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Temperate bacteriophage have a complex, dynamic relationship with bacteria: 

parasitizing in the lytic cycle, but often increasing bacteria’s fitness as lysogens. 

The phage-bacteria relationship is vast and has evolved over more than an 

estimated three billion years, and there are likely many uncharacterized, intricate 

events between host and phage with important impacts on bacterial pathogenesis. 

This Thesis explores some of these lesser-studied phage-bacteria interactions, 

describing atypical mechanisms (“conversion events”) by which phage shape the 

populations of Bacillus anthracis and Staphylococcus aureus, driving their 

increased diversity and likely impacting their natural behaviors.  

In B. anthracis, phage contributions to virulence are largely unknown.  The first 

part of this Thesis describes how an induced phage from a highly virulent, B. 

anthracis-like isolate affects the well-characterized strain Sterne and selects for a 

phage-resistant variant with a markedly altered phenotype, but with no apparent 

difference in virulence potential. In this work, we characterize this variant strain by 

a variety of techniques, including whole-genome DNA and RNA-sequencing. In 

addition, we connect the Sterne variant phenotype to that of the phage’s parent 

strain, B. cereus Biovar anthracis CA, uncovering lytic phage-bacteria interactions 



 

(i.e., selection by lysis) that may act to promote phenotypic diversity and shape 

populations of B. anthracis and B. anthracis-like pathogenic species in the wild.  

 

Unlike B. anthracis, S. aureus has well-characterized bacteriophage contributions 

to its virulence potential, with known lysogens carrying virulence factors stably 

integrated into the host chromosome. The second part of this Thesis describes an 

extra-chromosomal DNA sequencing screening that uncovers the presence of 

episomal prophages in a number of S. aureus clinical isolates. QPCR 

characterization of one of these strains, MSSA476, reveals that the episomal nature 

of one of its prophages, fSa4ms, would have been missed if sequencing whole-

genomic and not specifically extra-chromosomal DNA. In addition, we find that 

fSa4ms excision into the cytoplasm is a temporal event, and that the prophage does 

not appear to undergo lytic cycle replication after excision—suggesting that its 

excision is part of a lysogenic switch. Follow-up experiments show that fSa4ms 

excision can alter expression of htrA2 and promote increased heat-stress tolerance. 

This work suggests that for S. aureus, in addition to carrying important virulence 

determinants, phage may also play a rather widespread role as DNA-level switches 

to control virulence factor expression and/or generate distinct subpopulations. While 

this Thesis discusses atypical phage conversion events, it also illustrates perhaps 

the most important, universal role of phage in bacterial pathogens: tools to create 

diversity and allow for bacteria’s increased infection and success under different 

evolutionary selections and environmental conditions.
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CHAPTER 1. INTRODUCTION 

Bacteriophage, or phage for short, are viruses that infect bacteria. They are the 

most abundant “organisms” on earth, have co-evolved with their hosts, and 

unsurprisingly, exert significant influence over the bacterial domain, in pathogenic 

and non-pathogenic species alike. Estimates of the total phage population in the 

biosphere are 1031, an order of magnitude greater than their hosts (Wommack and 

Colwell, 2000), and in addition, the scale of bacteria-phage infections is also 

exceedingly large. There are an estimated 1024 infections per second, and as well-

discussed by (Hendrix, 2005), biological interactions on this scale offer nearly 

unlimited opportunities for genetic exchange, horizontal gene-transfer (HGT), and 

evolution among phages and their bacterial hosts (Bertozzi Silva et al., 2016; 

Samson et al., 2013). Research in phage biology has uncovered the numerous roles 

the viruses play, of course as bacterial predators, but also as genetic elements 

imparting hosts with virulence factors (Beres and Musser, 2007; Coleman et al., 

1989), promoting the bacterial colonization of animals (Schuch and Fischetti, 2009), 

and even driving global nutrient cycling (Wilhelm and Suttle, 1999). While bacteria 

are natural human pathogens, they and the microbiome are also positively 

implicated in human health, impacting immune system development and 

inflammation (Cho and Blaser, 2012), shaping the gut-brain axis (Yano et al., 2015), 

and preventing the development of cancer (Zitvogel et al., 2017), and phage have 

been shown to play a clear role in shaping microbiome composition and its 

associated effects (Mirzaei and Maurice, 2017). With many reports suggesting that 
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bacteria may be “controlling” us and research describing phage control over 

bacteria, it is intriguing to think that perhaps our ultimate “masters” are actually 

bacteria’s predators—the bacteriophage—and research efforts focused on 

uncovering new phage-bacteria interactions should no doubt lead to greater insights 

on human health. This Thesis aims to better understand the interactions between 

phage and bacteria, and explores some of the atypical ways in which phage 

influence their bacterial hosts, focusing on their roles in the Gram-positive 

pathogens Bacillus anthracis and Staphylococcus aureus.  

1.1 A brief history and classification of virulent and temperate 
bacteriophage 

Bacteriophage first appeared in the literature just over a century ago, with their 

independent discovery by Twort in 1915 and d’Herelle in 1917. In his seminal work, 

Twort discovered that some colonies of micrococci would turn “glassy” in cultures, 

that non-glassy micrococci could transform to this phenotype upon exposure to 

glassy colonies, and suggested that this transformation was propagated by ultra-

microscopic viruses of a lower order than bacteria (Twort, 1915).  Shortly after, 

d’Herelle uncovered microbes that would lyse “Shiga-bacilli”, terming the microbes 

“bacteriophage” for “bacteria eaters” (D'Herelle, 2007). Earlier reports of likely 

phage discovery exist in the literature as well, with one report from 1898 

uncovering the phage-mediated lysis of B. anthracis (Gamaleya, 1898). The 

discovery of bacteriophage however is generally credited to Twort and d’Herelle. 
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The one-hundred years since these initial discoveries have found phage to exist and 

exert their influence over almost all corners of the biosphere, but in addition to their 

biological roles, bacteriophage were (and still are) indispensable tools in molecular 

biology (well-reviewed in (Summers, 2005)), are used directly as or provide the basis 

for novel antibiotics (Fischetti, 2005; O'Flaherty et al., 2009), and have numerous 

other biotechnological applications. This Thesis however, focuses on the natural, 

biological roles of phage. 

The phages uncovered by Twort, d’Herelle, and other early researchers were likely 

virulent rather than temperate phage, and a broad distinction can be made between 

the two. Virulent phage are obligate predators of bacteria (existing in a lytic cycle), 

while temperate phage, in addition to predating bacteria via the lytic cycle, can 

associate with a bacterial host in a more “quiescent” state known as lysogeny. 

(Examples challenging the notion of lysogeny as truly “quiescent” though, will be 

discussed later in the text.) Virulent and temperate phage are selfish elements, 

focusing on their own survival and replication, and using bacterial hosts to 

accomplish these goals. Outside of their own propagation however, both also engage 

in activities that serve to generate diversity in bacterial pathogens and non-

pathogens alike. Though when considering the mechanisms by which phages shape 

bacterial diversity, temperate phages outshine virulent phages because of their 

capacity to exist in the lysogenic state. This Thesis, and the remainder of the 

introduction, focus on temperate phage and discuss some of the known ways in 
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which they generate diversity among their bacterial hosts. Chapters 2 and 3 

highlight research uncovering more atypical and subtle impacts of temperate phage 

on Gram-positive pathogens. A brief section detailing temperate phage biology is 

below, followed by a discussion of how such phage impact their bacterial hosts. 

1.2 Temperate phage biology 

Temperate phage were first described by Bordet in 1919, who showed that bacteria 

isolated from infected mice could be induced to produce phage particles in the 

laboratory, though he incorrectly predicted that such particles were a product of the 

bacteria itself rather than a separate biological entity (Summers, 2005). Esther 

Lederberg later uncovered phage l (Lederberg and Lederberg, 1953), a lysogenic 

phage of Escherichia coli, setting the stage for fundamental discoveries in phage 

biology, particularly in the factors that govern maintenance of lysogeny and the 

switch to the lytic state. (Early bacteriophage work and a history of lambda are 

reviewed in (Summers, 2005; Casjens and Hendrix, 2015; Ptashne, 2004). 

Unlike virulent phages, temperate phages are capable of a multitude of lifestyles, 

including the lysogenic and lytic cycles, as well as pseudolysogeny and chronic 

infection. Briefly, they are described and distinguished. Phage replication via the 

lytic cycle consists of: 1) viral adherence to a bacterial cell, 2) injection of genetic 

material (typically double-stranded DNA), 3) replication of DNA and synthesis of 

viral building blocks, 4) phage structural assembly and packaging of DNA into 
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heads, and 5) lytic burst from the host cell and release into the surrounding 

environment (Figure 1-1a). In the lysogenic cycle, phage co-exist with the bacterial 

host. Like the lytic cycle, phage 1) adhere to the bacterial cell and 2) inject genetic 

material, however following this step, phage genomes integrate within the bacterial 

chromosome or get maintained as cytoplasmic plasmids, but do not undergo 

replication and production of progeny viral particles. These phage DNA elements, 

termed prophage, divide with the host cell (Figure 1-1b). They can exit the lysogenic 

cycle however, and be induced into the lytic cycle (often in times of bacterial stress 

or DNA damage), executing steps 3-5 and killing the host cell. (Factors governing 

the lytic/lysogenic switch in phage l will be briefly discussed in the following 

paragraph.) Pseudolysogeny is an intermediate state where phage 1) adsorb to the 

bacterial cell and 2) inject genetic material, however are held in a purgatory-like 

state, putting off the decision to enter the lysogenic or lytic cycle until a change in 

the external environment (Figure 1-1c). Lastly, chronic phage infection (not 

pictured), is a state where phage stably infect the bacterial cell, but continuously 

release progeny into the external environment without host cell death. Such a 

phage state occurs in the filamentous phage of E. coli for example, but does not 

occur in lambdoid (lambda-like) phages (Rakonjac et al., 2011). 
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Figure 1-1. The lytic, lysogenic, and pseudolysogenic cycles of 
bacteriophage. A) In the lytic cycle, phage recognize a specific cellular receptor 
and adsorb to the outside of the bacterium before injecting genetic material, then 
begin genome replication and synthesis of viral proteins. Packaging of genetic 
material into viral proteins forms functional virions, which burst from the cell in 
controlled host lysis. B) In the lysogenic cycle, phage recognize specific bacteria and 
inject their DNA as in A), however do not undergo a viral particle replication 
program. Instead, the prophage genome either integrates into the host chromosome 
or is maintained as a plasmidial element, and replicates in tune with host cellular 
division. C) In the pseudolysogenic state, phage follows the first steps in A) and B), 
however the prophage element is maintained in a non-replicative state, unlike the 
lytic and lysogenic cycles, which remains until changes in the external environment 
prompt a lysis/lysogeny decision. Reprinted from (Feiner et al., 2015) with 
permission. 
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1.2.1 The lytic/lysogenic switch 

The molecular processes governing the lytic/lysogenic switch in l are well studied 

(Casjens and Hendrix, 2015; Ptashne, 2004) (Figure 1-2). Briefly, the decision 

hinges on successful repression of the lytic state by the CI repressor protein. CI 

repressor protein has two core activities: 1) repression of Cro (an activator of the 

lytic cycle), and 2) autoregulation of CI production. Cro and CI have opposite-facing 

genes (5’ ends closest) and share operator regions in their promoters, producing the 

following functional switch. CI protein binds upstream of its encoding gene, 

promoting its own production while simultaneously blocking the promoter for Cro. 

As long as CI is stably produced and maintained, the phage remains in the 

lysogenic state. When cellular DNA damage occurs, RecA (a bacterially-encoded 

protein) becomes activated and promotes the cleavage of CI, preventing CI positive 

autoregulation and the repression of Cro. With CI no longer repressing Cro, the 

lytic cycle activator is now produced and accumulates, binding CI operators, 

repressing CI production, allowing its own production, and activating the 

prophage’s lytic cycle program (Calendar and Inman, 2005). The lytic/lysogenic 

decision for newly infecting phage depends upon levels of another protein, CII, 

which promotes the initial production of CI (Echols, 1986; Ptashne, 2004).  
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1.2.2 Prophage replication 

Replication of prophage is necessary to ensure its survival. In the lysogenic cycle, 

replication allows for phage dissemination to the host’s daughter cells, and for lytic 

phages, the spread to new, uninfected hosts.  For integrated lysogenic prophage, 

this is accomplished during host chromosomal replication, with chromosomes 

containing the prophage genome segregating to each daughter cell. Lysogenic 

plasmidial phages must ensure their own dissemination, and encode genes for their 

replication, equal segregation to daughter cells, and often, anti-curing, plasmid-

addiction systems (Abeles et al., 1984; Łobocka et al., 2004).  

Replication of l (and l-like) phage in the lytic cycle is well-studied and will be 

briefly summarized (Enquist and Skalka, 1978) (Figure 1-2). Following induction 

into the lytic cycle, the prophage excises from the chromosome into the cytoplasm as 

a circular DNA element and begins bi-directional, q-replication, creating multiple 

circular copies of its genome. Following q-replication, unidirectional rolling-circle 

replication generates long, linear prophage concatemers, containing multiple copies 

of prophage genome per DNA molecule. For l, these concatemers are cut at specific 

sites, creating individual phage genomes with single-stranded cohesive ends of DNA 

(cos sites). Genomes are then packaged into phage particles. Other lambda-like 

phages can contain either cos sites or are packaged through an alternative 

mechanism known as headful packaging. Here, a linear concatemer is recognized at 

a “pac”-site, cut, and DNA injected into a phage head until it can no longer contain 
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any more DNA. This is typically about 105% of the phage genome. After the second 

cut, the next phage genome in the molecule is packaged in the same manner until 

the phage head is full, however the resulting phage contains different DNA ends 

than the first phage. This process continues until the rest of the DNA molecule is 

packaged, and results in a phage population that contains terminally redundant 

and circularly permuted genomes.  

The discussion of phage biology thus far has not addressed host impacts of phage 

carriage. Clearly, phage infection (lytic or lysogenic) does not exist in a vacuum, and 

the bacterial cell should not be thought of as merely a factory for phage 

propagation, but rather a dynamic organism that is drastically changed by carriage 

of viruses. The following section discusses a number of the known mechanisms by 

which temperate phage impact and influence their bacterial hosts. 
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Figure 1-2. Overview of the l (and l-like) phage lysis/lysogeny switch and 

replication in the bacterial host. 1), 2) and 3) The lytic and lysogenic cycles 
begin with the same series of steps: phage adsorption to the cell surface, DNA 
ejection from the phage head, and circularization of the genome (for l this is 
achieved through annealing of single-stranded, complementary cos ends). 4) A 
decision is made to enter the lytic or lysogenic cycle, dependent upon levels of CII 
protein. If levels of CII are relatively high, the phage enters the lysogenic cycle, 
typically integrating within the host chromosome via recombination between attB 
and attP sites, and the state stabilized by CI production, also providing 
superinfection immunity. Under inducing conditions, CI is cleaved, allowing Cro 
production, phage excision and exit from the lysogenic cycle. Alternatively, phage 
can enter the lytic cycle immediately following injection of DNA (2). 5) In the lytic 
cycle, phage replicate their genome, first undergoing q-replication resulting in 
multiple circular genome copies, followed by 6) rolling circle replication where long 
linear concatemers containing multiple phage genomes are generated. Then, 7) 
transcription and production of phage structural proteins occurs. Lastly, 8) single 
phage genomes are cut from concatemers, packaged into phage particles, and 9) 
virions released by endolysin-induced cell lysis. Figure reprinted with permission 
from ViralZone and SIB Swiss Institute of Bioinformatics. Ó 2014 ViralZone and 
SIB Swiss Institute of Bioinformatics. 
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1.3 Temperate phage as agents of diversity and benefactors of bacteria 

Temperate phage, especially within the lysogenic cycle, impart important 

advantages to their bacterial hosts. This positive feature of phage infection for the 

bacteria is an evolutionary trade-off: bacteria house elements that can and will 

likely kill them at signs of damage or stress, but they allow better survival and 

adaptation to the external environment than in their absence. The benefits of this 

tradeoff are no doubt why we see so many diverse bacterial species harboring 

lysogenic prophage today. Besides, it is possible that if a bacterium harbors no 

phage, it will be outcompeted by related phage-harboring strains and fail to survive 

regardless. This section outlines some of the ways phage impart benefits to their 

hosts as “benefactors of bacteria”. While the following mechanisms discussed are 

diverse, they all result in the same end goal: generating diversity within bacterial 

species. Phage can drive the diversity of and benefit bacteria through a number of 

mechanisms including: 1) positive (lysogenic) conversion, 2) negative conversion, 3) 

genome diversity and chromosomal rearrangements, 4) lytic induction, and 5) 

transduction and other DNA transfer events. Phage-driven diversity, coupled with 

evolutionary selection, likely accounts for the excellent pathogens many bacterial 

species are today. A discussion of each diversity mechanism follows, however the 

contributions of phage to bacteria are also well reviewed in (Brussow et al., 2004; 

Canchaya et al., 2004; Feiner et al., 2015; Nanda et al., 2015). 



