presence of DEET, AWC responses to isoamyl alcohol decreased in 

magnitude, but there was no observed difference in AWC activity between wild-type and 

str-217-/- mutants in the presence or absence of DEET (Fig. 6.1A-B). This suggests that 

AWC sensory neurons are not the primary functional target of DEET.

6.2 str-217 is required for ADL chemosensory neurons to respond to DEET

To identify the functionally relevant neurons, we determined where str-217 is 

expressed by examining the str-217 rescue/reporter strains, and found GFP expression 

in a single pair of chemosensory neurons, called ADL (Fig. 6.2A). As part of a large-

scale effort characterize the expression patterns of the C. elegans chemoreceptors, the 

Hobert lab also found that str-217 is expressed in ADL, and occasionally in an addi-

tional, non-chemosensory interneuron PVT (Vidal et al. 2018). ADL is not required for 

chemotaxis to isoamyl alcohol, suggesting an indirect role for ADL in DEET chemosen-

sory interference (Zaslaver et al. 2015). To ask if ADL neuronal function is required for 

DEET-sensitivity, we used a strain expressing tetanus toxin light chain, which inhibits 

chemical synaptic transmission by cleaving the synaptic vesicle protein synaptobre-

vin, in ADL (Jang et al. 2012; Schiavo 1992). These animals showed the same level of 

DEET-resistance as str-217 mutants (Fig. 6.2B). We note that neither str-217 mutants 

nor ADL-deficient animals return fully to wild-type levels of chemotaxis (Fig. 6.2B), sug-

gesting that additional genes and neurons contribute to DEET sensitivity in C. elegans. 
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DEET-sensitivity (A) DEET-responsive chemosensory neuron required 
for DEET-sensitivity. a, GFP expression in a single ADL neuron from str-
217 rescue/reporter construct (scale bar: 10 μm). (B) Chemotaxis of the 
indicated strains. Image stack taken by Xin Jin.

Since both str-217 and ADL function are required for DEET-sensitivity, we used 

calcium imaging to ask if ADL responds to DEET, and if this requires str-217 (Fig. 6.3). 

Both wild-type and str-217-/- mutants carrying the rescue/reporter plasmid, but not str-

217-/- mutants, showed calcium responses to DEET (Fig.6.3 B-C and F). In control ex-

periments, we showed that the known ADL agonist, the pheromone C9 (Schiavo 1992), 

activated ADL in both wild-type and str-217-/- mutant animals (Fig. 6.3D-F) This suggests 

that the str-217-/- mutation has a selective effect on ADL response to DEET. 

To exclude the possibility that DEET activates ADL indirectly by activating other 

sensory neurons that subsequently activate ADL, we carried out the same imaging ex-

periments in genetic backgrounds that disrupt chemical synaptic transmission between 

neurons. We were able to see responses to DEET in ADL neurons in both unc-13 and 

60



unc-31 animals, which lack synaptic vesicle fusion (Richmond et al. 1999) and dense-

core vesicle fusion (Jorgensen et al. 2002) respectively (Fig. 6.4). From these data, we 

conclude that DEET directly activates ADL. Further, we conclude that disrupting either 

ADL activity or str-217 is sufficient to confer DEET-resistance in C. elegans, str-217 is 

required for ADL neurons to respond to DEET, and DEET acts directly on ADL.
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Figure 6.3 str-217 is required for ADL to respond to DEET, but not 
the pheromone C9 (A) Schematic of microfluidic calcium imaging assay. 
(B) Pseudocolored images of ADL response to 0.15% DEET in animals of 
the indicated genotype (increase in mean fluorescence 20 seconds after 
the first DEET pulse minus mean of 20 seconds before the 0.15% DEET 
pulse). (C) Heat maps of calcium imaging data in response to 0.15% 
DEET. Each row represents ADL imaged in one animal, cropped to show 
only the first pulse. (D) Pseudocolored images of ADL response to 100 nM 
C9 pheromone in animals of the indicated genotype calculated as in B. (E) 
Heat maps of calcium imaging data in response to 100 nM C9 pheromone. 
Each row represents ADL imaged in one animal, cropped to show only the 
first pulse. (F) Mean normalized ADL calcium responses during the first 
DEET or C9 pulse in animals of the indicated genotype from data in C and 
E. In F, horizontal lines represent mean ± s.e.m. In F each dot represents 
a single neuron in a single animal. Data labelled with different letters indi-
cate significant differences (p<0.05, Two-way ANOVA and Tukey’s Post-
hoc test).
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Figure 6.4 ADL responds directly to DEET. (A) Schematic of microflu-
idic calcium imaging assay. (B) Pseudocolored images of ADL response 
to 0.15% DEET in animals of the indicated genotype (increase in mean 
fluorescence 20 seconds after the first DEET pulse minus mean of 20 sec-
onds before the 0.15% DEET pulse). (C) Heat maps of calcium imaging 
data in response to 0.15% DEET. Each row represents ADL imaged in one 
animal, cropped to show only the first pulse. (D) Mean normalized ADL 
calcium responses during the first DEET pulse in animals of the indicated 
genotype from data in C. In D each dot represents a single neuron in a 
single animal. Horizontal lines represent mean ± s.e.m. Data labelled with 
different letters indicate significant differences (p<0.05, Two-way ANOVA 
and Tukey’s Post-hoc test).

6.3 str-217 cannot confer DEET-sensitivity to HEK cells 

While these data are consistent with the hypothesis that str-217 is a DEET recep-

tor, it is also possible that str-217 is not the direct in vivo target of DEET, but is involved 

indirectly in signaling or modulation of DEET-specific responses in ADL. To ask if str-217 

is a direct molecular target of DEET, we expressed str-217 in HEK293T cells and mon-

itored activation by DEET using calcium imaging. Using this approach, we found that 

DEET did not activate HEK293T cells expressing str-217 (Fig. 6.5). 
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Figure 6.5 str-217 does not respond to DEET when expressed in 
HEK-293T cells. (A) Max ratio (maximum fluorescence/baseline fluo-
rescence) of calcium signal in HEK-293T cells transiently expressing 
GCaMP6s and Gqα15 without (control) or with str-217 and stimulated by 
the indicated dose of DEET. (B) Summary of max ratio responses to 5 mM 
DEET. Data are plotted as mean ± s.e.m. (n=12, 3 replicates each in 4 
separate plates; n.s., not significant, p>0.05, ANOVA and Tukey’s Post-hoc 
test) with s.e.m. indicated by a vertical line in A and horizontal line in B. 
Data collected by Laura Duvall.

We cannot exclude the possibility that this nematode receptor is non-functional in 

mammalian tissue culture cells either because it is not trafficked to the cell membrane, 

or because essential signaling cofactors are not natively present in mammalian cells. 

It is also possible that str-217 is required for ADL to be sensitive to DEET, but that this 

receptor acts downstream of a primary receptor for DEET.

6.4 Several C. elegans neurons respond to DEET

In Drosophila, many neurons show some sort of DEET response (Ditzen et al. 

2008; Pellegrino et al. 2011) but it has not been possible to determine, which if any of 

these responses account for the behavioral effects of DEET on these flies because of 

the complexity of the olfactory system in these animals. In C. elegans, the relatively 
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small number of olfactory neurons and the genetic access to them allowed us to start 

to ask these questions. In addition to the increase in calcium seen in AWC (Fig. 6.1) 

and ASH (Fig. 6.6) we also saw increases in calcium in AWA (Fig 6.7G-H) and ASK 

(Fig 6.7A-B). Additionally, ASE responded with an increase in calcium after the removal 

of DEET (Fig 6.7). As ASH is often described as a repellency neuron, and DEET can 

evoke calcium responses in ASH, we wanted to determine if disrupting ASH could con-

fer DEET-resistance. We used a strain expressing caspases in ASH, which should ge-

netically ablate these neurons (Yoshida et al. 2012). We saw no effect on DEET-sensi-

tivity in chemotaxis to isoamyl alcohol in this strain. Therefore although DEET activates 

ASH, this activation plays no role in the observed behavioral effect of DEET.
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Figure 6.6 ASH neurons are also DEET-sensitive, but not required 
for DEET-sensitivity in chemotaxis to isoamyl alcohol. (A) Preliminary 
data showing average traces of GCaMP activity in ASH in wild-type (black) 
during exposure to ethanol (open gray box) and 0.15% DEET (blue). (B) 
Chemotaxis indices for wild-type animals and animals expressing caspase 
in ASH on solvent- and DEET-agar. Each dot represents responses of sin-
gle animals and the horizontal lines represent the mean and s.e.m. Data 
labelled with different letters indicate significant differences (N=15 animals, 
over two experiments. p<0.05, two-way ANOVA and Tukey’s Post-hoc 
test). Imaging data in A collected by May Dobosiewicz.
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Figure 6.7 Many neurons respond to DEET. These preliminary data 
show varied responses to DEET and ethanol solvent in (A-B) AWA (C-D)
AWB (E-F) ASE and (G-H) ASK neurons. These data show averaged trac-
es from 8-11 animals on 1-2 days of experiments (black) and s.e.m. shown 
in gray. Data collected by May Dobosiewicz.
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Although AWB responds to ethanol buffer, when in a constant stream of ethanol, 

there is no consistent response to DEET in AWB neurons (Fig. 6.7D). This makes ex-

pressing str-217 in AWB an attractive direction for future study to determine if str-217 

can confer DEET sensitivity to another neuron.

