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The intestinal microbiota plays critical roles in human physiology and diseases. While 

recent research has revealed many mechanisms by which gut microbiota influences host 

immunity to defend against invading pathogens, how microbiota directly antagonizes 

pathogen virulence is less studied. In particular, gut microbiota produces large amounts 

and varieties of small molecules that may impact both host immunity and pathogen 

virulence. In this thesis, I describe how fatty acids, derived from both gut microbiota and 

diet, contribute to attenuation of virulence of enteric pathogen Salmonella. 

In Chapter 1, I review how dietary and microbiota metabolites affect different aspects of 

host-microbe interactions. These metabolites are categorized into microbial-associated 

molecular patterns and microbiota-derived secondary metabolites. Small molecules 

reviewed in this chapter not only enhances host innate and adaptive immunity, but also 

directly inhibit virulence of invading pathogens, providing colonization resistance to the 

host. In some cases, pathogens could exploit these metabolites as environmental signals 

to enhance its survival and expansion. These findings highlight the importance of 

understanding the intricate interactions between host and microbiota, and should provide 

insights in developing microbiota-targeting therapeutics for host physiology, immunity, and 

pathogen resistance.  



In Chapter 2, I describe a mechanism by which microbiota-derived short-chain fatty acids 

inhibit virulence of Salmonella Typhimurium. Short-chain fatty acids can inhibit Salmonella 

virulence, but the molecular mechanism(s) remain poorly characterized. We use a 

chemical reporter strategy to identify molecular targets of short-chain fatty acids in 

Salmonella. I demonstrate that alkynyl-functionalized short-chain fatty acids can be 

metabolized and covalently attached to proteins in Salmonella. Proteomic analysis reveal 

that HilA, a key virulence transcription regulator, is short-chain fatty acylated. I employ 

Amber Suppression Technology and CRISPR-Cas9 genome editing to faithfully mimic 

butyrylation on endogenous HilA. Biochemical and functional characterization show that 

acylation of HilA has site-specific effect, and K90 butyrylation affect HilA DNA-binding 

activity and Salmonella invasion in mice. Overall, our results discover a mechanism by 

which gut microbiota provides resistance against Salmonella through short-chain fatty 

acids.  

In Chapter 3, I describe long-chain fatty acylation of HilA and biochemical characterization 

of HilA. I find that dietary long-chain fatty acids potently inhibit Salmonella virulence. 

Chemical proteomics with alkynyl-functionalized long-chain fatty acids reveal proteins that 

are long-chain fatty acylated in Salmonella, including HilA. Modification by long-chain fatty 

acids on HilA is post-translationally N-linked. Moreover, with photo-crosslinking unnatural 

amino acid, we discover that HilA forms homo-oligomers in Salmonella. Our data suggest 

that dietary long-chain fatty acids may interfere pathogenesis of Salmonella through post-

translational modification, and further structural characterization of HilA may reveal novel 

target for treatment of Salmonella infection.  

The projects described in this thesis underscore the important roles microbiota and dietary 

metabolites have played in host immunity and enteric pathogen restriction.  
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Chapter 1 

Mechanisms of dietary and microbiota metabolites 

on host-microbe interactions 
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Introduction 

 

Recent advances on microbiota profiling and mechanisms have revealed its critical roles in human 

health and disease. More than 90% of human microbiota resides in the gastrointestinal tract, 

making the intestinal microbiota the major target of microbiome research.  Intestinal microbiome 

as a whole broadly affects host physiology and responses to intestinal and systemic diseases. 

The composition of the intestinal microbiota is dynamic and is influenced by environmental factors 

including host diet, exposure to drugs, infection as well as genetic factors.  

The intestine, placed in the latter part of the digestive tract, is a melting pot of complex 

constituents. Food in the intestine has to be broken down into smaller pieces, in terms of both 

physical form and chemical composition. Smaller dietary molecules, derived from plants and 

animals, could be absorbed by the intestine, or be converted by intestinal microbiota into 

secondary metabolites. Moreover, indigestible macromolecules could also be utilized by intestinal 

microflora and be fermented into smaller and accessible nutrients. In fact, intestinal microbiota 

produces significant amounts of metabolites that can function as signaling molecules to modulate 

host physiology and disease (Fig. 1.1).  

 

This chapter summarizes recent studies of specific metabolites derived from both diet and 

microbiota, and their potential biochemical effects on both host and microbes. While biopolymers 

common in all kingdoms of life, including double-stranded DNA and RNA, lipopolysaccharide 

(LPS), and lipopeptides, are long recognized as ligands for pattern recognition receptors (PRRs), 

especially Toll-like receptors (TLRs) on host cells, this chapter will focus on small, soluble 

metabolites specifically from microbiota and diet. Some of these metabolites have been recently 

reviewed (1, 2), and this chapter aims to expand the scope and include recent advances. A 

molecular understanding of intestinal microbiota–host interactions is pivotal to medicine and 



3 
 

human health. Insight into the function of dietary and microbiota metabolites could help design 

targeted therapeutics against a variety of diseases and advance personalized medicine. 

 

Figure 1.1. Dietary and microbiota-derived metabolites modulate host physiology and 

immunity and pathogen virulence. 

 
 

Microbe-Associated Molecular Patterns 

 

Microbe-associated molecular patterns (MAMPs) are molecules derived from microbiota that are 

specifically recognized by PRRs of the host and could trigger downstream signaling events, 

leading to host resistance or tolerance towards microbes. While these molecules were first 

characterized through studies on host-pathogen interactions and initially termed “pathogen-

associated molecular patterns (PAMPs)”, they are now accepted as critical molecules from 

commensal microbes as well. Depending on the context, these molecules could stimulate either 
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pro- or anti-inflammatory responses. Being the first family of innate PRRs identified, Toll-like 

receptors (TLRs) and their cognate ligands have been described in detail elsewhere (3), so this 

chapter will focus on other more recently identified MAMPs as well as their receptors in the host. 

 

 

Figure 1.2. Microbe-associated molecular pattern metabolites. Their corresponding host 

receptors are listed after the colon. (A) MDP : NOD2. (B) iE-DAP : NOD1. (C) HBP : TIFA. (D) α-

galactosylceramide : CD1d ;  sphingosine-1-phosphate : S1PR4. (E) c-di-AMP, c-di-GMP: STING, 

ERAdP.  
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Muramyl dipeptide (MDP) and γ-D-glutamyl-meso-DAP (iE-DAP) 

Peptidoglycan (PG) is one of the most abundant macromolecules in a bacterial cell, typically 

forming a mesh-like structure that encloses the cytoplasmic membrane (4–6). PG is structurally 

distinct from cell wall components in archaea and single-celled eukaryotes, making it ideal as a 

PAMP for mammalian cells. Peptidoglycan is composed of polysaccharide chains with alternating 

ß-1,4-linked N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) residues, which 

are crosslinked via short peptides (4, 5). These peptides contain D-amino acids such as D-alanine 

or D-glutamate, as well as unusual non-proteinogenic amino acids, such as meso-diaminopimelic 

acid (meso-DAP). The amino acid sequence of the peptides and the structure of crosslinks are 

variable between bacterial species (7–9). Although PG is hidden from the innate immune system 

in Gram-negative bacteria by an outer membrane, soluble PG turnover products and its 

biosynthesis intermediates could be released from both intact and lysed cells into the surrounding 

milieu. Mammalian cells utilize multiple PG recognition receptors to detect these MAMPs and 

initiate an inflammatory response.  

Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are cytosolic proteins 

that play a pivotal role in the regulation of the host innate immune system (10). They act as 

scaffolding proteins that assemble signaling complexes that trigger NF-κB and MAPK signaling 

pathways. In particular, NOD1 and NOD2 sense PG fragments from bacteria. NOD1 senses 

peptide fragments of PG, with dipeptide γ-D-glutamyl-meso-DAP (iE-DAP) (Fig. 1.2B) as the 

minimal unit (11, 12), which is conserved among most Gram-negative bacteria and some Gram-

positive bacteria (13). NOD2 senses muramyl dipeptide (MDP) (Fig. 1.2A) (14), which is found in 

nearly all Gram-positive and Gram-negative bacteria. Following sensing these microbial PG 

fragments, NOD1 and NOD2 directly recruit receptor-interacting protein 2 (RIP2) through caspase 

recruiting domain (CARD)-CARD interactions (15, 16). This leads to activation of IKK complex 
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and phosphorylation as well as degradation of inhibitor IκB, and further causes NF-κB to 

translocate to the nucleus and activate the innate immune response (17). NOD1 and NOD2 

directly senses invading bacterial pathogens in vitro and in vivo, such as Gram-negative Shigella 

flexneri (18), Salmonella Typhimurium (19), Gram-positive Mycobacterium tuberculosis (20), and 

Listeria monocytogenes (21). Interestly, our laboratory recently showed that a secreted peptidase 

SagA from Enterococcus faecium could protect both worms and mice from Salmonella 

Typhimurium infection, and the protection is mediated through PG fragments generated by SagA 

enzymatic activity (22, 23). Further experiments showed that SagA generates GlcNAc-(1–4)-

MurNAc dipeptide (GlcNAc-MDP), which could stimulate NOD2 signaling in mammalian cells (Kim 

B et al., unpublished). Indeed, the protective effect by SagA and SagA-expressing bacteria 

depends on the expression of NOD2 in vivo (23). These results suggest that commensal bacteria 

in the gut could harness stimulatory effects of PG fragments to prime the host innate immune 

system against enteric pathogens. 

Heptose-1,7-bisphosphate (HBP) 

Lipopolysaccharide (LPS) is a vital cell membrane component in Gram-negative bacteria (24). 

LPS has been well characterized as a ligand for TLR4 and stimulate MyD88-dependent TRIF-

dependent innate immune response (3). LPS are large molecules consisting of lipid A as the 

membrane anchor, and a polysaccharide part composed of O-antigen (or O polysaccharide) and 

core oligosaccharide (25). The core oligosaccharide directly attaches to lipid A, and commonly 

contains sugars such as heptose. Recently, Gaudet et al. reported that heptose-1,7-bisphosphate 

(HBP) (Fig. 1.2C), a key biosynthesis intermediate of LPS, could trigger inflammatory response 

in the mammalian host (26). They further identified TRAF-interacting protein with forkhead-

associated domain (TIFA) as the critical mediator of signaling axis, although direct sensor of HBP 

in host cells remains unknown. HBP induces TIFA phosphorylation and oligomerization at 
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lysosomal compartments, which would then trigger oligomerization of ubiquitinylated TRAF6, and 

ultimately NF-B activation pathway as well as innate immune gene expression. Interestingly, 

while HBP could be released from lysed Gram-negative bacteria, intact Neisseria species actively 

excrete HBP into its surrounding environment. Neisseria gonnorrhoeae may use HBP as a 

stimulator of NF-B pathway, which could drive HIV gene expression as well as viral shedding 

and transmission in Neisseria and HIV coinfection setting (27, 28). Elucidation of the full signaling 

pathway of HBP will not only provide essential insights for controlling infection but will also serve 

as a model for identifying how MAMPs signal to the host and influence host immunity. 

 

Sphingolipids 

 

Sphingolipids are a class of lipids characterized by a long-chain amino alcohol sphingoid 

backbone with an amide-bound fatty acyl chain. While sphingolipid production is ubiquitous in 

eukaryotes, only a small subset of bacteria could produce sphingolipids. To date, known 

sphingolipid-producing bacteria include the majority of the Bacteroidetes phylum together with a 

few members of the Chlorobi phylum (29), as well as a subset of Alphaproteobacteria and 

Deltaproteobacteria (30, 31). The initial step of sphingolipid synthesis involves the condensation 

of an amino acid and a fatty acid via the serine palmitoyltransferase (SPT) enzyme, which is highly 

conserved in both eukaryotes and bacteria (32). Within the human gut, members of the 

Bacteroidetes are known to produce sphigophospholipids that resemble sphingomyelin, an 

abundant sphingolipid in mammalian membranes (33, 34). This raises the question of whether 

bacteria in the gut has evolved to exploit sphingolipid signaling pathways in their hosts.  

In fact, Bacteroides fragilis, a common gut commensal, synthesizes α-galactosylceramide (α-

GalCerBf) (Fig. 1.2D), which is structurally similar to the synthetic potent CD1d activator KRN7000 

(34). However, the subtle structural difference renders α-GalCerBf as CD1d antagonist, which 
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leads to reduced colonic invariant natural killer T (iNKT) cells and protection against induced 

colitis (35).  

Certain sphingolipids from gut microbiota that resembles sphingosine-1-phosphate (S1P) (Fig. 

1.2D) may also signal through S1P receptor S1PR4, a GPCR that specifically expressed in 

lymphoid tissue (36). S1PR4 signaling induces the chemotaxis of natural killer cells and dendritic 

cells, as well as modulates Th2 immune responses (37). The recent discovery of N-acyl amides 

produced by gut microbiota could also act as specific ligands for S1PR4 (38), which suggests that 

gut microbiota may have a variety of molecules that could modulate host immunity through 

sphingolipid signaling pathways. 

 

Cyclic dinucleotides 

 

Besides bacterial cell wall components that are essential for bacterial survival, bacteria as a 

community also use a variety of signaling molecules to communicate with each other for collective 

behavior. One particular class of signaling molecules are cyclic nucleotides that include cyclic 

adenosine 3',5'-monophosphate (cGMP), cyclic guanosine 3',5'-monophosphate (cAMP), 3',3'-

cyclic dimeric GMP (c-di-GMP) (Fig. 1.2E), 3',3'-cyclic GMP-AMP (3',3'-cGAMP), and 3',3'-cyclic 

dimeric AMP (c-di-AMP) (Fig. 1.2E). They mediate numerous critical pathways in the bacterial 

community, such as biofilm formation, chemotaxis, motility, and virulence (39, 40).  

 

Mammalian hosts have also evolved specific sensors for cyclic nucleotides as means of immune 

recognition. Indeed, c-di-GMP could be specifically sensed by STING (stimulator of IFN genes; 

also known as MITA, ERIS, MPYS, and TMEM173), an ER-localized transmembrane protein (41, 

42). Its C-terminal cytosolic domain (CTD) could bind to c-di-GMP (43), and the binding event 

triggers recruitment and activation of IRF3. After a series of phosphorylation events mediated by 

TBK1, IRF3 would dimerize and enter cell nucleus to activate transcription of relevant genes, 
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resulting in type I interferon production. Interestingly, mammalian cells also sense non-

physiological double-stranded DNA (dsDNA) through STING (44). The cyclic GMP-AMP synthase 

(cGAS) in the cytosol could bind to tiny amounts of dsDNA and adopt a conformational change, 

which in turn catalyze cytosolic GTP and ATP to synthesize 2',3'-cyclic GMP-AMP (2',3'-cGAMP) 

(45), which is structurally similar to c-di-GMP. The endogenous 2',3'-cGAMP could bind even 

more potently to STING and activate type I interferon response. These findings suggest mammals 

have used STING as a sensor for bacteria and dsDNA virus infection, all mediated through cyclic 

dinucleotides.  

 

Since c-di-AMP is also very similar to c-di-GMP and 2',3'-cGAMP, it is thought to bind to STING 

and trigger innate immune response as well. However, STING affinities towards c-di-AMP and c-

di-GMP (Kd = 1 to 5 uM) are much weaker than that towards 2',3'-cGAMP (Kd = 51 nM), making 

its identity as a bona fide physiological sensor of c-di-AMP in question (46). Recently, Xia et al. 

showed that ERAdP, an ER adaptor protein, directly senses c-di-AMP (46). C-di-AMP binds to 

the CTD of ERAdP at high affinity (Kd = 76 nM), which leads to recruitment of TAK1. This would 

initiate activation of transcription factor NF-B and induce production of pro-inflammatory 

cytokines in immune cells. This ERAdP-TAK1 signaling axis is required for the eradication of 

Listeria monocytogenes infection. 

 

Microbiota-derived secondary metabolites 

 

Gut microbiota metabolizes nutrients from host diet, uses them for energy source as well as 

bacterial cell building blocks. At the same time, microbes also generates a broad range of 

secondary metabolites. Some may be regarded as side products of bacterial metabolism 

pathways, and some appear to have no apparent functions on bacterial community at first sight. 
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As shown in the following, many secondary metabolites may not directly impact microbiota itself, 

but play pivotal roles in regulating host immunity, and even directly antagonize invading 

pathogens, thus maintaining the homeostasis of microbiota as well as the host.  

 

Short-Chain Fatty Acids (SCFA) 

 

Undigested complex dietary fibers are abundant substrates for bacterial fermentation in the colon; 

therefore they are also termed microbiota-accessible carbohydrates (MACs) (47). Their main 

metabolic products are short-chain fatty acids (SCFAs), including acetic acid, propionic acid, and 

butyric acid (Fig. 1.3A). SCFA concentrations in the gut range from 5 mM to 140 mM (48), 

depending on the location of the intestine, microbiota composition, and the MAC content of the 

host diet. SCFAs are critical energy sources not only for the gut microbiota itself but also for 

intestinal epithelial cells (IECs), especially colonocytes. In addition to acting as local substrates 

for energy production, SCFAs have diverse regulatory functions on host physiology and immunity, 

which recent exciting discoveries continue to reveal.  

 

SCFAs are ligands for G protein-coupled receptors (GPCRs), and thereby act as signaling 

molecules that influence the expansion and function of many cell lineages. GPCRs responding to 

SCFAs include GPR43 (also known as FFAR2), GPR41 (also known as FFAR3) and GPR109A 

(also known as HCAR2), which are expressed by numerous cell types, including immune cells 

and IECs. GPR43 expression is necessary for SCFA-induced neutrophil chemotaxis (49) and the 

expansion and suppressive function of forkhead box P3 (FOXP3)+ regulatory T (Treg) cells (50–

52). SCFA-mediated activation of GPR109A, a receptor that responds to both niacin and butyric 

acid, prevented colitis and colon carcinogenesis through increased expression of anti-

inflammatory effector molecules by monocytes and induced differentiation of Treg cells (53). 

Binding of SCFAs to GPR43 and GPR109A on IECs also activated inflammasome assembly and 
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increased production of the downstream inflammatory cytokine IL-18 (54), which prevented a 

colitogenic phenotype, enhanced IEC integrity, and fortified IEC barrier function (55). Outside the 

gut, SCFA–GPR43 interactions decrease chemotaxis and inflammatory gene expression in 

neutrophils (56), and downregulates gout-associated inflammation by mediating inflammasome 

assembly and immune cell clearance of monosodium urate crystals (57). SCFAs blocked DC 

maturation through GPR41 signaling and ameliorated allergic airway inflammation (58).  

The GPR43-dependent effects of SCFAs on host physiology also extend to the central nervous 

system (CNS). The maturation and function of microglia, which are the resident macrophages of 

the CNS, were dependent on the gut microbiota, and the maintenance of microglia homeostasis 

required SCFAs and GPR43 (59). However, SCFAs can also exacerbate disease. In an α-

synuclein (αSyn)-dependent Parkinson's disease mice model, SCFAs from the gut accelerate 

αSyn aggregation and microglia activation in mice brain, thus exacerbate motor dysfunction (60). 

Therefore, the immunomodulatory effects of SCFAs depend on the context and cell type under 

investigation.  

 

SCFA are also inhibitors of histone deacetylases (HDACs). Several studies demonstrate that 

SCFA-induced HDAC inhibition downregulates of NF-κB activity and pro-inflammatory innate 

immune responses in neutrophils (49, 61), macrophages (62, 63) and dendritic cells (DCs) (58, 

64). Moreover, SCFAs also influence peripheral T cells, particularly regulatory T (Treg) cells, 

through HDAC inhibition (50–52). HDAC inhibition by SCFAs increased FOXP3 expression, 

leading to amplified Treg cell numbers, increased Treg cell frequency, and enhanced Treg cell 

suppressive function in vivo (65). Only high millimolar SCFA concentrations are sufficient to 

perturb HDAC function (66), and their effects may require specific transporters (64). SCFA-driven 

inhibition of HDACs tends to promote a tolerogenic, anti-inflammatory cell phenotype that is 

crucial for maintaining immune homeostasis, and this activity supports the concept that the 

microbiota can function as an epigenetic regulator of host physiology.  
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SCFAs not only modulate host immunity, but also metabolism of host intestinal epithelial cells. 

Enterocytes use butyrate for -oxidation, which depletes oxygen diffused from blood vessel and 

lamina propria (67). Butyrate also signals through PPAR- to limit the availability of oxidative 

species in the gut lumen (68). This helps maintenance of anaerobic environment in the gut. 

Depletion of butyrate by antibiotics or gut inflammation switches metabolic program in enterocytes 

from -oxidation to glycolysis, leading to accumulation of lactate and oxygen in the gut lumen, 

both of which drives expansion of facultative anaerobes, including Salmonella (67).  

 

SCFAs also directly modulate virulence of various pathogens. In particular, SCFAs could 

differentially regulate expression of Salmonella virulence genes. While acetate enhances the 

virulence gene expression through BarA/SirA two-component system signaling in Salmonella 

(69), propionate and butyrate could downregulate the expression (69, 70). Specifically, propionate 

may post-translationally modify HilD, a key transcription regulator of Salmonella virulence, and 

affect its stability (71). Loss of butyrate utilization pathway in Salmonella attenuates Salmonella 

virulence (72), but the mechanism through which butyrate represses Salmonella virulence 

remains unknown. We are proposing that butyrate dampens Salmonella virulence through post-

translational modification on HilA, another key transcription regulator of Salmonella virulence 

(Chapter 2). More studies are needed to investigate the immunomodulatory functions and 

therapeutic potential of SCFAs in health and disease. 
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Retinoic acid 

 

Vitamin A (VA) is a lipophilic micronutrient obtained by dietary ingestion of pro-vitamin A 

carotenoids (such as β-carotene) and retinyl esters (RE). Humans are not able to synthesize VA, 

thus depend on dietary supply for maintenance of multiple physiological processes throughout 

the human body (reviewed in (73)). After intake, carotenes are enzymatically converted in the 

intestine into retinol, which is transported from the gut lumen into the cell cytoplasm and is rapidly 

converted to RE or to retinoic acid (RA) (74), with all-trans-RA (atRA) (Fig. 1.3B) being the 

physiologically most abundant and well-studied. RA could be sensed by receptors that are broadly 

classified into two subgroups, retinoic acid receptor (RAR) and retinoid X receptor (RXR). In the 

absence of ligands, RAR/RXR heterodimers constitutively bind to retinoic acid response elements 

(RARE) and suppress the transcription of target genes (75). Both atRA and 9-cis-RA can bind to 

RAR/RXR, displacing the corepressors and activating target gene expression (76–78). Most of 

the RA immune-related functions signal through the RAR/RXR pathway, primarily driven by atRA 

acting through RARα (79). 