	14 

1.3.1 Positive (lysogenic) conversion 

Perhaps the most impactful role of temperate phage in bacteria is through positive 

(lysogenic) conversion, or the introduction and expression of foreign genes in a 

bacterial host. The genes implicated in lysogenic conversion are often termed 

“morons”, for more DNA on the prophage genome than necessary for survival, 

replication, or establishment of the lysogenic state (Brussow et al., 2004). Any 

connotation of these genes being useless or “moronic” should however be quickly 

dispensed of; as a consequence of selection, morons typically encode important 

virulence determinants or other bacterial fitness factors responsible for survival or 

severe invasive disease (e.g. streptococcal toxins and superantigens) (Beres and 

Musser, 2007)). The term positive conversion itself denotes the bacterial phenotype 

being converted by harboring prophage (i.e. non-lysogenized bacterium: phenotype- 

à lysogenized bacterium: phenotype+). A few important examples of lysogenic 

conversion are discussed below. 

The pathogenicity of S. aureus depends on an arsenal of virulence factors, many of 

which are encoded on temperate prophage genomes (Thammavongsa et al., 2015; 

Thomer et al., 2016). In S. aureus Newman, for example, the strain displays 

severely reduced virulence in a mouse model when cured of its four resident 

prophages (Bae et al., 2006). One of its prophages, fNM3, encodes virulence factors 

including staphylokinase (SAK), staphylococcal enterotoxin A (SEA), chemotaxis 

inhibitory protein of S. aureus (CHIPS), and staphylococcal complement inhibitor 
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(SCIN), and its curing significantly reduces abscess formation. Importantly, fNM3 

is a b-hemolysin (hlb)-converting phage, indicating that while it positively converts 

cells for SEA, SAK, CHIPS and SCIN, it integrates within the gene for another 

virulence factor, hlb, disrupting its transcription, and negatively converting cells 

(i.e., Newman: hlb-/sea+/sak+/scin+/chips+ ; Newman DfNM3: 

hlb+/sea-/sak-/scin-/chips-). Negative conversion will be discussed further in the next 

section.  

 

In Streptococcus pyogenes, prophages carry DNases, hyaluronidases, as well as a 

number of superantigens called SPEs (streptococcal pyrogenic exotoxins), which are 

non-specific T-cell activators that contribute to the symptoms of “Scarlet Fever” 

(Beres and Musser, 2007). Their direct contributions to disease however, have not 

been fully elucidated. Notably, The Rockefeller University was founded following 

the death of John D. Rockefeller Sr.’s grandson from streptococcal disease. Whether 

or not lysogenic conversion is responsible for the foundation of other universities is 

unclear, but it appears we owe it to phage for the development of our home 

institution. 

 

In a distinct manner from strict virulence factor carriage, morons can also encode 

fitness factors (Brussow et al., 2004), including transcription and sigma factors that 

alter the activities of the cell. Lysogeny of B. anthracis by Bacillus spp.-infecting 

phages was shown to alter the pathogen’s biofilm formation capacity, promote 
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earthworm colonization, promote or block sporulation, and induce 

exopolysaccharide coatings on vegetative cells and spore structural changes (Schuch 

and Fischetti, 2009). These phenotypes were found to be mediated by phage-

encoded sigma factors. Whether or not these factors are truly morons with no role in 

the phage lifecycle however, is unclear. Also notable for B. anthracis and the related 

species Bacillus cereus and Bacillus thuringiensis are the findings that while these 

three species have highly related chromosomes, they exhibit markedly different 

phenotypes (Kolstø et al., 2009). In addition, these strains have been shown to 

harbor an array of inducible prophage, suggesting that positive conversion may play 

a role in generating the unique phenotypes among the three species (BUCK et al., 

1963; Kiel et al., 2008). 

While not encoded by morons per se, superinfection immunity (blocking of infection 

by similar phage) may also be considered a feature of lysogenic conversion. 

Typically, superinfection immunity occurs through the production of compatible CI 

repressor, preventing infecting phage from executing a lytic cycle. In some cases, 

however, prophage will encode specialized immunity genes to prevent 

superinfection. E. coli fV10, for example, encodes an O157 antigen-modifying 

enzyme (oac) that alters the fV10 receptor, preventing superinfection (Perry et al., 

2009). 
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1.3.2 Negative conversion 

Negative conversion is not quite the direct opposite of positive conversion, but 

rather is a potential consequence of carrying integrated prophage. Prophage 

integration occurs in various parts of the chromosome (or on resident plasmids) and 

depending upon where prophage integrate, the transcription of genes may be 

interrupted and cells converted to a negative phenotype. As previously mentioned, 

the hlb-converting phages of S. aureus integrate within the b-hemolysin gene, and 

disrupt transcription of the full-length gene product. For S. aureus, the trade-off 

appears evolutionarily favorable, as the phage carries multiple virulence factors, 

and strains containing hlb-converting phages are most commonly associated with 

infection (Coleman et al., 1989; 1991; Goerke et al., 2006). In a similar manner, 

fL54a and related phage of S. aureus integrate within the lipase (geh) gene, 

shutting down its functional production. These phage however, do not appear to 

code for known virulence determinants, morons, or other fitness factors (Lee and 

Iandolo, 1986; Lee et al., 1985). Lipase is a known virulence factor, making the 

evolutionary appeal for phage carriage and associated negative conversion as of yet, 

unclear (Hu et al., 2012).  

In S. pyogenes, a different type of “negative conversion” occurs with the phage-like 

chromosomal island SpyCIM1 (formerly termed f370.4). This prophage-like element 

integrates within the mismatch-repair (MMR) operon on the chromosome, 

negatively converting cells for the loss of MMR activity, resulting in an increase of 
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the cellular mutation rate approximately 200-fold (Scott et al., 2008; 2012). 

Interestingly, this element displays a unique excision/integration pattern dependent 

on cell density, allowing the cell to regain MMR activity while still retaining the 

phage-like element. A more detailed discussion of SpyCIM1 and similarly related 

events in other bacterial species is located in Chapter 3.  

1.3.3 Phage as drivers of DNA sequence diversity in bacteria 

Lysogeny is also a key driver of sequence diversity among strains within a given 

bacterial species. Bacterial pathogens carry essential and non-essential genes, with 

the latter typically involved in virulence and other fitness-associated activities. 

These non-essential genes are typically different among strains, and often are the 

key differences allowing strain differentiation. Fitzgerald et al. report that nearly a 

quarter of the S. aureus genome (22%) encodes such non-essential genes, and it is in 

fact prophage sequences that comprise the majority of these regions. Similar 

patterns are also present in other pathogenic species such as E. coli and 

Helicobacter pylori (Fitzgerald et al., 2001). Such differences in prophage content 

may drive the pathogenicity of select strains and differences in clinical 

manifestations of disease (Goerke et al., 2004; 2006). In S. pyogenes, the majority of 

sequence-level differences among strains and M-types are prophage related (Beres 

and Musser, 2007). M1 and M18 strains differ primarily in prophage sequences 

(Smoot et al., 2002), and the enhanced virulence of the M3 strain MGAS315 is 

speculated to arise from a diverse array of phage-encoded morons that all appear in 
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the poly-lysogenized strain (Beres et al., 2002). The M3 strain in particular is an 

example of an additional method by which prophages can introduce diversity: 

serving as anchor points for chromosomal rearrangements. In the SSI-1 M3 strain 

of S. pyogenes, the presence of two integrated prophage allowed a 1 Mbp 

chromosomal inversion and the generation of this unique strain. The inversion itself 

also resulted in a swap of phage virulence genes, and as a consequence, the strain 

contains novel prophage genomes in addition to altered M3 chromosomal synteny 

(Nakagawa et al., 2003).  

Prophage genomes are arranged in modules, or groups of genes with specific 

functions. Typically these are: lysogeny, DNA replication, transcriptional control, 

DNA packaging, head/tail morphogenesis, lysis, and in some cases, accessory genes. 

This structure allows the rapid swapping of modules between prophage genomes in 

multiply phage-infected cells and the fast evolution of prophage genomes. Such 

exchanges occur because the DNA sequences on module borders tend to be highly 

homologous among phages, while the genes of the modules themselves can be vastly 

different. Thus, phage can easily exchange modules via homologous recombination 

and markedly change their genomes, potentially affecting both their host-range and 

the virulence or fitness of their hosts. For example, if phage “A” with a broad host 

range swaps accessory gene modules with a co-infecting narrow-range phage “B” 

(which encodes potent virulence factors), phage B’s original morons can now rapidly 

disseminate to new strains, or even species. The g-phage of B. anthracis is believed 
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to have undergone such a homologous recombination, exchanging a spore-antigen 

moron for a fosfomycin resistance-encoding gene from f4066 (Schuch and Fischetti, 

2006). A particularly interesting case is seen in the phages SpaA1 and BceA1. These 

phages are nearly identical by sequence, are a chimera of different prophage regions 

from B. thuringiensis and B. cereus, and remarkably, also contain an additional 

complete prophage (MZTP02) in their genomes, in what is termed a “Russian Doll” 

arrangement. BceA1 has a broad host range, capable of infecting Staphylococcus 

pasteuri and B. cereus/B. thuringiensis, however it is unclear if the phage carries 

lysogenic conversion genes that can affect both hosts (Swanson et al., 2012). 

Regardless, these phages represent the extent to which module exchange produces 

novel prophage genomes, generating new elements to affect bacterial hosts. 

1.3.4 Lytic induction of temperate prophage 

The methods by which temperate phage drive diversity and impact hosts discussed 

so far have mainly dealt with phage in the lysogenic cycle. The induction of 

temperate phage into the lytic cycle however, also has a number of consequences 

both on the individual cell and population levels. For individual bacterial cells, 

induction into the lytic cycle likely leads to cell death, and cannot be seen as 

beneficial. On the population level however, limited induction of lysogenic phage 

can be beneficial, especially when the induced phage carry important lysogenic 

conversion genes. Quite often, morons are carried in the late lytic region of the 

prophage genome, such that when phage induction occurs, these genes are 
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significantly upregulated. In S. aureus MSSA476, the hlb-converting phage fSa3ms 

carries sak, sea, and scin, located adjacent to the host lysis cassette. Induction of 

phage by mitomycin C increases transcription of sak and sea, from both native and 

phage lytic cycle promoters (Sumby and Waldor, 2003). In an infection environment, 

fSa3ms induction in a small proportion of the MSSA476 population could provide 

the whole population with increased levels of SEA and SAK, and allow more 

successful infection of hosts.  

 

In a similar manner, pathogenic E. coli harboring Shiga-toxin converting phage (stx 

phage, encoding the Shiga toxin) are found to be induced in mammalian hosts and 

low-iron conditions. The location of the stx gene (controlled by lytic cycle promoters) 

allows its increased expression during phage induction, and phage-mediated lysis of 

E. coli cells allows the release of toxin into the external environment. Shiga toxin 

itself liberates iron from mammalian host cells, and in this case, the sacrifice of a 

few E. coli cells improves conditions for the remainder of the pathogenic bacterial 

population (Nanda et al., 2015). For S. aureus and E. coli, phage induction allows 

clonal populations to diversify into “toxin producing factories” and their 

beneficiaries who will go on to survive. Separate from the increased transcription of 

virulence genes, the controlled induction of temperate phage in Pseudomonas 

aeruginosa allows for the release of DNA and other cellular debris to seed biofilms, 

benefiting the rest of the population (Webb et al., 2003). 

 



	22 

In a distinct manner, induction of temperate phage can also alter populations for 

the selection of phage-resistant variants.  While not benefitting the bacteria 

directly, selection for phage resistance can impart protection against other phages 

present in the environment if they use similar mechanisms for adsorption, entry, or 

replication. In clonal populations, phage reinfection of cells is generally blocked by 

superinfection immunity, however there are reports of successful superinfection by 

Bacillus-infecting phage (BUCK et al., 1963). In these cases, development of phage-

resistance (or keeping a small phage-resistant subpopulation) may benefit the 

whole population, serving as insurance in case of exposure to superinfecting phages. 

In general however, the selection of phage-resistant variants is typically associated 

with negative fitness, and phage-resistant strains often show decreased virulence 

(Filippov et al., 2011; León and Bastías, 2015). In S. aureus, phage-resistant strains 

were found to be attenuated for virulence, and even used for successful vaccine 

development (Capparelli et al., 2010). In E. coli, phage-resistant mutants can lack 

antigenic capsular polysaccharides (Stirm, 1968). Some reports, mainly outside of 

pathogenesis, have shown phage resistance as a potential benefit, with 

Streptoccocus thermophilus resistant variants showing equivalent levels of 

acidifying activity in milk cultures (Binetti et al., 2007). This benefit, however, is 

likely directed toward humans using the strain in industrial fermentations, and not 

bestowed upon the bacteria themselves. Chapter Two details the discovery of a 

phage-resistant mutant in B. anthracis that harbors a unique phenotype without 
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apparent attenuation of virulence potential, challenging the notion that 

development of phage-resistance by genomic alteration results in negative fitness. 

1.3.5 Transduction and other gene transfer events 

Also occurring outside of the lysogenic cycle is transduction, or the transfer of non-

phage DNA by phage. (Virulent phage are also capable of transduction.)  

Generalized or specialized transduction (movement of any DNA versus typically 

phage genome-adjacent or -associated DNA) by phage allows the rapid spread of 

genes that may encode virulence determinants or other fitness factors (e.g. 

antibiotic resistance). In S. aureus, for example, bacteriophage transduction was 

shown to transfer mecA, encoding methicillin resistance (Chlebowicz et al., 2014).  

Such activity becomes increasingly important given the present-day relative ease of 

phage (and pathogenic bacteria as well) to travel to far reaches of the globe. For 

bacteria, phage can serve as an easy delivery system to acquire new sequence 

diversity and functional genes from related strains or species to increase survival, 

fitness, or virulence. 

In addition to these forms of transduction, phages can also serve as helpers for the 

dissemination of other non-self, phage-like elements. One key example is found in 

the phage-like chromosomal islands of S. aureus. S. aureus pathogenicity islands 

(SaPIs) can fill phage heads of a “helper” phage with their own genetic material, 

akin to a hijacker stealing a car. Here, the hijacker (SaPI) gets to its desired 
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destination (uninfected surrounding bacteria), but the owner (the helper phage 

genome) is left behind (Novick et al., 2010). SaPIs have been found to encode for 

virulence factors, including those responsible for toxic-shock syndrome, and phages 

allow their dissemination and generate increased diversity among S. aureus isolates 

(Lindsay et al., 1998). SpyCIM1, the phage-related chromosomal island of S. 

pyogenes is thought to require helper phages as well, but such potential phage 

vehicles have not yet been uncovered (Nguyen and McShan, 2014). 

 

1.4 Exploring phage contributions to the lifestyles of B. anthracis and S. 

aureus 

 

Classifications of phage and bacteria-phage interactions are often thought of in 

broad strokes: virulent versus temperate, lytic versus lysogenic, and concepts of 

positive and negative conversion as 100% absolute. Indeed, this introduction has 

presented some major concepts in this way. Thinking in this manner is useful for 

initially understanding phage biology, however it oversimplifies the vast nature of 

phage and their interactions with bacterial hosts. Recent reports have illustrated 

that a more complex and dynamic relationship exists between bacteria and their 

phages as well as between phages themselves (Goerke et al., 2004; 2006; Swanson 

et al., 2012). The phage-bacteria relationship is estimated to be greater than three 

billion years old (Hatfull and Hendrix, 2011), and no doubt intricacies exist between 

bacteria and phage beyond these broad strokes. The following chapters explore a 

couple of these more atypical, intricate phage-bacteria interactions: the selection 
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and expansion of phage-resistant subpopulations in B. anthracis, and the 

excision/integration dynamics of episomal lysogenic prophage in S. aureus. 

Both projects were initially undertaken to explore potential lysogenic conversion in 

each Gram-positive pathogen. In S. aureus, extra-chromosomal DNA isolation and 

next generation sequencing screened clinical isolates for the presence of rare, 

lysogenic plasmidial phages that could be “hidden in plain sight”. Such work aimed 

to uncover novel phages encoding virulence determinants and lend greater 

understanding into the virulence potential of clinical strains. For B. anthracis, the 

impacts of phage from non-pathogenic environmental sources are well-described 

(Schuch and Fischetti, 2009), however this project sought to help understand how 

lysogenic conversion of B. anthracis by phage from anthrax-endemic environments 

could affect the bacteria, and whether such phage played any role in pathogenesis. 