Several neurons that do not express str-217 are DEET-responsive, including ASH 

and AWC. In AWC, we were able to see these same responses to DEET in the str-217 

mutants and in wild-type animals. Together, these data indicate that cells that do not 

express str-217 are able to respond to DEET. We do not understand the mechanism re-

sponsible for these responses. Because not all sensory neurons in C. elegans respond 

to DEET, and because responders aside from ADL do not express str-217, we hypothe-

size that additional genes confer selective responses to DEET in these neurons. 
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CHAPTER 7

DEET INCREASES AVERAGE PAUSE LENGTHS DURING EXPLORATION AND 

CHEMOTAXIS AND REQUIRES ADL

In Chapter 4, we described the effects of DEET on C. elegans, and in Chap-

ters 5 and 6 we identified genetic (str-217) and neuronal (ADL) requirements for this 

DEET-sensitivity. We showed that DEET has a specific effect on chemotaxis to some 

odors and not others, but we still do not know exactly how ADL activity may interfere 

with chemotaxis. Additionally, even in str-217 mutants or ADL::Tetanus toxin animals, 

we never see complete return to solvent-agar levels of chemotaxis to isoamyl alcohol 

on DEET. To better understand how DEET is affecting chemotaxis and what role(s) ADL 

and str-217 play, we recorded the behavior of animals during chemotaxis.

7.1 DEET increases average pause length during chemotaxis

Population chemotaxis assays report the location of the animal at the end of the 

experiment, and do not reveal the details of navigation strategy. To investigate which as-

pects of chemotaxis and exploration are affected by DEET, we tracked the position and 

posture of individual animals on DEET-agar or solvent-agar plates (Fig. 7.1). These data 

immediately revealed an obvious phenotype not visible in the population-based assays: 

DEET increases the frequency and duration of pausing in C. elegans during chemotaxis 

(Fig. 7.2)
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7.1 Tracking animals’ movement during chemotaxis reveals pausing 
phenotype. (A-B) Top: example trajectories of a single wild-type animal 
chemotaxing to isoamyl alcohol on solvent-agar (A) or a different animal 
on DEET-agar (B) plate. Each dot depicts the x, y position of a single ani-
mal once every 10 seconds. Bottom: raster plots indicating paused frames 
for each animal depicted above. C, Example pauses from the tracked 
animal in b. Images were extracted every 18 frames (6 seconds), cropped, 
and made into a silhouette. 16 silhouettes were overlaid to create each 
snapshot of activity. 

To investigate if the DEET-induced increase in pause duration or frequency re-

quired str-217 and ADL, we tracked single animals on solvent- and DEET-agar plates. 

Wild-type, but not str-217-/- mutant animals (Fig. 7.2), showed a dramatic increase in 

average pause length on DEET-agar. 
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Figure 7.2 Increase in pause duration on DEET-agar during chemo-
taxis requires str-217. (A) Average pause length for each experiment on 
plates with the indicated stimuli and genotypes (N=6-7 plates, 4-15 ani-
mals per plate). Different letters indicate statistically significant differences 
(p<0.05 two-way ANOVA).

7.2 DEET increases average pause length during exploration 

We then identified at least two hypotheses consistent with these results: DEET 

and isoamyl alcohol affect some number of neurons including ADL and AWC that lead 

to a ‘pause state’, or that DEET alone can lead to a ‘pause state’. To determine if the 

increase in average pause length occurs only in the context of chemotaxis to isoamyl 

alcohol, or as a consequence of DEET alone, we tracked wild-type, str-217-/- mutant 

(Fig. 7.3A), and ADL::Tetanus toxin (Fig. 7.3B) animals on DEET-agar and solvent-agar 

plates with no additional odorants. Only wild-type animals had a higher average pause 

length on DEET-agar. Consistent with our prior observation that chemotaxis to pyra-

zine was unaffected by DEET, wild-type animals showed no increase in average pause 

length when chemotaxing to pyrazine on DEET-agar (Fig. 7.4). This suggests that pyra-
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zine chemotaxis can overcome the effect of DEET on average pause length, and likely 

other DEET-affected aspects of exploration and chemotaxis.
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Figure 7.3 DEET increases average pause length and requires str-
217 and ADL. (A-B) Average pause length for each experiment on plates 
without any additional odor added (N=6-7 plates, 4-15 animals per plate). 
Different letters indicate statistically significant differences (p<0.05 two-
way ANOVA).
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Figure 7.4 Wild-type animals chemotaxing to pyrazine do not show 
increased pause duration. Average pause length for each experiment 
(N=6 plates, 4-15 animals per plate). Different letters indicate statistically 
significant differences (p<0.05 Student’s t-test).

Together, these data show that DEET has multiple effects on exploration and 

chemotaxis, including increasing the duration of pause lengths. ADL and str-217 are 

required for this increase in average pause length, yet pyrazine is able to overcome 

these effects. It appears that the ADL response to DEET is necessary for an increase in 

pause duration, but with these data it is not possible to determine if ADL is sufficient to 

increase average pause duration. It could be that ADL activity increases pause duration, 

or that many neurons are affected by DEET, and the animal needs many DEET-affected 

neurons to act in concert to lead to the increase in average pause duration.

7.3 Artificial activation of ADL is sufficient to increase average pause length

To determine if ADL activity alone is sufficient to increase average pause length, 

we carried out an optogenetic experiment by expressing the light-sensitive ion channel 

ReaChR (Lin et al. 2013) in ADL neurons of wild-type animals, and tracking locomotor 
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behavior on chemotaxis plates. We observed an increase in average pause length when 

ADL was activated artificially (Fig. 7.6).
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Figure 7.5 Artificial activation of ADL increases pause duration. (A) 
Average pause length of the indicated genotype with LED off (open cir-
cles) or on (closed circles), with lines connecting each experimental pair. 
(B) Difference in average pause length for each experiment in (A-B) (N=6 
experiments, 4-15 animals per experiment). Horizontal lines indicate mean 
± s.e.m. Data labelled with different letters indicate significant differences 
(p<0.05, two-way ANOVA and Tukey’s Post-hoc test).

From these data, we conclude that ADL mediates the increase in average pause 

length seen on DEET-agar, and speculate that the increase in long pauses is one mech-

anism by which DEET interferes with chemotaxis. 

7.4 The length and strength of ADL stimulation affects different aspects of 

exploration

Previous work on ADL demonstrated that the pheromone C9 increases the prob-

ability of reversals through ADL activity, yet we did not see an increase in reversals in 

our tracking data. This difference in behavioral response could be tied to the delivery of 
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the stimuli (acute C9 exposure compared to chronic DEET-exposure in the plates) or 

the strength and features of calcium response (Fig. 6.3). To further explore these differ-

ences, we used the ADL::ReaChR reagents and tested higher intensities of light as well 

as shorter stimulus regimes (Fig 7.7, Fig. 7.8). 
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Figure 7.6 Increasing pause duration requires long stimulation. (A) 
Average pause length of the indicated stimulation scheme with LED off 
(right) or on (left), with lines connecting each experimental pair. (B) Dif-
ference in average pause length for each experiment in (A-B) (N=6 ex-
periments, 4-15 animals per experiment). Horizontal lines indicate mean 
± s.e.m. Data labelled with different letters indicate significant differences 
(p<0.05, two-way ANOVA and Tukey’s Post-hoc test).

We found that the lower intensity, longer light pulses had the strongest effect 

on pause duration (Fig. 7.6) and that reversals were only seen at the shortest, highest 

light intensity (Fig. 7.7D). Previously we showed that the DEET-induced increase in 

pause duration requires ADL and str-217 (Fig 7.3). Simiarly, here we show that artificial 

activation of ADL is not, under these conditions, able to increase pause frequency (Fig 

7.7A and B), further supporting the hypothesis that ADL activity can lead to an increase 

in pause duration but not frequency. 
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Figure 7.7 Increasing the intensity of the stimulation of ADL increas-
es the number of reversals. (A) Increase in average pause frequency 
during two minutes of light stimulation compared to the two preceding min-
utes. (A) Increase in average pause frequency during twenty seconds of 
light stimulation compared to the twenty preceding seconds. (A) Increase 
in the frequency of long and short reversals during two minutes of light 
stimulation compared to the two preceding minutes. (A) Increase in the 
frequency of long and short reversals during twenty seconds of light stim-
ulation compared to the twenty preceding seconds.  (N=6 experiments, 
4-15 animals per experiment). (*p<0.05, Student’s t-test).

These data demonstrate that artificial activation of ADL is sufficient to increase 

average pause length, and the duration and intensity of ADL activation are both im-

portant variables in predicting the behavioral outcome of ADL activation. This concurs 

with both our results and the results from others. We have shown that delivery of the 

ADL-activating stimulus is important: mixing DEET into plates can increase average 

pause duration, at low concentrations but even high concentrations of DEET as a point 

source have no observable effect. This agrees with previous experiments from the 

Bargmann lab, where animals on agar containing 10 ng C9 explored less and spent 

more time dwelling on food (Greene et al. 2016) while acutely presented C9 can induce 

74



reversals when presented at 100 nm and higher concentrations (Jang et al. 2012). 

Together, these data identify a specific effect of DEET — an increase in average 

pause duration -- that requires both ADL and str-217. Artificial activation of ADL is suffi-

cient to increase average pause length, demonstrating the sufficiency of ADL activation 

on pause duration. Finally, we provide evidence that the duration and intensity of stimu-

lating ADL plays a role in the behavior elicited. 
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Chapter 8

DISCUSSION

In this thesis, we explored the basis of DEET-sensitivity across Protostomia, with 

a focus on Ae. aegypti orco-independent contact DEET repellency and the nematode C. 

elegans. We added C. elegans to the list of known DEET-sensitive animals, uncovered 

a neuronal mechanism for a DEET-induced behavior, and identified a molecular target 

required for complete DEET-sensitivity in an engineered mutant and in a wild-isolate 

of this species. Using these insights into non-Arthropod DEET sensitivity, we propose 

several areas for further study.