 

VA is crucial to the establishment of oral immunological tolerance against food antigens (80, 81), 

and its deficiency might contribute towards food allergies and inflammatory bowel diseases (IBD). 

Notably, atRA participates in multiples steps in the establishment of oral immunological tolerance 

(80). AtRA could dramatically expand pre-mucosal DCs (pre-µDCs) population that expresses 

α4β7, a gut homing receptor on lymphocytes (82). Furthermore, atRA in the lamina propria of 

intestine enhances differentiation of pre-µDCs into CD103+ DCs, a critical DC population for 

sensing antigens from the gut lumen (83). In combination with CD103+ DCs and TGF-β, atTA 

increases the generation of FOXP3+ Treg cells in mesenteric lymph nodes (MLNs) (84), 

restricting Th17 differentiation (85–87), as well as induces in T cells expression of α4β7 and 

CCR9, another gut homing receptor. Treg cells induced in this manner can produce anti-
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inflammatory IL-10 and migrate to the intestine to promote tolerance (88, 89). Innate lymphoid 

cells (ILCs) in the MLN could also be induced to express CCR9 and α4β7 by atRA, which leads 

to ILC migration to the intestine (90). The concentrations of atRA in the small intestine follows a 

proximal to distal (i.e., duodenum to colon) decreasing gradient (91, 92), which correlates with 

the differential distribution of different ILCs population along the gastrointestinal tract (93). 

Therefore, it may be reasonable to speculate that atRA might be involved in the regionalization of 

ILCs in the intestine, likely by controlling their migration, differentiation, and function. 

 

Aromatic acids 

 

Gut lumen is filled with digested nutrients from the diet, including amino acids. In particular, 

aromatic amino acids (tryptophan, phenylalanine, tyrosine, histidine) could be metabolized by gut 

microbiota and converted into aromatic acids through a series of oxidative or reductive pathways. 

Of note, several of them, including indoleacetic acid, indolepropionic acid (IPA) (Fig. 1.3C), and 

indolelactic acid (ILA) (Fig. 1.3C), could be absorbed by the intestine and circulate in the mice 

serum (94). Aromatic acids are well-known agonists of aryl-hydrocarbon receptor (AhR), a ligand-

activated transcription factor involved in lymphoid system development (95, 96), immune 

response (97), and toxic response (98). Aromatic acids also activate pregnane X receptor (PXR), 

another crucial nuclear receptor involved in intestinal permeability and toxic response (99). 

Therefore, elevated aromatic acids level in systemic sites induced by microbiota have a potentially 

profound impact on host physiology.  

Indeed, Lactobacillus reuteri catabolizes L-tryptophan and produces ILA, which activates AhR in 

CD4+ T cells, allowing downregulation of the transcription factor ThPOK and differentiation into 

CD4+CD8αα+ double-positive intraepithelial T lymphocytes (DP IELs) (100). DP IELs have a 

regulatory function complementary to that of Tregs and promote tolerance to dietary antigens 

(101). Lactobacillus species also produce indole-3-aldehyde, another derivative of tryptophan, 
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which is also an AhR ligand and contributes to AhR-dependent IL-22 production. This leads to 

balanced mucosal response, provides colonization resistance to the fungus Candida albicans, 

and mucosal protection from inflammation (102). In another study, Wlodarska et al. found that 

several Peptostreptococcus species could produce indoleacrylic acid (IAA) (Fig. 1.3C), which 

promotes intestinal epithelial barrier function and mitigates inflammatory responses through AhR 

(103). On the other hand, Venkatesh et al. showed that IPA produced by Clostridium sporogenes 

could downregulate enterocyte TNF- while it promotes tight junction between IECs through 

activation of PXR in vivo, which also depend on TLR4 (104). Recently, Dodd et al. engineered C. 

sporogenes to make it defective in producing IPA, and comparing to mice colonized with wild-

type C. sporogenes, mice with C. sporogenes mutant have increased intestinal permeability and 

adaptive immune response to C. sporogenes (94). These exciting studies highlight how microbial-

derived metabolites could significantly change host physiology and immunity. 

 

Riboflavin precursors 

 

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that comprise up to 10% of the 

peripheral blood T-cell population of humans (105), and they are involved in microbial response  

(106, 107) as well as autoimmune diseases (108). MAIT cells can be activated by most bacteria 

and yeast through antigen presentation by MR1, an MHC-I like molecule (109, 110). However, 

the specific antigens presented by MR1 had been long elusive. During the structural determination 

of MR1, Kjer-Nielsen et al. found that MR1 could bind to 6-formyl pterin (6-FP), a 

photodegradation product of folic acid (111). Even though 6-FP could not activate MAIT cells, it 

provided the first hint on what ligands MR1 could potentially bind. Further functional assays 

revealed that several riboflavin (Vitamin B2) biosynthesis precursors, namely reduced 6-

hydroxymethyl-8-D-ribityllumazine (rRL-6-CH2OH) (Fig. 1.3D), 7-hydroxy-6-methyl-8-D-

ribityllumazine (RL-6-Me-7-OH) (Fig. 1.3D), and 6,7-dimethyl-8-D-ribityllumazine (RL-6,7-diMe) 
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(Fig. 1.3D), could activate MAIT cell TCR in an MR1-dependent manner (111). Interestingly, 

riboflavin itself could not activate MAIT cells, and microbes that do not have riboflavin biosynthesis 

pathway could not activate MAIT cells (111).  

In a follow-up study, Corbett et al. found that MAIT-cell activation requires microbial genes 

encoding enzymes that form 5-amino-6-D-ribitylaminouracil (5-A-RU), an early intermediate in 

bacterial riboflavin synthesis (112). Although 5-A-RU does not bind MR1 or activate MAIT cells 

directly, it does undergo non-enzymatic reactions with other small molecules from microbes, such 

as glyoxal and methylglyoxal. The resulting adducts, 5-(2-oxoethylideneamino)-6-D-

ribitylaminouracil (5-OE-RU) (Fig. 1.3D) and 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil 

(5-OP-RU) (Fig. 1.3D), even though unstable, could bind to MR1 as reversible covalent Schiff 

base complexes (112). Thus, MR1 can capture, stabilize and present chemically unstable 

pyrimidine intermediates as potent antigens to MAIT cells. Since riboflavin is synthesized by 

plants and most bacteria and yeasts but not by animal cells, while MAIT invariant TCR is 

evolutionarily conserved among mammals and other vertebrates (113), these two findings 

exemplify co-evolution of invariant TCRs, MHC-I like molecules, and their cognate microbial-

specific small molecule antigens. 

 

Secondary bile acids 

 

Bile acids are amphipathic molecules synthesized from cholesterol in the liver. They are 

physiological detergents that help secrete metabolites into the gastrointestinal tract. In the 

intestines, bile acids help intestinal absorption of dietary fats, fat-soluble vitamins, and other 

nutritions (114). Cholic acid (CA) and chenodeoxycholic acid (CDCA) are the dominant primary 

bile acids in humans. Of note, deoxycholic acid (DCA) (Fig. 1.3E) is a secondary bile acid formed 

by bacterial dehydroxylation of cholic acid; lithocholic acid (LCA) (Fig. 1.3E) is formed by the 

analogous dehydroxylation of chenodeoxycholic acid. DCA and LCA could be further conjugated 
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with taurine or glycine by gut microbiota, generating conjugated bile acids, including 

taurodeoxycholic acid (TDCA).  

In recent decades, bile acids are recognized not only as digestive surfactants, but also as 

important signaling molecules in a broad range of biological functions, including glucose and lipid 

metabolism, energy homeostasis, and the modulation of immune response (114–116). The 

regulatory functions of bile acids are mainly the result of activation of a nuclear receptor, the 

farnesoid X receptor (FXR, NR1H4) (117–119), and a cell surface GPCR, TGR5 (GPBAR-1) (120, 

121). FXR activation inhibits pro-inflammatory cytokine production in vivo, and limits bacterial 

overgrowth as well as intestinal permeability (122). TGR5 activation leads to inhibition of pro-

inflammatory NF-κB pathway (123, 124), as well as activation of endothelial iNOS and NO release 

(125, 126). Collectively, FXR and TGR5 signaling promotes intestinal barrier function and exerts 

immune modulation in the gut.  

Interestingly, while CDCA is the most potent ligand for FXR (127–129), LCA and taurine-

conjugated LCA are most potent endogenous ligands for TGR5 (130–132). This indicates that 

microbiota-dependent bile acid metabolism plays critical roles in regulating host signaling 

pathways and physiology outcomes. Indeed, abnormal bile acid metabolism has been associated 

with liver injury, metabolic disorders, cardiovascular diseases, as well as digestive system 

diseases, such as inflammatory bowel disease (IBD) and colorectal cancer (133–135).     

 

Secondary bile acids also direct influence virulence of enteric pathogens (136, 137). Bile acids 

could activate Type III Secretion System 2 (T3SS2) in Vibrio parahaemolyticus (138). Specifically, 

TDCA binds to VtrA/VtrC complex, activating VtrB and V. parahaemolyticus virulence (139). 

Besides, secondary bile acids inhibit spore germination, growth, and toxin production of 

Clostridium difficile (140). Clostridium scindens, a bile acid 7-dehydroxylating intestinal 

bacterium, enhances resistance to C. difficile infection in a secondary bile acid dependent manner 

(141). Moreover, bile acids repress invasion gene expression in Salmonella by post-translational 
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destabilization of HilD (142). These findings have implications for the rational design of 

microbiome-based diagnostics and therapeutics for individuals with enteric infections.  

 

Taurine, histamine, and spermine 

 

Besides acids, gut microbiota could also produce amines, including taurine, histamine, and 

spermine (Fig. 1.3F). Taurine is scavenged by gut microbes from taurine-conjugated bile acids 

produced by the host, while some bacteria could also perform taurine conjugation on bile acids. 

Histamine and spermine could be synthesized from histidine and ornithine. In inflammasome-

deficient mice model, Levy et al. discovered that compared to wild-type mice, Asc-/- 

inflammasome-defective mice have decreased the abundance of taurine and increased the 

abundance of histamine and spermine, which correlate with suppression of inflammasome activity 

(143). Colonic explants demonstrated that taurine activates, while histamine and spermine 

suppress NLRP6 inflammasome activity. NLRP6 inflammasome could induce intestinal IL-18 

production, which orchestrates colonic anti-microbial peptide (AMP) expression. The 

inflammasome-AMP axis, in turn, could regulate intestinal microbial composition, establishing a 

stable mutualism between host innate immune system and gut microbiota (143). 

 

Long-chain N-acyl amides 

 

The human microbiome is believed to encode functions that are important to human health; 

however, little is known about the specific effector molecules that commensals use to interact with 

the human host. Functional metagenomics provides a systematic way of surveying commensal 

DNA for genes that encode effector functions. Cohen et al. examined 3,000 Mb of metagenomics 

DNA cloned from fecal samples of three IBD patients and screened for effector gene clusters that 

activate NF-κB. One of the effector gene clusters come out of screening was recovered from all 
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three patient libraries, and it encodes for the production of N-acyl-3-hydroxypalmitoyl-glycine 

(commendamide), which resembles long-chain N-acyl amides that function as mammalian 

signaling molecules (144). They further showed that commendamide activates G2A/GPR132, a 

GPCR that is implicated in the modulation of immune cell function, autoimmunity, and 

atherosclerosis. In a follow-up study, Cohen et al. performed a bioinformatics analysis of human 

microbiome data to find bacterial enzymes that produce N-acyl amides. They identified 143 

unique N-acyl synthase genes, which are enriched in gastrointestinal bacteria (38). Exogenous 

expression of these genes in Escherichia coli indicated that they produce N-acyl amides of six 

major families that are structurally similar to human GPCR ligands, including N-acyl serinol (Fig. 

1.3G), which resembles the GPR119 ligand oleoylethanolamide. Profiling of some N-acyl amides 

against 240 human GPCRs revealed specific interactions, especially among receptors expressed 

in the gastrointestinal tract (38). Interestingly, mice colonized with bacteria expressing the 

synthase of N-acyl serinols showed reduced blood sugar levels in an oral glucose-tolerance test, 

consistent with the action on host GPR119 (38). These findings represent one of the first 

examples of microbe-derived small molecules affecting host physiology and highlight the use of 

functional metagenomics to identify critical microbial effectors. 

 

Dipeptide Aldehydes 

 

Similar to the discovery of microbiota-produced long-chain N-acyl amides, Guo et al. have used 

metagenomic bioinformatics to find a new family of nonribosomal peptide synthetase (NRPS) 

gene clusters from human microbiome (145). By expressing some of the most prevalent NRPS 

gene clusters (>90% samples), they found new molecules were produced, belonging to a family 

of pyrazinones and dihydropyrazinones, some of which were found with similar approaches from 

Staphylococcus aureus (146). Even though pyrazinones have been implicated as inhibitors of 

host proteases, they have poor in vitro affinity and activity. The authors found that these 
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pyrazinones were initially liberated from NRPSs as dipeptide aldehydes (Fig. 1.3H), which would 

undergo spontaneous cyclization and oxidation in the presence of oxygen (145). Indeed, under 

physiological pH and anaerobic condition, dipeptide aldehydes were stable enough to remain in 

active form, being highly potent, cell-permeable protease inhibitors. N-octanoyl-Met-Phe-H, an N-

acylated dipeptide aldehyde that could not cyclize and be oxidized, is also a major product. 

Quantitative activity-based protein profiling (ABPP) showed that Phe-Phe-H, one dipeptide 

aldehyde representative, specifically inactivates cathepsin L, with minimal cross-reactivity to other 

cathepsins as well as other host proteins (145). These findings again demonstrate interesting 

interactions between host and microbiota and provide new lines of evidence on mutualism 

between commensal gut microbiota and their host. 
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Figure 1.3. Microbiota-derived secondary metabolites. Their corresponding host receptors are 

listed after the colon. (A) Short-chain fatty acids : GPCRs, HDACs. (B) All-trans-retinoic acid : 

RAR, RXR. (C) Aromatic acids : PXR, AHR. (D) Riboflavin precursors : MR1. (E) Secondary bile 

acids : GPBAR1, NR1H4. (F) Taurine, histamine, and spermine: NLRP6.  (G) N-acyl serinol : 

GPR119. (H) Dipeptide aldehydes : cathepsins.  
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Concluding Remarks 

 

All the examples discussed above highlight the intricate interactions between host and its resident 

gut microbiota, resonating with a comment made more than two millennia ago by Hippocrates, 

"all disease begins in the gut". Bacterial density reaches a staggering 1011 organisms per gram in 

the colon, making this bacterial community the principal source of microbial metabolites in the 

human body. O'Hara and Shanahan proposed in 2005 that the gut microbiota represents a 

‘microbial organ' (147), because it resides as a structural unit and produces metabolites at 

concentrations that promote health, analogous to an endocrine system. While the ‘microbial 

organ' concept is generally accepted (148), it is problematic to define what a ‘healthy microbial 

organ' should look like, because the comparison of the gut microbiota composition between 

different healthy individuals reveals minimal overlap on the species level (149). Recently, 

Byndloss and Baumler proposed that anaerobiosis is the hallmark of mammalian gut (150), 

thereby driving the composition of the microbial community towards a dominance of obligate 

anaerobes, which is critical for maintaining gut homeostasis (68). In contrast, dysbiosis, a state 

of microbial organ dysfunction, is characterized by failure to limit oxygen level in the gut and 

expansion of facultative anaerobes, including most enteric pathogens (150). This germ-organ 

theory instructs a shift from microbial community profiling towards understanding host-mediated 

control of microbial organ ecology. It calls for mechanistic follow-up studies aiming at 

understanding trophic networks, the influence of host physiology on the microbial ecosystem, and 

the role that microbiota-derived metabolites have in health and disease. This might be a move in 

the right direction as we stand at the threshold of a ‘second golden age of microbiology'. 
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Chapter 2 

 

Microbiota-derived short-chain fatty acids inhibit Salmonella virulence 

through acylation on virulence regulator HilA 
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Abstract 

 

The intestinal microbiota is important for host metabolism as well as immune development and is 

associated with human diseases. While the gut microflora is known to protect the host from 

invading pathogens, the underlying mechanism(s) have been elusive. Of note, short-chain fatty 

acids (SCFA) produced by commensal bacteria have been shown to inhibit key bacterial virulence 

pathways, such as type III secretion system (T3SS) in Gram-negative enteric bacterial pathogens, 

but the molecular mechanism(s) are still under investigation. The major limitation in understanding 

the functions of SCFA has been identifying the direct biochemical targets of these microbial 

metabolites. We applied bio-orthogonal alkyne-fatty acid reporters to directly identify the 

biochemical targets of SCFA in Salmonella Typhimurium, a Gram-negative enteric pathogen 

responsible gastroenteritis in humans. With in-gel fluorescence profiling, click chemistry-mediated 

enrichment and mass spectrometry-based proteomics, I found that exogenous short-chain fatty 

acids can inhibit T3SS of Salmonella and covalently modify key virulence transcriptional regulator 

HilA. The modification was not susceptible to enzymatic acylation or deacylation mediated by Pat 

and CobB. Via amber suppression technology and CRISPR-Cas9 genome editing technique, bio-

orthogonal stable lysine acylation mimic was incorporated site-specifically to endogenously 

expressed HilA in Salmonella, and it revealed that fatty-acylation on K90, K324, and K456 of HilA 

impaired its function to activate virulence gene expression, and decreased corresponding 

Salmonella mutants’ infectivity to HeLa cells. In particular, I showed that fatty-acylation on K90 of 

HilA impaired its DNA-binding activity, decreasing Salmonella invasion in mice. These studies are 

crucial for elucidating fundamental mechanisms of microbiota-mediated resistance on bacterial 

virulence and should facilitate the development of new anti-infectives to prevent or treat bacterial 

infections. 
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Introduction 

 

The intestinal microbiota of mammals is composed of 1013-1014 cells, which outnumbers total cell 

numbers in the host (151). It consists of about 1000 different bacterial species that regulate host 

metabolism (152), resistance to gut pathogens (153), as well as immune system development 

and homeostasis (154). Dysregulation of the microbiota is associated with a variety of host 

immune disorders, including inflammatory bowel disease (IBD) (155), allergy (156), and diabetes 

(157). Fecal transplant from healthy donors to patients has achieved satisfactory results in treating 

recurrent C. difficile infection and other intestinal diseases (158). The mechanisms by which 

commensal bacteria modulate host immune system and protect against enteric pathogens have 

been difficult to elucidate due to the complex interactions between the host and its microbiota and 

enteric pathogens. 

 

S. enterica is a Gram-negative intracellular pathogen that causes gastroenteritis and typhoid fever 

worldwide (159). Once ingested, Salmonella traverses the gut to the small intestine, where a set 

of virulence genes are activated to promote gut inflammation as well as invasion of the intestinal 

epithelia, allowing Salmonella to replicate and disseminate throughout the host (160). Systemic 

infection associated with typhoid fever is mediated by two Salmonella pathogenicity islands (SPI) 

that encode Type 3 Secretion Systems (T3SS) for bacterial invasion, dissemination, and 

replication inside host cells (159, 160). Specifically, SPI-1 is important for Salmonella invasion, 

while SPI-2 is crucial for Salmonella replication in host cells (161). Genetic and biochemical 

studies have demonstrated that T3SS form multi-protein complexes to inject a variety of bacterial 

protein effectors into host cells for Salmonella pathogenesis (159, 160). These Salmonella 

virulence programs are regulated by a variety of environmental factors, including the host 

microbiota (69, 162). 
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Of note, short-chain fatty acids (SCFA) produced by commensal bacteria, including propionate 

and butyrate, have been shown to inhibit T3SS in Salmonella enterica serovar Typhimurium (Stm) 

(69–71). SCFA have been implicated in inhibiting Salmonella virulence through transcriptional (69) 

and post-translational regulation (71), but the molecular mechanism(s) are not well studied. 

Understanding the effects of short-chain fatty acids on Stm will help elucidate the interactions 

between host, commensal bacteria, and enteric pathogen, and guide new treatment and 

prevention to enteric bacterial pathogens. 

 

Over the last decade, bio-orthogonal chemistry has emerged as a powerful tool to rapidly 

investigate biological activities with minimal perturbation to the biological system. Copper-

catalyzed azide–alkyne cycloaddition (CuAAC), or more commonly “click chemistry”, is the most 

widely used bio-orthogonal reaction, in which Cu(I) cation catalyzes cycloaddition between azide 

and alkyne, forming stable covalent bonds between two molecules attached with azido or alkynyl 

group. We have developed bio-orthogonal acylation reporters over the past few years that have 

enabled rapid and robust detection of fatty-acylation of proteins in both bacteria and mammalian 

cells. LCFA reporters have been applied to detect reversible S-palmitoylation in mammalian cells 

(163) and to detect lipoproteins in bacteria (164). SCFA reporters are applied to probe acetylation 

in mammalian cells (165). Compared to traditional fatty-acylation detection methods, these fatty-

acylation reporters facilitate rapid detection compared to radioactive isotope fatty acids labeling, 

which may take up to weeks for detection, and robust reproducibility as compared to detection by 

fatty-acylation-specific antibodies. In this work, I set out to apply SCFA chemical reporter to study 

how SCFA inhibit the virulence of Stm, specifically the post-translational modification (PTM) of 

virulence-related factors, and directly address the functional consequence of short-chain fatty-

acylation on one of these proteins, HilA. 

 



27 
 

During the last 15 years, Amber Suppression Technology has been developed to enable 

incorporation of Unnatural Amino Acids (UAA) site-specifically in proteins of interest in vivo. It 

harnesses an orthogonal pair of tRNAPyl and aminoacyl-tRNA synthetase derived from 

Methanosarcina species, which can recognize unnatural amino acid (UAA) and incorporate it onto 

protein-encoding mRNA bearing an amber codon (TAG), a stop codon if naturally read by the 

translation system. In vitro directed evolution has created a variety of synthetase mutants that can 

incorporate a broad range of functionalized UAAs. Amber Suppression Technology, coupled with 

CRISPR-Cas9 genome editing technique, allows us to install functional and stable lysine-

acylation mimic site-specifically in endogenously expressed HilA in Stm. 