In both projects, we did not identify novel phage capable of lysogenic conversion, but 

rather, uncovered more subtle, intricate mechanisms by which phage influence 

bacterial hosts. In S. aureus, we find that episomal lysogenic prophage are fairly 

widespread among clinical isolates, and that their excision/integration dynamics 

have important impacts on the host. In B. anthracis, we discover that phage-

resistant subpopulations may play a role in the lifestyle of the pathogen, and 

uncover a phage-resistant variant with a unique and highly unusual phenotype.  

The following Chapters describe these projects, and begin with introductions 

detailing relevant project- and species-specific background information.  
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CHAPTER 2. SELECTION BY PHAGE LYSIS AMPLIFIES A PHAGE-
RESISTANT BACILLUS ANTHRACIS VARIANT SUBPOPULATION WITH 
UNUSUAL AND DYNAMIC PHENOTYPES 

INTRODUCTION 

2.1 A brief overview of B. anthracis biology, the B. cereus sensu lato group, 

and the discovery of B. anthracis-like B. cereus isolates 

Bacillus anthracis is a Gram-positive, spore-forming pathogen that exists as a 

monomorphic species within the Bacillus cereus sensu lato (s.l.) group. This group 

contains six species in total, including B. cereus and B. thuringiensis which are 

highly related to B. anthracis. The three species share a conserved chromosome, 

core set of genes, and an array of chromosomally-encoded virulence factors (Kolstø 

et al., 2009; Radnedge et al., 2003; Zwick et al., 2012). Genomically, B. anthracis is 

distinguished in the group by the presence of four chromosomally-integrated 

prophages (Sozhamannan et al., 2006) and a specific nonsense mutation in the plcR 

(phospholipase C regulator) gene, which encodes a transcriptional activator of 

virulence factors such as enterotoxins, hemolysins, phospholipases, proteases, and 

other extracellular protein-encoding genes (Kolstø et al., 2009). Phenotypically, B. 

anthracis is a non-hemolytic, non-motile, penicillin-sensitive and g-phage sensitive 

species with some of these phenotypes linked to PlcR transcriptional activation. B. 

cereus on the other hand is typically hemolytic, motile, penicillin-resistant, g-phage 

resistant, and encodes a functional PlcR protein. Despite clear phenotypic 
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differences, differentiation between B. anthracis and some B. cereus strains has 

become increasingly difficult with the emergence of pathogenic B. cereus strains 

presenting anthrax-like disease (Brézillon et al., 2015; Hoffmaster et al., 2004; 

Wang et al., 2013). One report however, distinguished B. anthracis, B. cereus, and 

B. thuringiensis on the basis of csaB (cell surface anchoring) gene nucleotide 

sequence analysis, finding the three B. cereus sensu lato species clustered into two 

groups, with all B. anthracis and the majority of mammalian-isolated pathogenic B. 

cereus in one cluster, and B. thurningiensis insect-infecting strains clustered in the 

other (Zheng et al., 2013). The csaB gene itself encodes a pyruvyl-transferase 

essential for Surface-layer (S-layer) and S-layer-associated protein (BSL) anchoring 

to the B. anthracis secondary cell wall polysaccharide (SCWP) (Mesnage et al., 

2000). Specifically, CsaB catalyzes the addition of a ketal pyruvyl group onto the 

terminal N-acetylmannosamine (ManNAc) of the SCWP, allowing the non-covalent 

anchoring of S-layer proteins and BSLs via a surface layer homology (SLH) domain 

(Figure 2-1a) (Anderson et al., 2011; Missiakas and Schneewind, 2017; Soufiane et 

al., 2011).  
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Figure 2-1. B. anthracis SCWP and S-layer structures. A) Molecular structure 
of B. anthracis SCWP. The B. anthracis SCWP contains a repeating backbone of N-
acetylglucosamine-N-acetylmannosamine (GlcNAc-ManNAc) linkages, with b- and 
a-galactose (Gal) substitutions on GlcNAc as shown (Choudhury et al., 2006). The 
terminal unit of the SCWP contains acetylated and ketal-pyruvylated ManNAc, 
with the pyruvyl group serving as an anchor for non-covalent bonding of the S-layer 
proteins Sap and EA1, and in addition, BSLs. B) Diagram of the B. anthracis cell 
envelope. B. anthracis contains a single plasma membrane and peptidoglycan to 
which the SCWP and poly-g-D-glutamic acid capsule are attached. The S-layer 
proteins are attached to the SCWP by non-covalent anchoring of SLH-domains 
(green) to pyruvylated terminal ManNAc (arrow). Figure adapted from (Missiakas 
and Schneewind, 2017) with permission. 
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The B. anthracis S-layer itself has been well-characterized (Etienne-Toumelin et al., 

1995; Mesnage et al., 1997; Missiakas and Schneewind, 2017) and is an important, 

distinguishing feature for B. anthracis and B. anthracis-like pathogenic strains of 

B. cereus (Figure 2-1b). Fagan and Fairweather describe the S-layer as a 

modulating, functional structure allowing the cell to carry out specific activities and 

interactions with its external environment (Fagan and Fairweather, 2014). For B. 

anthracis, the S-layer is chiefly comprised of two proteins, Sap and EA1, which 

cover the cell in a para-crystalline lattice and have demonstrated murein-hydrolase 

activity (Ahn et al., 2006). Twenty-two other BSLs have been confirmed or predicted 

with roles in cell-separation (Anderson et al., 2011), virulence (Kern and 

Schneewind, 2008), and nutrient acquisition (Tarlovsky et al., 2010). These include: 

adhesins (BslA) (Kern and Schneewind, 2008), N-acetylglucosaminidases (BslO) 

(Anderson et al., 2011), amidases (BslS, BslT, BslU, AmiA) (Fagan and 

Fairweather, 2014), b-lactamases (BslM) (Fagan and Fairweather, 2014), and heme-

scavenging proteins (BslK) (Tarlovsky et al., 2010). Clearly, the S-layer is an 

important structure for B. anthracis to execute activities important to its survival 

and pathogenesis (Nguyen-Mau et al., 2012; Oh et al., 2017; Schneewind and 

Missiakas, 2012). Perhaps unsurprisingly, given the number of proteins that 

comprise the S-layer and their total reliance on CsaB-mediated SCWP pyruvylation 

for anchoring (Kern et al., 2010), mutation in csaB carries multiple downstream 

effects on the cell. (Mesnage et al., 2000) describe a B. anthracis csaB knockout 

harboring a phenotype of small convex colonies, clusters of cells that fall to the 
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bottom of tubes in liquid culture, and long chains of twisted cells. This csaB 

knockout was also unable to deposit Sap and EA1 on the cell wall (Mesnage et al., 

2000). Similarly, (Wang et al., 2013) show that BslO is not deposited on the cell 

walls of a B. cereus G9241 csaB mutant. In addition, phage-resistance has also been 

linked to csaB mutation (Bishop-Lilly et al., 2012; van Zyl et al., 2015), with CsaB-

deficient mutants selected for by infection with AP50c phage.   

In addition to the S-layer, the well-described virulence plasmids pXO1 and pXO2 

are key components of pathogenic B. anthracis (Figure 2-2a). The pXO1 plasmid 

encodes for the three anthrax-toxin components: protective antigen (pag), lethal 

factor (lef), and edema factor (cya), as well as the regulator genes atxA and pagR, 

while pXO2 encodes for the poly-g-D-glutamic acid (PDGA) capsule important for 

host immune system evasion (Moayeri et al., 2015; Mock and Fouet, 2001; Young 

and Collier, 2007). Previously, the presence of pXO1 and pXO2 was used to 

differentiate B. anthracis from B. cereus and B. thuringiensis. It is now recognized 

however, that the presence of these plasmids is not solely B. anthracis-specific 

(Kolstø et al., 2009). A number of B. cereus disease-causing isolates with anthrax-

like pathogenesis have been found to carry the highly homologous virulence 

plasmids, pBCXO1 and pBCXO2. G9241 is one such isolate, harboring pBCXO1 

with 99.6% sequence similarity over homologous regions to pXO1, and encodes pag, 

lef, cya, atxA and pagR (Figure 2-2b) (Hoffmaster et al., 2004; 2006; Oh et al., 2011). 

Other B. cereus isolates harbor both pBCXO1 and pBCXO2 (Leendertz et al., 2006). 
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B. cereus Biovar anthracis CA harbors both plasmids and is a B. anthracis-like 

strain isolated from the carcass of an ape believed to have died of anthrax infection 

in Cameroon (Brézillon et al., 2015). B. cereus bv anthracis CA, herein referred to as 

“CA”, straddles the classic boundaries of B. anthracis and B. cereus (Klee et al., 

2010). The strain encodes both the B. anthracis-associated PDGA capsule on 

pBCXO2 as well as a hyaluronic acid capsule on pBCXO1 via functional hasA, 

which is typically mutated in B. anthracis (Figure 2-2c).  

(Klee et al., 2006) describe unusual phenotypes in the initial report of the CA strain, 

where colonies at 24 hours growth displayed typical B. anthracis phenotypes 

including: non-hemolytic, rough-edged colonies with grey-green coloring and 

“Medusa heads” (curled projections at the colony edge), but after 48 hours growth, 

the same colonies were found to have transitioned and displayed a smooth, shiny 

phenotype with a yellow-green center, and in addition were smaller than that of 

classic B. anthracis. Subclones of single CA colonies were found to repeatedly 

display a mix of phenotypes, including some small, smooth colonies with b-

hemolytic activity (a hallmark of B. cereus) and sensitivity to g-phage (a hallmark of 

B. anthracis) (Klee et al., 2006). In addition, CA cells contained twisted, corkscrew-

like morphologies, atypical of B. anthracis (Figure 2-3). A summary of CA’s 

characteristics is presented in Table 2-1. The CA strain represents an unusual 

hybrid of B. anthracis and B. cereus, possessing phenotypic hallmarks of both 

species (Kamal et al., 2017; Klee et al., 2006; 2010), while also displaying unusual 
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behavior where subclones of the same colony possess different phenotypes. CA 

represents a unique, disease-causing, anthrax-presenting isolate; research 

described later in this Chapter details efforts to uncover the role and contributions 

of phage to its unusual characteristics and lifestyle. 

Table 2-1. Phenotypes of B. cereus bv anthracis CA, B. anthracis, and B. 
cereus. 

Microbiological 
characteristic 

Result 
B. cereus bv 

anthracis CA 
B. anthracis B. cereus 

Primary 
culture 

Subculture 

Hemolysis − +/− − + 
Motility + + − + 

Susceptibility to g-phage − +/− + − 

Penicillin G R R S R 
Capsule + +/− + Absent in 

vitro 

S, sensitive; R, resistant; −, negative; +, positive; +/−, some subclones positive, 
others negative.  

Table adapted and reprinted with permission from (Klee et al., 2006). 
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Figure 2-2. The plasmids and outer cell structures of B. anthracis, B. cereus 
G9241 and B. cereus BV anthracis CI. A) B. anthracis harbors virulence 
plasmids pXO1 and pXO2, encoding the anthrax toxin genes pag, lef, cya as well as 
the regulator atxA. It contains a poly-g-D-glutamic acid capsule and functional S-
layer. B) B. cereus G9241 harbors pBCXO1, highly homologous to pXO1, however it 
encodes functional hasA. It does not encode for a pXO2-like plasmid. Consequently, 
it produces anthrax toxin, as well as a hyaluronic acid and B. cereus-specific 
capsule, but not PDGA. C) B. cereus Biovar anthracis CI is a unique African isolate 
highly homologous to CA, which encodes pXO1- and pXO2-like virulence plasmids. 
It produces anthrax toxin, poly-g-D-glutamic acid capsule. and via functional hasA, 
hyaluronic acid capsule. Figure used with permission from (Missiakas and 
Schneewind, 2017). 
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Figure 2-3. Atypical cellular morphologies of B. cereus Biovar anthracis 

CA. CA has unique cellular morphologies with twisted, corkscrew-like cells seen in 
(A). In addition, clear cell division septa are not apparent. Typical B. anthracis (B) 
contains straight, rod-like cells with clear division septa. The unique structures 
seen in (A) are rarely found (arrows) on B. anthracis cells. Figures reprinted with 
permission from (Klee et al., 2006). 

2.2 Role of phage in B. anthracis 

The roles of phage in B. anthracis are unique from those of other Gram-positive 

pathogens, in that they are traditionally not associated with virulence. In S. aureus, 

lysogenic conversion imparts the bacteria with factors important for pathogenicity 

(Bae et al., 2006), while in S. pyogenes, prophage also encode factors thought to be 

crucial to virulence (Beres and Musser, 2007), however a direct link in vivo has not 

yet been made. Why a similar role for phage in the Gram-positive pathogen B. 

anthracis is not seen is unclear. However, the difference could be perhaps attributed 

to B. anthracis’s virulence plasmids, which may supply sufficient virulence 

determinants for successful infection, rendering such a phage role unnecessary. 

A B
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Despite seemingly no role in virulence, phage have been well-studied in the B. 

cereus sensu lato group (reviewed in (Gillis and Mahillon, 2014)). Such research 

however, has typically focused on their host-range and structural characteristics. A 

brief review of the phages of the B. cereus s.l. group (and in particular, B. anthracis) 

follows. 

The phages of the B. cereus s.l. group belong to the Myoviridae (large phage with 

contractile tails), Siphoviridae (phage with non-contractile tailes), Podoviridae 

(phage containing short non-contractile tails), and Tectiviridae (tailless phage 

containing spikes) families. Many phages in the group have broad host ranges and 

can infect B. anthracis, B. cereus, and B. thuringiensis, and also serve as 

transducing agents for HGT (Gillis and Mahillon, 2014). Other phages however, are 

specific to B. anthracis. Foremost are the chromosomally-integrated prophages 

(lambdaBa01-lambdaBa04) that distinguish B. anthracis from B. cereus and B. 

thuringiensis. Interestingly however, these phages cannot form viable virions and 

lyse cells. Their effects on the host are to date, unclear (Sozhamannan et al., 2006). 

A well-studied non-integrating B. anthracis-infecting phage is the gamma (g) phage. 

The g-phage, and related phages (known as g-like phages) are virulent phages 

highly-specific for B. anthracis (but also a few B. cereus strains) that are believed to 

have originated from the temperate phage Wb and are used for strain typing 

(Schuch and Fischetti, 2006). f20 is a plasmidial temperate phage isolated from B. 

anthracis Sterne (containing the pXO1, but not pXO2 virulence plasmid), however 
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its sequence is unknown as are any of its effects on the bacteria (Inal and 

Karunakaran, 1996).  

Some studies have examined lysogens for phenotypic changes associated with phage 

carriage, however are limited in scope. One early study found capsule-producing B. 

anthracis displayed no difference in a mouse model of virulence between strains 

lysogenized or not lysogenized with phage b. The same strain lysogenized with the 

close relative phage a however, showed decreased virulence, and the phage was 

found to induce into the lytic cycle and lyse cells when exposed to sodium 

bicarbonate and high CO2 levels. It was believed that the decreased virulence of a-

infected cells was due to phage induction occurring in vivo (Iyanovics, 1962). 

Regardless in either case, lysogeny was associated with either no change or 

decreased virulence of B. anthracis, effects typically not associated with phage 

carriage. In another report, the B. anthracis-infecting phage AP50 was found to 

convert colonies to a flat, wrinkled phenotype (Sozhamannan et al., 2008). Recently, 

a lytic variant of the phage, AP50c, was found to select for resistant mutants in a B. 

anthracis population. Resistant mutants all contained inactivating mutations in 

csaB, the pyruvyl-transferase encoding gene, and displayed a mucoid phenotype 

associated with csaB mutation (Bishop-Lilly et al., 2012). While AP50, a, b, f20 and 

lambdaBa01-04 can lysogenize B. anthracis, detailed study of their potential 

impacts on the bacteria’s lifestyle has not been carried out.   
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In general, the effects of phage carriage on B. anthracis are not well-described. One 

recent report from the Fischetti Laboratory has however, provided examples of 

phage-mediated contributions to the B. anthracis lifestyle (Schuch and Fischetti, 

2009). In this report, phages isolated from soil environments were found to stably 

lysogenize B. anthracis, and resulting lysogens harbored new phenotypes promoting 

long-term vegetative survival. Phage promoted biofilm formation, earthworm 

colonization, vegetative cell changes, and also blocked sporulation, enabling long-

term vegetative cell survival outside of an animal host (an environment where cells 

typically sporulate). Some phages, surprisingly however, increased sporulation. 

Regardless, in both cases, phenotypes were found to be driven by phage-encoded 

sigma factors (Schuch and Fischetti, 2009). For B. anthracis, lysogenic conversion 

appears to be crucial in controlling outside-host vegetative cell survival, and stands 

in contrast to typical virulence-associated lysogenic conversion in other pathogens 

(Figure 2-4). 
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Figure 2-4. Phage-mediated lifestyle changes of B. anthracis. Lysogeny of B. 

anthracis by phage from soil-environments can control vegetative cell survival after 
mammalian host death. Phage can promote long-term soil survival by enabling 
biofilm formation, earthworm colonization, cell-surface changes, and by blocking 
sporulation. Other phages however, can promote sporulation in typically 
asporeagenous conditions. Both changes are driven by phage-encoded sigma factors. 
Reprinted with permission from (Schuch and Fischetti, 2009). 
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2.3 How do phage from anthrax-endemic areas affect B. anthracis? 