This work opens up C. elegans as a system to test new repellents in vivo for both 

interference in chemotaxis and toxicity, and also for discovery of additional genes and 

neurons that respond to DEET. The molecular mechanism by which the str-217 mutation 

renders ADL DEET-insensitive and worms DEET-resistant remains to be understood. 

str-217 is a G protein-coupled receptor with no known ligand and that is evolutionarily 

unrelated to DEET-sensitive odorant receptor proteins and gustatory receptor proteins 

previously described in insects. Although we found no evidence that DEET can activate 

str-217 in heterologous cells, it is conceivable that in the right milieu, str-217 is indeed a 

DEET receptor. Alternatively, str-217 could act indirectly in concert with an as-yet un-

known DEET receptor in ADL. Interestingly, pyrazine chemotaxis is unaffected by DEET 

in any of our assays, consistent with our model that DEET is not a simple repellent, but 

a modulator of behavior to interfere with chemotaxis to some but not all odorants.
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8.1 Why do ADL::Tetanus toxin animals and str-217 mutants still have a 

chemotaxis defect?

We have shown that although str-217-/- mutants and animals expressing teta-

nus toxin in ADL are both DEET-resistant compared to wild-type animals, they are still 

DEET-sensitive. Several hypotheses could explain the residual DEET-sensitivity: DEET 

may act on some sensory neurons to blunt the normal response to odor as we saw in 

AWC imaging, DEET may interact with other sensory neurons to alter different aspects 

of locomotion which prevent the animals from chemotaxing efficiently, or DEET may in-

teract with multiple neurons and affect the integration of sensory signals. None of these 

hypotheses are mutually exclusive, but we will propose experiments to start to untangle 

the different effects of DEET on chemotaxis and exploration, and to put these data in 

perspective of the broad efficacy of DEET.

8.1.1 DEET may interfere with the primary sensory neurons required for 

chemotaxis to specific odorants. 

	 In Chapter 6, we showed that DEET alone can affect multiple sensory 

neurons (Fig. 6.7) and can decrease the magnitude of AWC calcium response to isoam-

yl alcohol (Fig. 6.1). We currently cannot predict the precise behavioral relevance of this 

change in magnitude, though it seems reasonable to speculate that a degraded calcium 

response may contribute to the lower chemotaxis indices. 

The AWC calcium response to DEET does not require str-217, but it may still 

require other neurons. It would be possible to formally test this by imaging AWC in unc-

13 and unc-31 animals, and identify if synaptic vesicle or dense core vesicle fusion is 

required. If AWC is directly affected by DEET, it is possible that continuous exposure 

to the DEET-agar plate is mimicking olfactory adaptation during this experiment. Odor 

history can influence chemotaxis and calcium responses in AWC: when animals were 
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incubated in the presence of high isoamyl alcohol, AWC showed a diminished response 

to isoamyl alcohol pulses and a decrease in chemotaxis indices after pre-exposure 

(Chalasani et al. 2010). However, animals mutant for the peptide nlp-1 regained their 

chemotaxis to isoamyl alcohol. One could image from AWC neurons in both nlp-1 and 

wild-type animals. If the AWC neurons showed normal responses to isoamyl alcohol in 

the nlp-1 mutants, one could then test nlp-1 mutants and wild-type animals in the popu-

lation chemotaxis assays. If nlp-1 animals were somewhat DEET-resistant, or if str-217-

/-;nlp-1 double mutants showed additional DEET-resistance, it would support the hypoth-

esis that DEET can affect chemotaxis by interfering with the AWC sensory neurons and 

their ability to respond to odorants. 

We also showed that DEET can increase calcium in AWA and ASK neurons, and 

that ASE neurons showed a response to DEET removal. The AWA response is partic-

ularly interesting, because AWA is required for both pyrazine and diacetyl chemotaxis. 

In population chemotaxis assays, pyrazine chemotaxis is unaffected by DEET, while 

diacetyl chemotaxis remains affected (Fig. 4.3). To understand what makes these two 

odorants behave differently in these assays, it would be helpful to first know what the 

primary neural responses look like in the presence of DEET. One could image AWA 

responses to diacetyl and pyrazine in buffer, solvent-buffer, and DEET-buffer, similar to 

the experiment we performed with AWC and isoamyl alcohol (Fig. 6.1). If diacetyl re-

sponses were degraded in DEET-buffer, but pyrazine responses were intact, that would 

provide evidence that DEET may interfere with odr-10, the diacetyl receptor (Sengupta 

et al. 1996), but not the unidentified pyrazine receptor.

8.1.2 DEET may interact with sensory neurons to induce competing 

behaviors 

We found that ADL is both necessary and sufficient for a DEET-induced increase 
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in pause duration. If animals spend more time paused, it will take them longer to che-

motax toward an odor, even if all other aspects of chemotaxis are unaffected. This is an 

example of a competing behavior: an animal cannot be both moving and paused, and 

therefore increasing pause duration would decrease chemotaxis efficiency. 

We also found that ADL is not required for DEET-induced pause frequency. This 

observation indicates that pause initiation and continuation require different subsets of 

neurons. Using existing strains expressing tetanus toxin or caspases in sensory neu-

rons, it should be possible to identify neurons required for other DEET-induced be-

haviors, like pause frequency. If the sensory neurons required for the increase in, say, 

pause frequency were identified, it would be possible to determine if there are additional 

aspects of chemotaxis affected by DEET. For example, if neurons X were required for 

the increase in pause frequency, would animals expressing tetanus toxin in both neuron 

X and ADL completely regain DEET-sensitivity? If not, careful behavioral analysis of 

these animals may reveal additional effects of DEET. 

8.1.3 The primary effects of DEET may be downstream of the sensory 

neurons

We observed that chemotaxis to pyrazine appears immune to the effects of 

DEET, both in population assays and in tracking experiments. This indicates that even if 

DEET is affecting the primary sensation of odorants and can induce competing behav-

iors, these effects can be overcome if the “right” signal is present. Intriguingly, diacetyl 

chemotaxis is affected by DEET, even though diacetyl and pyrazine both require the 

same AWA sensory neurons for chemotaxis (Bargmann et al. 1993). The diacetyl results 

provide evidence against the hypothesis that activation of AWA alone is able to over-

come DEET-sensitivity, though we have not explicitly tested this assumption. If AWA re-

sponds similarly to diacetyl and pyrazine: what makes these two odorants lead to such 
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different outcomes?

One way of addressing this problem is to look at the information flowing through 

these circuits. It is now possible to perform large-scale neural imaging in freely moving 

animals (Nguyen et al. 2016), and it is becoming feasible to identify contributions from 

identifiable neurons (Nichols et al. 2017). Using these methods, it may be informative to 

image from freely moving C. elegans on DEET- and solvent-agar plates chemotaxing to 

diacetyl, and chemotaxing to pyrazine. Identifying differences between these patterns 

should produce testable hypotheses. 

For example, we know that DEET increases pause duration in C. elegans. AVA 

and AVB are thought to be reverse and forward command interneurons, respectively. 

Each of these neurons runs the entire length of the ventral nerve cord, making synaptic 

connections to nearly all of the non-pharyngeal motor neurons in C. elegans (Chalfie et 

al. 1985). There is evidence that during a pause, both AVA and AVB are silent, or both 

AVA and AVB are active (Roberts et al. 2016). It could be that AWA response to pyrazine 

leads to AWA signaling differently to downstream neurons, or that pyrazine affects other 

sensory neurons. In either case, pyrazine could disrupt the balance of AVA and AVB ex-

citation and inhibition, biasing the animal toward forward movement, while diacetyl does 

not. Using these large-scale imaging methods, we would be able to see the information 

flowing through these circuits, and ideally identify candidate neurons for further manipu-

lation. 

8.2 What other genes are required for DEET-sensitivity?

In this thesis, we identified str-217, a GPCR required for complete DEET-sensi-

tivity in C. elegans However, str-217-/- mutants are not completely resistant to DEET as 

chemotaxis does not reach the levels seen on control plates lacking DEET, and multiple 

neurons that do not express str-217 can respond to DEET by calcium imaging. Other 

genes required for DEET-sensitivity must therefore exist. Here we explore ways to iden-
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tify more candidates required for DEET-sensitivity, and perhaps identify DEET-sensitive 

receptors

	 8.2.1 nstp-3 is a candidate gene that may be required for DEET-sensitivity

Our genetic screen yielded three DEET-resistant strains of C. elegans, two of 

which we mapped to candidate genes. In addition to identifying str-217, we also iden-

tified nstp-3. nstp-3 is annotated as a sugar-proton symporter in the SLC solute trans-

porter family (‘Wormbase web site’). Our early attempts at identifying the expression 

pattern of this gene with a small (0.7kb) promoter sequence were not fruitful, but using 

longer upstream putative regions could help identify the expression pattern of this gene 

and allow for rescue experiments to confirm this candidate. 

8.2.2 A sensitized screen could reveal additional candidate genes

If we wanted to know which genes are required for the remaining DEET-sensitivi-

ty in str-217-/- mutants, we could repeat our forward genetic screen in a str-217-/- genetic 

background. This type of sensitized screen would bias us away from finding additional 

neurons required for ADL to sense DEET and increase average pause length.

8.3 How else might DEET affect behavior?

In Chapter 2 we demonstrated that there are many, distinct behavioral effects 

of DEET in Ae. aegypti: olfactory repellency requiring orco, orco-independent contact 

DEET repellency that requires the tarsi, and rejection of DEET-laced liquid food. We 

propose that there are likely multiple unstudied effects of DEET not only in Ae. aegypti, 

but also in all of the other DEET-sensitive species. Here we propose several avenues to 

identify additional effects of DEET in nematodes and beyond. 
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8.3.1 Acute DEET sensitivity in C. elegans

Our experiments in C. elegans presented DEET uniformly at low concentrations, 

and did not explicitly test any acute effects of DEET. To model contact avoidance in 

nematodes, we attempted to convert the split Petri dish assay from Chapter 3 for use 

with C. elegans. C. elegans crawl on the surface of the agar and are sensitive to sur-

face variations, therefore this assay was not ideal for this species. To test for C. ele-

gans sensitivity to acute DEET, we could instead perform a drop test (Jang et al. 2013) 

which places a small drop of liquid in front of a moving animal, and asks if the animal 

reverses. If DEET does have an acute effect on C. elegans, it would be interesting to 

screen for animals insensitive for this behavior as well. We could re-purpose the screen 

we performed in this thesis, using chemotaxis agar instead of DEET-agar, but adding 

a stripe of DEET down the middle of the assay. If animals crawl over the DEET to che-

motax to the odor, they would be considered ‘hits’. Candidates from this screen could 

then be tested for general osmotic and solvent sensitivity, and any mutants specifically 

DEET-sensitive could be further investigated. It would also be possible to do this on a 

smaller scale and screen for neurons required for acute DEET-sensitivity. 