 

Genetic tools in Salmonella have been developed over the years and greatly facilitate the genetic 

research in Salmonella. In particular, genome editing techniques based on Lambda Red 

Recombination System (166) have been widely used for genetic knock-out and knock-in in 

Salmonella (167). Nevertheless, these editing approaches rely on insertion of an antibiotic 

resistance cassette in the genome for positive selection. Even if the cassette can be eliminated 

with FLP recombinase, it inevitably leaves a “scar” sequence on the genome, potentially causing 

unintended side effects on the cell (166). Recently, CRISPR-Cas9 genome editing technique has 

been widely adopted in scientific community for precise and scarless genome editing in various 

organisms, from bacteria (168) to mammals (169–171). Previously it was reported that CRISPR-

Cas9 genome editing system could be applied in Escherichia coli with high editing efficiency (168). 

Cas9 protein and guide-RNA (sgRNA) were introduced to E. coli in two separate plasmids, pCas9 

and pCRISPR, along with transformation of editing template and expression of Lambda Red 

recombinase. Given the similarity between E. coli and Stm, we tried to use the same protocol in 

Stm for genome editing. 
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In this chapter, I demonstrate that HilA, a key virulence regulator of SPI-1 T3SS in Stm, is short-

chain fatty-acylated at five lysine residues in vivo. I showed that Lysine Butyrylation Mimic (KBM) 

UAA is a faithful and stable mimic of lysine butyrylation, and incorporating KBM at different sites 

of HilA results in varied functional consequence. In particular, I provided evidence that HilA K90 

acylation affects its DNA-binding ability, decreases SPI-1 gene expression, and impairs 

Salmonella infectivity in HeLa cells and in mice. 
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Results 

 

Short-chain fatty acids inhibit Salmonella virulence 

 

In mammalian gut, concentrations of SCFA varies, of which median is about 10 mM. I observed 

that butyrate (Fig. 2.1A), a major SCFA present in the gut, did not inhibit Stm growth in vitro at 

concentration of 10 mM (Fig. 2.1B). However, 10 mM butyrate decreased Stm invasion ability to 

HeLa cells (Fig. 2.1C), and inhibited expression level of Stm SPI-1 effector genes such as sipA, 

as shown by quantitative reverse–transcription PCR (qRT-PCR) (Fig. 2.1D). This suggest that 

butyrate inhibits Stm virulence through antagonizing transcription and expression of Stm SPI-1 

effector proteins. SCFA are metabolized in Stm and may result in the production of a panel of 

highly reactive acyl intermediates, including acyl-CoA and acyl-phosphate (172), which may lead 

to an extensive increase of post-translational modifications on a variety of proteins, leading to 

altered regulatory functions (173) and enzymatic activities (174). Therefore, we hypothesized that 

SCFA may inhibit Stm virulence through acylation of key virulence regulators, which might affect 

their normal functions. Similar regulatory mechanisms have been reported in other pathogens 

(175). 
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Figure 2.1. Short-chain fatty acids inhibit Salmonella virulence. (A) Structure of butyrate and Alk-3. (B) 

Growth curve of Stm 14028 WT in SPI-1 inducing LB in the presence of 10 mM C-4, 10 mM mM Alk-3, or 

same volume of water. (C) Gentamicin protection assay of Stm incubated with or without 10 mM Alk-3 

infecting HeLa cells at MOI=10. (D) Expression of SPI-1 gene sipA was measured by qRT-PCR from Stm 

with or without 10 mM alk-3 incubation. 

 

Proteomic analysis of acylated proteins in Salmonella 

 

To identify acylated proteins in Salmonella, I employed SCFA chemical reporter alk-3 (pentynoate) 

(Fig. 2.1A). Alk-3 behaved similarly to its natural counterpart butyrate, as it retained the ability to 

inhibit Stm invasion to HeLa cells (Fig. 2.1C) and inhibited expression level of sipA (Fig. 2.1D) at 

10 mM, but did not inhibit Stm growth (Fig. 2.1B). This suggests it may have similar mode of 

action as butyrate to inhibit Stm virulence. To visualize acylated proteins with alk-3, I incubated 

Stm culture with 10 mM alk-3, and harvested total cell lysates for CuAAC reaction with azide-

functionalized Rhodamine (az-Rho, Fig. 2.2A). SDS-PAGE followed by in-gel fluorescence 
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scanning demonstrated that alk-3 metabolically labeled a diverse repertoire of proteins in Stm 

(Fig. 2.2C). To identify these acylated proteins, I performed Label-Free Quantitative (LFQ) 

Proteomics analysis on Stm proteome with or without alk-3 labeling. Stm cell lysates were reacted 

with an azido-biotin affinity tag (az-biotin, Fig. 2.2B). Alk-3 labeled proteins were enriched by 

streptavidin beads, and digested by Trypsin/LysC mix on-bead. Digested peptides were 

processed and identified by Liquid Chromatography–tandem Mass Spectrometry (LC-MS/MS). 

The resulting spectrum were searched with MaxQuant (176) and quantified with Perseus (177). I 

identified ‘hits’ as proteins enriched for more than 2-fold in alk-3 samples and P-value less than 

0.05. With this approach, I selectively identified 56 proteins labeled by alk-3 compared to control 

samples (Fig. 2.2D, Appendix 2.1). Of these proteins, 34 of the hits (61%) were categorized as 

metabolism-related proteins. However, only 6 proteins in these hits (11%) were directly related to 

Stm virulence. Notably, HilA, a master transcriptional activator of Stm SPI-1 virulence (178, 179), 

was one of the most prominent hits in the data set. 

 

HilA is acylated in Salmonella 

 

HilA is a master transcription regulator of SPI-1, belonging to OmpR/PhoB family of regulatory 

proteins. HilA activates the inv/spa and prg operons, encoding components of the T3SS 

apparatus (180, 181), and the sic/sip operon, encoding a chaperone and secreted proteins (182). 

HilA is essential for Salmonella virulence, as hilA gene deletion in Salmonella abolishes its 

secretion of SPI-1 effectors (183) (Fig. 2.3A) and its infectivity to cells (184) (Fig. 2.3B). HilA 

protein is predicted by NCBI Conserved Domains Search to contain an N-terminus DNA-binding 

domain (DBD) and a Tetratricopeptide Repeat (TPR) domain near its C-terminus, but no atomic 

structure of HilA is available to date (Fig. 2.3C). It is reported that HilA is acetylated at 5 different 

lysine residues (185), namely K90, K231, K324, K456, and K533. Robetta Full-chain Protein 

Structure Prediction Server (186) predicted that all of these 5 lysine residues located at the 
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surface of the protein, suggesting that they may be accessible for acylation (Fig. 2.3D). Moreover, 

K57 was predicted to be critical for protein-DNA interaction between HilA and its DNA partner. 

Therefore, I used HilA K57 mutant as a loss-of-function control. I also chose K527 as a neutral 

control, as it was not implicated to have any functional role. 

 

 

Figure 2.2. Proteomic analysis of acylated proteins in Salmonella. (A) Molecular structure of azido-

Rhodamine (az-Rho). (B) Molecular structure of azido-PEG3-biotin (az-biotin). (C) Salmonella cell lysates 

were reacted with az-Rho by CuACC, and proteins were separated by SDS-PAGE for visualization by 

fluorescence gel scanning (top). Coomassie blue staining demonstrates comparable loading (bottom). (D) 

Salmonella cell lysates were reacted with az-biotin by CuAAC for the enrichment of alk-3–labeled proteins 

with streptavidin beads and identification by mass spectrometry. LFQ proteomic analysis Identified proteins 

that were enriched by alk-3 (top right corner), which were colored according to their annotated biological 

function. Blue, metabolic enzymes. Red, SPI-1 proteins. Black, other proteins. 
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Figure 2.3.  HilA is essential for Salmonella virulence. (A) Secretion assay of Stm WT, Stm hilA, and 

Stm hilA overexpressing HilA-HA-His. The secreted SPI-1 effector proteins were precipitated from 

supernatant with trichloroacetic acid and run on SDS-PAGE, followed by Coomassie Blue staining. (B) 

Gentamicin protection assay of Stm, Stm hilA, and Stm HilA-HA infecting HeLa cells at MOI=10. (C) 

Predicted domains of HilA and lysine residues that are reported to be acetylated (orange), as well as K57 

and K527 chosen to serve as controls (navy). DBD, DNA-binding domain. TPR, tetratricopeptide repeat 

domain. (D) Predicted structure of HilA by Robetta Full-chain Protein Structure Prediction Server. DBD is 

labeled in yellow, TPR domain is labeled in blue. Five acylated lysine residues and K57 are labeled in red. 
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To study HilA in more detail, I subcloned HilA into pBAD plasmid and appended HA tag and His6 

tag to the C-terminus of HilA. HilA-HA-His6 was well expressed upon arabinose induction in Stm, 

and it functionally rescued secretion deficiency in Stm hilA mutant (Fig. 2.3A). To confirm that 

HilA was indeed acylated, Stm overexpressing HilA-HA-His6 was grown in medium with alk-3, 

and CuAAC in-gel fluorescence scanning of cell lysates demonstrated that HilA was labeled by 

alk-3 (Fig. 2.4A). Moreover, I purified HilA-HA-His6 protein from Stm incubated with either 

propionate or butyrate, and enriched acylated fraction with anti-propionyllysine or anti-

butyryllysine antibody. LC-MS/MS analysis of digested peptides from these fractions identified 5 

lysine residues out of 34 in HilA were acetylated, propionylated, or butyrylated (Fig. 2.4B, 2.4C, 

Appendix 2.2), consistent with previous report (185). Modification occupancies were estimated 

based on area of modified and unmodified peptides in LC-MS/MS (Fig. 2.4B). K324 and K456 

unmodified peptides, when fully digested, are too short to be detected, therefore the modification 

occupancy were not determined.  

 

Acylation is a dynamic process, which may involve both acyltransferases and deacylases ‘writing’ 

and ‘erasing’ acylation on proteins. To investigate whether acylation on HilA is regulated by 

acyltransferase and deacylase in Salmonella, HilA-HA-His6 was co-expressed with Gcn5-like 

Protein Acyltransferase (Pat), or the only known protein deacylase in Salmonella, CobB. CuAAC 

in-gel fluorescence scanning showed that while CobB could decrease alk-3 labeling level on 

Salmonella proteome (Fig. 2.4D), alk-3 labeling level on HilA was not affected by either Pat or 

CobB (Fig. 2.4E). 
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Figure 2.4. HilA is acylated in Salmonella. (A) Stm overexpressing HilA-HA-His were incubated with 

water or 10 mM Alk-3 before CuAAC with az-Rho, SDS-PAGE in-gel fluorescence scanning (top), and 

immunoblotting (bottom). (B) Table of lysine residues (column) and short-chain acylation types (row) 

identified by LC-MS/MS (tick), and their estimated modification occupancy in parentheses. ND, not 

determined. (C) MS/MS spectrum of HilA K90 butyrylated peptide and K324 propionylated peptide as 

representative MS/MS spectrums of acylated HilA peptide. (D)(E) Salmonella overexpressing HilA-HA-His, 

as well as Pat-Flag or CobB-Flag, were incubated with or without alk-3 during overexpression. Total cell 

lysates (D) and anti-HA immunoprecipitated samples (E) were analyzed with SDS-PAGE in-gel 

fluorescence scanning (top), and anti-Flag (D) or anti-HA (E) immunoblotting (bottom).  
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Installing stable acylation mimic on HilA in Salmonella 

 

Next I set out to pinpoint the effects of lysine fatty-acylation on the function of HilA. Conventional 

approaches include mutating lysine residues to glutamines as mimicry to lysine acylation. 

However, glutamine bears a polar terminal acylamine and is relatively small, which is significantly 

different from the relatively nonpolar internal secondary amide and bulky steric hindrance in N-

acyllysine. To achieve better mimicry of lysine acylation on HilA protein, we decided to apply 

amber suppression technology to site-specifically engineer HilA. 

 

First I tested incorporation of a panel of acyllysines, namely acetyllysine (AcK), propionyllysine 

(PrK), and butyryllysine (BuK) (Fig. 2.5A), which have been reported to be incorporated into 

proteins in bacteria (187, 188). I found that in Salmonella, AcK and PrK were not detected to be 

incorporated at K90 in HilA (Fig. 2.5B). BuK was poorly incorporated, and could be barely 

detected by anti-HA and pan anti-BuK immunoblotting (Fig. 2.5B). I also raised a custom site-

specific polyclonal antibody against HilA butyrylated K90 (anti-HilAK90Bu), and HilA-K90BuK was 

poorly detected as well (Fig. 2.5B). 

 

To incorporate an unnatural amino acid that can be efficiently incorporated into proteins in 

Salmonella, and faithfully mimics lysine acylation at the same time, we decided to use a lysine 

analog UAA, Lysine Butyrylation Mimic (KBM, Nε-pent-4-ynyloxy-carbonyl-L-Lysine) (Fig. 2.5A) 

(189). It bears carbamate at -N and an alkynyl group at the terminus. This unique structure 

serves as lysine acylation mimic at -N on lysine residues, and protects itself from being 

deacylated by endogenous deacylases, while at the same time enables robust detection via 

CuAAC. I demonstrated that KBM could be readily incorporated via Methanosarcina barkeri 

pyrrolysine-tRNA synthetase ASF mutant and tRNACUA, and into over-expressed HilA at K90 at 

similar levels compared to wild type, which could be detected by immunoblotting (Fig. 2.5B) and 
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in-gel fluorescence scanning (Fig. 2.5C). Importantly, HilAK90KBM protein could be 

immunoblotted by both pan anti-BuK antibody and anti-HilAK90Bu antibody (Fig. 2.5B), but not 

by anti-PrK or anti-AcK antibody, suggesting that KBM faithfully mimics lysine butyrylation on 

proteins. 

 

 

Figure 2.5. Installing Stable acylation mimic on HilA in Salmonella. (A) Molecular structure of 

acetyllysine (AcK), propionyllysine (PrK), butyryllysine (BuK), and lysine butyrylation mimic (KBM). (B) (C) 

Salmonella with HilA-HA-His or HilAK90tag-HA-His construct, as well as PylRS-WT or –ASF mutant 

plasmid, were incubated with or without AcK, PrK, BuK, or KBM during overexpression. Total cell lysates 

(B) were analyzed with SDS-PAGE in-gel fluorescence scanning (top), Coomassie Blue staining (middle), 

and anti-HA immunoblotting (bottom). Anti-HA immunoprecipitated samples (C) were immunoblotted for 

HA, AcK, PrK, BuK, or HilAK90Bu. 
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Optimizing CRISPR-Cas9 Genome Editing in Salmonella 

To assay effects of acylation on HilA in a more physiologically relevant setting, we sought to 

incorporate KBM into endogenously expressed HilA protein. Therefore, we would need site-

specific amber codon mutations in the hilA gene in Salmonella genome, with no additional 

mutations to complicate the phenotype outcome. We decided to use CRISPR-Cas9 genome 

editing in Salmonella, a technique that could generate scarless and precise mutations in genome. 

I tried to directly employ CRISPR-Cas9 genome editing protocol in E. coli (168) to Stm. Briefly, 

sgRNA sequence is subcloned into pCRISPR, and Stm expressing Lambda Red Recombination 

System (pKD46 plasmid) is transformed with pCas9, pCRISPR-sgRNA, and a double-stranded 

DNA (dsDNA) editing template. Bacteria is selected on agar plates for colonies containing both 

pCas9 and pCRISPR-sgRNA. However, I found that this protocol resulted in very high false-

positive rate and editing efficiency was extremely low, with estimation that less than 5% of 

colonies on the plate were successfully edited. 

To optimize the CRISPR-Cas9 genome editing system in Stm, we first deleted a guide RNA 

sequence with unknown function in pCas9 to minimize off-target effect of Cas9. This new plasmid, 

pWJ297, contains coding sequence of Streptococcus pyogenes Cas9 (SpCas9), 

Chloramphenicol resistance gene, and direct repeats flanking two BsaI restriction sites for 

subcloning of sgRNA sequence. SpCas9 requires Protospacer Adjacent Motif (PAM), namely 

NGG nucleotide sequence (or CCN on complementary strand), to correctly pair sgRNA in the 

genome and create dsDNA break (190). Ideally, sequence to be modified should be within 10 

base-pairs of PAM for sufficient discrimination between non-perfect-match (i.e. edited) and 

perfect-match (i.e. unedited) sequences by Cas9 (168). However, this was not feasible in many 

cases, especially when targeted sequence was in an AT-rich region. To increase editing efficiency 
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in these circumstances, I introduced synonymous co-mutation of nearest PAM together with 

targeted sequence, and used sgRNA specific for that PAM to guide Cas9 (Fig. 2.6A). As an 

example, I set out to mutate K90 in HilA, and synonymous PAM co-mutation strategy increased 

editing efficiency from 0/11 to 1/15 (Fig. 2.6B). 

After screening the colonies that were selected for pWJ297 and pCRISPR, I found that most of 

them were false-positive, suggesting that CRISPR-Cas9 system did not impose selection 

pressure high enough against unedited clones. Interestingly, many of these false-positive colonies 

could not grow when purified on a new agar plate selecting for pWJ297 and pCRISPR. I surmised 

that Stm has an intrinsic suppressive mechanism to inactivate exogenous CRISPR-Cas9 system, 

and this inactivation could be abrogated when Stm is in rapid growth state. Therefore, I collected 

all colonies from the plate of first-round selection, suspended them in liquid medium LB with 

corresponding antibiotics, and grew them to early stationary phase. The resulting culture was 

plated again on selection agar plate. This liquid selection protocol further increased frequency of 

successfully edited clones (Fig. 2.6C). 

After successful genome editing, pWJ297 and pCRISPR need to be cured to eliminate any 

unnecessary complications. While pWJ297 could be efficiently cured by one round of purification 

on plain agar plate, pCRISPR was very resistant to curing, taking up to one month of serial 

purification, which is presumably due to its small size and high copy number. To facilitate the 

entire editing process, I incorporated sgRNA sequence directly at pWJ297 BsaI cloning site, 

sparing the usage of pCRISPR. The editing efficiency of pWJ297-sgRNA is similar to pWJ297 + 

pCRISPR combination (data not shown), while the former was cured in about 1 day. This 

modification greatly speeds up the whole CRISPR-Cas9 genome editing process. 
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Figure 2.6. Optimizing CRISPR-Cas9 Genome Editing in Salmonella with co-mutation and liquid 

selection. (A) Scheme of synonymous co-mutation of nearest PAM. In addition to K90A (AAA to GCA) 

mutation, c243g synonymous mutation eliminates PAM sequence in blue. (B) PCR screening of Stm 

genome editing of hilAK90A with (right) or without (left) PAM co-mutation. Absence of PCR amplification 

band indicates successful editing. (C) PCR screening of Stm genome editing of hilAK456tag before (left) or 

after (right) additional liquid selection step. Absence of PCR amplification band indicates successful editing. 

 

The Lambda Red Recombination system encodes three proteins: Exo, Gam, and Beta. Exo and 

Gam, required for dsDNA recombination, are not required for single-stranded DNA (ssDNA) 

reombination, in which case only Beta is required (191). SsDNA recombination efficiency is much 



41 

higher than dsDNA in E. coli because ssDNA has higher transformation efficiency (191). 

Therefore, I decided to use ssDNA template when editing small pieces of genome, for example, 

site-specific mutation of single codons on endogenous genes. CRISPR-Cas9 genome editing with 

ssDNA provided higher editing efficiency compared to that with long dsDNA template that has the 

same mutation site (Fig. 2.7A). I observed no significant difference of editing efficiency among 

ssDNA templates that matches either the same strand or the complementary strand of sgRNA, 

nor between templates matching either the leading or the lagging strand of genome (Fig. 2.7B). 

To confirm that CRISPR-Cas9 genome editing in Salmonella did not introduce additional off-target 

mutations, I performed Next-Generation whole-genome sequencing on Stm 14028S WT, Stm 

14028S HilA-HA, and Stm 14028S HilAK90tag-HA strains (Table 2.1). Compared to WT, HilA-

HA and HilAK90tag-HA did not contain additional mutations other than intended insertion and 

substitution that could seemingly have functional impact. Therefore, CRISPR-Cas9 genome 

editing was specific in introducing intended mutations in Salmonella.  

To summarize, I have optimized CRISPR-Cas9 genome editing protocol to facilitate the editing 

process in Salmonella (Fig. 2.7C). The entire procedure takes 3–4 days for completion, 

significantly shorter than previous protocol, and creates site-specific and scarless edited 

Salmonella mutants. 
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Figure 2.7. Optimizing CRISPR-Cas9 Genome Editing in Salmonella. (A) PCR screening of Stm 

genome editing of hilAK456Q with dsDNA (left) or ssDNA (right) as editing template. Absence of PCR 

amplification band indicates successful editing. (B) PCR screening of Stm genome editing of hilAK456A 

(top), K527tag (middle), or K533tag (bottom) with sense or anti-sense ssDNA as editing template. Absence 

of PCR amplification band indicates successful editing. Editing success rates as well as targeting strands 

of gRNA are listed on the right. (C) Scheme of optimized CRISPR-Cas9 genome editing in Salmonella. 

Salmonella is first transformed with pKD46, then is transformed with pWJ297-spacer and ssDNA template. 

Colonies from the plates undergo liquid selection before being plated again. The resulting edited colonies 

are purified on non-selection agar plates to cure pWJ297 plasmid. 
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Table 2.1. Genome-wide non-synonymous mutations in protein coding sequence of Stm strains 

compared to their parent strains, identified by Next-Generation whole-genome sequencing. 