While the report by Schuch and Fischetti lent critical insights into the roles of 

phage for B. anthracis, it also reinforced the notion that phage do not play a major 

role in the pathogen’s virulence, with phages promoting post-disease vegetative soil 

survival, and the phages used in the study themselves isolated from non-anthrax 

endemic areas (potting soil, earthworm guts, and fern root systems) (Schuch and 

Fischetti, 2009). No studies thus far have examined how phage from anthrax 

contamination zones in particular may affect the Gram-positive pathogen, and if 

they play any role in the virulence of the organism. The following research explores 

this question and describes how a phage induced from the unusual disease-causing 

isolate B. cereus Biovar anthracis CA alters the well-characterized Sterne strain of 

B. anthracis.  

For this study we induced a novel phage (fBACA1) from the pathogenic strain B. 

cereus Biovar anthracis CA, and exposed Sterne to the phage, finding that fBACA1 

could infect B. anthracis Sterne, and that phage exposure selected for a resistant 

variant which displayed unusual and distinct phenotypes surprisingly similar to 

those of the phage’s parent strain, CA. In the following sections, we show that 

infection with fBACA1 selects for a B. anthracis csaB mutant, a gene target with 

high homology between B. anthracis and B. anthracis-like B. cereus pathogenic 

strains (Zheng et al., 2013), with the mutant harboring the phenotype previously 

reported including: long chains of twisted cells, small convex colonies, and clump-
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like growth in liquid culture (Bishop-Lilly et al., 2012). We also describe however, 

novel csaB mutant characteristics in Sterne, including hemolytic activity, small 

colonies without rough edges or “Medusa heads”, the appearance of multi chain 

rope-like bacilli, and altered biofilm formation capacity. In addition, we examine the 

virulence of the csaB mutant and describe a growth media-induced phenotypic 

switch where the csaB mutant displays markedly altered phenotypes in rich media 

versus animal host or serum growth environments, and characterize these 

transcriptional changes via RNA-seq. Lastly, we link the observed csaB mutant 

phenotype in Sterne to that reported for B. cereus bv anthracis CA, uncovering by 

deep-sequencing a subpopulation of csaB mutants in a CA genomic sample. Taken 

together, this research suggests that lytic phage-bacteria interactions (in addition to 

lysogeny) may be an important factor shaping populations of Bacillus anthracis and 

B. anthracis-like pathogenic species in the wild. 



	42 

RESULTS 

2.4 Exposure of B. anthracis Sterne to an anthrax-derived phage identifies 

a Sterne variant with distinct phenotypes 

This study aimed to understand the effects of induced phage from disease-causing 

isolates of B. anthracis and B. anthracis-like species on the well-characterized 

strain B. anthracis Sterne. B. cereus Biovar anthracis CA, a unique anthrax-like 

strain isolated from an infected ape carcass in Cameroon (Klee et al., 2006), was 

cultured with mitomycin C to induce potential prophage.  We incubated Sterne with 

an induced and purified phage from CA, termed fBACA1, and found the resulting 

colonies to harbor a markedly different phenotype after phage exposure. We then 

purified this variant strain, termed Sterne::fBACA1, for further phenotypic 

analysis.  

On BHI plates, Sterne::fBACA1 colonies were smooth, mucoid, and smaller than 

Sterne, did not contain rough edges or “Medusa heads”, and were not easily 

removable with pipet tips or loops; they would stick to plates before being pulled off 

whole (Figures 2-5a and 2-5b). On Columbia blood agar, Sterne::fBACA1 culture 

spots contained a yellow-green center, maintained their smaller size as compared to 

Sterne, and after >24 hrs growth at 37°C, displayed b-hemolytic activity in the 

center of the culture spots (Figure 2-5c) (Table 2-2).  
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In liquid BHI culture, Sterne::fBACA1 settled to the bottom of tubes resulting in 

clear supernatants, while Sterne displayed a uniform turbid culture (Figure 2-5d). 

By microscopy, Sterne::fBACA1 displayed its most remarkable characteristics, 

including increased chain length, a lack of clear division septa, and twisted 

corkscrew-like cellular morphologies similar to structures described for CA (Klee et 

al., 2006) (Figure 2-6). In addition, we observed the appearance of highly organized, 

multi-chain rope-like structures. These structures were observed in static and 

shaken liquid cultures. Staining with acridine orange and DAPI revealed both the 

organized nature of these structures and that cellular division and partitioning of 

DNA was occurring despite no visible division septa (Figure 2-6). The rope like 

structures would often converge at nodes connecting the culture as one contiguous 

mass (Figure 2-7).  

Table 2-2. Phenotypic comparisons of B. anthracis Sterne and 
Sterne::fBACA1. 

Strain Rough-
edged 

colonies 

Hemolysis DNase 
activity 

g-phage 
susceptibility 

Penicillin 
sensitivity 

Motility Sporulation 

Sterne + - + + S - + 
Sterne:: 

ΦBACA1 
- + + + S - + 

(+) Positive for trait 
(-) Negative for trait 
(S) Penicillin sensitive 
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Figure 2-5. B. anthracis Sterne exposed to fBACA1 displays atypical B. 

anthracis phenotypes.  A) Comparison of Sterne (left) and phage-exposed Sterne 
(right) on BHI agar plates. Sterne colonies display rough edges with larger colony 
size. Phage-exposed Sterne colonies display more compact and smaller colonies with 
smooth edges. B) Photograph of individual Sterne (left) or phage-exposed Sterne 
(right) colonies. Sterne colony contains weak borders with a dense colony center; 
phage-exposed Sterne displays a tight colony border and is of uniform density 
throughout. C) Culture spots of Sterne (left) and phage-exposed Sterne (right) 
grown on 5% sheep blood agar at 37°C. Sterne does not display hemolytic activity, 
while phage-exposed Sterne displays hemolytic activity in the middle of the colony 
and yellow-green color; D) Sterne (left) and phage-exposed Sterne (right) grown in 
liquid BHI culture at 30°C. Sterne culture is uniformly turbid, while phage-exposed 
Sterne culture grows as one bacterial mass settled at the bottom of the culture tube, 
with the surrounding media clear. 
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Figure 2-6. B. anthracis Sterne::fBACA1 harbors phenotypes similar to B. 

cereus Biovar anthracis CA and grows in unique, rope-like multi-chain 
structures.  A) B. anthracis Sterne grown in liquid culture displays chains with 
clear division septa. B) B. anthracis Sterne::fBACA1 grows with an abnormal 
twisted morphology. C) B. anthracis Sterne::fBACA1 grows in longer multi-cell 
chains without clear division septa as compared to Sterne. D) B. anthracis 
Sterne::fBACA1 grows in organized, rope-like, multi-chain structures. E) (top) 
phase-contrast image of Sterne::fBACA1 rope-like structure does not show clear 
division septa; (bottom) Sterne::fBACA1 stained with DAPI shows DNA-
partitioning and cellular division within multi-cell chains. All images captured at 
1000X magnification, except C at 400X. 
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Figure 2-7. B. anthracis Sterne::fBACA1 displays unique growth 

characteristics. A) (top) Sterne::fBACA1 robust rope-like structure with phase-
contrast microscopy; (bottom) Sterne::fBACA1 stained with acridine orange reveals 
clear division septa and organization of the rope-like structure (captured at 1000X 
magnification). B) Representative example of a Sterne::fBACA1 “node” in liquid 
culture, where multiple rope-like structures converge (captured at 100X 
magnification). 

A

B

Supplemental Figure 1
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We also tested Sterne::fBACA1 for DNase activity, susceptibility to g-phage, 

penicillin resistance, motility, sporulation, and biofilm formation. Sterne::fBACA1 

and Sterne did not show penicillin resistance or motility as compared to the positive 

control B. cereus T. Sterne and Sterne::fBACA1 were also sensitive to g-phage and 

did not show qualitative differences in DNase activity nor significant differences in 

sporulation (Table 2-2). Sterne::fBACA1 differed in biofilm formation capacity 

compared to Sterne, with the variant strain displaying no biofilm formation at 

room-temperature (RT) or 30°C until 10 weeks, whereas Sterne was capable of 

forming biofilms at earlier time points. However, both Sterne and Sterne::fBACA1 

formed equivalent biofilms at similar time points at 37°C with or without glucose 

(Table 2-3). Sterne::fBACA1’s inability to form a biofilm at RT and 30°C may arise 

from its sticky and clump-like growth, preventing sufficient cellular seeding at the 

liquid-air interface.  
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Table 2-3. B. anthracis biofilm formation capacities. 

3 weeks RT RT + 

glucose 

30°C 30°C + 

glucose 

37°C 37°C + 

glucose 

Sterne - - + ++ +++ +++ 

Sterne::fBACA1 - - - - ++ +++ 

6 weeks 

Sterne - +++ ++ ++ - +++ 

Sterne::fBACA1 - - - + - +++ 

10 weeks 

Sterne + +++ ++ + - ++ 

Sterne::fBACA1 + - - +++ + +++ 

Biofilms were scored weekly for strength/robustness. Scoring key: (-) no biofilm; (+) 
weak growth; (++) medium growth; (+++) strong growth. 

2.5 Sterne::fBACA1 is not lysogenized by fBACA1 

Sterne::fBACA1 had a unique phenotype, and we were curious to understand the 

genomic changes, if any, responsible for its novel characteristics. Re-exposure of 

Sterne::fBACA1 to fBACA1 stocks did not result in cell lysis on plates or in liquid 

cultures, indicating that the variant strain was resistant to infection. Phage-

resistance can occur, in part, due to lysogeny, receptor modification, or other 

genomic changes in the organism. To test if Sterne::fBACA1 was indeed lysogenized 

with fBACA1, we first sequenced the genomic DNA of fBACA1 to allow for 

construction of PCR screening primers. De novo assembly of phage DNA reads 

resulted in two contigs that had a 16 base-pair overlap. RAST and PHASTER 
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analysis of joined contigs predicted an intact prophage element, with Siphoviridae-

like genome organization, and gene sequences commonly resembling those of other 

Siphoviridae phages by BLAST analysis. We did not complete the fBACA1 genome, 

however the de novo assembled contigs of the prophage element are available in 

Appendix 1.  We used this contig sequence to design PCR primers (phiBACA1_F, 

phiBACA1_R) to probe for phage-specific sequence in Sterne and Sterne::fBACA1 

by PCR. Surprisingly, no fBACA1-product was detected in Sterne or 

Sterne::fBACA1, while the phage stock as positive control produced the predicted 

product. Southern blots of whole genome DNA preparations from Sterne and 

Sterne::fBACA1 were also negative for fBACA1 DNA (data not shown).  

2.6 DNA sequencing reveals a single-nucleotide insertion responsible for 
Sterne::fBACA1 phenotypes and fBACA1-resistance 

Results from the PCR and Southern blot experiments indicated Sterne::fBACA1 is 

not lysogenized with fBACA1 and that Sterne likely undergoes selection for phage-

resistant variants upon fBACA1 exposure. Separately, we were able to transiently 

lysogenize Sterne with fBACA1 after repeated attempts, but the lysogens grew very 

weakly on plates and in liquid culture. Restreaking these lysogenic colonies on BHI 

agar often resulted in no growth or colonies that had Sterne::fBACA1-like 

phenotypes. Therefore Sterne can carry fBACA1, however unstably under our 

conditions, with ultimate selection for fBACA1-resistant Sterne variants. 
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To understand the genomic background of Sterne::fBACA1’s phage-resistance and 

its associated phenotypes, we sequenced Sterne and Sterne::fBACA1 for direct 

comparison. De novo assembly of reads from Sterne::fBACA1 did not reveal any 

novel elements nor reads corresponding to fBACA1, supporting PCR and Southern 

blot data that the variant strain is not lysogenized with the phage. However, two 

single nucleotide insertions in Sterne::fBACA1 were uncovered by comparing read 

alignments of the chromosome: a (G)4à(G)5 insertion at position 1,730,529, and an 

(A)7à(A)8 insertion in position 1,710,151 of the chromosome (Table 2-4). Both 

insertions were confirmed by Sanger sequencing. The A(7)àA(8) insertion is in the 

3’ end of a tRNA methyltransferase, and is predicted to change the amino acid 

sequence of the protein product from …KGSFSRQILVCE* to …KRIIF*. It is 

unclear if or how truncation and alteration of the gene product may affect its 

activity. The (G)4à(G)5 insertion lies in the 5’ region of the csaB gene, a pyruvyl-

transferase that acts on the SCWP. The specific (G)4à(G)5 insertion that 

Sterne::fBACA1 harbors appears to be a “hotspot” of mutation in csaB as it has 

previously been implicated in B. anthracis AP50c phage resistance (Bishop-Lilly et 

al., 2012), with AP50c phage unable to adsorb to the csaB mutant’s cell surface. 

Both the AP50c-resistant variant and the fBACA1-resistant variant from this 

current study appear to encode a truncated, inactive CsaB protein (Table 2-4).  
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Table 2-4. Genomic alterations uncovered in Sterne::fBACA1 by whole-

genome DNA sequencing. 

Position Change Type Frequency Coverage P-

Value 

Result 

1730529 (G)4 ® 
(G)5 

Insertion 98.2% 338 0 Frameshift 
mutation 

(truncation of 
CsaB protein) 

1710151 (A)7 ® 
(A)8 

Insertion 97.1% 383 0 Frameshift 
mutation (7 AA 

truncation of 
tRNA 

methyltransfer
-ase protein) 

From our sequencing, Sterne::fBACA1 appears to be a csaB mutant that harbors a 

number of reported phenotypes linked to CsaB deficiency, including long bacterial 

chains, twisted cells, and clumping in liquid culture. However, we also report 

additional phenotypes for the fBACA1-selected csaB mutant, including: rope-like 

multi-chain structures, hemolytic activity with small, yellow-green culture spots on 

SBA plates, and resistance to the phage fBACA1. Since no lysogeny was proven to 

exist, we will refer to Sterne::fBACA1 as Sterne dcsaB for the remainder of this 

Thesis. To definitively link fBACA1 resistance and the observed Sterne dcsaB 

phenotypes to csaB and not the single-nucleotide insertion in the tRNA-

methyltransferase, we reverted the (G)4à(G)5 mutation, while leaving intact the 
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(A)7à(A)8 insertion.  Successful construction of the strain was confirmed by Sanger 

sequencing and the strain termed Sterne comp-csaB.  

 

Comp-csaB phenotypes were Sterne-like and reversed those from dcsaB. By 

microscopy, comp-csaB cells had short chain lengths, clear division septa, and the 

absence of any twisted cells or rope-like multi-chain structures. Sterne comp-csaB 

had larger colonies with rough edges and “Medusa heads” on BHI agar, and culture 

spots did not display hemolytic activity (Figure 2-8). BHI liquid cultures of Sterne 

comp-csaB were turbid and similar to Sterne. Biofilm and sporulation analysis of 

the revertant strain did not show qualitative differences in biofilm formation 

capacity, nor significant differences in sporulation (data not shown). In addition, 

sensitivity to fBACA1 was regained in comp-csaB (Figure 2-8). The reversion of 

distinct dcsaB phenotypes observed in comp-csaB therefore links a number of 

reported (Mesnage et al., 2000) and newly discovered pleiotropic effects to the csaB 

gene. The single-nucleotide insertion in the tRNA-methyltransferase does not result 

in observable phenotypes different from Sterne, however we cannot rule out their 

existence. Notably, B. anthracis strains resistant to AP50c phage via csaB mutation 

were also shown to harbor additional SNPs in their genomes (Bishop-Lilly et al., 

2012); the roles and geneses of these mutations are unclear. 
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Figure 2-8. B. anthracis comp-csaB displays Sterne-like phenotypes. A) 
Sterne comp-csaB visualized under phase-contrast microscopy displays short chains 
and the absence of multi-chain structures (captured at 100X magnification). B) 
Sterne comp-csaB shows clear division septa (captured at 1000X magnification). C) 
A single Sterne comp-csaB colony on BHI agar displays a Sterne-like rough edge. D) 
Sterne and Sterne comp-csaB are sensitive to infection by fBACA1; Sterne dcsaB is 
resistant. All strains grow with PBS spotted as a negative control. E) Sterne, Sterne 
dcsaB, and Sterne comp-csaB grown on Columbia 5% sheep blood agar display 
different growth phenotypes. F) Sterne and Sterne comp-csaB culture spots do not 
display hemolytic activity, whereas Sterne dcsaB displays hemolytic activity in the 
center of growth. RN4220 is included as a positive control for hemolysis. 
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2.7 Sterne dcsaB does not show altered virulence potential in a mouse 
model, and exhibits an altered phenotype in the infection environment 

As the mutant Sterne dcsaB exhibited a distinct phenotype, we tested whether a 

csaB mutation event would affect the virulence potential of Sterne. We compared 

the virulence of Sterne and Sterne dcsaB in a mouse bacteremia model. Since 

Sterne dcsaB had longer chain lengths than Sterne, we normalized the two strains 

to ensure equivalent bacterial dosing. We determined that Sterne dcsaB chain 

length was on average 5-6-fold longer than Sterne under the conditions used for this 

experiment, and therefore Sterne dcsaB was injected at a 5-6-fold lower CFU/mL 

dose. Normalized Sterne and Sterne dcsaB did not show a significant virulence 

difference between survival curves in survival percentage or median time to death 

(P = 0.3450, Figure 2-9). 