Together, these experiments in C. elegans can help us better understand 

how DEET is affecting this animal. Adding several more genes to the list of known 

genes required for DEET-sensitivity could help identify commonalities across these pro-

teins, potentially leading to testable hypotheses that could be approached with protein 

engineering methods.

8.3.2 Can insects and nematodes smell DEET?

Several groups claim that DEET is an aversive odor to specific species of mos-

quitoes, but the behavioral evidence that DEET smells bad relies on behavioral assays 

that conflate contact and non-contact activity of DEET. Moreover, they do not test re-

pellency of DEET per se, but the ability of DEET to inhibit attraction to other sensory 
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stimuli. These groups used an arm (Stanczyk et al. 2010), food odors (Syed et al. 2011), 

heat (Syed et al. 2008), or sucrose (Syed et al. 2008) to first attract mosquitoes, and 

many failed to control for contact repellency. If DEET itself is an aversive, unpleasant 

stimulus, presenting DEET alone should induce movement away from the DEET source, 

and a forced choice assay with no other stimuli should result in avoidance. In their home 

cages, most Ae. aegypti mosquitoes are on one of the four walls (Fig. 8.1). Adding a 

filter paper to each side of the cage, just outside, would allow for delivery of DEET by 

soaking the filter paper with syringes. If animals were repelled by DEET, more animals 

should leave the DEET side than the solvent side. 

Figure 8.1 Mosquitoes spend time on the sides of cages. Image © 

Alex Wild, used with permission. Dark areas on the cages are mosquitoes.

It would also be informative to perform a forced-choice assay, similar to the 

olfactory two-choice assay developed in the Benton lab (Ramdya et al. 2015). In this 

assay, a laminar flow delivers either solvent (white) or odor (blue) in an air stream (Fig. 

8.2). The body position of each animal would be tracked over time, and avoidance of 

the odor side could be compared. If DEET itself is an aversive, unpleasant stimulus, 

flies and mosquitoes should spend more time in the clean air stream in this experiment. 
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In D. melanogaster, geosmin would be an excellent control odor, as it is one of the few 

examples of labeled line repellency in D. melanogaster, though its effect on Ae. aegypti 

is unknown (Stensmyr et al. 2012).

A

B

Air side Odor side

Fig. 8.2 Odor avoidance assay from Ramdya et al. 2014 (A) Schematic 
representing the assay, and example of triangles, which could symbolize 
either Ae. aegypti mosquitoes or D. melanogaster flies, with no side bias. 
(B) Example of animals avoiding the odor side. 

Several studies have identified individual olfactory neurons that respond to DEET 

(Syed et al. 2008), or an aggregate, electroantennographic response in antennae (Cos-

tantini et al. 2001; Leal et al. 1998). If DEET is not a behavioral repellent on its own, it 

means either the responses are not sufficient to generate a perceptible odor, or DEET 

is a neutral stimulus. If DEET has a perceptible odor, it should be possible to train ani-

mals to avoid DEET or be attracted to DEET. Using classic learning assays in A. mellif-

era honeybees, DEET was mixed with sucrose and used as an effective unconditioned 

stimulus applied to the proboscis or tarsi during presentation of odorants (Abramson et 

al. 2010). Using these same assays, DEET could instead be used as the conditioned 

stimulus, and paired with either a shock or sucrose reward in an assay similar to the 

fly elevator described (Quinn et al. 1974; Tempel et al. 1983). If the animals can smell 

DEET, they should be able to learn using DEET as a conditioned volatile stimulus. 
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8.4 What does a perfect repellent look like?

Many investigators motivate their studies of DEET based on the assumption that 

the more information we have about how DEET works, the easier it will be to produce 

new, better repellents. DEET is already an amazingly effective compound and has a 

strong safety record, raising the question: what would improvements on DEET really 

look like? The ideal repellent would be applied infrequently, be completely non-toxic, 

and provide complete protection from all biting animals. A longer-lasting DEET formu-

lation exists that lasts about 12 hours, but users must still apply at least once a day for 

protection (Salafsky et al. 1999). One idea that goes beyond existing products would be 

a single application of commensal skin bacteria producing repellents that could effec-

tively protect someone for extended periods of time. While this may seem like science 

fiction, there are already methods to apply commensals producing natural products 

(Nakatsuji et al. 2017). However, DEET is not a natural product, and therefore is beyond 

the reach of this type of approach for the time being. 

Several groups have explored the chemical space around DEET, looking for 

repellents (Katritzky et al. 2008). While they were able to identify compounds that could 

repel some species, nothing approaching the effectiveness of DEET has been identified. 

As we explored in Chapter 2, another group of compounds effective against mosquitoes 

show either orco dependency, contact-only repellency, or a lower effectiveness (Fig. 

2.13). If the effectiveness of DEET lies in its multiple modes of action, these alternative 

repellents cannot mimic the effectiveness across modes. Even the original studies iden-

tifying DEET were able to identify related compounds with similar levels of repellency, 

but many of these compounds resulted in skin irritation, making them unsuitable for hu-

man use (McCabe et al. 1954). It could be that the uniqueness of DEET lies in its safety 

profile, coupled with its promiscuity and activity on multiple sensory systems. Together, 
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these observations demonstrate that we do not even know which aspects of DEET we 

should be trying to emulate. 

8.5 What can we learn from other organisms?

To gain a broader understanding of how DEET works and what makes it so ef-

fective, we must synthesize information across all of the species DEET effects. This is 

currently difficult with the available information, but in this thesis, we demonstrate that 

performing carefully designed behavioral experiments can aid in dissecting the many 

effects of DEET within and across species. With this lesson in mind, we propose sev-

eral avenues of future study to better understand the similarities and differences in the 

effects of DEET across invertebrates.

8.5.1 The effects of DEET on locomotion across species

This study identifies similar behavioral and peripheral sensory effects of DEET 

across both D. melanogaster, Ae. aegypti, and C. elegans. In studying DEET-like mol-

ecules, we noticed that some molecules can mimic the contact effects of DEET while 

others could mimic the orco-mediated effects. This implies that the many effects of 

DEET may be discrete elements which each contribute to its effectiveness, rather than 

one specific aspect of DEET required for all aspects of repellency.

If there are discrete properties of DEET, each could be explored independently, 

and a blend of odorants could be marketed as a DEET-replacement or used as a basis 

for designing repellent-producing bacteria. To mimic the effects of DEET, we must first 

understand and describe them. 

We show that in C. elegans, DEET increases both the frequency and duration of 

pausing during exploration and chemotaxis (Chapter 7). In the German cockroach Blat-

tella germanica, pre-exposure to DEET decreases locomotion in an exploration-based 

86



assay, but repellency of contact DEET remains intact (Sfara et al. 2013). Anecdotally, in 

arm-in-cage assays in Ae. aegypti mosquitoes, we observed that animals do not move 

from the side of the cage when the DEET-treated arm is presented. This could indicate 

that DEET is inhibiting their activity. Inhibition of activity could be one common aspect of 

DEET-sensitivity. To test this, one could use an activity monitor, which measures gross 

activity of an animal by counting “beam breaks” — when the animals cross from one 

end of a tube to the other. If DEET is decreasing locomotion, DEET vapor should de-

crease the number of beam breaks in an assay of this type. This assay is scalable, and 

could be used to test many different terrestrial animals to determine if inhibition of loco-

motion is a consistent effect across species in similar assays. 

8.5.2 The effects of DEET on neural systems across species

DEET can affect primary sensory neurons and their responses to their cognate 

ligands: from blunting AWC responses to isoamyl alcohol in C. elegans to decreasing 

the spike frequency in bitter taste receptor neurons in D. melanogaster. DEET can also 

directly activate sensory neurons: from CuOR136-expressing neurons in Cu. quinque-

fasciatus to ADL neurons in the worm. Together, this broad and diverse activity appears 

to be a consistent effect of DEET across species at the neural level. The confusant hy-

pothesis proposes that DEET changes the responses of many chemosensory neurons 

at the periphery, changing the percept of an otherwise attractive stimulus. In humans, 

the confusant hypothesis could be described this way: if one could perfectly re-create 

the smell of opening a box of pizza with vials of odorants presented at just the right 

concentration, the confusant hypothesis proposes that DEET removes a few of those 

odors, adds a few more odorants in, and changes the intensity of a few others. These 

changes should change the percept of the pizza box odor, and should no longer smell 

like pizza. In this way, the confusant hypothesis does focus on the peripheral sensory 

system, but is really a hypothesis about the integration of these signals, and so far, the 
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data from C. elegans, D. melanogaster, and Ae. aegypti all support this hypothesis. As 

it becomes more and more possible to study the neural responses to odor blends and 

begin dissecting how multiple odorants combine to form a percept or indicate an attrac-

tive source, studying how DEET affects these neural signatures will help test and refine 

the confusant hypothesis.

8.5.3 The effects of DEET on individual neurons and receptors

DEET is a synthetic molecule, but is broadly effective. One possible explanation 

for this effectiveness is that DEET is mimicking a natural compound. One of the current 

best candidates is methyl jasmonate, a plant defense compound that is important for 

plant wound healing, has a strong floral odor, and is derived from linoleic acid (Stintzi et 

al. 2000). Methyl jasmonate is an effective repellent against Ixodes ricinus ticks (Gar-

boui et al. 2007) and Cu. quinquefasciatus mosquitoes (Xu et al. 2014). However, this 

compound does not eliminate blood feeding, and therefore seems unlikely to explain the 

effectiveness of DEET. Further chemoinformatic studies comparing intermediates and 

other similar compounds could be helpful in determining what makes DEET so useful. 