Stm 14028S HilA-HA 

CDS CDS 

Position 

Change Codon 

Change 

Amino Acid 

Change 

Polymorphism 

Type 

Protein 

Effect 

Variant 

Frequency 

Comments 

transcription

al regulator 

HilA 

1659 =+tatccatat

gatgttccaga

ttatgct 

Insertion Extension 100.00% C-terminus 

HA tagging 

hypothetical 

protein 

233 A -> C TTG -> 

TGG 

L -> W SNP 

(transversion) 

Substitution 100.00% 

Stm 14028S HilAK90tag-HA 

CDS CDS 

Position 

Change Codon 

Change 

Amino Acid 

Change 

Polymorphism 

Type 

Protein 

Effect 

Variant 

Frequency 

Comments 

transcription

al regulator 

HilA 

268 AAA -> 

TAG 

AAA -> 

TAG 

Substitution Truncation 99,70% HilA K90 

amber 

mutation 

8-amino-7-

oxononanoat

e synthase 

1070 CGGC -> 

TCAT 

ACG,GCG 

-> 

ATC,ATG 

TA -> IM Substitution Substitution 25.2% -> 

27.8% 

Spontaneo

us mutation 
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Effects of acylation on HilA are site-specific 

 

With optimized CRISPR-Cas9 genome editing protocol in Salmonella, I first generated Stm strain 

with HA epitag at C-terminus of endogenous hilA gene. HA epitagging did not alter Stm growth 

(Fig. 2.8A), and gentamicin protection assay showed that Stm HilA-HA strain was similarly 

infective to HeLa cells compared to wild-type (Fig. 2.3B). Based on this Stm HilA-HA strain, I 

further edited amber codon (TAG) in place of individual lysine codons in the coding sequence of 

hilA in Stm genome. Stm HilA-K90TAG, HilA-K231TAG, HilA-K324TAG, HilA-K456TAG, and 

HilA-K533TAG mutants are to address the acylation effect on protein function, while Stm HilA-

K57TAG and Stm HilA-K527TAG mutants serve as loss-of-function and neutral control, 

respectively. I demonstrated that KBM could be efficiently incorporated into aforementioned 

amber codons at variable levels, respectively, as detected by both immunoblotting and in-gel 

fluorescence (Fig. 2.8B, 2.8C). 

 

To characterize the phenotype of endogenous, dominantly acylated HilA-KBM mutants, I first 

measured the expression level of a panel of SPI-1 genes (invF, prgH, sipA, orgB, spaO), which 

are directly or indirectly activated by HilA, through qRT-PCR (Fig. 2.8D). The lost-of-function 

mutation K57KBM on HilA caused decreased expression of SPI-1 genes as expected. The 

positive control HilA K527KBM had similar expression of SPI-1 genes compared to HilA-HA strain 

(wild type, WT). Interestingly, HilA-K90KBM, -K324KBM, and -K456KBM mutants had impaired 

expression of SPI-1 genes compared to WT, but not HilA-K231KBM or -K533KBM mutants. These 

differences were not due to mere different expression levels of each HilA mutant, as shown in Fig. 

2.8C. These results indicate that effects of acylation mimic on HilA are site-specific. 
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Figure 2.8. Effects of acylation on HilA are site-specific. (A) Growth curve of Stm 14028 WT and Stm 

14028 HilA-HA in SPI-1 inducing LB. (B) Total cell lysates of Stm HilA-HA and Stm HilA-KBM mutants were 

analyzed with anti-HA or anti-GroEL immunoblotting, and SDS-PAGE in-gel fluorescence scanning. (C) 

Relative expression level of HilA-KBM mutants compared to HilA-HA, quantified over 3 independent 

experiments of immunoblotting, with anti-GroEL as normalization control. (D) Expression of SPI-1 genes 

invF, prgH, sipA, orgB, and spaO was measured by qRT-PCR from Stm endogenous HilA K-to-KBM 

mutants. All mutants were compared to HilA-HA with one-way ANOVA and Dunnett post-test. *, P-value < 

0.05; **, P-value < 0.01; ***, P-value < 0.001. 
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Acylation at HilA K90 impacts HilA protein function 

Because K90 of HilA was predicted to be in its N-terminus DNA-binding domain (Fig. 2.3C, 2.3D), 

I hypothesized that the defect in expression of SPI-1 genes observed in K90KBM mutant was a 

result of impaired DNA-binding ability. To test this hypothesis, I performed ChIP-Seq on Stm HilA-

HA strain as well as Stm HilA-K90KBM-HA strain. Compared to HilA-HA, HilA-K90KBM-HA had 

decreased occupancy on promoter regions reported to be bound by HilA, including invF and prgH 

promoter regions (192) (Fig. 2.9A). K90KBM did not alter DNA binding specificity of HilA. This 

result was verified by ChIP-qPCR (Fig. 2.9B). HilA-K57KBM mutant, the negative control, 

occupied less at these promoter regions as well. Notably, HilA-K324KBM and -K456KBM mutants, 

which were defective in SPI-1 expression (Fig. 2.8D), had similar occupancy at these regions 

(Fig. 2.9B), suggesting that their defect in inducing SPI-1 expression are through alternative 

mechanism(s). Interestingly, HilA-K231KBM mutant has increased occupancy at invF and prgH 

promoter regions (Fig. 2.9B). These results suggest that decreased expression of SPI-1 genes 

in HilA-K90KBM mutant is the consequence of its defective DNA-binding activity. 

Acylation at specific sites of HilA impairs Salmonella virulence in vivo 

To further characterize virulence phenotype HilA K-to-KBM mutants, I assayed the infectivity of 

these mutants to HeLa cells. HilA-HA and K-to-KBM mutants were added to HeLa cell culture, 

and at 0.5 hour post-infection (hpi), gentamicin was added to kill extracellular Salmonella. 

Intracellular Stm were harvested 6 hpi and plated for CFU counting. HilA-K90KBM, -K324KBM, 

and -K456KBM mutants had impaired infectivity to HeLa cells compared to HilA-HA, while HilA-

K231KBM had slightly enhanced infectivity, and K533KBM mutants had similar infectivity to wild-

type. HilA-K57KBM and -K527KBM mutants served as loss-of-function control and positive control, 

respectively (Fig. 2.10A). These data corroborate with qRT-PCR data from these mutants, 

suggesting that effect of acylation on HilA is site-specific. 
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Figure 2.9. Acylation at HilA K90 impacts HilA DNA-binding activity. (A) HilA ChIP-Seq on Stm HilA-

HA and Stm HilA-K90KBM-HA. Reads Per Kilobase Million (RPKM) were shown in SPI-1 region. (B) ChIP-

qPCR on prgH promoter region (left) or invF promoter region (right) of Stm endogenous HilA K-to-KBM 

mutants. All mutants were compared to HilA-HA with one-way ANOVA and Dunnett post-test. *, P-value < 

0.05; **, P-value < 0.01. 

 

To further characterize virulence of HilA-K90KBM and -K231KBM mutants in vivo, we infected 

streptomycin-treated mice with 1x107 CFU of different Stm strains, respectively. Stm in both livers 

and mesenteric lymph nodes (mLN) of mice were harvested and plated at 48 hpi, and Stm 

bacterial loads in these two organs were measured by CFU counting. Stm HilA-HA strain 

disseminated to livers and mLN at a level similar to its parent strain Stm 14028S wild-type (Fig. 

2.10B). Stm HilA-K90KBM mutant was defective in systemic invasion, while K231KBM mutant 

behaved similarly to HilA-HA (Fig. 2.10C). These data suggest that HilA K90 acylated mutant has 

attenuated virulence in vivo, because of its defective expression of SPI-1 genes that are required 

for systemic infection. 
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Figure 2.10. Acylation at specific sites of HilA impairs Salmonella virulence in vivo. (A) Gentamicin 

protection assay of Stm endogenous HilA K-to-KBM mutants infecting HeLa cells at MOI=10. All mutants 

were compared to HilA-HA with one-way ANOVA and Dunnett post-test. *, P-value < 0.05; **, P-value < 

0.01; ***, P-value < 0.001. (B) Stm bacterial CFU counted from mesenteric lymph nodes (left) or liver (right) 

of mice 48 hpi infected with Stm WT or Stm HilA-HA. (C) Stm bacterial CFU counted from mesenteric lymph 

nodes (left) or liver (right) of mice 48 hpi infected with different Stm strains. K90KBM and K231KBM mutants 

were compared to HilA-HA with Kruscal-Wallis test and Dunns post-test. *, P-value < 0.05. (D) Scheme of 

SCFA inhibition on Stm virulence. Microbiota-derived SCFA could acylate Stm virulence regulator HilA at 

several lysine sites. K90, K324, and K456 acylation impact HilA function and reduce SPI-1 gene expression, 

leading to attenuation of Stm virulence. 
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Discussion 

 

While recent microbiome researches have demonstrated strong effects of microbiome on both 

host immunity and pathogen infection, underlying molecular mechanisms have just begun to be 

unveiled. In particular, SCFAs fermented by mammalian gut microbiota accumulate abundantly 

in the mammalian intestinal tract, and their effects on invading enteric pathogens and the 

underlying mechanisms have remained largely uncharacterized. 

 

The application of bio-orthogonal SCFA chemical reporter Alk-3 allows rapid and specific 

identification of molecular targets in pathogen proteome that are covalently modified by SCFAs. I 

demonstrated that Alk-3 behaves similarly to its natural counterpart SCFA in inhibiting virulence 

effector gene expression in Salmonella and its invasion in HeLa cells. Through CuAAC-mediated 

enrichment and mass spectrometry-based proteomics, I identified HilA, a key virulence 

transcriptional regulator, as a fatty-acylation target in Salmonella. I confirmed that HilA is acylated 

by both in-gel fluorescence scanning as well as Liquid Chromatography-tandem Mass 

Spectrometry (LC-MS/MS). While other SPI-1 related proteins were identified to be acylated by 

Alk-3 (Appendix 2.1), the pivotal role of HilA in SPI-1 leads us to investigate more on functional 

consequences of acylation on HilA. Interestingly, HilD, another key transcriptional regulator of 

SPI-1, which was suggested to be propionylated upon propionate incubation (71), was not found 

in our proteomics set. 

 

I found that acylation level on HilA was not affected in the presence of acyltransferase Pat or 

deacylase CobB. In fact, it is reported that CobB is less efficient in deacylation of propionyllysine 

and butyryllysine compared to that of acetyllysine (193). We surmised that short-chain acyl-CoA 

other than acetyl-CoA may not be optimal substrates for Pat, but short-chain acyl-phosphates are 
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similarly reactive to acetyl-phosphate, thus Pat cannot significantly change short-chain acylation 

level on protein. Similarly, acetylation, but not other short-chain acylation, can be readily removed 

by CobB. Besides, more deacylases yet to be discovered are suggested to be present in 

Salmonella (194–196), and HilA may not be the substrate for CobB, therefore I could not observe 

a drastic change in short-chain acylation level in the presence of CobB. 

 

After I confirmed HilA is acylated in vivo with both in-gel fluorescence scanning and LC-MS/MS, 

I seek to pinpoint the effects of acylation on HilA. CRISPR-Cas9 genome editing technique allows 

us to site-specifically edit codons of hilA gene in the Salmonella genome. The edited amber codon 

TAG enabled us to incorporate UAA to endogenously expressed HilA protein via amber 

suppression technology. Next-Generation Sequencing showed this genome editing approach had 

minimal off-target effect on other protein coding sequences.  In fact, these strains allow us not 

only to incorporate UAA bearing bio-orthogonal chemical group such as alkynyl group, but also 

to incorporate photo-cross-linking diazirine group to capture protein complex in vivo (Chapter 3). 

 

With Amber Suppression Technology, I could incorporate native or mimetic acyllysine to different 

sites of HilA. However, native acyllysines (including acetyllysine, propionyllysine, and 

butyryllysine) suffer from not only potential removal by endogenous deacylases, but also low 

incorporation efficiency. It is hard to interpret the defect in virulence when HilA native acyllysine 

mutants were expressed at significantly lower level than wild-type. Therefore, I incorporated KBM 

to study site-specific acylation effect on HilA. I found that acylation at K90, K324, and K456 affects 

expression of SPI-1 genes and impaired infectivity of Salmonella in HeLa cells. These different 

phenotypes cannot be explained by different expression level of these mutants. For example, 

HilA-K324KBM mutant was expressed at higher level than HilA-K533KBM, yet K324KBM was 

attenuated in virulence while K533KBM mutant was not. 
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The DNA-binding domain of HilA is essential for its function, as deletion of this domain renders it 

not active in inducing SPI-1 expression (197). I also demonstrated that mutation to a key DNA-

interacting residue K57 also made the protein non-functional. Interestingly, K90 locates in the 

DBD of HilA. I showed that acylation at K90 affects the DNA-binding activity of HilA, yet K324KBM 

and K456KBM mutants, although attenuated in virulence, did not have defective DNA-binding 

activity. This suggest that acylation on HilA at different sites may alter function of the protein 

through various mechanisms. K324 and K456 locate in or near the predicted TPR domain of HilA, 

so it is possible that modification at these sites may affect interaction between HilA and its binding 

partners, for example, Salmonella RNA Polymerase (RNAP), and downregulate the transcription 

of SPI-1 genes. Another interesting observation is that HilAK231KBM mutant had slightly 

enhanced expression of SPI-1 genes and invasion in HeLa cells. Our in vivo photo-cross-linking 

data and protein size-exclusion chromatography data suggests that HilA may form homo-oligomer 

in vitro and in vivo, and K231 may be at the protein interface (Chapter 3). 

 

SCFA accumulate to very high concentration (more than 10 mM) in mammalian gut, but their 

concentration drops significantly when the gut undergoes inflammation, which causes microbiota 

dysbiosis (67). Our work reveals that Stm exploits SCFA as an important environmental cue for 

its opportunistic lifestyle. When gut microbiota is normal, Stm could settle in the gut without 

activating its virulence, utilizing SCFA as its energy source (198). However, when SCFA 

concentration drops greatly, indicating dysbiosis of microflora and removal of “colonization 

resistance”, Stm could remove PTM on HilA and activate its virulence, eliciting inflammation in 

the gut, which further benefit Stm survival in the gut (199), effectively causing a vicious cycle of 

infection. 

 

In summary, I applied bio-orthogonal SCFA reporter alk-3 to directly identify the biochemical 

targets of SCFA in Salmonella Typhimurium, and I found that exogenous SCFA can inhibit T3SS 



53 
 

of Stm and covalently modify key virulence transcriptional regulator HilA. By incorporation of bio-

orthogonal stable lysine acylation mimic site-specifically to endogenously expressed HilA in 

Salmonella, I revealed that fatty-acylation on K90, K324, and K456 of HilA impaired its function 

to activate virulence gene expression, and decreased Salmonella infectivity to HeLa cells (Fig. 

2.10D). In particular, acylation at K90 decreased HilA DNA-binding ability, making Stm less 

infective in mice. Our studies help elucidate fundamental mechanisms of microbiota-mediated 

resistance on bacterial virulence and should facilitate the development of new antibiotics and 

probiotics to treat bacterial infections. 
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Materials and Methods 

 

Microbial Strains and Growth Conditions 

All strains used are listed in Appendix Table 1. All Salmonella Typhimurium strains used were 

derivatives of S. Typhimurium 14028S (71). Salmonella strains were cultured at 37°C in liquid 

Miller Luria-Bertani (LB) medium [10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl] (Becton 

Dickinson, DifcoTM), SPI-1 inducing LB medium [10 g/L tryptone, 5 g/L yeast extract, 300 mM 

NaCl], or on Salmonella Shigella agar (Becton Dickinson). Cultures were grown at 37°C in 

Multitron shaking incubator (INFORS HT) at 220 rpm. When required, antibiotics were added to 

the medium as follows: carbenicillin 100 μg/mL, kanamycin 50 μg/mL, and chloramphenicol 

10 μg/mL.  

 

Animal Experiments 

C57BL/6J (000664) mice were purchased from the Jackson Laboratory and maintained at the 

Rockefeller University animal facilities under SPF conditions. Animal care and experimentation 

were consistent with the National Institutes of Health guidelines and approved by the Institutional 

Animal Care and Use Committee of the Rockefeller University. 

 

Chemicals 

Sodium butyrate was purchased from Sigma-Aldrich (303410). Alk-3 (4-pentynoic acid) was 

purchased from Sigma-Aldrich (232211). Az-Rho was synthesized in the lab as previously 

described (164). Az-biotin was purchased from Sigma-Aldrich (762024). Acetyllysine was 

purchased from Sigma-Aldrich (A4021). Propionyllysine and butyryllysine were synthesized 

according to previously described (188). KBM was synthesized by Tao Peng according to 

previously described (189).   
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Salmonella growth curve 

Overnight cultures of Salmonella strains in Miller LB were diluted 1:100 to 5 mL fresh SPI-1 

inducing LB medium in Falcon round-bottom 15 mL tubes. Cultures were taken out aliquots of 

750 uL from 0 hour to 5 hours at 1-hour interval. Aliquots were added to 10 mm polystyrene 

cuvettes (Sarstedt) and OD600 was measured with Biophotometer plus (Eppendorf).  

 

Preparation of Salmonella bacterial total cell lysates 

1:50 dilutions of overnight Miller LB cultures of Salmonella Typhimurium strain 14028 WT 

overnight culture were grown in 4 mL SPI-1 inducing LB for 4 h at 37°C with 220rpm shaking. For 

alk-3 labeling experiments, cultures were incubated with or without 10 mM fresh alk-3 (in dH2O). 

For incorporation of UAA into overexpressed HilA, cultures were added with 1 mM UAA and 0.2% 

arabinose. For incorporation of UAA into endogenous HilA, cultures were added with 100 uM UAA 

and 0.01% arabinose. S. Typhimurium cells were pelleted at 15000 g for 1 min, and pellets were 

lysed with 200 μL lysis buffer (phosphate-buffered saline (PBS) containing 0.5% Nonidet P-40, 

1X EDTA-free protease inhibitor cocktail (Roche), 0.5 mg/mL lysozyme (in dH2O) (Sigma), and 

1:1,000 dilution of Benzonase (Millipore)). After re-suspension, pellets were sonicated for 10 sec 

for 3 times, then were incubated on ice for 30 min. Cell lysates were centrifuged at 15000 g for 1 

min to remove cell debris and supernatants were collected. Protein concentration was estimated 

by BCA assay with BCA Protein Assay Kit (Thermo). 

 

Salmonella protein immunoprecipitation and immunoblotting 

From Salmonella total cell lysates prepared as described above, protein samples were boiled with 

1X Laemmli buffer 95°C for 5 min. 20 uL of each sample was loaded onto a 4-20% Tris-HCl gel 

(Bio-Rad) for SDS-PAGE. Proteins were transferred onto 0.45 μm nitrocellulose membrane (Bio-

Rad) with Trans-Blot Turbo Transfer System (Bio-Rad) at 25 V for 30 min. Membrane was blocked 
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with 5% non-fat milk in PBS with 0.1% Tween-20 (PBS-T) for 30 min, and primary antibody was 

added to solution before incubating membrane at 4°C overnight. Dilution of primary antibodies 

were as follows: for HA-tagged proteins, 1:2,000 anti-HA rabbit antibody H6908 (Sigma); for 

FLAG-tagged proteins, 1:2000 anti-FLAG rabbit antibody F7425 (Sigma); for HilA-K90Bu antigen, 

1:200 anti-HilAK90Bu rabbit custom antibody (Thermo Fisher) or 1:200 anti-HilAK90 rabbit 

custom antibody (Thermo Fisher). Membrane was washed with PBS-T 3 times, and incubated 

with 1:10,000 goat polyclonal anti-rabbit HRP ab97051 (Abcam) in PBS-T with 5% non-fat milk at 

room temperature for 1 hour. Membrane was washed with PBS-T 3 times, and imaged with Clarity 

Western ECL substrate (Bio-Rad) and ChemiDoc XRS+ System (Bio-Rad).    

For Salmonella protein immunoprecipitation, 250 μg of each total cell lysates were incubated with 

20 μL PBS-T-washed EZview™ Red Anti-HA Affinity Gel (Sigma) at 4 °C for 1 hour with end-to-

end rotation. Samples were washed with 200 μL PBS-T for 3 times, before being boiled with 1X 

Laemmli buffer 95°C for 5 min. 20 uL of each sample was loaded onto a 4-20% Tris-HCl gel (Bio-

Rad) for SDS-PAGE and further immunoblotting. 

 

In-gel fluorescence analysis of alk-3 labeling 

For in-gel fluorescence analysis of alk-3 labeled Salmonella proteome, from the alk-3-treated or 

control total cell lysates prepared as described above, 45 μL of each total cell lysates (~50 μg) 

was added with 5 μL of click chemistry reagents as a 10X master mix (az-Rho: 0.1 mM, 10 mM 

stock solution in DMSO; tris(2-carboxyethyl)phosphine hydrochloride (TCEP): 1 mM, 50 mM 

freshly prepared stock solution in dH2O; tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA): 

(0.1 mM, 2 mM stock in 4:1 t-butanol: DMSO); CuSO4 (1 mM, 50 mM freshly prepared stock in 

dH2O). Samples were mixed well and incubated at room temperature for 1 h. After incubation, 

samples were mixed with 200 μL cold methanol, 150 μL cold water, and 75 μL cold chloroform. 

Sample proteins were precipitated at 18000 g for 1 min at 4 °C. After gently removing the aqueous 

layer, protein pellets were washed with 200 μL cold methanol, spinning down at 18000 g for 1 min 
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at 4 °C, and liquid was gently decanted. After washing twice, pellets were allowed air-dried before 

boiling with 1X Laemmli buffer.   

For in-gel fluorescence analysis of alk-3 labeled HilA, from the alk-3-treated or control total cell 

lysates prepared as described above, 250 μg of each total cell lysates were immunoprecipitated 

with 20 μL PBS-T-washed EZview™ Red Anti-HA Affinity Gel (Sigma). After samples were 

washed with 200 μL PBS-T for 3 times, 36 μL of PBS was added to each sample. 4 μL of click 

chemistry reagents as a 10X master mix mentioned above were added to each sample. Samples 

were mixed well and incubated at room temperature for 1 h. After incubation, samples were 

washed with 200 μL PBS-T for 3 times.  

Samples were boiled with 1X Laemmli buffer 95°C for 5 min before being loaded onto a 4-20% 

Tris-HCl gel (Bio-Rad) for SDS-PAGE. In-gel fluorescence scanning was performed using a 

Typhoon 9400 imager (Amersham Biosciences). 

 

Alk-3 labeling Label-Free Quantitative proteomics 

1:50 dilutions of overnight Miller LB cultures of Salmonella Typhimurium strain 14028 WT 

overnight culture were grown in 20 mL SPI-1 inducing LB for 4 h at 37°C with 220rpm shaking, 

each sample growing in 4 mL aliquots. Cultures were incubated with or without 10 mM fresh alk-

3 (in dH2O). Cultures were pooled back to 20 mL per sample in Falcon tubes, and lysed in lysis 

buffer described above. After re-suspension in 1 mL lysis buffer, bacteria were sonicated for 15 

sec with Sonic Dismembrator Model 500 (Fisher Scientific) with 5 sec on and 10 sec off per cycle. 