Figure 2-9. Survival curves of Sterne and Sterne dcsaB from mouse 
infection model. 

Sterne (n = 12)
Sterne dcsaB (n = 12)
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While Sterne dcsaB did not show altered virulence potential in our animal model, 

we were curious if or how the rope-like structures might contribute to disease, and 

examined various mouse organs 48 hours after initial infection. GFP-PlyGBD 

visualization of bacilli by microscopy surprisingly did not reveal the long chain, 

rope-like structures typical of the variant grown in BHI, but rather shorter chains 

and dispersed bacteria resembling Sterne (Figure 2-10a). Occasionally we observed 

longer-chain rope-like structures and cells with corkscrew-like twisted 

morphologies, however they did not comprise the majority of visualized Sterne 

dcsaB cells (data not shown). We also passaged Sterne dcsaB directly from infected 

tissues into liquid BHI culture for growth at 37°C overnight. Remarkably, these 

cultures harbored the phenotype initially observed with long chains of cells, rope-

like multi-chain structures, cells with a lack of clear division septa and 

corkscrew/twisted morphologies (Figure 2-10b). The distinct change in growth 

characteristics of Sterne dcsaB in mouse tissues as compared to BHI suggested a 

phenotypic switch dependent upon the bacteria’s external environment.  
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Figure 2-10. B. anthracis Sterne dcsaB displays a unique and reversible 
phenotype in the infection environment. A) Sterne dcsaB extracted from 
mouse kidney, labeled with GFP-PlyGBD displays Sterne-like morphology and chain 
lengths (captured at 200X magnification). B) Reculturing Sterne dcsaB from the 
mouse into liquid BHI reveals long-chain, rope-like bacterial structures and twisted 
morphologies (captured at 100X magnification). 

2.8 Sterne dcsaB grown in fetal bovine serum displays a similar phenotype 
as observed in mouse tissues   

Results from mouse infection experiments suggested that the animal host 

environment induces a switch that alters the phenotype of the variant Sterne dcsaB 

strain. To mimic this growth outside the mouse, we cultured Sterne dcsaB in fetal 

bovine serum (FBS). Sterne dcsaB in FBS displayed turbidity similar to that of 

Sterne, without the appearance of any bacterial clumping or masses. By microscopy, 
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cells resembled Sterne: short chains with clear division septa, and the total absence 

of any multi-chain or rope-like structures (Figure 2-11).  While we observed 

occasional disorganized clusters of cells in the Sterne dcsaB FBS culture, we 

observed similar structures to the same degree with the Sterne FBS culture.  

Figure 2-11. Sterne dcsaB in FBS harbors Sterne-like and similar 
phenotypes to those seen in mouse infection. A) B. anthracis Sterne (left) and 
Sterne dcsaB (right) grown in FBS at 37°C display similar phenotypes (captured at 
100X magnification). B) (left and right) Sterne dcsaB displays clear division septa in 
FBS culture and a distinct phenotype as compared to BHI growth (images captured 
at 1000X (left) and 100X (right) magnifications). 
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Sterne dcsaB in Figure 2-11 was grown in FBS at 37°C to mimic temperatures in 

the mouse. Interestingly, when we cultured dcsaB in liquid BHI at 37°C, we 

normally observed growth of the strain as a single mass, but occasionally, the 

bacteria would disperse and grow as a turbid culture. When grown in BHI at 30°C 

however, we did not observe this behavior; Sterne dcsaB cultures always remained 

as one mass at the bottom of tubes with a non-turbid, clear supernatant (Figure 2-

12). Growth in FBS at 30°C did not alter the observed serum phenotypes of Sterne 

dcsaB, however 36 hours of growth was required for the entire culture to be devoid 

of any bacterial clumps or masses.   

Figure 2-12. B. anthracis Sterne dcsaB displays different growth 
characteristics in BHI liquid culture at 30°C versus 37°C. Labeled liquid 
culture tubes of Sterne dcsaB show characteristic “clumped” growth in BHI at 30°C, 
and occasionally observed turbid growth in BHI at 37°C. Sterne dcsaB grown in 
FBS at 37°C, in which turbidity was always observed, is shown for reference.  

o o o
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Using this temperature-based growth characteristic of dcsaB, we examined the 

minimum FBS dose necessary to observe the growth media-induced phenotypic 

switch by culturing Sterne dcsaB in increasing ratios of BHI:FBS at 30°C. Cultures 

showed higher turbidity with increased concentrations of FBS, with a complete loss 

of the BHI-associated phenotype at a 90:10 BHI:FBS ratio, suggesting that serum-

derived factors are too dilute to elicit a phenotypic switch below a 10-fold dilution 

(Figure 2-13).  

Figure 2-13. FBS induces phenotypic changes in B. anthracis Sterne dcsaB 

in a dose-response-like manner. BHI:FBS mixed media cultures of Sterne dcsaB 

ranging from 100:0 BHI:FBS to 0:100 BHI:FBS. Cultures display little to no 
turbidity from 100% to 90% BHI by volume, but become increasingly turbid and 
uniform as % FBS increases. 
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In addition, growth of Sterne dcsaB in 85°C heat-treated FBS displayed similar 

phenotypes and morphologies to growth in non-heat-treated FBS, suggesting that 

heat labile factors are not responsible for the observed switch (Figure 2-14). 

Preliminary fractionation experiments to uncover the serum factor(s) responsible 

suggested multiple components may be at play for the phenotypic switch, but we did 

not characterize these factors for this study; experiments are ongoing for their 

future discovery and purification (Appendix 2).  

Figure 2-14. B. anthracis Sterne dcsaB grows in turbid culture in heat-
treated FBS.  Sterne dcsaB was grown in heat-treated FBS and observed for 
growth phenotypes and morphologies. A) Sterne dcsaB grown in heat-treated FBS 
at 37°C displays short chains and the absence of multi-chain structures, with 
similar growth to that of FBS culture (captured at 100X magnification). B) Sterne 
dcsaB grown in heat-treated FBS shows clear division septa and short chains 
(captured at 1000X magnification).  
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2.9 RNA-seq reveals global gene expression differences between Sterne 
and Sterne dcsaB in BHI and FBS growth environments 

The distinct phenotypes of Sterne dcsaB suggested there may be large-scale gene 

expression changes due to csaB mutation and the bacteria’s external environment. 

In addition, we hypothesized that differential expression (DE) between Sterne and 

Sterne dcsaB may be occurring to a greater degree in BHI than FBS due to the 

disparate BHI-associated phenotypes observed. We designed an RNA-seq 

experiment to test these hypotheses and compare gene expression patterns between 

and within Sterne and Sterne dcsaB grown in BHI or FBS media, resulting in four 

group comparisons: 2 of genotype (Sterne against dcsaB in BHI and FBS), and 2 of 

growth condition (Sterne or dcsaB BHI against FBS). RNA-seq was carried out as 

described in Materials and Methods, and a summary of the differential expression 

data is presented in Tables 2-5a and 2-5b; the full data set is given in Appendix 3. 

Our RNA-seq experiment revealed several changes associated with both genotype 

and growth condition. Despite imparting strict limits on calling DE due to the 

number of sample replicates, our 4 group comparisons yielded a percentage range of 

called DE genes from 10.94 - 56.56% of the genome. CsaB mutation has a noted 

pleiotropic effect on the bacterial cell (Mesnage et al., 2000); by RNA-seq, it also 

appears to fundamentally alter its transcriptome. 
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Table 2-5a. B. anthracis Sterne and Sterne dcsaB whole-genome 
differential expression (DE) summary. 

Group 

Comparison 

(A vs. B) 

#  downregulated 

DE genes (in A) 

# upregulated 

DE genes (in A) 

% downregulated 

/ % upregulated 

genes 

% DE genes of 

all B. anthracis 

Sterne genes 

dcsaB BHI vs. 
dcsaB FBS 

1620 1606 50.2/49.8 56.6 

Sterne BHI vs. 
Sterne FBS 

828 849 49.4/50.6 29.4 

dcsaB BHI vs. 
Sterne BHI 

1194 1106 51.9/48.1 40.3 

dcsaB FBS vs. 
Sterne FBS 

237 387 48/62 10.9 

Table 2-5b. B. anthracis Sterne and Sterne dcsaB pXO1-only differential 
expression (DE) summary. 

Group 

Comparison 

(A vs. B) 

#  downregulated DE 

genes (in A) 

# upregulated 

DE genes (in A) 

% downregulated 

/ % upregulated 

genes 

% DE genes of 

all pXO1-

encoded 

genes 

dcsaB BHI vs. 
dcsaB FBS 

56 11 83.7/16.4 39.9 

Sterne BHI vs. 
Sterne FBS 

67 2 97.1/2.9 41.07 

dcsaB BHI vs. 
Sterne BHI 

30 9 76.9/23.1 23.2 

dcsaB FBS vs. 
Sterne FBS 

23 4 85.2/14.8 16.1 



	66 

For Sterne dcsaB, phenotypic differences are markedly pronounced between BHI 

and FBS growth, and a similar gene expression pattern is reflected in the RNA-seq 

data. 56.56% of Sterne dcsaB genes were DE comparing growth in BHI versus FBS. 

For Sterne, this value was 29.4%. Sterne and Sterne dcsaB showed a number of 

different phenotypes in BHI, but less so in FBS. This is also reflected in the 

differential expression data. 40.3% of genes were DE between the two strains grown 

in BHI, but this value was reduced to 10.9% for FBS. Principal component analysis 

(PCA) of the RNA-seq samples shows a similar result (Figure 2-15). Sterne and 

Sterne dcsaB BHI samples are distinctly clustered from each other, as are intra-

strain BHI and FBS samples. Sterne and Sterne dcsaB samples grown in FBS 

however, cluster closer together in the plot. 

Figure 2-15. Principal component analysis (PCA) plot of samples from 
RNA-seq. Sterne and Sterne dcsaB RNA-seq sample distances visualized using 
PCA. Sterne BHI and Sterne dcsaB BHI biological groups form distinct clusters 
with their respective replicates clustered together. Sterne and Sterne dcsaB FBS 
groups cluster both near each other and with their respective replicates clustered 
together, indicating smaller sample distance between the two biological groups than 
between Sterne and Sterne dcsaB BHI groups.  
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For Sterne and Sterne dcsaB whole genomes, DE in BHI versus FBS environments 

is equally split between upregulated and downregulated genes. Examining pXO1-

encoded genes only however, reveals that most of its DE genes are upregulated in 

FBS (Table 2-5b, Appendix 3). In Sterne dcsaB, 67 pXO1 genes were differentially 

expressed in total, with 56 upregulated in FBS growth. For Sterne, of 69 DE genes, 

67 are upregulated in FBS growth. The upregulation of pXO1 virulence-associated 

genes we observe is similar to reports of pXO1 upregulation in CO2/bicarbonate 

atmospheres (McKenzie et al., 2014; Passalacqua et al., 2009a). Therefore, we 

believe upregulation of pXO1-encoded genes in FBS suggests the media may be a 

partial mimic of the infection environment. The RNA-seq data we present shows 

global transcriptional changes in Sterne and Sterne dcsaB, revealing a growth-

media induced switch of the transcriptome and the dynamic nature of B. anthracis 

Sterne, wild-type and dcsaB. In addition, our data highlights the pleiotropic effects 

of csaB mutation and correlates the disparate phenotypes of Sterne and Sterne 

dcsaB with differential expression. At this time however, we cannot describe specific 

transcriptional changes that may account for the two strains’ similarities in FBS 

and distinct differences in BHI growth media. Experiments to uncover key genes 

involved in this event are ongoing. 
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2.10 Western blot of protective antigen correlates with RNA-seq data 

To validate data generated from our RNA-seq experiment, we took an orthogonal 

approach, measuring levels of protective antigen (PA) in culture supernatants by 

Western blot. Growth condition comparisons revealed that in Sterne, pag is 

upregulated 4-fold in FBS as compared to BHI culture, while in dcsaB this 

upregulation is 50-fold. Genotype comparison data showed Sterne expresses pag 10-

fold higher than dcsaB in BHI, while in FBS there is no significant difference in pag 

expression between the two strains. Results from Western blots corroborated these 

data (Figure 2-16). A combined blot (Figure 2-16a) displays normalized samples 

from Sterne, Sterne dcsaB, and Sterne comp-csaB grown in BHI or FBS, as well as 

negative controls of DSterne (lacking pXO1 and pXO1-encoded pag), and BHI or 

FBS growth media alone. The combined blot shows equivalent detection of 

protective antigen at the expected molecular mass among Sterne, Sterne dcsaB, and 

Sterne comp-csaB in FBS-growth environments in agreement with our RNA-seq 

data, and the absence of PA in DSterne and FBS-only samples. As FBS contains a 

high level of endogenous proteins, to obtain distinct bands on a gel, dilution of 

samples 1:100 in 1X PBS was required. PA protein levels were below the limit of 

detection for all BHI samples at this dilution, suggesting lower levels of PA 

expression in BHI culture. Therefore, an additional blot was generated using 

concentrated BHI supernatants. This blot (Figure 2-16b) shows normalized, 

concentrated supernatants from Sterne, Sterne dcsaB, and Sterne comp-csaB BHI 
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samples, as well as DSterne and BHI-only controls. Sterne and Sterne comp-csaB 

display equivalent band intensities for PA, while Sterne dcsaB displays a fainter 

band. No PA is detected in DSterne and BHI-only controls. This blot indicates that 

pag expression for Sterne dcsaB is downregulated compared to Sterne, and reversal 

of the single nucleotide insertion in csaB (and not within in the 3’ tRNA-

methyltransferase) restores pag expression to that of wild-type Sterne.  Our 

Western blot is in accordance with data generated from our RNA-seq, and validates 

its results in an orthogonal manner.  
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Figure 2-16. Western blot of protective antigen in culture supernatants 
validates RNA-seq data. Western blot of culture supernatants from Sterne, 
Sterne dcsaB, and Sterne comp-csaB grown as described for RNA-seq are probed for 
protective antigen. Selected area of blots between 75-100 kD are shown for clarity. 
A) 1:100 diluted and normalized samples in 1X PBS from strains grown in BHI or
FBS are shown. Normalized BHI samples are below the limit of detection. For FBS 
samples, Sterne, dcsaB, and comp-csaB show approximately equivalent bands for 
protective antigen. Negative controls DSterne and FBS-only do not show bands 
corresponding to protective antigen. B) Western blot of concentrated, normalized 
BHI supernatant samples shows approximately equal band intensity for Sterne and 
Sterne comp-csaB, but decreased band intensity for Sterne dcsaB. DSterne and BHI 
negative control samples do not show protective antigen-specific bands. 

d Δ

Δ
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2.11 Deep-sequencing reveals unstable carriage of fBACA1 and that csaB 

mutation does not readily revert 

Given the phenotypic similarities between Sterne dcsaB and B. cereus bv anthracis 

CA, we were curious if a proportion of the CA population may harbor mutations in 

csaB, potentially uncovering a genomic basis for the previous phenotypic 

observations of CA (Klee et al., 2006). We used a deep-sequencing approach to 

examine csaB variants in CA as well as several Sterne strains. Prior to carrying out 

deep-sequencing of csaB amplicons however, we determined the spontaneous 

resistance rate of Sterne to fBACA1 and examined Sterne dcsaB for potential 

reversion to wild-type.  Sterne fBACA1-resistant colonies were found to appear at 

an average rate of 4.8 x 10-7 resistant colonies/CFU. We also examined if Sterne 

dcsaB would revert its csaB mutation in the absence of phage selection. Potential 

csaB reversion was not observed in cultures, suggesting that under our conditions 

and in the absence of phage, there is not a high selective pressure for revertant 

cells. 