DEET
N,N-Diethyl-meta-toluamideMethyl jasmonate

O

N

O

O

OCH3

A B

Figure 8.3 Chemical structures of methyl jasmonate and DEET (A) 
Methyl jasmonate and (B) DEET 
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It is also possible that DEET does not mimic a single natural compound, but 

instead could act as a master key, unlocking responses of many receptors. With a list 

of DEET-sensitive receptors, and more detailed structures of these receptors, it may be 

possible to start identifying similarities across these DEET-sensitive proteins, and identi-

fy how it is so effective.

Another possibility is that DEET does not interact directly with receptors at all. 

Syed and Leal proposed that DEET can inhibit the release of odors applied to an arm 

(Syed et al. 2008), however this was not seen in subsequent experiments measuring 

odor used for sensillar recordings (Pellegrino et al. 2011). There was also a report that 

DEET can, in vitro, interact with an Anopheles gambiae Odorant Binding Protein of 

unknown functional significance (Tsitsanou et al. 2012). This could be just one more 

example of the promiscuity of DEET, or it could indicate that looking at the interactions 

of DEET with aspects of chemosensation that involve steps prior to receptor binding 

may be fruitful, such as chaperone competition, protein folding, or lipid membrane com-

position. Alternatively, this could be an artifact of the in vitro nature of this experiment, 

as there was poor binding affinity even at high concentrations of DEET mixed with this 

protein under specific buffered conditions which may not ever occur in sensilla.

None of these hypotheses are satisfying with our current evidence. Although we 

propose several methods to evaluate these claims, it is also conceivable that DEET 

has a much more general mechanism, and does not interact with receptors at all. The 

difficulty in pinning down the receptors and logic underlying the effectiveness of DEET 

is reminiscent of work studying anesthetics. Although reports of anesthetics date back 

to at least the twelfth century, in modern western medical tradition anesthesia was first 

publically successfully used in 1846 (Juvin et al. 2000). Although this first example used 

ether, several compounds were quickly identified that exhibit similar anesthetic proper-

89



ties, and the Meyer-Overton hypothesis claimed it what these compounds had in com-

mon was their lipid-solubility (Meyer 1899; Overton 1901). Although this hypothesis fell 

out of favor and many searched for receptors required for anesthesia for some time, the 

Meyer-Overton hypothesis has recently made a resurgence (Lugli et al. 2009). In 2017, 

researchers demonstrated that under anesthesia, the Venus fly trap plant loses auton-

omous and touch-induced movement, suggesting a very general mechanism that does 

not require neurons (Yokawa et al. 2017). This finding highlights the broad effectiveness 

of these compounds, and highlights the futility of focusing on the effects related to a loss 

of “consciousness”, unless one believes that Venus fly traps are conscious. 

The search for the receptors required for DEET-sensitivity may be similarly 

fraught if DEET acts in a more general way. As early as 1981, Susan McIver proposed 

that DEET interacts with the lipid cell membranes and perturbs them in such a way that 

the normal responses to attractants are altered (McIver 1981). DEET is a small, lipophil-

ic molecule, and could passively interact with the cell surface, disrupting some aspect of 

receptor-lipid interface or the cell surface itself. Plasma membranes are heterogeneous, 

and the somewhat controversial lipid raft hypothesis posits that lipids form groups or 

‘rafts’ that appear to be important for transmembrane protein stability and activity in at 

least IgE-related signaling (Simons et al. 1997; Field et al. 1995). If DEET interacts with 

some lipid rafts and not others, it may explain the otherwise seemingly random effects: 

some odorant receptors may require lipid interactions with one type of raft that DEET 

can affect, while other odorant receptors may require a different raft for stability, and 

this may explain why some closely related receptors are affected differently by DEET. 

Without a multitude receptors to test, it is impossible to pursue this line of inquiry. In one 

study, several cation channels were found to confer DEET-sensitivity to HEK cells (Dit-

zen et al. 2008). Using detergents, it is possible to break up cell membranes and identify 

proteins in different detergent-soluble and insoluble fractions through antibody staining. 
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If all of the DEET-sensitive channels are found in the same membrane compartments, 

it would provide evidence that the lipid environment is important for DEET to be able to 

affect a receptor. 

8.6 Mysteries remain

Here we have outlined many directions for further work to build on these data. 

The description of DEET-sensitive behaviors in C. elegans opens up exciting possibili-

ties to better understand chemosensation and odor processing. How can two odorants 

requiring the same primary chemosensory neuron can lead to entirely different behav-

iors depending on context? How do differences in calcium imaging translate to behav-

ioral changes? What makes one cell DEET-sensitive and another DEET-insensitive? 

As we identify additional genes required for DEET-sensitivity both in nematodes and 

beyond, we can also ask how neurons sensitive to DEET can require a wide variety of 

seemingly dissimilar membrane proteins, and what makes a protein, cell, or species 

DEET-sensitive. Studying DEET-sensitivity provides an exciting avenue to further ex-

plore these many facets of chemosensory behavior, from the chemical properties to 

the animal’s percept. Even after six years, I am more fascinated by DEET today than I 

was in 2012, and am excited to see what new discoveries await the next batch of DEET 

researchers.
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METHODS

Animals

Ae. aegypti	

Ae. aegypti mosquitoes were reared and housed in mixed-sex cages in a heated 

and humidified room kept at 25-28C and 70-80% humidity on a 14:10 hour light:dark 

cycle with ad libitum access to 10% sucrose as previously described (DeGennaro et 

al. 2013). Only female mosquitoes 7-14 days old were used for behavior. Live mice or 

human volunteers were used as a blood source for egg production as needed, and all 

procedures with live hosts were approved by IACUC and IRB review. Humans gave 

their written informed consent to participate in these experiments. All animals used for 

behavior had never previously blood fed. The orco2, orco5, and orco16 mutant lines were 

generated in the Orlando strain of Ae. aegypti as previously described (DeGennaro et 

al. 2013). Age-matched mosquitoes reared together and from the same cages were 

used in behavior experiments done on the same day. 

D. melanogaster 

Flies were maintained on conventional cornmeal-agar-molasses medium under a 

12 h light:12 h dark cycle (lights on 9am) at 25°C and 60% relative humidity.

Select additional arthropods

Centipedes, (Class Chilopoda), sow bugs (Genus Porcellio), pill bugs (Genus Ar-

madillium), and wolf spiders (Family Lycosidae) were obtained from Carolina Biological 

supply and were wild-caught. They were not sexed nor could we determine their age. 

We did not confirm their exact species. Wolf spiders and centipedes were fed wingless 

D. melanogaster once a day and housed individually. D. melanogaster, pill bugs and 

sow bugs were kept in the presence of food until 1 hour before the assay when they 
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were kept individually and allowed to acclimate to the room where the experiments were 

conducted. No anesthesia was used. Animals were given 1-2 minutes to acclimate to 

the chamber before recording began. Each video was 10 minutes long, and recorded at 

1 Hz.

Nematode culture and strains. 

C. elegans strains were maintained at room temperature (22-24°C) on nematode 

growth medium (NGM) plates (51.3 mM NaCl, 1.7% agar, 0.25% peptone, 1 mM CaCl2, 

12.9 µM cholesterol, 1 mM MgSO4, 25 mM KPO4, pH 6) seeded with Escherichia coli 

(OP50 strain) bacteria as a food source (Brenner 1974; Stiernagle 2006). Bristol N2 was 

used as the wild-type strain. The CB4856 (Hawaiian) strain, harboring WBVar02076179 

(str-217HW) (http://www.wormbase.org/db/get?name=WBVar02076179;class=variation) 

and Hawaiian recombinant inbred strains for chromosome V were previously generated 

(Doroszuk et al. 2009). Generation of extra-chromosomal array transgenes was carried 

out using standard procedures (Mello 1995), and included the transgene injected at 50 

ng/mL, the fluorescent co-injection marker Pelt-2::GFP at 5 ng/ml (with the exception of 

LBV004 and LBV009, which did not include a co-injection marker), and an empty vector 

for a total DNA concentration of 100 ng/ml. CRISPR-Cas9-mediated mutagenesis of 

str-217 was performed as described, using rol-6 as a co-CRISPR marker (Arribere et al. 

2014). The resulting str-217 mutant strain [LBV004 str-217(ejd001)] results in a predict-

ed frame-shift in the first exon [indel: insertion (AAAAAAA), deletion (CTGCTCCA), final 

sequence GCGTCGAAAAAAAATTTCAG; insertion is underlined]. The str-217 rescue 

construct (Pstr-217::str-217::SL2::GFP) used a 1112 nucleotide length fragment 56 nu-

cleotides upstream 5’ of the translation start of str-217.

Human volunteers

All human volunteers gave informed written consent to participate in blood-feed-
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ing and under Institutional Review Board protocol LV-0652. 

Mice	

Animal care procedures were approved and monitored by The Rockefeller Uni-

versity Institutional Animal Care protocol 14756. 