Cell lysates were centrifuged at 15000 g for 1 min to remove cell debris and supernatants were 

collected. Each total cell lysates (~2 mg) was added with 100 μL of click chemistry reagents as a 

10X master mix (az-Biotin: 0.1 mM, 10 mM stock solution in DMSO; tris(2-carboxyethyl)phosphine 

hydrochloride (TCEP): 1 mM, 50 mM freshly prepared stock solution in dH2O; tris[(1-benzyl-1H-

1,2,3-triazol-4-yl)methyl]amine (TBTA): (0.1 mM, 2 mM stock in 4:1 t-butanol: DMSO); CuSO4 (1 

mM, 50 mM freshly prepared stock in dH2O). Samples were mixed well and incubated at room 
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temperature for 1 h. After incubation, samples were mixed with 4 mL cold methanol and incubated 

at -20°C overnight. Protein pellets were centrifuged at 5000 g for 30 min at 4°C, and were washed 

with 1 mL cold methanol 3 times. After last wash, pellets were let air dried before being re-

solubilized in 250 uL 4% SDS PBS with bath sonication. Solutions were diluted with 750 uL PBS, 

and incubated with 60 uL PBS-T-washed High Capacity NeutrAvidin agarose (Pierce) at room 

temperature for 1 h with end-to-end rotation. Agarose were washed with 500 uL 1% SDS PBS 3 

times, 500 uL 2M Urea PBS 3 times, and 500 uL PBS 3 times. Agarose were then reduced with 

100 uL 10 mM DTT (Sigma) in PBS for 30 min at 37°C, and alkylated with 100 uL 50 mM 

iodoacetamide (Sigma) in PBS for 20 min in dark. On-bead proteins were digested with 400 ng 

Trypsin/Lys-C mix (Promega) at 37°C overnight with shaking. Digested peptides were collected 

and lyophilized before being desalted with custom-made stage-tip containing Empore SPE 

Extraction Disk (3M). Peptides were eluted with 2% acetonitrile, 2% formic acid in dH2O.  

Peptide LC-MS analysis was performed with a Dionex 3000 nano-HPLC coupled to an Orbitrap 

XL mass spectrometer (Thermo Fisher). Peptide samples were pressure-loaded onto a home-

made C18 reverse-phase column (75 µm diameter, 15 cm length). A 180-minute gradient 

increasing from 95% buffer A (HPLC grade water with 0.1% formic acid) and 5% buffer B (HPLC 

grade acetonitrile with 0.1% formic acid) to 75% buffer B in 133 minutes was used at 200 nL/min. 

The Orbitrap XL was operated in top-8-CID-mode with MS spectra measured at a resolution of 

60,000@m/z 400. One full MS scan (300–2000 MW) was followed by three data-dependent scans 

of the nth most intense ions with dynamic exclusion enabled. Peptides fulfilling a Percolator 

calculated 1% false discovery rate (FDR) threshold were reported. 

Label-free quantification of alk-3 labeled proteins was performed with the label-free MaxLFQ 

algorithm in MaxQuant software as described (200). The search results from MaxQuant were 

analyzed by Perseus (http://www.perseusframework.org/). Briefly, the control replicates and alk-

3 labeled sample replicates were grouped correspondingly. The results were cleaned to filter off 

reverse hits and contaminants. Only proteins that were identified in all alk-3 labeled sample 
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replicates and with more than two unique peptides were subjected to subsequent statistical 

analysis. LFQ intensities were used for measuring protein abundance and logarithmized. Signals 

that were originally zero were imputed with random numbers from a normal distribution, whose 

mean and standard deviation were chosen to best simulate low abundance values below the 

noise level (Replace missing values by normal distribution – Width = 0.3; Shift = 2.2). Significant 

proteins that were more enriched in alk-3 labeled sample group versus control group were 

determined by a threshold strategy, which combined t test p-values with ratio information. Proteins 

with ratio larger than or equals to 2 and P-value smaller than 0.05 were categorized as hits. The 

resulting table was exported as Appendix 2.1. 

 

MS/MS detection of protein PTM 

1:50 dilutions of overnight Miller LB cultures of Salmonella Typhimurium strain 14028 hilA pBAD-

HilA-HA-His overnight culture were grown in 500 mL SPI-1 inducing LB with 10 mM sodium 

propionate or 10 mM sodium butyrate for 2 h at 37°C with 220rpm shaking, before 0.2% arabinose 

was added to induce HilA-HA-His expression for 3 h. Bacteria was harvested with 5000 g for 10 

min at 4°C, and lysed in 25 mL lysis buffer described above with 1 mM EDTA and 50 mM 

nicotinamide (NAM). bacteria were sonicated for 5 min with Sonic Dismembrator Model 500 

(Fisher Scientific) with 5 sec on and 10 sec off per cycle. Lysates were centrifuged at 5000 g for 

10 min at 4°C, and supernatants were filtered with 0.22 um filter before being loaded onto HisTrap 

FF 5mL column (GE Healthcare). HilA-HA-His protein was purified with wash with 3 Column 

Volume (CV) 100% buffer A (PBS-T, 50 mM NAM), wash with 5 CV 10% buffer B (PBS-T, 50 mM 

NAM, 300 mM imidazole), and 5 CV elution with gradient from 10% to 100% buffer B. Fractions 

containing HilA was pooled and dialyzed to PBS-T with 3 spin-dilution cycles in 10,000 MWCO 

filter (Amicon).  

Purified HilA-HA-His was immunoprecipitated with anti-butyryllysine antibody (PTM Biolab)- or 

anti-propionyllysine antibody (PTM Biolab)-conjugated protein A/G magnetic beads (Pierce), and 
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samples were boiled and run on SDS-PAGE. Coomassie Blue-stained bands corresponding to 

HilA was cut out, reduced with 10 mM DTT (Sigma) in fresh 100 mM ammonium bicarbonate 

(ABC) for 30 min at 37°C, and alkylated with 50 mM iodoacetamide (Sigma) in fresh 100 mM ABC 

for 20 min in dark. Gel pieces were digested with 200 ng Trypsin/Lys-C mix (Promega) at 37°C 

overnight with shaking.  

 

Salmonella CRISPR-Cas9 genome editing 

To make electrocompetent Salmonella Typhimurium, overnight culture of Salmonella 

Typhimurium strains were diluted 1:50 to 100 mL fresh LB, and were grown at 37°C in shaking 

incubator at 220 rpm for 2 hours, until OD600 reached 0.5 to 0.7. Cells were pelleted at 5000 g for 

10 min at 4°C, and washed with 50 mL ice-cold 10% glycerol twice. Cell pellets were resuspended 

in 500 uL 10% glycerol, and aliquoted 50 uL per tube.   

Electrocompetent parent Salmonella Typhimurium strains were transformed with pKD46 via 

electroporation with Gene Pulser II (Bio-Rad) at 2.5 kV and 25 uF in 2 mm cuvette, and selected 

on Ampicillin agar plates at 30 °C overnight. The resulting Salmonella Typhimurium pKD46 strains 

were made into electrocompetent cells after grown at 30°C with 0.2% arabinose and ampicillin. 

Salmonella Typhimurium pKD46 electrocompetent cells were transformed with 2 uL pWJ297-

sgRNA (~100 ng) and 10 uL 10 uM ssDNA editing template and selected on Chloramphenicol 

agar plates at 37 °C overnight. All colonies on the plate were collected with cell scraper and 

resuspended in 4 mL LB with Chloramphenicol. The bacterial suspension were diluted 1:50 to 4 

mL fresh LB with Chloramphenicol, and were grown at 37°C in Multitron shaking incubator 

(INFORS HT) at 220 rpm for 2 hours. Culture was streaked onto Chloramphenicol agar plates, 

and colonies from the plates were randomly picked for colony PCR to confirm successful editing. 

Successfully edited colonies were streaked onto plain agar plates to cure pWJ297-sgRNA, and 

curing was confirmed by streaking on Chloramphenicol agar plates.   
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Salmonella whole-genome sequencing 

1 mL of Salmonella cultures were processed with Quick-DNA Fungal/Bacterial kit (Zymo 

Research) per manufacturer’s manual. Purified Salmonella genomes were sent to Rockefeller 

University Genomics Center for processing with Nextera XT gDNA library preparation and 

sequencing with MiSeq 75 Pair-End sequencing. Sequencing results were analyzed with 

Geneious software.  

 

Salmonella Quantitative Reverse-Transcription PCR 

500 uL of Salmonella cultures were processed with RNeasy Mini Kit (Qiagen) per manufacturer’s 

manual. Concentrations of purified RNA were normalized to 100 ng/uL with RNase-free water. 

Quantitative Reverse-Transcription PCR (qRT-PCR) were performed with Power SYBR Green 

RNA-to-CT 1-Step Kit (Applied Biosystems) per manufacturer’s manual and primers listed in 

Appendix Table 2.  

 

Salmonella HilA ChIP-qPCR and ChIP-seq 

4 mL Salmonella cultures were crosslinked with 1% methanol-free PFA (Thermo) for 20 min at 

room temperature. Crosslinking were quenched with 125 mM Glycine (Fisher). Bacteria were 

centrifuged 16000 g at 4°C for 1 min and washed with 1 mL PBS twice. Pellets were resuspended 

in 500 uL ChIP Lysis Buffer (10 mM Tris-HCl, pH 8.0, 20% sucrose, 50 mM NaCl, 10 mM EDTA, 

10 mg/mL lysozyme), and incubated at 37°C for 30 min. Lysates were added with 500 uL 2X RIPA 

buffer (100 mM Tris-HCl, pH 8.0, 300 mM NaCl, 2% Nonidet P-40 (NP-40), 1% sodium 

deoxycholate, 0.2% SDS) and sonicated with Sonic Dismembrator Model 500 (Fisher Scientific) 

for 10 sec. Resulting solutions were centrifuged at 16000 g for 1 min at room temperature. 100 

uL supernatants were saved as total inputs. 750 uL of the remaining supernatants of each were 

incubated with 2 uL anti-HA ChIP-grade polyclonal antibody (ab9110, Abcam) at 4°C for 1 h with 

end-to-end rotation. The solutions were then added to 30 uL PBS-T-washed protein A/G magnetic 
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beads (Pierce) and incubated at 4°C for 1 h with end-to-end rotation. Beads were washed with 

500 uL 1X RIPA buffer twice, 500 uL LiCl Wash buffer (10 mM Tris-HCl, pH 8.0, 250 mM LiCl, 1 

mM EDTA, 0.5% NP-40, 0.5% sodium deoxycholate) twice, and 500 uL Tris-EDTA buffer (10 mM 

Tris-HCl, pH 8.0, 1 mM EDTA) once. Samples were eluted with 100 uL SDS Elution buffer (50 

mM Tris-HCl, pH 8.0, 10 mM EDTA, 1% SDS) at 65°C for 10 min. Each total input sample and 

ChIP sample were added with 5 uL 20 mg/mL proteinase K (Qiagen) and de-crosslinked at 65°C 

overnight. All de-crosslinked samples were purified with E.Z.N.A. Cycle Pure kit (Omega Bio-tek) 

and eluted with 100 uL elution buffer in the kit. ChIP-qPCR were performed with PowerUp SYBR 

Green Master Mix (Applied Biosystems) per manufacturer’s manual. Same samples were sent to 

Rockefeller University Genomics Center for library preparation and sequenced with NextSeq High 

Output 75 Single-Read sequencing. 

 

In vitro invasion assay and intracellular survival assay 

HeLa cells were cultured in 12-well tissue culture plates at 80-90% confluency. Wells were added 

with Salmonella cells at an MOI = 10:1 and centrifuged at 1000 g for 5 min. Cells were incubated 

at 37°C with 5% CO2 for 30 min to allow invasion. The media was then replaced with medium 

containing 100 μg/mL gentamicin and incubated for an additional hour to kill extracellular 

Salmonella. Wells were then washed 3 times with PBS, and cells were lysed with 500 uL 1% 

Triton X-100 PBS. Lysates were serially diluted and drip-dropped on Salmonella Shigella agar 

plates (BD 211597) to determine the number of invaded bacteria. 

For intracellular survival assay of Salmonella, after incubation with medium containing 100 μg/mL 

gentamicin for 1 h, media was replaced with medium containing 10 μg/mL gentamicin and 

incubated for additional 4.5 hours at 37°C, 5% CO2. Intracellular bacterial counts were obtained 

by lysing cells and drip-dropping serial dilutions on Salmonella Shigella agar plates.  

 

S. Typhimurium infection of mice 
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To ensure effective colonization and induce infection susceptibility, SPF mice were gavaged with 

a single dose of 20 mg of streptomycin 24 hours before infection. Bacterial cultures of different S. 

Typhimurium strains were washed and re-suspended in sterile phosphate-buffered saline (PBS) 

at 107 CFU/mL. Mice were gavaged with 100 μL of the bacterial suspension. Leftover inocula were 

serially diluted and plated to confirm the number of CFU administered. 

For 48 h infection experiments, mice were euthanized 48 hours after S. Typhimurium gavage. 

Colony-forming units (CFU) in the livers and mesenteric lymph nodes (mLN) were determined by 

plating five serial dilutions of livers or mLN suspended in sterile 0.1% Triton X-100 PBS on 

Salmonella Shigella agar (BD 211597). Resulting quantities were normalized to liver or mLN 

weight.  

For S. Typhimurium infection survival assay, mice weight loss was monitored just before infection, 

and mice were euthanized when they reached 80% baseline weight, appeared hunched or 

moribund, or exhibited a visibly distended abdomen (indicative of peritoneal effusion), whichever 

occurred first. Death was not used as an end point. Colony-forming units (CFU) in the feces were 

determined by plating five serial dilutions of feces suspended in sterile PBS on Salmonella 

Shigella agar (BD 211597). Resulting quantities were normalized to fecal weight.  

 

Quantification and Statistical Analysis 

Comparisons and statistical tests were performed as indicated in each figure legend. Briefly, 

Pairwise comparisons were generated with two-tailed t tests. For comparisons of multiple groups 

over time or with two variables, a two-way analysis of variance (ANOVA) was used with an 

appropriate Bonferroni posttest comparing all groups to each other, all groups to a control, or 

selected groups to each other. Survival data were analyzed using a log-rank (Mantel-Cox) test 

with a Bonferroni correction for the degrees of freedom based on the number of comparisons 

made. To compare two groups with non-normal distribution or low sample size, the medians of 

the two groups were compared using a Mann-Whitney test, unless one data set contained only 
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zero values. In these cases, a Mann-Whitney test could not be performed because all values in 

the group were identical; a Wilcoxon test was performed instead. For comparisons of multiple 

groups with only one variable, a one-way ANOVA or Kruskal-Wallis test was performed for data 

with underlying normal or non-normal distribution, respectively, with Bonferroni, Dunnett’s, or 

Dunn’s posttests where appropriate. Statistical analyses were performed in GraphPad Prism 

software. A P value of less than 0.05 was considered significant, denoted as *P ≤ 0.05, **P ≤ 0.01, 

and ***P ≤ 0.001 for all analyses.  
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Chapter 3 

 

Effects of diet-derived long-chain fatty acids on Salmonella  

and 

biochemical characterization of Salmonella virulence regulator HilA 
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Abstract 

 

Fatty acids, especially long-chain fatty acids (LCFA) derived from the diet, have been shown to 

inhibit key bacterial virulence pathways, such as type III secretion system (T3SS) in Gram-

negative enteric bacterial pathogens, but the molecular mechanism(s) are still under investigation. 

I found that fatty acids of different carbon chain length had different inhibitory efficacy on 

Salmonella Pathogenicity Island-1 T3SS, and fatty acids with longer chain were more potent. We 

applied bio-orthogonal alkyne-fatty acid reporters to directly identify the biochemical targets of 

LCFA in Salmonella Typhimurium. With in-gel fluorescence profiling, click chemistry-mediated 

enrichment and mass spectrometry-based proteomics, I found that exogenous LCFA could 

covalently modify key virulence transcriptional regulator HilA. With a different LCFA chemical 

reporter and hydroxylamine treatment, I demonstrated that the modification is a bona fide post-

translational N-long-chain fatty acylation. The modification on HilA was not susceptible to 

enzymatic acylation or deacylation mediated by Pat and CobB. Mutating individual potential 

acylated lysine residues to alanine in HilA could not abolish LCFA labeling on HilA. Moreover, via 

Amber Suppression Technology, a photo-crosslinking unnatural amino acid was incorporated in 

place of key lysine residues in endogenous HilA in vivo, and it revealed that HilA forms oligomers 

in Salmonella, with K231 at potential protein interaction interface. These studies elucidate 

fundamental mechanisms of diet-mediated resistance against Salmonella infection and should 

facilitate the development of new approaches to treat bacterial infections. 
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Introduction 

 

S. enterica is a Gram-negative intracellular pathogen that causes gastroenteritis and typhoid fever 

worldwide (159). Once ingested, Salmonella traverses the gut to the small intestine, where a set 

of virulence genes are activated to promote gut inflammation as well as invasion of the intestinal 

epithelia, allowing Salmonella to replicate and disseminate throughout the host (160). Systemic 

infection associated with typhoid fever is mediated by two Salmonella pathogenicity islands (SPI) 

that encode Type 3 Secretion Systems (T3SS) for bacterial invasion, dissemination, and 

replication inside host cells (159, 160). Specifically, SPI-1 is important for Salmonella invasion, 

while SPI-2 is crucial for Salmonella replication in host cells (161). Genetic and biochemical 

studies have demonstrated that T3SS form multi-protein complexes to inject a variety of bacterial 

protein effectors into host cells for Salmonella pathogenesis (159, 160).  

 

Of note, medium-chain fatty acids (MCFA) and long-chain fatty acids (LCFA) from the diet have 

been shown to inhibit Salmonella enterica serovar Typhimurium (Stm) virulence and colonization 

(201, 202). Unsaturated LCFA are shown to act as input signals for PhoP/PhoQ two-component 

regulatory system, and inhibit PhoP-dependent regulon, including SPI-1 (203). LCFA have been 

implicated in inhibiting Salmonella virulence through non-covalent interaction with SPI-1 

transcription regulator HilD (204), but whether LCFA may affect Salmonella virulence through 

other molecular mechanism(s) remains to be studied. Understanding the effects of long-chain 

fatty acids on Stm will help elucidate the interactions between host, commensal bacteria, and 

enteric pathogen, and guide new treatment and prevention to enteric bacterial pathogens. 
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In this chapter, I demonstrate that HilA, a key virulence regulator of SPI-1 T3SS in Stm, is long-

chain fatty-acylated using long-chain fatty acid chemical reporter alk-16. The modification is post-

translational and attached to amine group on the protein. Moreover, using site-specific 

incorporation of photo-crosslinking unnatural amino acid, I provided evidence that HilA forms 

homo-oligomers in vivo, and K231 is at the interacting interface. 
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Results 

 

Long-chain fatty acids inhibit Salmonella virulence 

 

Beyond my studies with butyrate in Chapter 2, I observed that fatty acids of different carbon chain 

length could inhibit Salmonella secretion in vitro (Fig. 3.1A). For example, SCFA butyrate (C-4) 

inhibited Salmonella SPI-1 secretion at 10 mM; medium-chain fatty acids, caprylic acid (C-8) and 

lauric acid (C-12), inhibited secretion at 500 uM; LCFA palmitic acid (C-16) could significantly 

inhibit Salmonella secretion at 100 uM. Of note, in mammalian gut, C-16 concentrations could 

reach to about 400 uM (205). The half maximal inhibitory concentrations (IC50) of each tested fatty 

acids were estimated based on secretion assay, and were plotted on Fig. 3.1B. Longer chain 

length of fatty acids was correlated with stronger potency in Stm T3SS inhibition. This inhibitory 

effect was not due to inhibition of bacterial growth, as measured by OD600 (data not shown). C-16 

at 100 uM decreased Stm invasion ability to HeLa cells (Fig. 3.1C), and inhibited expression level 

of Stm SPI-1 effector genes such as sipA, as shown by quantitative reverse–transcription PCR 

(qRT-PCR) (Fig. 3.1D). This suggest that C-16 inhibits Stm virulence through antagonizing 

transcription and expression of Stm SPI-1 effector proteins. 

 

Proteomic analysis of long-chain fatty acylated proteins in Salmonella 

 

To identify long-chain fatty acylated proteins in Salmonella, I employed LCFA chemical reporter 

alk-16 (17-octadecynoic acid) (Fig. 3.2A). Alk-16 behaved similarly to its natural counterpart C-

16, as it retained the ability to inhibit Stm invasion to HeLa cells (Fig. 3.2B). To visualize long-

chain fatty acylated proteins with alk-16, I incubated Stm culture with 100 uM alk-16, and 

harvested total cell lysates for CuAAC reaction with azide-functionalized Rhodamine (az-Rho, Fig. 
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2.2A). SDS-PAGE followed by in-gel fluorescence scanning demonstrated that alk-16 

metabolically labeled a diverse repertoire of proteins in Stm (Fig. 3.2C). To identify these long-

chain fatty acylated proteins, I performed Label-Free Quantitative (LFQ) Proteomics analysis on 

Stm proteome with or without alk-16 labeling. Stm cell lysates were reacted with an azido-biotin 

affinity tag (az-biotin, Fig. 2.2B). Alk-16 labeled proteins were enriched by streptavidin beads, 

and digested by Trypsin/LysC mix on-bead. Digested peptides were processed and identified by 

Liquid Chromatography–tandem Mass Spectrometry (LC-MS/MS). The resulting spectrum were 

searched with MaxQuant (176) and quantified with Perseus (177). 

 

Figure 3.1. Long-chain fatty acids inhibit Salmonella virulence. (A) Salmonella secretion assay of 

different fatty acids. Salmonella was grown in LB in the presence of indicated concentration of different fatty 

acids, and secreted proteins in supernatants were precipitated with TCA and analyzed on SDS-PAGE. 

Identity of secreted protein bands are labeled on the right, with SPI-1 proteins colored in red. (B) IC50 of 

different saturated fatty acids on Salmonella SPI-1 secretion, estimated by secretion assay. (C) Gentamicin 

protection assay of Stm incubated with or without 100 uM C-16 infecting HeLa cells at MOI=10. (D) 

Expression of SPI-1 gene sipA was measured by qRT-PCR from Stm with or without 100 uM C-16 

incubation. 
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I identified ‘hits’ as proteins qualified for criteria of FDR = 0.05 and S0=2 in Perseus. With this 

approach, I identified 236 proteins labeled by alk-16 compared to control samples (Fig. 3.2D, 

Appendix 3.1). Of all the hits identified, 59% were categorized as metabolism-related proteins 

(Fig. 3.2E). Moreover, 9 proteins in these hits (3.8%) were directly related to Stm virulence (Fig. 