The spontaneous fBACA1 resistance rate and lack of csaB reversion suggested that 

uncovering csaB variants in Sterne or Sterne dcsaB by deep-sequencing was 

unlikely unless sequencing was carried out with a very high read depth and 

coverage of the csaB amplicon was in excess of 2,000,000x. For CA, phenotypes 

suggestive of CsaB deficiency were readily seen (Klee et al., 2006), and given that 

this strain harbors fBACA1, we hypothesized that selection for csaB mutation 
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might occur at a higher rate and be uncovered by deep-sequencing. We carried out 

deep-sequencing of csaB amplicons from CA, Sterne and the Sterne-derived strains 

dcsaB and comp-csaB. Summarized results are in Table 2-6, including percentage 

variant type classified as harboring nonsense, nonsynonymous, or silent mutations. 

Individual variants uncovered by deep-sequencing are listed in Tables 2-7a-d.  

Table 2-6. csaB variant frequencies of selected Bacillus anthracis strains. 

Strain % Frequency of mutation type in population 

Nonsense Nonsynonymous Silent 

Sterne 0 0 0.3 

Sterne dcsaB 0 0 0 

Sterne comp-csaB 0 0.2 0.1 

CA 1.9 6.7 0.2 

We found Sterne did not contain any variants with nonsense or nonsynonymous 

mutations, but 0.3% of the population carried silent mutations in three distinct loci. 

Sterne dcsaB did not contain any mutations in its population, excluding the 

(G)4à(G)5 insertion. Sterne comp-csaB did not contain any nonsense mutations, 

however 0.2% of the population did contain a nonsynonymous AàG transition 

resulting in a serine to glycine substitution. It is not clear the downstream effect of 

this substitution on CsaB activity. Sterne comp-csaB also harbored silent mutations 

in 0.1% of its population. While Sterne and Sterne-derived strains did not harbor 

any nonsense mutations, sequencing of CA revealed nonsense, single-nucleotide 
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substitutions in 1.9% of the population and nonsynonymous, single-nucleotide 

substitutions in 6.7% of the population. Silent mutations were present in 0.2% of 

the CA population.  

We have not verified that the nonsense mutations disrupt CsaB activity, however of 

the 5 nonsense mutations found, 4 (1.7% of the CA population) occur upstream of a 

mutation in csaB as reported by (Bishop-Lilly et al., 2012) to inactivate the CsaB 

protein. It is unclear if the C878A variant also encodes for inactive CsaB. 

Nonsynonymous mutations have been reported to inactivate CsaB in addition to 

truncations of the protein. The nonsynonymous mutations we uncovered were not 

the same nucleotide changes as previously reported (Bishop-Lilly et al., 2012), 

however they are predicted to result in similar amino acid substitutions (charged 

(+/-) to noncharged, noncharged to charged (+/-)). It is possible that a number of 

these nonsynonymous mutations may reduce or disrupt CsaB activity. Results from 

this deep-sequencing experiment show that B. cereus bv anthracis CA has an 

increased level of variation and mutation in the csaB gene as compared to Sterne 

and other Sterne-derived strains. We believe this variation is likely driven by 

interaction of CA with fBACA1. From PCR screening, CA appears to carry 

fBACA1, however variation in csaB suggests this lysogeny is not entirely stable, 

and fBACA1 may drive the selection of CsaB-deficient mutants through lytic 

interactions, giving rise to CA’s unique and atypical phenotypes. 



Table 2-7. Individual variants uncovered by deep-sequencing of csaB PCR amplicons. 

Sequence Position Change Coverage Variant 

Frequency 

Variant P-

Value 

Result 

(amino 

acid 

change) 

Mutation Quality 

score 

Strand 

bias % 

A. Sterne 

T 123 T ® C 237,223 0.10% 3.80E-26 N ® N silent 34 59.4 

A 144 A ® G 240,118 0.10% 1.60E-26 K ® K silent 32 94.6 

T 1,059 T ® C 175,980 0.10% 1.70E-18 S ® S silent 33 97.3 

B. Sterne 

dcsaB 

No variants passing cut-off filter requirements 

C. Sterne 

comp-csaB 

A 144 A ® G 214,453 0.10% 7.90E-10 K ® K silent 30 90.6 

A 223 A ® G 266,763 0.20% 8.40E-22 S ® G nonsynonymous 31 61.8 
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D. CA 

C 48 C ® A 155,561 0.30% 3.20E-191 D ® E nonsynonymous 34 71.5 

C 94 C ® G 218,255 0.20% 1.80E-100 P ® A nonsynonymous 34 57 

C 119 C ® T 200,206 0.10% 1.30E-15 S ® S silent 31 89.2 

A 122 A ® G 203,609 0.30% 1.80E-56 N ® S nonsynonymous 30 96.7 

G 124 G ® T 205,618 0.10% 2.80E-10 D ® Y nonsynonymous 31 57.8 

C 127 C ® A 219,922 0.20% 1.50E-76 P ® T nonsynonymous 32 65 

A 144 A ® G 209,668 0.10% 1.20E-15  K ® K silent 32 94.6 

G 293 G ® T 220,697 0.10% 8.30E-22 R ® I nonsynonymous 31 76.3 

C 301 C ® A 212,536 0.20% 8.70E-46 R ® S nonsynonymous 32 55 

C 332 C ® A 233,478 0.10% 3.10E-07  A ® E nonsynonymous 30 69.7 

C 346 C ® A 300,363 0.70% 0.00E+00 P ® T nonsynonymous 35 51.1 

C 367 C ® A 197,735 0.20% 1.90E-11 R ® S nonsynonymous 31 63.8 

C 392 C ® A 188,342 0.50% 0.00E+00 S ® * nonsense 32 61.2 

G 400 G ® T 182,960 0.90% 0.00E+00 E ® * nonsense 36 53.8 

C 485 C ® A 176,215 0.50% 0.00E+00 P ® Q nonsynonymous 32 56.7 

C 499 C ® A 204,695 0.20% 6.90E-24 Q ® K nonsynonymous 31 58.5 

G 559 G ® T 211,738 0.40% 0.00E+00 A ® S nonsynonymous 34 59.3 

C 560 C ® A 221,461 0.20% 1.10E-32 A ® E nonsynonymous 30 62.1 

G 562 G ® T 199,746 0.40% 0.00E+00 V ® F nonsynonymous 35 58.3 

G 613 G ® T 270,400 0.40% 0.00E+00 D ® Y nonsynonymous 35 57.7 

C 725 C ® G 236,197 0.10% 2.10E-87 A ® G nonsynonymous 36 51.5 

C 776 C ® A 232,652 0.10% 1.10E-09 S ® * nonsense 30 75.8 
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C 785 C ® A 250,178 0.20% 2.80E-23 S ® * nonsense 30 74.2 

G 846 G ® T 223,686 0.50% 0.00E+00 M ® I nonsynonymous 35 53.7 

G 862 G ® T 204,780 0.20% 1.20E-102 D ® Y nonsynonymous 32 68.3 

G 874 G ® T 186,993 0.10% 8.40E-08 D ® Y nonsynonymous 31 55.8 

C 878 C ® A 203,659 0.20% 7.20E-13 S ® * nonsense 30 73.2 

C 973 C ® A 161,633 0.60% 0.00E+00 Q ® K nonsynonymous 34 86.1 

G 999 G ® T 199,199 0.40% 0.00E+00 L ® F nonsynonymous 33 82 

G 1,060 G ® T 126,765 0.20% 6.00E-07 D ® Y nonsynonymous 30 72.9 

A 1,072 A ® G 110,304 0.20% 7.50E-17 K ® E nonsynonymous 30 93.8 

* = stop codon; quality scores shown as Phred values
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DISCUSSION 

Previous work in the Fischetti Lab uncovered the influence of bacteriophage on the 

environmental lifecycle of B. anthracis, finding that phage-bacteria interactions—

and in particular lysogeny—control and can enable phenotypes that promote long-

term vegetative survival (Schuch and Fischetti, 2009). These changes were driven 

by sigma factors, encoded by phage isolated from diverse land and marine 

environments. For this current study, we aimed to uncover how phage induced from 

disease-causing isolates may shape B. anthracis. We found that exposure of Sterne 

to fBACA1, a novel Siphoviridae-like phage induced from B. cereus bv anthracis CA 

(itself a strain recovered from an ape presumed to have died of anthrax in 

Cameroon (Klee et al., 2006)), selects for a phage-resistant variant with a unique 

phenotype. 

2.12 Selection by lysis drives unique phenotypes in CA and Sterne dcsaB 

Whole-genome DNA sequencing revealed that exposure of Sterne to fBACA1 

selected for and expanded a csaB variant population. This variant displayed a 

unique phenotype atypical of classic B. anthracis, and remarkably, a number of its 

observed traits were also reported for CA (Klee et al., 2006). These included colonies 

lacking “Medusa heads” that were smaller, mucoid and smooth, and in addition, the 

variant also displayed hemolytic activity on blood-agar plates. Under the 

microscope, we observed increased chain lengths of bacilli without clear division 



	78 

septa, and like CA, the appearance of twisted and corkscrew-like cells. The number 

of characteristics shared between dcsaB and CA suggests that the same factor(s) 

(likely fBACA1) drives the appearance of atypical B. anthracis traits in both 

strains. In dcsaB, we also observed a novel characteristic of multi-chain and 

organized rope-like growth. It is presently unclear how these structures form, as 

they were observed in both shaken and static cultures, and if the individual twisted 

cellular morphologies observed translate into the genesis of these macromolecular 

structures.  

Sterne dcsaB shared a number of characteristics with CA, but also harbored 

classical B. anthracis traits different from the African strain, including penicillin 

sensitivity, a lack of motility, and sensitivity to g-phage. CA is penicillin resistant 

and motile, however as previously reported (Klee et al., 2006), some subcultures of 

the strain display inconsistent hemolytic activity, g-phage sensitivity, and capsule 

production.  Why the two strains differ is likely due to the evolutionary lineage and 

associated genomic background of each strain. B. anthracis is a monomorphic 

lineage within B. cereus sensu lato, while CA lies at the frontier between Bacillus 

anthracis and Bacillus cereus sensu stricto (Antonation et al., 2016; Brézillon et al., 

2015). Thus, it is not surprising that CA possesses a mixture of typical B. anthracis 

and B. cereus phenotypes. While the exact regulation mechanism behind CA’s 

dynamic phenotypes is unclear, our data suggests that for CA, hemolytic activity, 

twisted cellular forms, atypical growth and the appearance of small, smooth, shiny 
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and mucoid colonies could in part, arise from selection for CsaB-deficient 

subpopulations. We show that the phage fBACA1, isolated from CA itself, selects 

for a phage-resistant csaB Sterne mutant that harbors CA-like phenotypes. Deep-

sequencing revealed that selection for csaB mutation occurred at a higher rate in 

CA than for other B. anthracis strains tested. Whether fBACA1 is the agent 

responsible for the selection of these mutants in CA is presently unclear and should 

be studied further, but is a likely candidate. The previous reports of CA colonies 

transitioning from a classic B. anthracis phenotype at 24 hours growth to colonies 

with a CsaB-deficient phenotype at 48 hours growth (Klee et al., 2006), coupled with 

our deep sequencing data and Sterne dcsaB’s phenotype suggest that lytic 

interactions may indeed be occurring between CA and fBACA1 selecting for csaB 

mutants in the CA population. We cannot yet state if such phage-bacteria 

interactions are happening out of the laboratory setting and in native infection 

environments such as the primate, but such future study will be crucial to better 

understand the influence of phage on pathogenic Bacillus spp. 

A simple approach to drive at this unresolved question is through deep-sequencing 

of the csaB gene region from PCR of environmental samples, i.e., PCR using a DNA 

template from direct swabs of ape carcasses without any exposure to the laboratory 

or other artificial environments. Amplification and sequencing of the csaB region 

should reveal if a subpopulation of cells harbor csaB mutation at a frequency 

greater than that of spontaneous mutation. If from these samples, mutation in csaB 
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is found in a significantly higher proportion of the population than suggested by a 

random mutation rate, then phage-resistance and subpopulations of phage-resistant 

cells would be suggested as an important component of the B. anthracis lifecycle, in 

addition to lysogeny. It is also possible however, that csaB mutation is selected for 

after initial strain isolation, and laboratory culturing may actually select for csaB 

mutation instead. This would suggest however the presence of a phage-stabilizing 

factor for fBACA1, specific to CA’s native environment that keeps the phage in the 

lysogenic cycle. Such a factor could come from the animal host, the surrounding soil 

environment, or potentially even the bacteria itself. If this were the case, then it 

would be in contrast to typical events reported in other bacterial pathogens, where 

phage tend to induce in infection conditions. In S. pyogenes for example, a soluble 

factor from human pharyngeal cells was found to induce its phage and allow the 

increased expression of phage-encoded superantigens and DNase which presumably 

increase bacterial fitness (Broudy and Fischetti, 2003; Broudy et al., 2001; 2002). 

fBACA1 does not encode any obvious virulence factors, and any potential benefits 

from its induction are unclear. Thus, it may make sense for B. anthracis to prevent 

phage induction when in an animal host, and for other pathogens to induce phage 

which carry virulence factors located adjacent to or within lytic cycle operons. 

Indeed, CO2/bicarbonate has been shown to cause the induction of B. anthracis 

phage a, and a lysogens were found less virulent than non-lysogenized strains, 

presumably due to indiscriminate lytic cycle induction and B. anthracis cell death in 

the animal host (Iyanovics, 1962). For CA, preventing fBACA1 phage induction 
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may maximize its virulence potential in the host. Given recent reports of other 

lysogenized B. anthracis derivatives and their effects on vegetative cells (Schuch 

and Fischetti, 2009), it may also be worthwhile to study the virulence potential of 

these lysogens and examine if/how they maintain phage in infection environments. 

Such work will better illustrate the roles of phage (if any) in the virulence program 

of B. anthracis. If phage are lost in these lysogens as well, or there is selection for 

resistant subpopulations, then lytic phage-bacteria interactions will appear to have 

a broader role in B. anthracis infection and its further study will be warranted. 

2.13 csaB mutation in B. anthracis may not negatively impact fitness 

As B. cereus bv anthracis CA was isolated from the carcass of an infected ape, we 

were curious of dcsaB’s virulence potential as compared to wild-type Sterne in an 

animal model, and found that Sterne and dcsaB did not show a significant 

difference in virulence potential. To our knowledge, this is the first virulence 

comparison of a csaB mutant in B. anthracis, however comparison in a mouse model 

between B. cereus G9241 and its csaB knockout was performed in Wang et al., 

where the csaB mutant displayed a significantly lower virulence potential (Wang et 

al., 2013). The strains and methods used in our model versus Wang et al. vary 

considerably and therefore cannot be meaningfully compared. It is noteworthy 

however, that while B. cereus G9241 and its csaB knockout differed in virulence 

potential, a larger difference was seen in time to death rather than percentage of 
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animal death. Our animal model work showed no significant difference in either 

comparison, but surprisingly, we found that dcsaB’s distinct BHI-associated 

phenotype was largely absent in mouse tissues. Cells from the mouse examined by 

fluorescence microscopy had Sterne-like morphologies, while reculturing the same 

cells in BHI regenerated the long-chain, rope-like forms. This result suggested an 

environmental dependent switch that alters the dcsaB phenotype. As B. anthracis 

pathogenesis involves multiple organ systems (Moayeri et al., 2015), it is likely that 

the bacteria would evolve strategies to ensure its dispersal throughout an animal 

host and the presence of such a phenotypic switch makes evolutionary sense. If 

dcsaB were to maintain its long chain, rope-like growth, it is unclear if the bacteria 

would be able to disseminate effectively throughout the host and successfully infect 

(Guichard et al., 2012). That dcsaB can effectively disseminate in this context 

suggests csaB mutation may not be evolutionarily disadvantageous (at least in 

Sterne) as the strain can apparently overcome the downstream effects of the 

genomic alteration as needed.  

We successfully mimicked the phenotypic changes seen in the animal environment 

by growing dcsaB in fetal bovine serum, but it is presently unclear how FBS (or the 

animal environment) precipitates this switch. Sterne dcsaB grown in heat-treated 

serum also displays Sterne-like characteristics, suggesting that its serum-

phenotype is not due to direct action by FBS but likely changes from within the 

bacteria itself, and preliminary fractionation experiments suggested there may be 
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multiple components of serum that induce specific phenotypic changes. In addition, 

a seemingly stochastic event was observed with turbid dcsaB growth in BHI at 

37°C, suggesting that temperature can induce phenotypic changes in the csaB 

mutant as well. Regardless, our data suggests that B. anthracis Sterne dcsaB can 

respond to different growth environments, alter its phenotype accordingly and 

overcome some of the effects of csaB mutation.  

2.14 How does csaB mutation and the external environment affect B. 

anthracis? 

Given the phenotypic differences between Sterne and dcsaB as well as the mutant’s 

multiple phenotypes, we designed an RNA-seq experiment to examine the 

transcriptional changes occurring in Sterne and dcsaB during BHI and FBS growth. 