Strain list

A complete strain list can be found on the following page.
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Detailed strain list
Text name

Strain 
name Genotype

AddGen
e References Notes Appears in:

Wild-type
N2 
(Bristol) Wild-type N/A Fatt 1963 N/A

Figs. 4.1-4.3,  
4.5-4.6, 5.1, 
5.3, 5.4, 5.6, 
6.2, 7.2-7.8

LBV001 LBV001 Unknown N/A This thesis

EMS screen, 
backcrossed 
4x Fig. 5.1

LBV003 LBV002 nstp-3(ejd002[F48V]) N/A This thesis

EMS screen, 
backcrossed 
4x

Figs. 5.1, 
5.3, 5.6

LBV004 LBV003 str-217(ejd003[P314S]) N/A This thesis

EMS screen, 
backcrossed 
4x Fig. 5.1

LBV003 
rescue LBV004

str-217(ejd003); 
ejdEx1[pLV001(Pstr-
217::str-217::SL2::GFP)] pLV001 This thesis N/A Fig. 5.6

ewIR73 ewIR73 str-217(N2) N/A
Doroszuk 
2009

chrV:~14.0-
17.4 Mb 
CB4856>N2 Fig. 5.4

ewIR74 ewIR74 str-217(WBVar02076179) N/A
Doroszuk 
2009

chrV:~14.0-
18.6 Mb 
CB4856>N2 Figs. 5.4, 5.6

ewIR74 
rescue LBV009

str-217(WBVar02076179); 
ejdEx1[pLV001(Pstr-
217::str-217::SL2::GFP)] pLV001

Doroszuk 
2009 and this 
thesis N/A Fig. 5.6

ewIR76 ewIR76 str-217 (N2) N/A
Doroszuk 
2009

chrV:~17.4-21 
Mb 
CB4856>N2 Fig. 5.4

Hawaiian CB4856 Hawaiian strain N/A
Hodgkin and 
Doniach 1997 N/A Fig. 5.4

str-217-/- LBV005 str-217(ejd001)

(pJA42, 
pDD162, 
pLV002) This thesis

CRISPR-Cas9-
induced lesion 

Figs. 5.6, 
6.2, 7.2 , 
7.3, 7.5

str-217-/- 
rescue LBV006

str-217(ejd001); 
ejdEx2[pLV002(Psrh-
220::str-217::mCherry)] pLV003 This thesis N/A Fig. 5.6

ADL::TeTX CX12328

kyEx3438[Psre-
1(1kb)::TeTX::SL2:: 
mCherry + coel::DsRed] N/A Schiavo 1992 N/A Figs. 6.2, 7.3

ADL::ReaChR
LBV007 ejdEx3[pES01(Psrh-

220::ReaChR)] N/A
Lin 2013

Plasmid from 
the Bargmann 
lab Figs. 7.7-7.8

ADL::GCaMP CX16616
mzmEx[Psre1::GCaMP5k
opt + Psre-1::tagRFP] N/A Jang 2017 N/A Figs. 6.3-6.4
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Detailed strain list
mutant 
ADL::GCaMP LBV008

str-
217(ejd001);mzmEx[Psre
1:: GCaMP5kopt + Psre-
1::tagRFP)] N/A

Jang 2012 
and this 
thesis N/A Fig. 6.3

rescue 
ADL::GCaMP LBV009

str-217(ejd001); 
mzmEx[Psre1:: 
GCaMP5kopt + Psre-
1::tagRFP))]; ejdEx2[Psrh-
220::str-217::mCherry] pLV003

Jang 2012 
and this 
thesis N/A Fig. 6.3

AWC::GCaMP CX17256
kyIs722[Pstr-
2::GCaMP5a] N/A this thesis

Plasmid from 
Sagi Levy 
(Bargmann 
Lab) 
integrated by 
UV, 
backcrossed 
4x to N2 Fig. 6.1

str-217-/-; 
AWC::GCaMP

str-
217(ejd001);kyIs722[Pstr-
2::GCaMP5a] N/A this thesis N/A Fig. 6.1

odr-1 CX2054 odr-1(n1936)

L'Etoile and 
Bargmann 
2000 N/A Fig. 4.4

odr-7 CX4 odr-7(ky4)
Sengupta 
1994 N/A Fig. 4.4

ASK::GCaMP CX10981

kyEx2866 [sra-
9::GCaMP2.2b,unc-
122::gfp]

Bargmann lab 
stock N/A Fig. 6.7

ASH::GCaMP CX10979

kyEx2865[Psra-
6::GCaMP3.0 + 
Pofm::gfp] Hillard 2005 N/A Fig. 6.6

ASH::mCasp CX14597
ls[sra-
6p::mouseCaspase1] Yoshida 2012 N/A Fig. 6.6

unc-31 CB928 unc-31(e928)
Jorgensen 
2002 N/A Fig. 6.4

unc-13 BC168 unc-13(s69)
Richmond 
1999 N/A Fig. 6.2

ASE::GCaMP IV10
ueEx7[gcy-7::GCaMP3, 
unc-122::gfp]

Bargmann lab 
stock N/A Fig. 6.7

AWB::GCaMP CX8446
kyEx1423 [str-1::GCaMP 
1.0, unc-122::gfp]

Bargmann lab 
stock N/A Fig. 6.7

AWA:GCaMP CX16152

kyEx5511[gpa-6::NLS-
GCaMP6S::SL2::NLS-
mCherry, myo-3::mCherry]

Bargmann lab 
stock N/A Fig. 6.7

Pptr10:: 
myrRFP OS1907 nsIs108(Pptr-10::myrRFP ) N/A

Yoshimura 
2008 N/A

Referenced 
in text
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Glytube feeding (Fig. 2.8)

Groups of 12-15 female mosquitoes were mouth aspirated into cups and starved 

overnight 20-24 hours with access to water. These groups were then fed sheep blood 

using the Glytube membrane feeders as described (Costa da Silva 2013) with the 

variation that DEET in ethanol solvent or quinine (CID: 23424040, Sigma-Aldrich cat-

alog #Q0132) in ethanol solvent were either added to the blood just before loading, or 

the assembled Glytube was dipped into a DEET or quinine solution just before placing 

the Glytubes on the top of the mesh covering each cup of mosquitoes. Animals were 

allowed to feed for 10 minutes. Next, the Glytube was removed and mosquitoes were 

moved to 4oC and fed females were scored by eye for engorgement and coloration of 

the abdomen. 

Capillary feeder (CAFE) (Fig. 2.6)

Animals used for behavior were 7-14 day old female mosquitoes, sexed and 

sorted under cold anesthesia (4oC) and fasted 40-48 hours with access to water. This 

assay was adapted for the mosquito from similar assays for Drosophila (Ja et al. 2007) 

as described previously (Corfas et al. 2015). At the start of each trial five fasted female 

mosquitoes were transferred by mouth pipette to a polypropylene vial (#89092–742, 

VWR, Radnor, PA) with access to two 5 mL calibrated glass capillaries (#53432–706, 

VWR) embedded in cotton plugs (#49-101, Genesee Scientific, San Diego, CA) and 

barely protruding from the bottom of the plug surface. A small piece of red lab tape 

(VWR #89097-932) was also affixed to the bottom of the plug. One capillary served as 

the control, containing 10% (weight:volume) sucrose solution (Fisher Scientific 57-50-1) 

and 1% ethanol solvent (Millipore Sigma E7023) and the other had 10% sucrose with 

either 1% DEET and 1% ethanol (CID 24893319, Millipore Sigma catalog #D100951), 

1mM lobeline (CID 101615, Millipore Sigma catalog #141879) and 1% ethanol, or 5mM 
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quinine and 1% ethanol. After four hours, the remaining liquid in all capillaries was 

manually measured by a blinded observer using a ruler and recorded to the nearest 0.1 

millimeter. Control vials with capillaries but without mosquitoes were averaged to deter-

mine evaporation, and that value subtracted from measured values. Preference assays 

were measured by subtracting the amount consumed from the control capillary minus 

the amount consumed from the stimulus capillary and dividing by the total amount con-

sumed in both capillaries. Time of day was randomized across conditions were blinded 

before manual scoring. Vials were excluded if any animals died during the assay. 

Calculations were completed as follows. Mosquito-less control vials served as 

evaporation controls. An average evaporation amount for each batch of experiments 

was calculated (EVAP). For each vial of 5 mosquitoes, the drop in liquid level was man-

ually measured with a ruler in millimeters (CONTROL and CHEMICAL). Then, the liquid 

consumed was calculated as follows for each vial: [(CHEMICAL – EVAP) – (CONTROL 

– EVAP)] / [(CHEMICAL – EVAP) + (CONTROL – EVAP)].

Mosquito biting assays

Landing assay (Fig. 2.2, 2.3, 2.13, and 2.14)

The landing assay was carried out similarly to the bitter feeding assays with the 

modification that a video camera was introduced into the cage perpendicular to the arm, 

the blood feeding status was not scored at the end of the assay but instead the resulting 

videos were scored manually for landing and biting events.

The number of landings per mosquito and biting events per mosquito were cal-

culated by counting the number of events in the video, and dividing by the total number 

of mosquitoes in the cage (23-25). The average time spent on skin was calculated by 

adding together the lengths of each landing event in a single video, and dividing by the 
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total number of landing events in that video.

For analysis of non-DEET repellents, Picaridin (CID: 125098, a generous gift 

from Saltigo), MDA (methyl N, N-dimethylanthranilate, CID:82336 , Millipore Sig-

ma catalog #PH011027), BA (butyl anthranilate, CID:24433, Millipore Sigma catalog 

#W218103), EA (ethyl anthranilate, CID: 6877, Millipore Sigma catalog #242977), etha-

nol, or the test compound was applied to skin prior to the subject putting on the glove.

Bitter compounds and blood-feeding (Fig. 2.7)

Standard arm-in-cage biting assays were carried out (Logan et al. 2010; Schreck 

1977) with modifications as previously described (DeGennaro et al. 2013). Animals 

used for behavior were 7-14 day old mosquitoes, sexed and sorted under cold anes-

thesia (4oC) into groups of 25 females or 25 males, and fasted 18-24 hours with access 

to water. All assays were carried out ZT6-ZT10 in a heated and humidified room kept 

at 25-28oC and 70-80% humidity. A 25 mm diameter hole was cut into an elbow-length 

glove (Fisher Scientific #19-668-001). A group of 25 starved females were released and 

given five minutes to acclimate to the cage. During this time, 1 mL of either solvent or a 

test substance in solvent (lobeline, quinine, or DEET) was added to the skin of a human 

volunteer (27-year-old female). The glove was then stretched over the arm exposing 

only the treated, 25mm diameter area of the arm. After the five-minute acclimation, the 

treated arm was placed in the cage and held there for five minutes. After ten minutes, 

the arm was removed and cage moved to 4oC to anesthetize the animals. Animals were 

scored as blood-fed or non-blood-fed based on abdominal distention and coloring. No 

synthetic CO2 was added to these cages but assays were carried out in close proximity 

to a breathing human subject. 