3.2D, Appendix 3.1). Notably, HilA, a master transcriptional activator of Stm SPI-1 virulence (178, 

179), was present in the hit set. 

 

Figure 3.2. Proteomic analysis of long-chain fatty acylated proteins in Salmonella. (A) Molecular 

structure of palmitic acid (C-16) and Alk-16. (B) Gentamicin protection assay of Stm incubated with or 

without 100 uM alk-16 infecting HeLa cells at MOI=10. (C) Salmonella cell lysates were reacted with az-

Rho by CuACC, and proteins were separated by SDS-PAGE for visualization by fluorescence gel scanning 

(top). Coomassie blue staining demonstrates comparable loading (bottom). (D) Salmonella cell lysates were 

reacted with az-biotin by CuAAC for the enrichment of alk-16–labeled proteins with streptavidin beads and 

identification by mass spectrometry. LFQ proteomic analysis Identified proteins that were enriched by alk-

16 (top right corner above threshold line). Four selected SPI-1 proteins are labeled and colored in red. (E) 

Pie chart of annotated functions of alk-16 enriched proteins.  
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HilA is N-long-chain fatty acylated in Salmonella 

 

As shown in Chapter 2, HilA is a master transcription regulator of SPI-1 that is essential for 

Salmonella virulence. To confirm that HilA was indeed long-chain fatty acylated, Stm 

overexpressing HilA-HA-His6 was grown in medium with alk-16, and CuAAC in-gel fluorescence 

scanning of cell lysates demonstrated that HilA was labeled by alk-16 (Fig. 3.3A). LCFA could be 

broken down to shorter-chain fatty acids in Salmonella through -oxidation pathway (206), thus 

the fluorescence signal detected on HilA with alk-16 does not necessarily demonstrate long-chain 

fatty acylation on HilA. Therefore, we decided to employ another LCFA chemical reporter, HDYOA 

(15-hexadecynyloxyacetic acid, Fig. 3.3B) (207). HDYOA is structurally similar to alk-16, except 

that oxygen substitutes for carbon at beta position of the carboxyl group. This renders HDYOA 

resistant to -oxidation, yet HDYOA could still label similar sets of palmitoylated proteins 

compared to alk-16 in vivo (207). HDYOA also readily labeled HilA (Fig. 3.3A), suggesting that 

HilA was indeed long-chain fatty acylated.  

To confirm that HilA is modified post-translationally, we used a combination of antibiotics (rifampin, 

streptomycin, and spectinomycin) to stop the protein translation in Stm before adding alk-16 for 

protein labeling. HilA was still readily labeled by alk-16 (Fig. 3.3C), suggesting that long-chain 

fatty acylation on HilA is a bona fide post-translational modification. To investigate whether 

acylation on HilA is regulated by acyltransferase and deacylase in Salmonella, HilA-HA-His6 was 

co-expressed with Gcn5-like Protein Acyltransferase (Pat), or the only known protein deacylase 

in Salmonella, CobB. CuAAC in-gel fluorescence scanning showed that while Pat increased and 

CobB decreased alk-16 labeling level on Salmonella proteome (Fig. 3.3D), alk-16 labeling level 

on HilA was not affected by either Pat or CobB (Fig. 3.3E). 
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Figure 3.3.  HilA is N-long-chain fatty acylated in Salmonella. (A) Stm overexpressing HilA-HA-His were 

incubated with DMSO, 100 uM alk-16, or 100 uM HDYOA before CuAAC with az-Rho, SDS-PAGE in-gel 

fluorescence scanning (top), and immunoblotting (bottom). (B) Molecular structure of HDYOA. (C) Stm 

overexpressing HilA-HA-His were incubated with or with antibiotic cocktail (ABX), before DMSO or 100 uM 

alk-16 were added. Cell lysates were reacted through CuAAC with az-Rho, followed by SDS-PAGE in-gel 

fluorescence scanning (top), and immunoblotting (bottom). (D)(E) Salmonella overexpressing HilA-HA-His, 

as well as Pat-Flag or CobB-Flag, were incubated with or without alk-16 during overexpression. Total cell 

lysates (D) and anti-HA immunoprecipitated samples (E) were analyzed with SDS-PAGE in-gel 

fluorescence scanning (top), and anti-Flag (D) or anti-HA (E) immunoblotting (bottom). (F) Stm 

overexpressing HilA-HA-His were incubated with 100 uM alk-16 and treated with or without NH2OH, before 

CuAAC with az-Rho, SDS-PAGE in-gel fluorescence scanning (top), and immunoblotting (bottom). (G) Stm 

overexpressing different HilA K-toA mutants were incubated with DMSO or 100 uM alk-16, before CuAAC 

with az-Rho, SDS-PAGE in-gel fluorescence scanning (top), and immunoblotting (middle). The secreted 

SPI-1 effector proteins were precipitated from supernatant with trichloroacetic acid and run on SDS-PAGE, 

followed by Coomassie Blue staining (bottom). 
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Long-chain fatty acylation could happen on various residues on proteins. For example, S-

palmitoylation is a post-translational modification on cysteine residues, and dynamic modification 

on different cysteines could affect protein localization and function in mammalian cells (163, 208). 

S-stearoylation of TFR1 regulates its activation of JNK signaling and mitochondrial function in 

Drosophila (209). Long-chain fatty acylation may also happen on lysine residues, which could 

regulate protein secretion (210). S-long-chain fatty acylation is sensitive to hydroxylamine 

treatment, while N-long-chain fatty acylation would be resistant. I showed that alk-16 labeling on 

HilA was not sensitive to hydroxylamine treatment (Fig. 3.3F), which indicates that alk-16 

modification on HilA is N-long-chain fatty acylation.      

 

In Chapter 2, I have identified 5 lysine residues in HilA that could be short-chain fatty acylated. 

We hypothesized that these same lysine residues may also be residues for long-chain fatty 

acylation. Alanine mutation would abolish post-translational modification on the lysine residue, 

therefore I made individual K-to-A HilA mutants, namely K90A, K231A, K324A, K456A, and 

K533A, as well as K57A as a control. All mutants except K57A mutant were functional when over-

expressed as they could rescue SPI-1 secretion in Stm hilA mutant (Fig. 3.3G). However, all 

mutants were still labeled by alk-16 (Fig. 3.3G), suggesting that long-chain fatty acylation may be 

on multiple lysine residues of HilA. These results suggest that LCFA may attenuate Salmonella 

virulence also through direct fatty acylation of proteins, including HilA and other SPI-1 factors, 

which remains to be further characterized.  

 

HilA forms oligomers in Salmonella  

 

In Chapter 2, I have shown that when K231 is dominantly acylated through incorporation of KBM, 

Stm has elevated SPI-1 expression and enhanced invasion ability to HeLa cells. Since HilA is a 

transcription activator, which presumably recruits RNA polymerase complex during transcription 



76 
 

initiation, we hypothesized that K231 of HilA may be important for protein-protein interaction. To 

explore whether HilA has interacting protein partners in vivo, we decided to use Amber 

Suppression Technology to incorporate an unnatural amino acid with photo-crosslinking 

functional group. DiZPK (3-(3-methyl-3H-diazirin-3-yl)-propamino-carbonyl-Nε-L-Lysine) UAA 

(Fig. 3.4A) is developed to be site-specifically incorporated in proteins-of-interest to capture their 

interacting protein partners in vivo (211), including in Salmonella (212). The diazirine group at the 

side chain of DiZPK, when irradiated with 365 nm UV light, would form a highly reactive carbene 

group, crosslinking any nearby interacting molecules. This enables covalently capturing 

interacting partners with transient interactions at different conditions in vivo.  

With endogenous amber mutants in hand, I incorporated DiZPK into K90, K231, K324, K456, 

K533, K57, and K527 of endogenous HilA, and photo-cross-linked in vivo with 365 nm UV light 

for 5 min. Interestingly, HilA-K231DiZPK crosslinked unknown partner(s) and formed a complex 

with apparent molecular weight about 200 kDa (Fig. 3.4B). Interestingly, K90DiZPK and 

K527DiZPK mutant also crosslinked unknown partner(s) and formed higher-molecular-weight 

complex. This photo-crosslinking was both site-specific and UV-dependent, as other HilA K-to-

DiZPK mutants did not cross-link similar complex, nor did HilA-K231DiZPK, -K90DiZPK, or -

K527DiZPK without UV treatment (Fig. 3.4B). I then set out to identify what interacting protein(s) 

HilA-K231DiZPK captured. We performed a large-scale photo-cross-linking with 

immunoprecipitation enrichment for HilA and its crosslinked complex, and cut out protein-complex 

gel bands and corresponding regions in no-UV-treatment samples in SDS-PAGE (Fig. 3.4C). 

These gel bands were digested with Trypsin/LysC mix and processed for LFQ proteomic analysis. 

Surprisingly, HilA was the only protein identified in the protein complex (Fig. 3.4D). Moreover, 

size-exclusion chromatography (SEC) showed that purified HilA eluted at fractions that 

corresponds to ~200 kDa molecular weight proteins, indicating HilA formed oligomers in vitro (Fig. 

3.4E). These data suggest that HilA forms homo-oligomer in vivo, and K231 is at the interface 

between monomers. We are actively pursuing to elucidate atomic structure of HilA through X-ray 

crystallography. We have obtained some protein crystals of HilA through screening (Fig. 3.4F), 

and X-ray diffraction data acquisition as well as data analysis will be performed in collaboration 

with The Rockefeller Structural Biology Resource Center. 
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Figure 3.4. HilA forms oligomers in Salmonella. (A) Molecular structure of DiZPK. (B) Anti-HA 

immunoblotting of different HilA-HA amber codon mutants with or without DiZPK, and with or without UV 

cross-linking treatment. (C) Coomassie Blue stained SDS-PAGE gel of large-scale anti-HA 

immunoprecipitated HilA-K231DiZPK samples with or without UV treatment. Red dashed boxes indicate 

gel regions cut out for protease digestion and LFQ proteomics. (D) Volcano plot of HilAK231DiZPK photo-

cross-linking LFQ proteomics. Vertical blue dashed lines indicate 2-fold difference between two sets of 

samples; horizontal blue dashed line indicates P-value=0.05. (E) SEC chromatogram of affinity purified HilA. 

Estimated molecular weight of each peak and its identity was labeled. (F) Brightfield and UV channel photos 

of a HilA crystal.   
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Discussion 

 

Recent studies on host-microbe interactions have elucidated that environmental factors have 

significant impact on both host immunity and pathogen infection, but underlying molecular 

mechanisms have just begun to be unveiled. In particular, LCFAs derived from diet accumulate 

abundantly in the mammalian intestinal tract, and their effects on invading enteric pathogens and 

the underlying mechanisms have remained largely uncharacterized. 

 

I have shown that fatty acids of different chain length have different potency in inhibiting 

Salmonella T3SS, and long-chain fatty acids are most effective. Of note, palmitic acid inhibit 

Salmonella SPI-1 secretion efficiently at 100 uM. While medium-chain fatty acids (7–12 carbon 

fatty acids) are present naturally in food, their concentrations in mammalian gut remain elusive. 

Long-chain fatty acids, e.g. palmitic acid, are abundant in both animal and vegetarian fat, and 

their concentrations accumulates to hundreds micromolar range in the gut (205). This raises the 

question how Salmonella cope with the combination of tens millimolar SCFA and hundreds 

micromolar LCFA, both of which are inhibitory on Salmonella virulence. A coordinate and 

centralized response to fluctuation of both SCFA and LCFA concentrations would be an efficient 

approach for Salmonella to switch itself between virulent and avirulent phenotype.    

 

The application of bio-orthogonal LCFA chemical reporter Alk-16 allows rapid and specific 

identification of molecular targets in pathogen proteome that are covalently modified by LCFAs 

(164). I demonstrated that Alk-16 behaves similarly to its natural counterpart LCFA in inhibiting 

Salmonella invasion in HeLa cells. Through CuAAC-mediated enrichment and mass 

spectrometry-based proteomics, I identified HilA, a key virulence transcriptional regulator, as a 

fatty-acylation target in Salmonella. I confirmed that HilA is long-chain fatty acylated by in-gel 
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fluorescence scanning. Direct detection of long-chain fatty acylation on proteins by Liquid 

Chromatography-tandem Mass Spectrometry (LC-MS/MS) has been a technical challenge, 

requiring extensive optimization on sample preparation, LC condition, and data acquisition 

(Thinon E. et al., unpublished). Interestingly, HilD, another key transcriptional regulator of SPI-1, 

which was suggested to be inhibited by LCFA through non-covalent interaction (204), was not 

found in our proteomics set. Indeed, our method could only detect proteins covalently labeled by 

alk-16. A bi-functional LCFA, containing both photo-crosslinking and alkyne groups, would enable 

capture of non-covalent interacting proteins with LCFA (213). 

 

I found that long-chain fatty acylation on HilA was a bona fide post-translational N-acylation. While 

long-chain fatty acylations, both S- and N-linked, have been studied extensively in eukaryotes 

(163, 210, 214), their presence on bacterial proteins has been less studied. Previous report 

suggests the presence of S-long-chain acylation on E. coli protein YjgF, as the modification is 

abolished by cysteine-to-serine mutation (164). Lysine long-chain fatty acylation is also reported 

on E. coli hemolysin, which is required for its toxic activity (215). N-long-chain fatty acylation may 

occur on multiple lysine residues of HilA, and identification of exact modification sites would 

facilitate downstream studies on effects of long-chain fatty acylation on HilA function. Hang lab is 

currently developing a new isotopic cleavable affinity tag for direct identification of PTM sites 

(Tsukidate T et al., unpublished), which may help identification of long-chain fatty acylation sites 

on HilA.  

 

To study protein-protein interaction between HilA and its partners, I have incorporated photo-

crosslinking DiZPK to endogenous HilA. I found that K231 and K527 could photo-crosslink 

interacting protein partner(s). K231 is identified to be short-chain fatty acylated (Chapter 2), while 

K527 is not reported to have significant functional role in HilA. Structural studies might help explain 

where these two lysine residues reside spatially in the protein, and how they might contribute to 
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protein-protein interaction. Surprisingly, through LFQ proteomics analysis, we found that HilA-

K231DiZPK photo-crosslinked itself but not other proteins in vivo. SEC of purified HilA also 

demonstrated oligomerization of HilA in vitro. It would be interesting to see if HilA crystal is packed 

in oligomer form, which may reveal information about protein-protein interaction interface. 

 

In summary, I applied bio-orthogonal LCFA reporter alk-16 to directly identify long-chain fatty 

acylated proteins in Salmonella Typhimurium, and I found that exogenous LCFA can inhibit T3SS 

of Stm and covalently modify key virulence transcriptional regulator HilA. The post-translational 

N-long-chain fatty acylation may contribute to inhibitory effect of LCFA on Salmonella virulence. 

Moreover, photo-crosslinking studies reveal that K231 and K527 may contribute to HilA interaction 

with other proteins, and K231 may be at the interface of HilA homo-oligomers. Our studies help 

elucidate fundamental mechanisms of diet-mediated resistance on bacterial virulence and should 

facilitate the development of new approaches to treat bacterial infections. 
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Materials and Methods 

 

Microbial Strains and Growth Conditions 

All strains used are listed in Appendix Table 1. All Salmonella Typhimurium strains used were 

derivatives of S. Typhimurium 14028S (14). Salmonella strains were cultured at 37°C in liquid 

Miller Luria-Bertani (LB) medium [10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl] (Becton 

Dickinson, DifcoTM), SPI-1 inducing LB medium [10 g/L tryptone, 5 g/L yeast extract, 300 mM 

NaCl], or on Salmonella Shigella agar (Becton Dickinson). Cultures were grown at 37°C in 

Multitron shaking incubator (INFORS HT) at 220 rpm. When required, antibiotics were added to 

the medium as follows: carbenicillin 100 μg/mL, kanamycin 50 μg/mL, and chloramphenicol 10 

μg/mL.  

 

Chemicals 

Alk-16 (17-Octadecynoic Acid) was synthesized according to previously described (216). Az-Rho 

was synthesized in the lab as previously described (17). Az-biotin was purchased from Sigma-

Aldrich (762024). DiZPK was synthesized according to previously described (217). 

 

Preparation of Salmonella bacterial total cell lysates 

1:50 dilutions of overnight Miller LB cultures of Salmonella Typhimurium strain 14028 WT 

overnight culture were grown in 4 mL SPI-1 inducing LB for 4 h at 37°C with 220rpm shaking. For 

alk-16 labeling experiments, cultures were incubated with or without 10 mM fresh alk-16 (in 

DMSO). For incorporation of UAA into overexpressed HilA, cultures were added with 1 mM UAA 

and 0.2% arabinose. For incorporation of UAA into endogenous HilA, cultures were added with 
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100 uM UAA and 0.01% arabinose. S. Typhimurium cells were pelleted at 15000 g for 1 min, and 

pellets were lysed with 200 μL lysis buffer (phosphate-buffered saline (PBS) containing 0.5% 

Nonidet P-40, 1X EDTA-free protease inhibitor cocktail (Roche), 0.5 mg/mL lysozyme (in dH2O) 

(Sigma), and 1:1,000 dilution of Benzonase (Millipore)). After re-suspension, pellets were 

sonicated for 10 sec for 3 times, then were incubated on ice for 30 min. Cell lysates were 

centrifuged at 15000 g for 1 min to remove cell debris and supernatants were collected. Protein 

concentration was estimated by BCA assay with BCA Protein Assay Kit (Thermo). 

Salmonella protein immunoprecipitation and immunoblotting 

From Salmonella total cell lysates prepared as described above, protein samples were boiled with 

1X Laemmli buffer 95°C for 5 min. 20 uL of each sample was loaded onto a 4-20% Tris-HCl gel 

(Bio-Rad) for SDS-PAGE. Proteins were transferred onto 0.45 μm nitrocellulose membrane (Bio-

Rad) with Trans-Blot Turbo Transfer System (Bio-Rad) at 25 V for 30 min. Membrane was blocked 

with 5% non-fat milk in PBS with 0.1% Tween-20 (PBS-T) for 30 min, and primary antibody was 

added to solution before incubating membrane at 4°C overnight. Dilution of primary antibodies 

were as follows: for HA-tagged proteins, 1:2,000 anti-HA rabbit antibody H6908 (Sigma); for 

FLAG-tagged proteins, 1:2000 anti-FLAG rabbit antibody F7425 (Sigma); for HilA-K90Bu antigen, 

1:200 anti-HilAK90Bu rabbit custom antibody (Thermo Fisher) or 1:200 anti-HilAK90 rabbit 

custom antibody (Thermo Fisher). Membrane was washed with PBS-T 3 times, and incubated 

with 1:10,000 goat polyclonal anti-rabbit HRP ab97051 (Abcam) in PBS-T with 5% non-fat milk at 

room temperature for 1 hour. Membrane was washed with PBS-T 3 times, and imaged with Clarity 

Western ECL substrate (Bio-Rad) and ChemiDoc XRS+ System (Bio-Rad).    

For Salmonella protein immunoprecipitation, 250 μg of each total cell lysates were incubated with 

20 μL PBS-T-washed EZview™ Red Anti-HA Affinity Gel (Sigma) at 4 °C for 1 hour with end-to-
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end rotation. Samples were washed with 200 μL PBS-T for 3 times, before being boiled with 1X 

Laemmli buffer 95°C for 5 min. 20 uL of each sample was loaded onto a 4-20% Tris-HCl gel (Bio-

Rad) for SDS-PAGE and further immunoblotting. 

 

In-gel fluorescence analysis of LCFA reporter labeling 

For in-gel fluorescence analysis of alk-16 labeled Salmonella proteome, from the alk-16-treated 

or control total cell lysates prepared as described above, 45 μL of each total cell lysates (~50 μg) 

was added with 5 μL of click chemistry reagents as a 10X master mix (az-Rho: 0.1 mM, 10 mM 

stock solution in DMSO; tris(2-carboxyethyl)phosphine hydrochloride (TCEP): 1 mM, 50 mM 

freshly prepared stock solution in dH2O; tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA): 

(0.1 mM, 2 mM stock in 4:1 t-butanol: DMSO); CuSO4 (1 mM, 50 mM freshly prepared stock in 

dH2O). Samples were mixed well and incubated at room temperature for 1 h. After incubation, 

samples were mixed with 200 μL cold methanol, 150 μL cold water, and 75 μL cold chloroform. 

Sample proteins were precipitated at 18000 g for 1 min at 4 °C. After gently removing the aqueous 

layer, protein pellets were washed with 200 μL cold methanol, spinning down at 18000 g for 1 min 

at 4 °C, and liquid was gently decanted. After washing twice, pellets were allowed air-dried before 

boiling with 1X Laemmli buffer.   

For in-gel fluorescence analysis of alk-16 or HDYOA labeled HilA, from the alk-16 or HDYOA-

treated or control total cell lysates prepared as described above, 250 μg of each total cell lysates 

were immunoprecipitated with 20 μL PBS-T-washed EZview™ Red Anti-HA Affinity Gel (Sigma). 

After samples were washed with 200 μL PBS-T for 3 times, 36 μL of PBS was added to each 

sample. 4 μL of click chemistry reagents as a 10X master mix mentioned above were added to 

each sample. Samples were mixed well and incubated at room temperature for 1 h. After 

incubation, samples were washed with 200 μL PBS-T for 3 times.  
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Samples were boiled with 1X Laemmli buffer 95°C for 5 min before being loaded onto a 4-20% 

Tris-HCl gel (Bio-Rad) for SDS-PAGE. In-gel fluorescence scanning was performed using a 

Typhoon 9400 imager (Amersham Biosciences). 

 

Alk-16 labeling Label-Free Quantitative proteomics 

1:50 dilutions of overnight Miller LB cultures of Salmonella Typhimurium strain 14028 WT 

overnight culture were grown in 20 mL SPI-1 inducing LB for 4 h at 37°C with 220rpm shaking, 

each sample growing in 4 mL aliquots. Cultures were incubated with or without 100 uM fresh alk-

16 (in DMSO). Cultures were pooled back to 20 mL per sample in Falcon tubes, and lysed in lysis 

buffer described above. After re-suspension in 1 mL lysis buffer, bacteria were sonicated for 15 

sec with Sonic Dismembrator Model 500 (Fisher Scientific) with 5 sec on and 10 sec off per cycle. 