RNA-seq revealed large scale, whole-genome expression differences between Sterne 

and dcsaB as well as within each strain in BHI versus FBS environments. Within-

strain comparisons of Sterne and Sterne dcsaB showed large differential expression 

in BHI versus FBS growth environments, though the changes for dcsaB were 

greater than those of Sterne. Between-strain DE observed in our RNA-seq appears 

to correlate with phenotypic comparisons of the strains; Sterne and dcsaB displayed 

stark differences in BHI media and more similar phenotypes in FBS, and this trend 

is reflected in the transcriptome data. The close transcriptional profile of the two 

strains in FBS may explain why Sterne and Sterne dcsaB exhibit similar virulence 

potentials in our animal model. While csaB mutation should prevent S-layer 
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associated virulence factors such as BslA, an adhesin (Kern and Schneewind, 2008), 

from attaching to the cell wall, the virulence contribution of these gene products 

does not appear large enough to significantly alter virulence in our model. Other 

genes associated with virulence such as lethal factor and protective antigen did not 

meet the criteria for calling differential expression in comparing Sterne and dcsaB 

in FBS, but were called in BHI, highlighting 1) that Sterne and Sterne dcsaB have 

vastly different profiles in a “non-infection” environment but are far more similar in 

an “infection” context, and 2) the dynamic nature and phenotypic switch of dcsaB. 

We showed an orthogonal example of this in a Western blot of protective antigen. 

We found that many of the transcriptional changes associated with a CO2-

bicarbonate environment (upregulation of pXO1 and other virulence-associated 

genes) (McKenzie et al., 2014; Passalacqua et al., 2009a) also appear to occur in 

FBS growth, suggesting that FBS carries chemical queues that B. anthracis 

responds to. Indeed FBS does contain bicarbonate, but there are likely other 

components in the media as well that serve as queues for B. anthracis 

transcriptional modulation. Eag expression is reported to increase with CO2-

bicarbonate exposure, and we note similar expression changes in FBS-cultured 

Sterne and Sterne dcsaB.  To our knowledge, our study is the first to examine via 

RNA-seq the transcriptional changes of B. anthracis in serum versus rich-growth 

media, though a previous report did study the transcriptional profile of B. anthracis 

in bovine blood by microarray (Carlson et al., 2015). We link FBS growth, like that 
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of CO2-bicarbonate enriched environments, to upregulation of genes important in 

virulence, and give a global view of gene expression changes associated with BHI 

and FBS growth for B. anthracis Sterne. We believe these two growth environments 

may be good proxies for “infection” and “non-infection” environments, giving 

researchers a useful resource to study gene regulation associated with growth 

within and outside animal hosts. In addition, our RNA-seq data show the stark 

differences in transcription arising from csaB mutation, again highlighting the 

pleiotropic effects of this gene. CsaB-mediated pyruvylation of the SCWP enables 

anchoring of Sap, EA1, and other Bacillus S-layer associated proteins with 

demonstrated roles in virulence (Wang et al., 2013), cell-wall maintenance (Ahn et 

al., 2006; Anderson et al., 2011), and nutrient acquisition (Tarlovsky et al., 2010). In 

addition, CsaB may be acting in an, as of yet, uncharacterized manner on the 

transcriptional level, similar to Sap and EA1 (Mignot et al., 2002). We believe csaB 

mutation likely leads to a cascade of downstream effects, driving the large-scale 

differential expression observed. 

 

2.15 What accounts for dcsaB’s Sterne-like phenotype in FBS? 

 
While our RNA-seq generated global transcriptional data, we cannot yet highlight 

specific mechanisms behind the FBS-induced phenotypic switch for Sterne dcsaB. 

Mesnage et al. reported the presence of csaB-independent pyruvylation pathways in 

B. anthracis, detecting a pyruvylated fraction of SCWP in a B. anthracis csaB 

knockout (Mesnage et al., 2000). It is unclear if SCWP pyruvylation is occurring in 
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Sterne dcsaB in FBS growth environments, which would allow anchoring of SLH-

domain proteins. Interestingly, expression of csaA-csaB is downregulated roughly 7-

fold in the csaB mutant grown in FBS compared to BHI. In Sterne, the operon does 

not show differential expression between FBS and BHI culture, and comparison of 

Sterne and dcsaB in FBS does not reveal differential expression of the genes, while 

in BHI, dcsaB has increased csaA-csaB expression. This indicates that dcsaB 

expression of the csaAB operon is increased in BHI culture. It is unclear why the 

operon is more highly expressed in the mutant than in wild-type in BHI. It is 

possible that CsaB protein might also act to control the expression of the csaAB 

operon, in a similar manner to that of Sap and EA1, and that the truncated CsaB 

product cannot exert such activity, offering a potential mechanism behind csaAB 

upregulation. Alternatively, for the mutant in serum environments, CsaB protein 

may play a diminished role.  

 

We examined Sterne and Sterne dcsaB sensitivity to fBACA1 in FBS, finding that 

Sterne—but not dcsaB—cultures were lysed by the phage (data not shown). 

fBACA1 resistance is not reversed by FBS growth, and we believe it is likely the 

fBACA1 receptor is not anchored to the cell wall in BHI or FBS cultures. This 

result also suggests that an alternate pyruvylation pathway is likely not “picking up 

the slack” for inactive CsaB.  If pyruvylation is not occurring on the SCWP in FBS, 

how does dcsaB grow in short chains with clear division septa? Mesnage et al. also 

showed that CsaB-pyruvylated SCWP is not absolutely necessary for all autolysin 
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activity, and Anderson et al. reported that in B. anthracis DcsaB, the addition of 

recombinant BslO to cultures reduced average chain length of the knockout strain, 

despite no apparent SLH-domain anchoring (Anderson et al., 2011; Mesnage et al., 

2000). So, it is possible that BslO or other peptidoglycan hydrolases could allow cell 

wall division in the absence of CsaB activity. Our RNA-seq data shows that BslO 

expression is higher in BHI than FBS, making it unlikely that increased BslO 

concentration is directly contributing to the observed FBS phenotype. We cannot 

rule out however that BslO or other peptidoglycan-modifying enzymes may possess 

the ability to bind dcsaB SCWP in FBS and not in BHI by an unknown mechanism. 

Interestingly, the genes encoding PatA1/B1 and PatA2/B2 (involved in 

peptidoglycan and SCWP O-acetylation (Lunderberg et al., 2013)) also show 

downregulation in dcsaB FBS growth as compared to BHI culture, suggesting a 

possible reduction of peptidoglycan and SCWP O-acetylation in FBS cultured cells. 

For Sterne, there is no DE for patA1/B1 or patA2/B2 between BHI and FBS 

cultures, similar to the pattern seen for csaB. How this is directly related to csaB 

mutation remains to be clarified. While a lack of O-acetylation has been linked to 

limiting azide-induced autolysis in B. anthracis (Laaberki et al., 2011), the presence 

of O-acetylation may contribute to the blocking of autolysin activity via steric 

hindrance (Blackburn and Clarke, 2002). Therefore one possibility is that for dcsaB 

grown in FBS, decreased O-acetylation may lead to increased autolysin activity and 

peptidoglycan processing, allowing cell septation/separation even in the absence of 
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CsaB-mediated SCWP pyruvylation. Given the number of genes involved in 

peptidoglycan synthesis and remodeling, identifying specific gene products involved 

in generating the dcsaB, FBS-associated morphologies may prove to be a difficult 

and exhaustive task. However, focusing on those genes significantly upregulated or 

downregulated in CO2/bicarbonate or FBS environments (Passalacqua et al., 2009a; 

2009b; Rollins et al., 2008) may cull the list and offer potential candidate genes.  

One possible candidate enzyme that may account for the serum-associated 

morphology is EA1. In serum and bicarbonate environments, eag is expressed 

higher than sap, and cells produce the eag-encoded enzyme EA1. In BHI culture, 

the reverse is true, with Sap production dominating. This regulation by B. anthracis 

is previously reported in the literature (Mignot et al., 2002; 2004; Missiakas and 

Schneewind, 2017) and observed in our RNA-seq data set. Both Sap and EA1 

proteins are capable of murein hydrolase activity (Ahn et al., 2006), and it is 

possible that EA1 possesses the ability to septate cell walls in a manner similar to 

BslO, while Sap may not have this activity. Experiments adding recombinant EA1 

and Sap could examine both enzymes’ ability to cut cell walls in the absence of 

CsaB-mediated SCWP pyruvylation and may indicate whether the expression of eag 

relative to sap plays any role in the dcsaB serum phenotype.  

If EA1 does not appear to alter the cell wall of dcsaB, an additional approach to 

uncover factors important to dcsaB serum-associated morphology would be to add 
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the supernatant from a dcsaB FBS culture to dcsaB cells grown in BHI. In the 

absence of SCWP pyruvylation, autolysins and other associated peptidoglycan-

sculpting proteins are likely secreted into surrounding media and FBS culture 

supernatant could contain a variety of murein hydrolases that may have activity 

against dcsaB cells. Addition of filtered supernatant to dcsaB cells in grown in BHI 

could result in their decreased chain length and the loss of the csaB knockout-

associated morphologies. However, peptidoglycan and other SCWP modifications 

present in BHI but not FBS culture may block their activity. If added FBS 

supernatant does however shorten chain length and promote cell septation, then 

these FBS-upregulated enzymes would be implicated in the phenotypic switch. An 

additional experiment comparing added supernatant versus “heat-killed” 

supernatant could show if the factors responsible are proteins susceptible to heat 

degradation. Previous experiments comparing growth of dcsaB in FBS versus “heat-

killed” FBS revealed that serum factors causing dcsaB’s phenotypic switch are not 

heat labile, however the factors produced by the bacteria in response to serum may 

be subject to such degradation. Mass spectrometry and/or fractionation could 

elucidate specific factors.  

 

Perhaps the most direct method to uncover factors critical to the dcsaB phenotypic 

switch is through transposon mutagenesis or a similar gene inactivation approach. 

Here, functional knockouts could be generated in dcsaB; screening libraries of dcsaB 

variants on FBS-agar for clones lacking rough-edges or “Medusa heads” with convex 
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colony morphology (i.e., the dcsaB-associated phenotype) could identify genes 

important to the dcsaB serum switch. Alternatively, single colonies could be grown 

in FBS liquid culture, with candidate clones as those failing to display the expected 

culture turbidity. Either method could highlight gene products important to dcsaB’s 

serum-associated morphological changes, however it is possible that multiple genes 

are involved in this event, which could prevent identification of candidate clones, or 

clones with intermediate phenotypes may appear as well. Regardless of these 

potential shortcomings, this approach may help elucidate how Sterne dcsaB harbors 

phenotypes atypical of csaB mutation when grown in FBS culture and should be 

pursued. Identification of genes crucial to the phenotypic switch would also confirm 

that the dcsaB morphologies associated with FBS culture are caused by B. anthracis 

sensing its environment and adjusting accordingly via transcriptional modulation, 

and not through direct serum activity. 

 

2.16 How does phage-resistance affect B. anthracis? 

 
The ability of Sterne dcsaB to alter its phenotypes dependent upon growth 

environment suggests that csaB mutation may not have a negative fitness cost, at 

least under our conditions. In our case, csaB mutation was selected for by exposure 

to fBACA1, and serves a mechanism for the organism to acquire phage resistance. 

Mutation in csaB was also found to impart resistance to AP50c phage, with multiple 

distinct phage-resistant variants all showing different mutations within the csaB 

gene. Why csaB is selected for by both fBACA1 and AP50c is likely because of its 
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role in anchoring numerous S-layer and S-layer associated proteins which may 

serve as cell-receptors for the phage. Indeed for AP50c, Sap is believed to be the 

phage’s receptor (Bishop-Lilly et al., 2012; Plaut et al., 2014). fBACA1’s receptor 

has not yet been uncovered, but is most likely an S-layer or BSL protein, potentially 

even Sap. It is not clear however why csaB and not sap is selected for mutation as 

knockouts of sap are viable (Plaut et al., 2014). It is also noteworthy that in the 

csaB mutants uncovered in (Bishop-Lilly et al., 2012) as well as our dcsaB strain, 

mutation in csaB always occurred with other secondary SNPs in seemingly 

unrelated genomic loci. It is unclear why this is the case, but csaB appears to be a 

hotspot for mutation in B. anthracis, comparative to other potential genes which 

could also confer phage-resistance. Regardless, for B. anthracis we find that a CsaB-

deficient, phage-resistant variant is selected for by exposure to fBACA1, but 

interestingly and in contrast to what is typically seen with other pathogens 

(Capparelli et al., 2010; Filippov et al., 2011), phage-resistance is not associated 

with decreased virulence and fitness in our experiments. 

 

Why might this be the case for B. anthracis? From our RNA-seq data, csaB 

mutation does not appear to affect the expression of pXO1-encoded genes important 

to virulence in FBS culture. In BHI culture however, the same genes were 

significantly downregulated in the mutant. In other species, phage-resistance is 

often associated with decreased expression of important virulence factors (León and 

Bastías, 2015). While this is true for dcsaB in BHI, B. anthracis appears to encode 
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mechanisms to minimize the virulence-reducing effects of phage-resistance when in 

an “infection environment”. If the expression profile of dcsaB in BHI held firm 

within the animal host, it is likely the variant would show decreased virulence as 

compared to wild-type Sterne. Why B. anthracis appears to get around this phage 

resistance-associated issue may have to do with the fact that it has multiple 

lifestyles and is successful in both soil/earthworm environments as well as 

mammalian hosts. That the pathogen encodes mechanisms to control expression of 

its virulence factors in each environment may allow the success of phage-resistant 

variants. Other bacterial pathogens such as S. aureus or S. pyogenes have more 

limited lifestyles, typically existing solely as colonizers or invasive species of 

humans. Therefore the effects of phage-resistance may be more impactful on their 

virulence potential. It is also possible that the factors affected by csaB mutation in 

B. anthracis (S-layer proteins) happen to not play large a role in virulence. If such 

proteins were critical to virulence, then clearly phage-resistance would decrease 

bacterial pathogenicity. It is unclear if this lack of virulence decrease in our phage-

resistant B. anthracis variant is pure coincidence or was selected for in some 

manner. 

 

While not related to phage-resistance, it is also interesting to note the general role 

of phages and virulence in B. anthracis compared to pathogens such as S. aureus 

and S. pyogenes. Phages are not obviously associated with the pathogenicity of B. 

anthracis, and are not major carriers of virulence determinants, whereas the phages 
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of S. aureus and S. pyogenes are well known to encode important virulence genes 

(Bae et al., 2006; Beres and Musser, 2007). For B. anthracis, plasmids seem to take 

up the virulence role, with pXO1 and pXO2 encoding toxins and capsule, 

respectively, making the bacteria a dangerous pathogen. For S. aureus and S. 

pyogenes, plasmids often encode antibiotic resistance genes, but are not the main 

determinants of virulence potential. In comparing B. anthracis to other Gram-

positive pathogens, there appear to be important differences in the roles of phage 

for the species. Further research may illustrate explanatory mechanisms behind 

these differences.  

 

Given that our experiments did not show a fitness decrease for dcsaB, we were 

curious if reversion would occur in the absence of phage or without environmental 

selection. We examined dcsaB for reversion of the csaB mutation via deep-

sequencing and in culture-based experiments, but did not detect any reversion to 

wild-type. We did successfully revert our csaB mutant to form the viable Sterne 

strain comp-csaB (still containing the tRNA-methyltransferase mutation), 

suggesting reversion to wild-type should be possible as well as the selection of csaB 

mutants without secondary genomic alterations. If csaB mutation was associated 

with negative fitness, then reversion to wild-type would be expected, however it is 

possible that we are not growing the variant in the appropriate environment for 

such selection. We also found that temporal lysogeny of Sterne with fBACA1 was 

possible, but the lysogen grew poorly and would often generate colonies with dcsaB-
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like phenotypes after multiple passages. In Sterne, fBACA1 appears to be carried 

unstably and selects for a CsaB-deficient, phage-resistant population. For CA, our 

deep-sequencing data suggests a comparable event occurs, though only in a portion 

of the population. More stable carriage of fBACA1 in CA could explain why only 

some of the population is CsaB-deficient: the rest may be lysogenized.  