At the end of the experiment, the cage was placed at 4oC to anesthetize the 

mosquitoes, and animals were sorted into fed and unfed based on color and abdominal 
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distention. Animals appearing unfed were squished in a clean tissue and counted as fed 

if any red blood was visible, and unfed if the excretions were white or yellow. 

The percent blood-fed was calculated by counting the number of fed mosquitoes 

divided by the total number of mosquitoes, multiplied by 100. 

Proboscis sufficiency assay (Fig. 2.9)

Standard arm-in-cage biting assays were carried out (Logan et al. 2010; Schreck 

1977) with modifications as previously described as the mosquito landing assay (De-

Gennaro et al. 2013) with the additional modification that the hole cut in the glove was 

either 25 mm in diameter or 1.5 mm and the arms were placed on the side of the cage 

pressing against the mesh. This served to decrease the surface area that the mosqui-

toes would walk around on before finding the hole in the glove. Mosquitoes were able to 

bite through the mesh easily. 

Biting index was calculated for each video by dividing the number of animals 

biting by the number of animals in the assay.

Occlusion assays (Fig. 2.10 and Fig. 2.11)

This assay was carried out similarly to the landing assay with several modifica-

tions. Standard arm-in-cage biting assays were carried out (Logan et al. 2010; Schreck 

1977) with modifications as previously described as the mosquito landing assay (De-

Gennaro et al. 2013) with a 25 mm hole cut into the glove. Animals used for behavior 

were 7-14 day old female mosquitoes, were aspirated by mouth into cups and under 

cold anesthesia (in cups on wet ice) in groups of five 18-24 hours before the start of 

the experiment. Tarsi were inserted one at a time into a 1 mL pipette tip containing UV 

curing glue (Kemxert KOA 300-1) and cured with a 405 nm 5mW laser pointer (QQ-

Tech) for 20 seconds. Tibia controls were treated similarly with the exception of glue 
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being slowly applied to the tibia through a 200 µL pipette tip until coated, then cured for 

20 seconds. No-glue control animals had tarsi dipped into an empty 1 mL pipette tip and 

then exposed to the laser for 20 seconds. Animals were then grouped and housed 18-

24 hours with access to water in groups of five females with the same glue treatment. If 

any animals died overnight, that group of females was discarded. If zero animals inter-

acted with the skin, the video was excluded.

Biting index was calculated for each video by dividing the number of animals 

biting by the number of animals in the assay. 

Split Petri-dish assay (Fig. 3.2 and 3.4)

Custom designed split-Petri dishes were 3D printed on a Project 3510 HD Plus 

3D Printer using VisiJet Crysta plastic and rings were cut on a VLS 6.60 Laser Cutter. 

Mesh was attached to the surface of the laser cut acrylic using acetone.

Each chamber was filled with 2% agarose (Sigma Aldrich, 11685660001) con-

taining either DEET or solvent. The agar mixtures were prepared by first heating a 

water and powdered agar mixture until dissolved. Once cooled, 50% DEET in ethanol or 

ethanol solvent was added in a 1:49 ratio of DEET or solvent to agar mixture for a final 

concentration of 1% DEET and 1% ethanol or 2% ethanol.

Chemotaxis assays

Chemotaxis was tested as described (Cho et al. 2016), on square plates con-

taining 10 mL of chemotaxis agar (1.6% agar in chemotaxis buffer: 5 mM phosphate 

buffer pH 6.0, 1 mM CaCl2, 1 mM MgSO4) (Hart 2006). Additions of either ethanol (sol-

vent-agar) or 50% DEET (CID: 4284, Sigma-Aldrich, catalog #D100951) in ethanol 

(DEET-agar) were added after agar cooled to <44oC and just before pouring. A total 

volume of 300 µL ethanol or DEET in ethanol was added to each 100 mL of agar mix-
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ture for all experiments except Figure 4.1, 7.6 – 7.8, where nothing was added. Plates 

were poured on the day of each experiment, and dried with lids off for 4 hours prior to 

the start of the assay. 1 μl 1 M sodium azide was added to two spots on either side of 

the plate just before beginning the experiment to immobilize animals that reached the 

odorant or ethanol sources. Three days prior to all chemotaxis experiments, 4-6 L4 

animals were transferred onto NGM plates seeded with E. coli (OP50 strain). The off-

spring of these 4-6 animals were then washed off of the plates and washed twice with 

S-Basal buffer (1 mM NaCl, 5.74 mM K2HPO4, 7.35 mM KH2PO4, 5 µg/mL cholesterol at 

pH 6-6.2) (Lin et al. 2013) to remove younger animals, and once with chemotaxis buf-

fer. Immediately before the start of the experiment, two 1 μl drops of odorant diluted in 

ethanol, or ethanol solvent control, were spotted on each side of the plate on top of the 

sodium azide spots. 100-300 animals were then placed into the center of the plate in 

a small bubble of liquid. The excess liquid surrounding the animals was then removed 

using a Kimwipe. Odorants diluted in ethanol were used in this study: 1:1000 isoamyl 

alcohol (CID: 31260, Sigma-Aldrich, catalog #W205702), 1:1000 butanone (CID: 6569, 

Sigma-Aldrich, catalog #360473), 10 mg/µL pyrazine (CID: 9261, Sigma-Aldrich, cata-

log #W401501), 1:10 2-nonanone (CID: 13187, Sigma-Aldrich, catalog #W2787513). 

Assays were carried out for 60-90 minutes at room temperature (22-24°C) between 

1pm – 8pm EST. Plates were scored as soon as possible, either immediately or, if a 

large number of plates was being scored on the same day, plates were moved to 4˚C 

to immobilize animals until they could be scored. The assay was quantified by counting 

animals that had left the origin in the center of the plate, moving to either side of the 

plate (#Odorant, #Control) or just above or below the origin (#Other), and calculating a 

chemotaxis index as [#Odorant - #Control] / [#Odorant + #Control + #Other]. A trial was 

discarded if fewer than 50 animals or more than 250 animals contributed to the chemo-

taxis index and participated in the assay.
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Bacterial chemotaxis (Fig.4.6)

Plates were prepared as described for chemotaxis plates and as described previ-

ously (McMullan et al. 2012) with the following exceptions. Two hours into the four-hour 

drying time of the chemotaxis plates, two spots of 20 μL of LB media or two spots of E. 

coli (OP50 strain) bacteria grown in LB media overnight and diluted to OD 1.0 at 600 nm 

was applied to the chemotaxis plate. Two spots of 20 μL of media were applied to the 

other side of the plate and then left undisturbed for the remainder of the drying time. 

Forward genetic C. elegans screen

About 100 wild-type (Bristol N2) L4 animals were mutagenized in M9 solution 

with 50 mM ethyl methanesulfonate (CID: 6113, Sigma-Aldrich, catalog #M0880) for 4 

hours with rotation at room temperature. Mutagenized animals were picked to separate 

9 cm NGM agar plates seeded with E. coli (OP50 strain) and cultivated at 20oC. ~5,000 

F2 animals were screened for DEET resistance on 20.3 cm casserole dishes (ASIN 

B000LNS4NQ, model number 81932OBL11). Five animals across three assays were 

more than ~2 cm closer to the odor source than the rest of the animals on the plate 

and were defined as DEET-resistant. This phenotype was heritable in three strains, 

and each strain was backcrossed to OS1917 (Yoshimura et al. 2008) for 4 generations. 

Whole-genome sequencing was used to map the mutations to regions containing trans-

versions presumably introduced by the EMS mutagenesis, parental alleles of the N2 

strain used for mutagenesis, and missing alleles of the wild-type strain OS1917 used 

for backcrossing (Zuryn et al. 2010; Kutscher L. M. 2014). LBV003 mapped to a 5 Mb 

region on chromosome V, which was further mapped to str-217. LBV002 mapped to a 

6.8 Mb region on chromosome V, which was further narrowed down to a likely candi-

date gene, nstp-3(ejd002). In LBV002, nstp-3(ejd002) contains a T>G transversion of 

the 141st nucleotide in the coding sequence, which is predicted to produce a Phe48Val 
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substitution in this sugar:proton symporter. We were unable to map the DEET-resistant 

mutation(s) in LBV001. 

Microscopy and image analysis

L2-adult stage hermaphrodites were mounted on 1% agarose pads with 10 mM 

sodium azide (CID 6331859, Sigma-Aldrich, catalog #S2002) in M9 solution (22 mM 

KH2PO4, 42 mM Na2HPO4, 85.6 mM NaCl, 1mM MgSO4, pH 6). Images were acquired 

with an Axio Observer Z1 LSM 780 with Apotome a 63X objective (Zeiss), and were 

processed using ImageJ.

str-217 heterologous expression. 

HEK-293T cells were maintained using standard protocols in a Thermo Scientific 

FORMA Series II water-jacketed CO2 incubator. Cells were transiently transfected with 

1 μg each of pME18s plasmid expressing GCaMP6s, Gqα15, and str-217 using Lipo-

fectamine 2000 (CID: 100984821, Invitrogen, catalog #1168019). Control cells excluded 

str-217, but were transfected with the other two plasmids. Transfected cells were seed-

ed into 384 well plates at a density of 2 x 106 cells/ml, and incubated overnight in Fluo-

roBrite DMEM media (ThermoFisher Scientific) supplemented with fetal bovine serum 

(Invitrogen, catalog #10082139) at 37°C and 5% CO2. Cells were imaged in reading 

buffer [Hanks’s Balanced Salt Solution (GIBCO) + 20 mM HEPES (Sigma-Aldrich)] 

using GFP-channel fluorescence of a Hamamatsu FDSS-6000 kinetic plate reader at 

The Rockefeller University High-Throughput Screening Resource Center. DEET was 

prepared at 3X final concentration in reading buffer in a 384-well plate (Greiner Bio-one) 

from a 46% (2 M) stock solution in DMSO (Sigma-Aldrich). Plates were imaged every 1 

second for 5 minutes. 10 μl of DEET solution in reading buffer or vehicle (reading buffer 

+ DMSO) was added to each well containing cells in 20 μl of media after 30 seconds of 

baseline fluorescence recording. The final concentration of vehicle DMSO was matched 
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to the DEET additions, with a maximum DMSO concentration of 7.8%. Fluorescence 

was normalized to baseline, and responses were calculated as max ratio (maximum 

fluorescence level/baseline fluorescence level).