Cell lysates were centrifuged at 15000 g for 1 min to remove cell debris and supernatants were 

collected. Each total cell lysates (~2 mg) was added with 100 μL of click chemistry reagents as a 

10X master mix (az-Biotin: 0.1 mM, 10 mM stock solution in DMSO; tris(2-carboxyethyl)phosphine 

hydrochloride (TCEP): 1 mM, 50 mM freshly prepared stock solution in dH2O; tris[(1-benzyl-1H-

1,2,3-triazol-4-yl)methyl]amine (TBTA): (0.1 mM, 2 mM stock in 4:1 t-butanol: DMSO); CuSO4 (1 

mM, 50 mM freshly prepared stock in dH2O). Samples were mixed well and incubated at room 

temperature for 1 h. After incubation, samples were mixed with 4 mL cold methanol and incubated 

at -20°C overnight. Protein pellets were centrifuged at 5000 g for 30 min at 4°C, and were washed 

with 1 mL cold methanol 3 times. After last wash, pellets were let air dried before being re-

solubilized in 250 uL 4% SDS PBS with bath sonication. Solutions were diluted with 750 uL PBS, 

and incubated with 60 uL PBS-T-washed High Capacity NeutrAvidin agarose (Pierce) at room 

temperature for 1 h with end-to-end rotation. Agarose were washed with 500 uL 1% SDS PBS 3 

times, 500 uL 2M Urea PBS 3 times, and 500 uL PBS 3 times. Agarose were then reduced with 

100 uL 10 mM DTT (Sigma) in PBS for 30 min at 37°C, and alkylated with 100 uL 50 mM 
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iodoacetamide (Sigma) in PBS for 20 min in dark. On-bead proteins were digested with 400 ng 

Trypsin/Lys-C mix (Promega) at 37°C overnight with shaking. Digested peptides were collected 

and lyophilized before being desalted with custom-made stage-tip containing Empore SPE 

Extraction Disk (3M). Peptides were eluted with 2% acetonitrile, 2% formic acid in dH2O.  

Peptide LC-MS analysis was performed with a Dionex 3000 nano-HPLC coupled to an Orbitrap 

XL mass spectrometer (Thermo Fisher). Peptide samples were pressure-loaded onto a home-

made C18 reverse-phase column (75 µm diameter, 15 cm length). A 180-minute gradient 

increasing from 95% buffer A (HPLC grade water with 0.1% formic acid) and 5% buffer B (HPLC 

grade acetonitrile with 0.1% formic acid) to 75% buffer B in 133 minutes was used at 200 nL/min. 

The Orbitrap XL was operated in top-8-CID-mode with MS spectra measured at a resolution of 

60,000@m/z 400. One full MS scan (300–2000 MW) was followed by three data-dependent scans 

of the nth most intense ions with dynamic exclusion enabled. Peptides fulfilling a Percolator 

calculated 1% false discovery rate (FDR) threshold were reported. 

Label-free quantification of alk-16 labeled proteins was performed with the label-free MaxLFQ 

algorithm in MaxQuant software as described (54). The search results from MaxQuant were 

analyzed by Perseus (http://www.perseusframework.org/). Briefly, the control replicates and alk-

16 labeled sample replicates were grouped correspondingly. The results were cleaned to filter off 

reverse hits and contaminants. Only proteins that were identified in all alk-16 labeled sample 

replicates and with more than two unique peptides were subjected to subsequent statistical 

analysis. LFQ intensities were used for measuring protein abundance and logarithmized. Signals 

that were originally zero were imputed with random numbers from a normal distribution, whose 

mean and standard deviation were chosen to best simulate low abundance values below the 

noise level (Replace missing values by normal distribution – Width = 0.3; Shift = 2.2). Significant 

proteins that were more enriched in alk-16 labeled sample group versus control group were 

determined by a volcano plot-based strategy, which combined t test p-values with ratio information. 
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A hyperbolic significance curve in the volcano plot corresponding to a given FDR (= 0.05) and S0 

value (= 2) was determined by a permutation-based method. The resulting table was exported as 

Appendix 3.1. 

 

Salmonella in vivo photo-crosslinking 

 

For small-scale experiment, 4 mL of Salmonella amber mutants expressing PylRS-ASF mutant 

were grown in the presence of 0.01% arabinose and 100 uM DiZPK. After 4 hours, bacterial cells 

were pelleted at 15000 g for 1 min, and resuspended in 1 mL PBS. After cell suspensions were 

transferred to 6-well plate, samples were photo-crosslinked in XL-1000 UV Crosslinker 

(Spectronics Corporation) for 5 min, with samples about 3 cm from the lamp on ice. Cells were 

lysed, immunoprecipitated, and immunoblotted as described above.  

For large-scale purification and identification, 20 mL of Salmonella amber mutants expressing 

PylRS-ASF mutant were grown in the presence of 0.01% arabinose and 100 uM DiZPK. Cells 

were resuspended in 5 mL PBS and photo-crosslinked as described above. Lysates were 

immunoprecipitated with 50 uL PBS-T washed anti-HA magnetic beads (Pierce). Samples were 

run on SDS-PAGE and stained with SafeStain Coomassie Blue. Crosslinked bands as well as 

control bands were cut out with clean blazers and diced into 1 mm x 1mm cubes. Gels were 

processed per in-gel digestion protocol described previously (218) and sent to The Rockefeller 

Proteomics Resource Center for protein identification.  

 

Salmonella Quantitative Reverse-Transcription PCR  

500 uL of Salmonella cultures were processed with RNeasy Mini Kit (Qiagen) per manufacturer’s 

manual. Concentrations of purified RNA were normalized to 100 ng/uL with RNase-free water. 
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Quantitative Reverse-Transcription PCR (qRT-PCR) were performed with Power SYBR Green 

RNA-to-CT 1-Step Kit (Applied Biosystems) per manufacturer’s manual and primers listed in 

Appendix Table 2.  

 

In vitro invasion assay and intracellular survival assay 

HeLa cells were cultured in 12-well tissue culture plates at 80-90% confluency. Wells were added 

with Salmonella cells at an MOI = 10:1 and centrifuged at 1000 g for 5 min. Cells were incubated 

at 37°C with 5% CO2 for 30 min to allow invasion. The media was then replaced with medium 

containing 100 μg/mL gentamicin and incubated for an additional hour to kill extracellular 

Salmonella. Wells were then washed 3 times with PBS, and cells were lysed with 500 uL 1% 

Triton X-100 PBS. Lysates were serially diluted and drip-dropped on Salmonella Shigella agar 

plates (BD 211597) to determine the number of invaded bacteria. 

 

Quantification and Statistical Analysis 

Comparisons and statistical tests were performed as indicated in each figure legend. Briefly, 

Pairwise comparisons were generated with two-tailed t tests. For comparisons of multiple groups 

over time or with two variables, a two-way analysis of variance (ANOVA) was used with an 

appropriate Bonferroni posttest comparing all groups to each other, all groups to a control, or 

selected groups to each other. Survival data were analyzed using a log-rank (Mantel-Cox) test 

with a Bonferroni correction for the degrees of freedom based on the number of comparisons 

made. To compare two groups with non-normal distribution or low sample size, the medians of 

the two groups were compared using a Mann-Whitney test, unless one data set contained only 

zero values. In these cases, a Mann-Whitney test could not be performed because all values in 

the group were identical; a Wilcoxon test was performed instead. For comparisons of multiple 
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groups with only one variable, a one-way ANOVA or Kruskal-Wallis test was performed for data 

with underlying normal or non-normal distribution, respectively, with Bonferroni, Dunnett’s, or 

Dunn’s posttests where appropriate. Statistical analyses were performed in GraphPad Prism 

software. A P value of less than 0.05 was considered significant, denoted as *P ≤ 0.05, **P ≤ 

0.01, and ***P ≤ 0.001 for all analyses. 
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Chapter 4 

Summary and Future Outlook 
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Recent research has revealed many mechanisms by which gut microbiota influences host 

immunity to defend against invading pathogens, but how microbiota directly antagonizes 

pathogen virulence is less studied. In this thesis, I describe how fatty acids, derived from both gut 

microbiota and diet, contribute to attenuation of virulence of enteric pathogen Salmonella. 

In Chapter 1, I review how dietary and microbiota metabolites affect different aspects of host-

microbe interactions. These metabolites are classified into microbial-associated molecular 

patterns and microbiota-derived secondary metabolites. Small molecules reviewed in this chapter 

not only enhances host innate and adaptive immunity, but also directly inhibit virulence of invading 

pathogens, providing colonization resistance to the host. These findings highlight the importance 

of understanding the intricate interactions between host and microbiota, and should provide 

insights in developing microbiota-targeting therapeutics for host physiology, immunity, and 

pathogen resistance.  

In Chapter 2, I describe a mechanism by which microbiota-derived short-chain fatty acids inhibit 

virulence of Salmonella Typhimurium. We use a chemical reporter strategy to identify molecular 

targets of short-chain fatty acids in Salmonella. I demonstrate that alkynyl-functionalized short-

chain fatty acids can be metabolized and covalently attached to proteins in Salmonella. Proteomic 

analysis reveal that HilA, a key virulence transcription regulator, is short-chain fatty acylated. I 

employ Amber Suppression Technology and CRISPR-Cas9 genome editing to faithfully mimic 

butyrylation on endogenous HilA. Biochemical and functional characterization show that acylation 

of HilA has site-specific effect, and K90 butyrylation affect HilA DNA-binding activity and 

Salmonella invasion in mice. Overall, our results discover a mechanism by which gut microbiota 

provides resistance against Salmonella through short-chain fatty acids.  
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In Chapter 3, I find that dietary long-chain fatty acids potently inhibit Salmonella virulence. 

Chemical proteomics with alkynyl-functionalized long-chain fatty acids reveal proteins that are 

long-chain fatty acylated in Salmonella, including HilA. Modification by long-chain fatty acids on 

HilA is post-translationally N-linked. Moreover, with photo-crosslinking unnatural amino acid, we 

discover that HilA forms homo-oligomers in Salmonella. Our data suggest that dietary long-chain 

fatty acids may interfere pathogenesis of Salmonella through post-translational modification, and 

further structural characterization of HilA may reveal novel target for treatment of Salmonella 

infection.  

According to sequence homology, HilA belongs to OmpR/PhoB Response Regulator (RR) 

subfamily, which represents about one-third of all RRs. Response Regulators (RRs) are members 

within bacterial two-component systems that enable fast response to environmental signals and 

is critical for regulation of bacterial physiology. In most cases, RRs are activated by phosphate 

transfer from a cognate sensory histidine kinase to its aspartate residue in the receiver domain. 

Activated RRs then exert its function through its effector domain. OmpR/PhoB family RRs are 

often activated through phosphorylation-dependent mechanism. However, a lot of atypical 

OmpR/PhoB family RRs are activated through phosphorylation-independent mechanism (219, 

220). For example, HP1043, an atypical OmpR/PhoB family RR in Helicobacter pylori, binds to 

inverted repeat DNA sequence motifs with unknown regulatory activity (220–222). The aspartate 

that should have been phosphorylated in HP1043 is replaced by a lysine residue (221). Indeed, 

Asp67 of HilA, the conserved Asp residue that is supposed to be phosphorylated predicted by 

homology, could not be detected with phosphorylation (185). Our data suggests that Asp67 is 

unlikely to be in the receiver domain, as both Lys57 and Lys90, two residues flanking Asp67, 

resides in DNA-binding domain and directly affect DNA-binding activity of HilA. So far, no cognate 

sensory kinase for HilA has been reported. Our studies have demonstrated that HilA itself may 

be a sensor of environmental fatty acids, including short-chain fatty acids from the gut microbiota 



93 

and long-chain fatty acids from the diet. HilA may have evolved to use lysine residues instead of 

aspartate to sense environmental metabolites and regulate Salmonella virulence. Our research 

indicates that post-translational fatty acylation may represent one the sensing mechanisms by 

atypical OmpR/PhoB family RRs to environmental signals.  

Even among atypical OmpR/PhoB family RR members, HilA is peculiar. RRs usually have an N-

terminal receiver domain and a C-terminal effector domain (in most cases DNA-binding domain), 

yet HilA adopts a swapped domain architecture, with an N-terminal DNA-binding domain and a 

C-terminal TPR domain with unknown function. OmpR/PhoB family RRs often form homodimers 

and recognize tandem or inverted repeating DNA elements for transcription regulation (223, 224). 

Yet the DNA-binding motif of HilA remains debated. Lostroh and Lee reported that HilA binds to 

a direct repeat sequence motif termed ‘HilA Box’ (181), but De Keersmaecker et al. identified 

other loci that were bound by HilA do not contain ‘HilA Box’ (182). They proposed a new ‘HilA 

Box’ motif (182), yet on closer analysis, that is essentially -35 element in prokaryotic promoters. 

The selectivity of HilA DNA-binding domain remains a mystery. Our HilA ChIP-Seq data may 

provide hints on the DNA motifs, and further in-depth data analysis is required.  

While HilA may act as a sensor for fatty acids in Salmonella, Salmonella as well as other intestinal 

bacteria uses other proteins and mechanisms to sense fatty acids too. In the presence of high 

concentrations of fatty acids, bacterial cytoplasm would accumulate high-energy fatty acid 

intermediates, including fatty acyl-CoA and fatty acyl-phosphate (194, 195, 225). Chemical 

acylation of proteins by these intermediates as well as enzymatic acylation influences bacterial 

metabolism and physiology. For instance, dynamic acetylation level on metabolic enzymes in 

Salmonella regulates the direction of glycolysis versus gluconeogenesis, and the branching 

between citrate cycle and glyoxylate bypass (173). RcsB, a global regulatory RR that controls 

cells division, as well as capsule and flagellum biosynthesis in many bacteria, could be acetylated 
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through both enzymatic acetylation (226) and chemical acetylation (227), which inhibits its DNA 

binding activity. Similarly, PhoP, another highly conserved RR in bacteria that regulate many 

aspects of bacterial physiology including virulence, is dynamically acetylated at K201 that 

regulates its DNA binding ability (228). Fatty acids could be sensed through non-covalent binding 

mechanism as well. Virulence regulator HilD in Salmonella could bind to long-chain fatty acids 

and attenuate its DNA binding activity (204). Vibrio cholerae master virulence regulator ToxT 

could bind to cis-palmitoleate, which would affect ToxT DNA binding and reduce expression of 

toxin-coregulated pilus and cholera toxin in V. cholerae (229, 230). All the examples above 

highlight the diverse mechanisms that intestinal bacteria use to sense and respond to the same 

sets of environmental signals, fatty acids. 

Regulatory functions of acylation are also conserved in eukaryotes. Of note, acetylation has been 

well described as a post-translational modification that dynamically regulate cell physiology. The 

best example may be the ‘histone code’, which started with the discovery of acetylation on histone 

tails (231) and identification of Gcn5 family histone acetyltransferase (232). Dynamic acetylation 

on histone proteins regulates gene transcription, and is involved in inflammatory diseases (233), 

cancer (234), and other disorders (235–237). Interestingly, acetylation of histones appears to be 

responsive to acetyl-CoA level and regulates growth of budding yeast (238). Another example is 

the acetylation of p53, which regulates its DNA binding activity and transcription of p-53-

responsive genes (239). With the advance of detection methods, many novel types of acylation 

have been reported, including propionylation (240), butyrylation (240), 2-hydroxyisobutyrylation 

(241), succinylation (242), malonylation (242), glutarylation (243), crotonylation (244), and -

hydroxybutyrylation (245), which collectively may regulate signal-dependent gene activation and 

metabolic stress (246, 247). Some of these modifications are conserved in bacteria (248, 249), 

and future studies on the functional consequences of these acylations in bacteria will help 
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elucidate mechanisms metabolic sensing by microbiota and guide metabolic approaches to 

enhance gut microbiota homeostasis and host health.  
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Appendix 
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Appendix Table 1. Bacterial strains used in this thesis. Strains are from Hang lab or generated 

in the thesis unless otherwise noted.  

No. Organism Genotype Plasmid Antibiotic 
Resistance 

Source Note 

2 Salmonella 
typhimurium 
14028 

WT None None Craig 
Altier Lab 

3 Salmonella 
typhimurium 
14028 

hilA::kan None Kan ORF 
deletion 
library 

Kan:Kanamycin 

4 Salmonella 
typhimurium 
14028 

hilA::kan pBAD-HilA-HA-His Amp, Kan Amp: Ampicillin 

5 Salmonella 
typhimurium 
14028 

hilA::kan pBAD-HilAK90A-HA-
His 

Amp, Kan 

6 Salmonella 
typhimurium 
14028 

hilA::kan pBAD-HilAK231A-HA-
His 

Amp, Kan 

7 Salmonella 
typhimurium 
14028 

hilA::kan pBAD-HilAK324A-HA-
His 

Amp, Kan 

8 Salmonella 
typhimurium 
14028 

hilA::kan pBAD-HilAK456A-HA-
His 

Amp, Kan 

9 Salmonella 
typhimurium 
14028 

hilA::kan pBAD-HilAK533A-HA-
His 

Amp, Kan 

10 Salmonella 
typhimurium 
14028 

hilA::kan pBAD-HilAK57A-HA-
His 

Amp, Kan 

11 Salmonella 
typhimurium 
14028 

hilA::kan pBAD-HilAK90X-HA-
His , pSupAR-
MbPylRS-YAS-
salmonella 

Amp, Kan, 
Chlor 

X: amber 
codon, tag 

12 Salmonella 
typhimurium 
14028 

hilA::kan pBAD-HilAK231X-HA-
His , pSupAR-
MbPylRS-YAS-
salmonella 

Amp, Kan, 
Chlor 

Chlor: 
Chloramphenic
ol 
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13 Salmonella 
typhimurium 
14028 

hilA::kan pBAD-HilAK324X-HA-
His , pSupAR-
MbPylRS-YAS-
salmonella 

Amp, Kan, 
Chlor 

14 Salmonella 
typhimurium 
14028 

hilA::kan pBAD-HilAK456X-HA-
His , pSupAR-
MbPylRS-YAS-
salmonella 

Amp, Kan, 
Chlor 

15 Salmonella 
typhimurium 
14028 

hilA::kan pBAD-HilAK533X-HA-
His , pSupAR-
MbPylRS-YAS-
salmonella 

Amp, Kan, 
Chlor 

16 Salmonella 
typhimurium 
14028 

hilA::kan pBAD-HilAK57X-HA-
His , pSupAR-
MbPylRS-YAS-
salmonella 

Amp, Kan, 
Chlor 

33 Escherichia 
coli 

DH5alpha pSupAR-MbPylRS-
YAS-salmonella 

Chlor plasmid 
from 
Peng R. 
Chen Lab 

34 Escherichia 
coli 

DH5alpha pBAD-HilA-HA-His Amp 

44 Salmonella 
typhimurium 
14028 

hilA-HA None None 

56 Salmonella 
typhimurium 
14028 

WT pCas9 , pKD46 TempS Chlor, Amp pKD46 
Temperature 
sensitive (30C) 

61 Salmonella 
typhimurium 
14028 

hilA-HA pCas9 , pKD46 TempS Chlor, Amp 

64 Salmonella 
typhimurium 
14028 

hilAK57A,
g183t-HA 

None None 

65 Salmonella 
typhimurium 
14028 

hilAK57X,
g183t-HA 

None None 

66 Salmonella 
typhimurium 
14028 

hilAK90A,
c243g-HA 

None None 

67 Salmonella 
typhimurium 
14028 

hilAK90X,
c243g-HA 

None None 
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68 Salmonella 
typhimurium 
14028 

hilAK231A
,c672g-HA 

None None 

69 Salmonella 
typhimurium 
14028 

hilAK231X
,c672g-HA 

None None 

74 Salmonella 
typhimurium 
14028 

hilA::kan pBAD-HilA-HA-
His_Pat-Flag 

Amp, Kan 

75 Salmonella 
typhimurium 
14028 

hilA::kan pBAD-HilA-HA-
His_CobB-Flag 

Amp, Kan 

81 Salmonella 
typhimurium 
14028 

hilAK57X,
g183t-HA 

pSupAR-MbPylRS-
YAS-salmonella 

Chlor 

82 Salmonella 
typhimurium 
14028 

hilAK90X,
c243g-HA 

pSupAR-MbPylRS-
YAS-salmonella 

Chlor 

83 Salmonella 
typhimurium 
14028 

hilAK231X
,c672g-HA 

pSupAR-MbPylRS-
YAS-salmonella 

Chlor 

84 Salmonella 
typhimurium 
14028 

hilA-HA pSupAR-MbPylRS-
YAS-salmonella 

Chlor 

91 Salmonella 
typhimurium 
14028 

hilAK324X
,g987a-
HA 

pSupAR-MbPylRS-
YAS-salmonella 

Chlor 

92 Salmonella 
typhimurium 
14028 

hilAK456X
-HA 

pSupAR-MbPylRS-
YAS-salmonella 

Chlor 

93 Escherichia 
coli 

DH5alpha pCas9 Chlor plasmid 
from 
Luciano 
Marraffini 
Lab 

94 Escherichia 
coli 

DH5alpha pCas9 (pWJ297) Chlor plasmid 
from 
Luciano 
Marraffini 
Lab 

99 Salmonella 
typhimurium 
14028 

hilAK527X
-HA 

pSupAR-MbPylRS-
YAS-salmonella 

Chlor 

100 Salmonella 
typhimurium 
14028 

hilAK533X
,c1575a-
HA 

pSupAR-MbPylRS-
YAS-salmonella 

Chlor 

109 Salmonella 
typhimurium 
14028 

hilA-HA pKD46 TempS Amp 
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115 Escherichia 
coli 

BL21(DE3
) 

pBAD-HilA-HA-His Amp 

190 Salmonella 
typhimurium 
14028 

hilA::kan pBAD-HilAK90X-HA-
His , pSupAR-
MmPylRS-WT-
salmonella 

Amp, Kan, 
Chlor 

191 Salmonella 
typhimurium 
14028 

hilA::kan pBAD-HilAK231X-HA-
His , pSupAR-
MmPylRS-WT-
salmonella 

Amp, Kan, 
Chlor 

192 Salmonella 
typhimurium 
14028 

hilA::kan pBAD-HilAK324X-HA-
His , pSupAR-
MmPylRS-WT-
salmonella 

Amp, Kan, 
Chlor 

193 Salmonella 
typhimurium 
14028 

hilA::kan pBAD-HilAK456X-HA-
His , pSupAR-
MmPylRS-WT-
salmonella 

Amp, Kan, 
Chlor 

194 Salmonella 
typhimurium 
14028 

hilA::kan pBAD-HilAK533X-HA-
His , pSupAR-
MmPylRS-WT-
salmonella 

Amp, Kan, 
Chlor 

196 Salmonella 
typhimurium 
14028 

WT pSupAR-MbPylRS-
YAS-salmonella 

Chlor 

197 Salmonella 
typhimurium 
14028 

hilA::kan pSupAR-MbPylRS-
YAS-salmonella 

Kan, Chlor 
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Appendix Table 2. Primers used for qRT-PCR and ChIP-qPCR in this thesis. 

No. Primer Name Sequence (5’ to 3’) 

73 invF qPCR F TCCTGAGTTTCGCGCTATTT 

74 invF qPCR R GTAACAGCGCCAGTACCTTAT 

75 prgH qPCR F ACAGCAGGCGTTACCTTATTC 

76 prgH qPCR R AATTGACGGGCTCTGAGTATTT 

157 spaO qPCR F CCGACCAATGCTGAACTTAAC 

158 spaO qPCR R TTCATGGATCTCAACGCCTAAG 

159 orgB qPCR F ATCAGACAATGGCCTGGAAG 

160 orgB qPCR R AAATCCCTTAGCCACTCATCC 

199 PprgH qPCR F AGAACGACAGACATCGCTAAC 

200 PprgH qPCR R CCGTTCAGTGAGCTGTTAAGTA 

201 PinvF qPCR F GGGCGGCATCAGTTTCATAA 

202 PinvF qPCR R GCATAGTTGTCAGCACCAGTTA 
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Appendix 2.1. Table of identified protein targets of Alk-3 in Stm through LFQ proteomic analysis. 

Protein IDs Category Description 

hilA SPI-1 Invasion protein regulator 

sipD SPI-1 Translocation machinery component 

sopB SPI-1 Secreted effector protein 

sipA SPI-1 Secreted effector protein 

sipC SPI-1 Cell invasion protein SipC 

sicA SPI-1 Secretion chaperone 

fabD Metabolism Malonyl CoA-acyl carrier protein transacylase 

gltA Metabolism Citrate synthase 

citD Metabolism Citrate lyase acyl carrier protein 

eno Metabolism Enolase 

panD Metabolism Aspartate 1-decarboxylase 

gcvH Metabolism Glycine cleavage system H protein 

rpiA Metabolism Ribose-5-phosphate isomerase A 

pgk Metabolism Phosphoglycerate kinase 

sucC Metabolism Succinate--CoA ligase [ADP-forming] subunit beta 
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acnB Metabolism Aconitate hydratase B 

asnB Metabolism Asparagine synthetase B 

aspA Metabolism Aspartate ammonia-lyase 

yqhD Metabolism Putative alcohol dehydrogenase 

ribE Metabolism Riboflavin synthase subunit alpha 

maeB Metabolism Malic enzyme 

pykF Metabolism Pyruvate kinase 

dctA Metabolism C4-dicarboxylate transport protein 

tktA Metabolism Transketolase 

pykA Metabolism Pyruvate kinase 

dkgA Metabolism 2,5-diketo-D-gluconate reductase A 

pepD Metabolism Aminoacyl-histidine dipeptidase 

nuoB Metabolism NADH-quinone oxidoreductase subunit B 

glyA Metabolism Serine hydroxymethyltransferase 

trxA Metabolism Thioredoxin 

icdA Metabolism Isocitrate dehydrogenase [NADP] 

guaC Metabolism GMP reductase 

talB Metabolism Transaldolase 
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phoN Metabolism Acid phosphatase 

gapA Metabolism Glyceraldehyde-3-phosphate dehydrogenase 

cysK Metabolism Cysteine synthase 

prsA Metabolism Ribose-phosphate pyrophosphokinase 

tdcE Metabolism Pyruvate formate-lyase 4/2-ketobutyrate formate-lyase 

adhE Metabolism Aldehyde-alcohol dehydrogenase 

tyrS Metabolism Tyrosine--tRNA ligase 

dnaK Others Chaperone protein DnaK 

ydhD Others Glutaredoxin 

grxC Others Glutaredoxin 

yghA Others Oxidoreductase 

nifU Others Iron-sulfur cluster assembly scaffold protein IscU 

groEL Others 60 kDa chaperonin 

yfiD Others Autonomous glycyl radical cofactor 

hns Others DNA-binding protein H-NS 

katE Others Catalase 

tpx Others Thiol peroxidase 

erpA Others Iron-sulfur cluster insertion protein ErpA 
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greA Others Transcription elongation factor GreA 

STM14_5121 Others Putative inner membrane protein 

yfiE Others Putative LysR family transcriptional regulator 

pmbA Others Peptidase PmbA 

yhgI Others Fe/S biogenesis protein NfuA 
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Appendix 2.2. MS/MS spectrum of detected acylated peptides of HilA. 

K90Ac 
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K231Ac 
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K533Ac 
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K90Pr 
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K231Pr 
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K324Pr 
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K90Bu 
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K324Bu 
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K456Bu 
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K533Bu 
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Appendix 3.1. List of identified protein targets of Alk-16 in Stm through LFQ proteomic analysis. 

SPI-1 proteins are labeled in red. 

-log(P-value) Difference 
Gene 

ID 
Description 

5.295718 6.580152 sipA Secreted effector protein 

4.596443 6.067259 sopB Inositol phosphate phosphatase SopB 

4.13649 5.121576 sipC Cell invasion protein SipC 

6.095165 4.877037 sipD Cell invasion protein SipD 

2.53398 3.625011 sicA Chaperone protein SicA 

1.748172 3.163045 sopE2 Guanine nucleotide exchange factor sopE2 

3.285982 2.883593 sptP Secreted effector protein SptP 

3.469847 2.314409 hilA Transcriptional regulator HilA 

1.132367 1.464825 sopA E3 ubiquitin-protein ligase SopA 

1.763296 7.616678 lpp1 Major outer membrane lipoprotein 1 

2.750863 6.559837 acpP Acyl carrier protein 

3.096859 6.383107 pgk Phosphoglycerate kinase 

4.407329 5.763006 cadA Lysine decarboxylase 

5.138377 5.438326 ackA Acetate kinase 

3.090379 5.404028 pepD Aminoacyl-histidine dipeptidase 

3.898353 5.334023 osmE DNA-binding transcriptional activator OsmE 

4.931134 5.27616 yqhD Putative alcohol dehydrogenase 

4.530829 5.196304 arcA Arginine deiminase 

4.57988 5.141149 hns DNA-binding protein H-NS 

4.250792 4.936145 acrA Acridine efflux pump 
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4.366618 4.865341 tpiA Triosephosphate isomerase 

5.431065 4.8517 sspA Stringent starvation protein A 

5.223858 4.850132 alaS Alanine--tRNA ligase 

4.132562 4.770939 manZ Mannose-specific PTS system protein IID 

5.108081 4.728649 yaeH UPF0325 protein YaeH 

3.584452 4.693852 icdA Isocitrate dehydrogenase [NADP] 

4.4016 4.628246 groL 60 kDa chaperonin 

3.727492 4.582752 STM4

74_14

40 

Glutaredoxin 

2.524992 4.523128 gltA Citrate synthase 

4.308787 4.522205 STMM

W_07

561 

Phosphoglucomutase 

3.714703 4.451301 STMM

W_26

761 

ClpB protein (Heat shock protein f84.1) 

3.93975 4.447678 ybis Putative L,D-transpeptidase YbiS 

2.529688 4.382948 rpiA Ribose-5-phosphate isomerase A 

5.23199 4.363451 sucC Succinyl-CoA ligase [ADP-forming] subunit beta 

1.892263 4.302311 dnaK Chaperone protein DnaK 

4.200961 4.257231 galU UTP--glucose-1-phosphate uridylyltransferase subunit 

GalU  

5.819958 4.253464 kdsA 2-dehydro-3-deoxyphosphooctonate aldolase 

4.314986 4.210491 fabI Enoyl-[acyl-carrier-protein] reductase [NADH] FabI 
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5.031606 4.200387 ptsI Phosphoenolpyruvate-protein phosphotransferase 

3.185759 4.171696 eno Enolase 

3.194797 4.155042 pps Phosphoenolpyruvate synthase 

3.803548 4.128049 STM4

74_12

54 

Putative lipoprotein 

4.844141 4.1238 nuoL NADH dehydrogenase subunit L 

3.529328 4.120824 deoB Phosphopentomutase 

1.605582 4.050425 fbaB Fructose-bisphosphate aldolase 

3.909793 3.985844 acnB Aconitate hydratase 2 

4.419057 3.923382 adk Adenylate kinase 

4.563996 3.911688 minD Site-determining protein 

2.279087 3.896372 frdA Fumarate reductase, flavoprotein subunit 

1.51704 3.856174 slyB Outer membrane lipoprotein SlyB 

2.793875 3.838635 sucD Succinyl-CoA ligase [ADP-forming] subunit alpha 

3.937432 3.814405 glpK Glycerol kinase 

5.352378 3.801908 sdhB Succinate dehydrogenase iron-sulfur subunit 

4.735745 3.737444 nuoF NADH-quinone oxidoreductase subunit F 

2.224313 3.735641 frdB Fumarate reductase iron-sulfur subunit 

3.373764 3.731722 ucpA Oxidoreductase UcpA 

5.189995 3.686877 pta Phosphate acetyltransferase 

4.466336 3.670825 STMM

W_42

751 

Aspartate ammonia-lyase 
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1.878152 3.666236 clpX ATP-dependent Clp protease ATP-binding subunit 

ClpX  

4.74674 3.658666 crp cAMP-activated global transcriptional regulator CRP 

5.391827 3.653837 purA Adenylosuccinate synthetase 

3.12594 3.630978 glpT sn-glycerol-3-phosphate transporter 

1.801252 3.627244 dcuA Anaerobic C4-dicarboxylate transporter 

3.527084 3.621531 STM4

74_18

15 

Glutamate dehydrogenase 

1.540743 3.597588 cyoB Cytochrome o ubiquinol oxidase subunit I 

2.761849 3.541516 uspF Universal stress protein F 

3.553989 3.507147 hldD ADP-L-glycero-D-manno-heptose-6-epimerase 

4.003492 3.49936 engD Ribosome-binding ATPase YchF 

5.152183 3.481234 gnd 6-phosphogluconate dehydrogenase, decarboxylating 

1.469702 3.451141 deoD Purine nucleoside phosphorylase DeoD-type 

5.51632 3.429234 pheT Phenylalanine--tRNA ligase beta subunit 

3.090018 3.420237 tufA Elongation factor Tu 

2.059706 3.416838 fabB 3-oxoacyl-(Acyl carrier protein) synthase I 

5.177576 3.342725 hldE Bifunctional protein HldE 

1.920311 3.330688 grxA Glutaredoxin-1 

4.319432 3.325662 glmS Glutamine--fructose-6-phosphate aminotransferase 

[isomerizing]  

5.492707 3.313935 eutB Ethanolamine ammonia-lyase heavy chain 

4.553025 3.278964 asnS Asparagine--tRNA ligase 
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1.8994 3.271589 STMM

W_30

291 

Fructose 1,6-bisphosphate aldolase 

3.768561 3.233645 argS Arginine--tRNA ligase 

1.699932 3.221724 grxC Glutaredoxin 3 

4.27221 3.209486 talB Transaldolase B 

4.73276 3.207051 malK Maltose/maltodextrin import ATP-binding protein MalK 

4.079357 3.204319 thrS Threonine--tRNA ligase 

2.039398 3.199423 ybjP Putative lipoprotein 

3.932196 3.196885 yliJ Glutathione s-transferase family protein 

3.673113 3.174411 dapA 4-hydroxy-tetrahydrodipicolinate synthase 

1.864859 3.173382 atpF ATP synthase subunit b 

1.535292 3.172801 yghA Oxidoreductase 

3.696875 3.170086 fbp Fructose-1,6-bisphosphatase class 1 

4.018392 3.146297 nifU Scaffold protein 

3.670025 3.113139 leuS Leucine--tRNA ligase 

3.72587 3.105 gst Glutathionine S-transferase 

2.026667 3.103836 pykF Pyruvate kinase 

3.001963 3.051551 torC Trimethylamine N-oxide reductase cytochrome c-like 

subunit  

3.44676 3.030305 sucA Alpha-ketoglutarate decarboxylase 

4.445307 3.025424 STMM

W_33

261 

Uncharacterized protein 

5.158218 2.994371 yebC Probable transcriptional regulatory protein YebC 
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1.541114 2.987154 rfbH Lipopolysaccharide biosynthesis protein RfbH 

5.005963 2.973447 rpsA 30S ribosomal protein S1 

4.120244 2.964425 uspA Universal stress protein A 

5.918274 2.956854 pfkB Phosphofructokinase 

1.509733 2.92706 ygaM YgaM protein 

3.131615 2.923406 fljB Phase 2 flagellin 

0.805356 2.919812 yajQ UPF0234 protein YajQ 

1.736869 2.900527 yfcZ Uncharacterized protein 

1.524307 2.89203 arcB Ornithine carbamoyltransferase, catabolic 

2.419709 2.885463 gudD D-glucarate dehydratase 

1.974192 2.870841 ndk Nucleoside diphosphate kinase 

2.177368 2.868642 secB Protein-export protein SecB 

3.435057 2.864764 rof ROF protein 

1.783416 2.84557 tkt Transketolase 

3.230551 2.839833 ileS Isoleucine--tRNA ligase 

1.787603 2.824103 STMM

W_07

911 

Succinate dehydrogenase flavoprotein subunit 

1.962253 2.818172 garR Tartronate semialdehyde reductase 

2.222904 2.817016 prs Ribose-phosphate pyrophosphokinase 

3.144408 2.814523 tyrS Tyrosine--tRNA ligase 

2.982671 2.80989 pykA Pyruvate kinase II 

3.905117 2.784853 mtlA PTS system mannitol-specific EIICBA component 
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1.608646 2.781614 STMM

W_12

061 

3-oxoacyl-[acyl-carrier-protein] synthase 2 

1.87022 2.756329 STM4

74_46

63 

Carbamate kinase 

2.606342 2.742773 citT Citrate/succinate transport antiport protein 

1.661152 2.730909 yieF Putative oxidoreductase 

3.582162 2.720367 aceE Pyruvate dehydrogenase E1 component 

4.148295 2.717626 bcp Thioredoxin-dependent thiol peroxidase 

2.109469 2.714926 cydB Cytochrome d ubiquinol oxidase subunit II 

3.847165 2.643891 STMM

W_11

331 

Proline dehydrogenase (Proline oxidase) 

3.704195 2.642329 STM4

74_38

76 

Putative secreted protein 

3.262089 2.639904 valS Valine--tRNA ligase 

3.052889 2.612987 hemL Glutamate-1-semialdehyde 2,1-aminomutase 

3.763151 2.606649 tktA Transketolase 

2.879471 2.599024 nuoC NADH-quinone oxidoreductase subunit C/D 

2.844099 2.589397 STM4

74_27

42 

ATPase domain protein 

1.797721 2.560793 traT Conjugative transfer surface exclusion protein 
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2.844748 2.55012 glnA Glutamine synthetase 

4.034687 2.544812 pgi Glucose-6-phosphate isomerase 

1.445654 2.542115 STMM

W_18

181 

L-serine deaminase 1 

2.249804 2.521631 serS Serine--tRNA ligase 

3.39602 2.517659 gcvP Glycine dehydrogenase (decarboxylating) 

2.901281 2.436315 aspS Aspartate--tRNA ligase 

1.611601 2.427409 ftn Ferritin 

2.488933 2.419221 kbl 2-amino-3-ketobutyrate coenzyme A ligase 

2.331812 2.381566 ygiB UPF0441 protein YgiB 

2.895535 2.37863 recA Protein RecA 

1.327359 2.336936 pnp Polyribonucleotide nucleotidyltransferase 

2.887168 2.330995 prlC Oligopeptidase A 

2.342801 2.317223 pflB Formate acetyltransferase 1 

1.866763 2.307178 cheA Chemotaxis protein CheA 

1.859378 2.286694 malE Maltose-binding periplasmic protein 

1.523602 2.285541 tdcG L-serine deaminase 

1.692734 2.284634 glnB Nitrogen regulatory protein P-II 1 

1.111207 2.279823 atpD ATP synthase subunit beta 

2.402536 2.272444 tsf Elongation factor Ts 

0.785455 2.259772 ompA Outer membrane protein A 

2.023052 2.253075 aspC Aspartate aminotransferase 

2.839981 2.23838 mreB Rod shape-determining protein MreB 
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2.553685 2.23786 STMM

W_07

361 

Putative monooxygenase 

0.862548 2.23199 spaK Surface presentation of antigens protein SpaK 

0.959748 2.229185 STMM

W_24

911 

NADP-dependent malate dehydrogenase 

(Decarboxylating)  

3.206656 2.226079 rpoD RNA polymerase sigma factor RpoD 

3.614921 2.193863 glyA Serine hydroxymethyltransferase 

3.353257 2.188644 metK S-adenosylmethionine synthase 

3.954331 2.163292 fusA Elongation factor G 

2.321782 2.16064 aldB Aldehyde dehydrogenase B 

1.839531 2.155278 pepP Proline aminopeptidase II 

3.26356 2.147752 pyrG CTP synthase 

1.866638 2.140305 iadA Isoaspartyl dipeptidase 

1.142182 2.135898 lysS Lysine--tRNA ligase 

1.95664 2.134546 rfbG CDP-glucose 4,6-dehydratase 

3.693331 2.134274 hybC Hydrogenase-2, large subunit 

2.000398 2.132262 tig Trigger factor 

2.436818 2.129992 lpdA Dihydrolipoyl dehydrogenase 

1.571246 2.112889 STMM

W_24

331 

Nucleoside permease NupC 

1.040718 2.103135 nlpB Outer membrane protein assembly factor BamC 

1.725687 2.099536 guaA GMP synthase [glutamine-hydrolyzing] 
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1.642941 2.099028 acnA Aconitate hydratase 

2.815118 2.085762 tsaB tRNA threonylcarbamoyladenosine biosynthesis 

protein TsaB  

4.52154 2.080546 STMM

W_32

171 

Methyl-accepting chemotaxis protein II 

0.962423 2.078973 dcuB Anaerobic C4-dicarboxylate transporter 

3.317019 2.071259 pepN Aminopeptidase N 

2.979041 2.060308 pckA Phosphoenolpyruvate carboxykinase [ATP] 

2.78949 2.05892 sodB Superoxide dismutase 

2.522927 2.04125 nuoG NADH-quinone oxidoreductase subunit G 

2.471814 2.008285 glpD Glycerol-3-phosphate dehydrogenase 

1.620935 2.001814 STM4

74_39

49 

Putative glycosyl hydrolase 

1.149125 1.991829 pntA NAD(P) transhydrogenase subunit alpha 

1.421445 1.984356 speF Ornithine decarboxylase 

1.487247 1.972696 upp Uracil phosphoribosyltransferase 

1.044659 1.971578 rplK 50S ribosomal protein L11 

0.883421 1.966462 nuoB NADH-quinone oxidoreductase subunit B 

2.223961 1.945998 ptsG PTS system glucose-specific EIICB component 

1.602224 1.915981 STMM

W_29

341 

L-serine dehydratase 2 (L-serine deaminase 2) 

1.293747 1.886269 malF Maltose transport system permease protein MalF 
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1.035021 1.885867 rplE 50S ribosomal protein L5 

2.973231 1.876769 typA GTP-binding protein 

1.119039 1.842197 nrdA Ribonucleoside-diphosphate reductase 1 subunit 

alpha  

1.790733 1.827587 aceF Dihydrolipoyllysine-residue acetyltransferase 

1.754495 1.82602 gyrB DNA gyrase subunit B 

2.68662 1.825929 udp Uridine phosphorylase 

0.778031 1.821534 rplL 50S ribosomal protein L7/L12 

2.298098 1.81606 ppc Phosphoenolpyruvate carboxylase 

0.797527 1.800735 tdcE Pyruvate formate-lyase 4/2-ketobutyrate formate-lyase 

0.935107 1.775652 cydA Cytochrome d terminal oxidase polypeptide subunit I 

1.984189 1.760096 asd Aspartate-semialdehyde dehydrogenase 

1.816843 1.747447 fumA Fumarate hydratase class I, anaerobic 

1.756417 1.738461 fdoG Hypothetical 1 formate dehydrogenase-O, major 

subunit  

4.030025 1.718745 mdh Malate dehydrogenase 

3.111759 1.718309 metG Methionine--tRNA ligase 

1.039016 1.704385 rpoA DNA-directed RNA polymerase subunit alpha 

1.588926 1.650065 maeA NAD-dependent malic enzyme 

1.457687 1.630216 eutM Ethanolamine utilization protein EutM 

2.138438 1.627711 fumC Fumarate hydratase class II 

1.988542 1.624924 pepQ Xaa-Pro dipeptidase 

1.368701 1.589605 glpQ Glycerophosphodiester phosphodiesterase 

2.110415 1.589405 glyS Glycine--tRNA ligase beta subunit 

1.89163 1.559617 zwf Glucose-6-phosphate 1-dehydrogenase 
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0.863203 1.543272 rpmB 50S ribosomal protein L28 

1.336827 1.536856 atpA ATP synthase subunit alpha 

3.071922 1.524047 STMM

W_15

371 

Uptake hydrogenase-1 large subunit 

1.894378 1.495006 rihA Pyrimidine-specific ribonucleoside hydrolase RihA 

2.392272 1.484539 ldhA D-lactate dehydrogenase 

1.004855 1.458355 dapD 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-

succinyltransferase  

1.279965 1.455299 ridA Enamine/imine deaminase 

3.241329 1.43513 STM4

74_44

53 

Putative methyl-accepting chemotaxis protein 

0.957426 1.428329 rplJ 50S ribosomal protein L10 

3.127597 1.427683 mglB D-galactose-binding periplasmic protein 

0.730977 1.403804 dctA Aerobic C4-dicarboxylate transport protein 

1.028964 1.401089 cysK Cysteine synthase A 

1.681067 1.392614 nusA Transcription termination/antitermination protein NusA 

2.181387 1.366551 STMM

W_28

001 

Arabinose 5-phosphate isomerase 

1.718342 1.315477 yeaG Putative serine protein kinase 

1.675064 1.26836 yifE UPF0438 protein YifE 

1.916112 1.257701 arnC Undecaprenyl-phosphate 4-deoxy-4-formamido-L-

arabinose transferase  
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1.425214 1.153601 ppa Inorganic pyrophosphatase 

3.203631 1.15095 talA Transaldolase A 

2.113997 1.121765 asnB Asparagine synthetase 
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