Calcium imaging

ADL calcium imaging. 

Calcium imaging and data analysis were performed as described (Larsch et al. 

2015), using single young adult hermaphrodites immobilized in a custom-fabricated 3 x 

3 x 3 mm polydimethylsiloxane (PDMS) imaging chip. GCaMP5k was expressed in ADL 

neurons under control of the sre-1 promoter (Jang et al. 2012) and was crossed into 

str-217-/- and the str-217-/- rescue strain. Animals were acclimated to the imaging room 

overnight on E.coli (OP50 strain) seeded plates. All stimuli were prepared the day of 

each experiment, and were diluted in ethanol to 1000X the desired concentration before 

being further diluted 1:1000 in S-Basal buffer. Young adult animals were paralyzed brief-

ly in (-)-tetramisole hydrochloride (CID: 27944, Sigma-Aldrich, catalog #L9756) at 1 mM 

for 2-5 minutes before transfer into the chip to paralyze body wall muscles to keep ani-

mals stationary during imaging. All animals were pre-exposed to light (470+/- 40 nm) for 

100 seconds before recording to attenuate the light response of ADL (Jang et al. 2017). 

Experiments consisted of the following stimulation protocol: 20 seconds of S-Basal buf-

fer, followed by 3 repetitions of 20 seconds of DEET (0.15% DEET and 0.15% ethanol in 

S-Basal) and then 20 seconds of S-basal buffer.

GCaMP signals were recorded with Metamorph Software (Molecular Devices) 

and an iXon3 DU-897 EMCCD camera (Andor) at 10 frames/second using a 40x ob-

jective on an upright Zeiss Axioskop 2 microscope. Custom ImageJ scripts (Cho et al. 

2016) were used to track cells and quantify fluorescence. In  Figures 6.3 and 6.4, all 
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frames in 20 seconds before the DEET pulse were averaged and subtracted from the 

average of the frames during the 20 seconds of DEET or C9 pulse to calculate ΔF. In 

Figures 6.3 and 6.4, traces were bleach corrected using a custom MATLAB script and 

then the 5% of frames with the lowest values were averaged to create F0. ΔF/F0 was cal-

culated by (F – F0)/F0 and then divided by the maximum value to obtain ΔF/Fmax (Larsch 

2013). The heatmap traces in Figure 3e and g were also smoothed by 5 frames, such 

that each data point n is the running average of n-2, n-1, n, n+1, and n+2.

Arena Chip: AWC () and AWA, AWB, ASE, and ASK

Calcium imaging of freely moving worms and subsequent data analysis were 

performed as described (Larsch et al. 2013), using a 3 mm2 microfluidic PDMS device 

with two arenas that enabled simultaneous imaging of two genotypes with approximate-

ly 10 animals each. We used an integrated line (CX17256) expressing GCaMP5a in 

AWCON neurons under control of the str-2 promoter crossed into str-217-/- animals. Adult 

hermaphrodites were first paralyzed for 80-100 minutes in 1 mM (-)-tetramisole hydro-

chloride and then transferred to the arenas in S-Basal buffer. The stimulus protocol for 

AWC imaging was as follows: In S-Basal, three pulses of 60 seconds in buffer and 30 

seconds isoamyl alcohol, followed by 120 seconds in buffer. Next, the animals were 

switched to S-Basal with 0.15% ethanol (solvent buffer) and three pulses of 60 seconds 

in buffer and 30 seconds in isoamyl alcohol in solvent buffer followed by 120 seconds in 

solvent buffer before a switch to S-Basal with 0.15% ethanol and 0.15% DEET (DEET 

buffer). In DEET buffer, animals were given 6 pulses of 60 seconds in DEET buffer and 

then 30 seconds in isoamyl alcohol in DEET buffer, followed by 120 seconds in DEET 

buffer before switching to solvent buffer. In solvent buffer, the animals received three 

pulses of 60 seconds in buffer and 30 seconds in isoamyl alcohol in solvent buffer 

followed by 120 seconds in solvent buffer before a switch to S-Basal. In S-Basal, the 

animals received three pulses of 60 seconds in buffer and 30 seconds isoamyl alcohol, 
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followed by 60 seconds in buffer.

Images were acquired at 10 frames/second at 5X magnification (Hamamatsu 

Orca Flash 4 sCMOS), with 10 msec pulsed illumination every 100 msec (Sola, Lumen-

cor; 470/40 nm excitation). Fluorescence levels were analyzed using a custom ImageJ 

script that integrates and background-subtracts fluorescence levels of the AWC neuron 

cell body (6×6 pixel region of interest). Traces were normalized by subtracting and then 

dividing by the baseline fluorescence, defined as the average fluorescence of the last 

2 seconds of the first three isoamyl alcohol pulses. The traces in Extended Data Figure 

1 were also smoothed by 5 frames, such that each data point n is the running average 

of n-2, n-1, n, n+1, and n+2. The response magnitudes were calculated by taking the 

mean of the last 2 seconds of an isoamyl alcohol pulse, subtracting the mean of the 2 

seconds before the isoamyl alcohol pulse (F0), and dividing by this F0. The response 

magnitudes were calculated for the 5th (0.15% ethanol in S-Basal buffer), 8th (0.15% 

DEET and 0.15% ethanol in S-Basal buffer), and 14th (0.15% ethanol in S-Basal buffer) 

isoamyl alcohol pulses. We also quantified the response magnitude of the transition 

from S-Basal buffer with ethanol to S-Basal buffer with DEET. We took the mean of the 

first 2 seconds after switching to DEET buffer, subtracted the mean of the 2 seconds 

before switching (F0), and divided by this F0.

For AWA, AWB, ASE, and ASK experiments, the stimuli were instead delivered 

as indicated. For Protocol 1, animals were kept in S-Basal buffer, and exposed to one 

minute pulses as follows: one minute in S-Basal, one minute in 0.15% ethanol in S-Bas-

al buffer, one minute in S-Basal buffer, one minute in 0.15% DEET and 0.15% ethanol 

in S-Basal buffer, one minute in S-Basal buffer, one minute in 10-5 diacetyl in S-Basal 

buffer, and one minute in S-Basal buffer. For Protocol 2, animals started in S-Basal buf-

fer for one minute, exposed to 0.15% ethanol in S-Basal buffer for one minute, switched 

to 0.15% DEET and 0.15% ethanol in S-Basal buffer for one minute, switched back to 
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0.15% ethanol in S-Basal buffer for one minute, and then returned to S-Basal buffer for 

one minute. 

Chemotaxis tracking and analysis. 

8-20 adult hermaphrodites were first transferred to an empty NGM plate and then 

4-15 were transferred to an assay plate to minimize bacterial transfer. Animals were 

then placed in the center on either a 0.15% DEET-agar or solvent-agar plate, and their 

movement was recorded for 60 minutes at 3 frames/second with 6.6 MP PL-B781F 

CMOS camera (PixeLINK) and Streampix software. Assays were carried out at room 

temperature, between 12pm-8pm, and lit from below. Worm trajectories were extract-

ed by a custom Matlab (MathWorks) script (Cho et al. 2016), and discontinuous tracks 

were then manually linked. Tracks were discarded if the animal moved less than two 

body lengths from its origin over the course of the 60 minute trial. If an animal came 

within 1cm of the isoamyl alcohol stimulus, the track was truncated to remove informa-

tion from animals immobilized at the odor source because of the addition of sodium 

azide. 

ADL optogenetic stimulation. 

L4 animals expressing an Psrh-220::ReaChR (Lin et al. 2013) array or array-neg-

ative animals from the same plate were raised overnight in the dark on an NGM plate 

freshly seeded with 100 µL of 10X concentrated E. coli (OP50 strain) with or without 50 

µM all-trans retinal (CID: 720648, Sigma-Aldrich, catalog #R2500), which is required 

for ReaChR-induced activity. The next day, adult hermaphrodites were first transferred 

to an empty NGM plate and then 4-15 animals were transferred to the 10 cm circular 

assay plate to minimize bacterial transfer. Videos were recorded for 26 minutes at 3 

frames/second with a 1.3 MP PL-A741 camera (PixeLINK) and Streampix software. 
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Blue light pulses were delivered with an LED (455 nm, 20 µW/mm2, Mightex) controlled 

with a custom Matlab script (Gordus et al. 2015; Cho et al. 2016). Animals were ex-

posed to normal light for 120 seconds, before exposure to 12 pulses of blue light (455 

nm, 10 Hz strobing) for 120 seconds, followed by 120 seconds of recovery. This should 

activate ADL neurons only in retinal-fed animals expressing ReaChR. Worm trajectories 

were extracted by a custom Matlab script (Gordus et al. 2015). Pausing events were 

extracted, and all pauses ≥3 frames (1 second) were used for further analysis. Pauses 

were classified as “ON” if any frame included light illumination. A pause that began just 

before illumination began, but remained paused while the illumination occurred, was 

considered an ON pause, just as a pause that occurred in the middle of a light illumina-

tion time frame was considered ON. All other pauses were classified as “OFF” pauses. 

In the analysis in Figure 7.8A, we took an average pause length for all ON pauses and 

all OFF pauses for each animal, and pooled all of the animals on each plate. To control 

for any baseline differences between animals and experiment-to-experiment variation, 

we examined the increase in average pause length in Figure 7.8B.
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