 

For CA, a subpopulation of CsaB-deficient variants may be advantageous, or at the 

very least, not associated with a decrease in overall fitness. Sterne dcsaB has 

increased hemolytic activity, altered cellular and colony morphologies, as well as 

different biofilm formation capacity as compared to Sterne. Such phenotypes could 

alter behaviors such as vegetative survival outside the host, while not impeding the 

population’s virulence potential. Surprisingly, this may be similar to some of the 

effects of phage carriage in B. anthracis (Schuch and Fischetti, 2009), however the 

virulence potential of these reported lysogens has not been studied. CsaB mutation 

however, also likely confers on CA resistance to other phages that also rely upon a 

SLH-domain containing receptor for infection (e.g. AP50). This could protect a CA 

population from complete lysis if encountering a novel phage. (Lysogeny will also 

however typically provide superinfection immunity to compatible phages). It is 

possible that CA may be “using” fBACA1, or at least benefiting from its somewhat 

unstable carriage to drive the expansion of a CsaB-deficient subpopulation, giving 

the bacteria a new tool for survival. Thus, both lysogeny and lysis may play 

significant roles in the B. anthracis lifecycle. The research presented in this 
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Chapter examines this lesser studied aspect of phage conversion—selection by 

lysis—which may serve to enable B. anthracis to maintain a subpopulation with 

different phenotypes “at the ready” for certain environmental conditions.  Given the 

insights from this work, a new, hypothetical model for the B. anthracis lifecycle 

including selection by lysis is shown in Figure 2-17. The magnitude and importance 

of this aspect of phage conversion for B. anthracis in the wild however, remains to 

be clarified through future research. 
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Figure 2-17. A new, potential model of the B. anthracis lifecycle. After 
anthrax disease and host death (1), vegetative B. anthracis cells enter the soil 
environment where phage encounter (2) can drive lysogeny or potentially, selection 
by lysis for phage-resistant variants. Both lysogenized cells and resistant variants 
harbor different characteristics from non-lysogenized or wild-type cells, including 
altered biofilm formation, vegetative cell-surface changes, and transcriptional 
modulation (3). Lysogeny can also promote earthworm colonization, and lysogenized 
cells occasionally shed phages into the environment by limited lytic induction. For 
CA, further research is needed to understand the prevalence of phage-resistance in 
its native environment. If a significant proportion of wild, uncultured B. anthracis 

cells harbor resistance-causing mutations, then selection by lysis will appear to play 
an important role in the natural B. anthracis lifecycle, and an updated model is 
warranted. Alternatively, there may exist environmental phage-stabilizing factors 
that prevent phage-shedding and expansion of phage-resistant subpopulations. 
Both phage-resistant and lysogenized cells can sporulate (4), however phage-
encoded sigma factors can promote or block this event. In CsaB-deficient phage-
resistant cells, no effect on sporulation was observed. Spores taken up by an animal 
host (5) can germinate, cause anthrax (1), and restart the B. anthracis lifecycle. 
Figure adapted and modified with permission from (Schuch and Fischetti, 2009). 
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SUMMARY 
 

In this Chapter, we characterized a Sterne variant, dcsaB, that is resistant to 

infection by fBACA1, a bacteriophage isolated from B. cereus Biovar anthracis CA. 

Phage-resistance was the result of selection for a frameshift mutation in csaB, a 

SCWP pyruvyl-transferase, with the mutation and resistance reversible by genomic 

manipulation. We show that dcsaB harbors distinct phenotypes similar to CA and a 

growth media-induced switch, where dcsaB displays Sterne-like phenotypes in FBS 

or an animal host, and in addition, the variant does not show an altered virulence 

potential. We examined the global transcriptional profiles of Sterne and Sterne 

dcsaB in BHI and FBS by RNA-seq, highlighting the gene expression changes 

associated with both FBS growth and csaB mutation. Lastly, we showed the 

prevalence of csaB variants within a CA population, suggesting that phage-

resistance and selection by lysis may be occurring in the wild, and along with 

lysogeny, is a potential factor shaping pathogenic B. anthracis populations. 
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MATERIALS AND METHODS 
 

2.18 Bacterial strains and growth conditions 

 
All strains used in this study are listed in Table 2-8. Bacillus strains were grown at 

30°C in brain-heart infusion broth (BHI) with shaking at 150 RPM and aeration 

except as otherwise noted. E. coli was grown at 37°C, 200 RPM in Luria-Bertani 

(LB) liquid media or on LB-agar plates with ampicillin selection or without selection 

as required. S. aureus RN4220 and S. pyogenes SF370 were grown at 200 RPM in 

BHI media. Antibiotics were used at the following concentrations: ampicillin, 100 

µg/mL; kanamycin, 50 µg/mL. 

 

Induction of phage from B. cereus Biovar anthracis CA was performed as follows: an 

overnight culture grown in BHI was back-diluted 1:100 in fresh BHI containing 5 

µg/mL mitomycin C and grown overnight. Cells were pelleted and the clarified 

supernatant filtered with 0.22 µm filters to remove debris. To prepare high-titer 

phage stocks, induced phage supernatants were amplified using B. anthracis Sterne 

cultures. Overnight cultures of Sterne were back-diluted 1:100 in BHI and grown at 

200 RPM, to an OD600 = 0.1 - 0.2. An equivalent volume of phage supernatant was 

added to the bacterial culture and grown at 150 RPM until visible lysis occurred, 

typically 3-4 hrs. Cultures were then spun down at 4000 RPM and filtered with 0.22 

µm filters to remove bacterial debris. This procedure was repeated as necessary to 
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generate large volume phage stocks. All serum growth media used in this study was 

heat-inactivated fetal bovine serum (Sigma) unless otherwise noted. 

To determine the minimum serum dilution required to observe B. anthracis Sterne 

dcsaB phenotypes associated with serum (FBS) growth, BHI:FBS (v/v) mixtures 

were prepared ranging from 100:0 to 0:100. Bacteria from an overnight culture were 

vortexed to homogeneity, back-diluted 1:100, grown 36 hours at 30°C in BHI, FBS 

or BHI:FBS mixtures, and observed. For experiments using heat-treated FBS, the 

media was prepared by placing 30 mL FBS in a Falcon tube in a room temperature 

water bath, and slowly increasing the bath temperature to 85°C to prevent serum 

aggregation. The FBS was heated at 85°C for 60 mins. For all experiments, 

negative, non-inoculated controls were included. Bacteria used in heat-treated 

serum experiments were established from overnight BHI cultures, back-diluted 

1:100 into media and grown at both 30°C and 37°C. 

Table 2-8. Strains, plasmids, and primers used in this study. 

Strains Description Notes 

E. coli TOP10 Cloning host Invitrogen 

E. coli SCS100 dam-/dcm- cloning host NEB 

B. anthracis Sterne Sterne strain Pasteur 7702, pXO1+, pXO2- 

B. anthracis ∆Sterne ∆Sterne strain pXO1-, pXO2- 

B. anthracis dcsaB Sterne strain Pasteur 7702 with 2 single nucleotide 
insertions, inactivating csaB insertion, insertion in 
tRNA-methyltransferase 

B. anthracis comp-csaB Sterne strain Pasteur 7702 with 1 single nucleotide 
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insertion, in tRNA-methyltransferase 

B. cereus Biovar 
anthracis CA 

Transition B. cereus strain containing pXO1 and 
pXO2-like plasmids pBCXO1, pBCXO2 

(Klee et al., 
2006.) 

S. aureus RN4220 Lab strain Hemolysis 
positive 

S. pyogenes SF370 Lab strain DNase 
positive 

B. cereus T Lab strain Motility 
positive, 

Penicillin 
resistant 

Plasmids 

pASD2 E. coli - B. anthracis shuttle vector for generating 

genetic knockouts and complements 

(Day et al., 

2007) 

pDD1001 pASD2 with wild-type csaB sequence insert for 
generating Sterne comp-csaB 

this work 

Primers Sequence 

csaB_deep_seq_F CCAACATTCCTTATATATTAATGTTAGG for deep-
sequencing 
experiments 

csaB_deep_seq_R CGCATTAAAGTTGAACTGGATATC for deep-
sequencing 
experiments 

csaB_comp_F TCGATCGGTACCAAATGTTGGAGGAGATTAAGAG
TGCGGTTAG 

for comp-csaB 

construction 

csaB_comp_R TCGATCGGTACCTTAAGATCCCATTCCTCTTTTTT
TGAACTC 

for comp-csaB 

construction 

pASD2_F CAATCAATCACCGGATCCCC for Sanger 
sequencing 

pASD2_R TAACCCTCACTAAAGGGAACAAA for Sanger 
sequencing 

csaB_check_seq_2 GGTGTCACAAGTAATTGAGC for Sanger 
sequencing 
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B_anthracis_16S_rRNA_
F 

TGAAAACTGAACGAAACAAAC for PCR of B. 

anthracis 
gDNA 

B_anthracis_16S_rRNA_
R 

CTCTCAAAACTGAACAAAACGAAA for PCR of B. 

anthracis 
gDNA 

phiBACA1_F AAAATGAACACTTTGAAAGGTCGAATTGA for screening 
of fBACA1 

phiBACA1_R CTTCTGTATTAGTAGCAAAGCGATCCACTG for screening 
of fBACA1 

tRNA_methyltransferase
_check_F 

TACGGAGAACTACGACGTTGCAATTATTG for Sanger 
sequencing 

tRNA_methyltransferase
_check_R 

CGACGATTCGACATGGAATATCGAC for Sanger 
sequencing 

2.19 Exposure and lysogeny of B. anthracis Sterne with fBACA1 

Exposure and lysogeny of B. anthracis Sterne with fBACA1 was achieved following 

a modified protocol (Schuch and Fischetti, 2009). Briefly, 10 mL cultures of B. 

anthracis Sterne were grown overnight in BHI and back-diluted 1:100 in 10 mL 

fresh BHI and grown to OD600 = 0.6. 1 mL of phage stock was added to 4 mL 

bacterial culture and incubated with shaking for 30 min. Bacteria-phage mixtures 

were spun down (4000 RPM, 4°C, 20 min), washed 1X in cold phosphate-buffered 

saline (PBS), resuspended in 5 mL BHI, serially diluted and plated on BHI agar. 

Plates were grown overnight at 30°C, and the resulting individual colonies were 

patched onto new BHI plates, and grown overnight. Potential lysogens were 

screened when applicable via colony PCR using the fBACA1-specific primers 

phiBACA1_F and phiBACA1_R (Table 2-8).  
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2.20 Phenotypic analysis of B. anthracis strains 

Colonies were imaged using the Cell Biosciences AlphaImager HP instrument with 

AlphaImager HP software or an iPhone 6 camera. For microscopy studies, strains 

from overnight cultures were washed 1X with PBS and examined using the Nikon 

Eclipse E400 Phase Contrast Microscope and images captured with QCapture Pro 

5.1 software. Magnification and exposures were adjusted manually as necessary. 

Strains were stained using acridine orange or 4’,6-diamidino-2-phenylindole (DAPI) 

following standard protocols. To visualize B. anthracis extracted from animal 

tissues, manually homogenized tissue samples were incubated with GFP-PlyGBD, a 

B. anthracis-specific protein fusion containing the binding domain of the phage 

lysin PlyG and GFP for visualization (Raz et al., 2017; Schuch and Fischetti, 2009). 

Samples and GFP-PlyGBD were incubated for 10 minutes at room temperature, 

washed 1X in PBS, and visualized using standard protocols.  

To test for DNase and hemolytic activity, strains were grown overnight and spotted 

onto BD Difco DNase Test Agar with Methyl Green for DNase testing, or BBL 

Columbia Agar with 5% Sheep Blood for hemolytic activity tests. Plates were grown 

at 24°C, 30°C, or 37°C overnight. For DNase testing, Streptococcus pyogenes SF370 

was used as a positive control, and strains producing clear halos in the agar were 

recorded as DNase positive. For hemolysis studies, Staphylococcus aureus RN4220 

was used as a positive control, and strains producing clearing zones were recorded 

as hemolysis positive.  
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Penicillin resistance was tested following a protocol outlined in the WHO Manual 

for Laboratory Diagnosis of Anthrax (World Health Organization, 2003). B. cereus T 

was used as a positive control for penicillin resistance, and B. anthracis Sterne as a 

negative control. BD BBL Sensi-Disc Susceptibility Test Discs: Penicillin (10U) 

were used for assays.  For motility assays, 10 µL of overnight cultures were spotted 

on 0.3% BHI soft-agar and allowed to grow at 37°C overnight. Motility was 

measured by outward growth from the initial bacterial spot. B. cereus T was used as 

a positive control and B. anthracis Sterne a negative control for motility.  For 

sporulation studies, strains were grown overnight at 30°C on BHI plates from 

freezer stocks, and the following day, single colonies selected and struck out on LD 

sporulation agar plates sealed with parafilm and grown at 30°C for 7 days. After 7 

days growth, plates were scraped into 0.5 mL BHI, the wet pellets weighed and 

vortexed to homogeneity, and 0.25 mL aliquots removed, heated at 65°C for 30 

mins, placed on ice for 5 mins, diluted and plated for enumeration of spores on BHI 

plates. Viable colonies were counted the following day after overnight growth at 

30°C. Non-heat-treated aliquots were plated and enumerated for viable vegetative 

CFU counts on BHI plates. Sporulation significance testing was performed using 

the Student’s t-test with GraphPad Prism software. Phage susceptibility was tested 

by co-spotting 10 µL mid-logarithmic phase cultures with 5 µL high-titer phage 

stock (or 1X PBS) on Columbia agar plates and growing at 37°C or 30°C overnight. 
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For biofilm formation and analysis, a protocol adapted from (Schuch and Fischetti, 

2009) was used. Overnight 5 mL cultures grown in BHI at 30°C with or without 

0.2% glucose were washed 2X in PBS, resuspended in PBS and diluted 1:1000 into 

10 mL BHI with or without 0.2% glucose. Cultures were grown at 24°C, 30°C, or 

37°C. Biofilm formation capacity was measured visually weekly for 10 weeks and 

assigned values of: no growth, weak, medium, or strong growth.  

2.21 Next-generation sequencing of phage DNA, PCR and Southern blot 
screening for fBACA1  

To prepare phage genomic DNA for NGS, high-titer phage supernatants were 

polyethylene glycol (PEG)-precipitated with 10% PEG 8K and 1 M NaCl added to 

200 mL phage supernatant and shaken overnight (4°C, 80 RPM). The precipitated 

solution was pelleted at 8000 RPM, 4°C for 1 hr, and the pellet resuspended in PBS. 

Phage genomic DNA was extracted and purified using the Norgen Biotek Corp. 

Phage DNA Isolation Kit following manufacture’s protocol. A phage DNA library 

was generated using the Illumina Nextera XT kit, quantitated with the Agilent 

Technologies High Sensitivity DNA kit and paired-end sequenced on an Illumina 

MiSeq using the Illumina MiSeq Reagent Kit v2 (500 cycle). FASTQ files were 

saved and downstream bioinformatic analysis done using CLC Genomics 

Workbench software. Reads were de novo assembled using default parameters. The 

resulting contigs were annotated using RAST (Rapid Annotation using Subsystem 
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Technology) (Aziz et al., 2008) and PHASTER (PHAge Search Tool Enhanced 

Release) (Arndt et al., 2016) online tools.  

PCR screening of Sterne and Sterne::fBACA1 gDNA (prepared as described in 

Section 2.22) was performed using phiBACA1_F and phiBACA1_R primers and the 

KAPA2G Robust Hotstart DNA Polymerase following manufacture’s protocol. 

Purified fBACA1 DNA or fBACA1 stock was used as a positive control. Southern 

blotting was carried out using the same DNA samples. Briefly, gDNA was run out 

on a 0.7% TAE agarose gel, transferred onto Hybond-N+ membrane (GE) using a 

standard capillary action protocol, and UV fixed the following day. fBACA1 DNA 

was used as a positive control. Detection was carried out using the Amersham ECL 

Direct Labeling and Detection System. Probe was generated from a gel-purified 

fBACA1-specific PCR product created using phiBACA1_F and phiBACA1_R 

primers, fBACA1 DNA, and the KAPA2G Robust Hotstart DNA Polymerase. 

2.22 Genomic DNA preparation and sequencing of B. anthracis strains 

Genomic DNA for sequencing was prepared from an overnight culture using the 

QIAGEN Genomic-Tip 100/G kit. PlyG (Schuch et al., 2002) and lysozyme were 

added to Buffer B1 and allowed to incubate with resuspended bacteria at 37°C for 

30 minutes before addition of proteinase K and further incubation at 37°C as per 

manufacturer’s directions. Genomic DNA was dissolved in QIAGEN elution buffer 

(Buffer EB). DNA concentration was measured using Qubit Fluormetric 
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Quantitation and diluted to 0.2 ng/µL. DNA libraries for sequencing were prepared 

using the Illumina Nextera XT DNA Library Preparation and Index Kit following 

manufacturer’s directions. Libraries were quality and size checked with the Agilent 

2100 Bioanalyzer with a High Sensitivity DNA chip, manually normalized and 

pooled together with a 5% PhiX control spike-in. Libraries were paired-end 

sequenced using an Illumina MiSeq with the MiSeq Reagent Kit v3 (150 cycle). 

FASTQ files were saved for each sample and downstream bioinformatic analysis 

was performed using Geneious software. Reads were aligned to the B. anthracis 

chromosome (NZ_CP009541.1) and pXO1 (NZ_CP009540.1) and examined for 

regions of variation and/or SNPs. Unaligned reads were de novo assembled.  

2.23 Molecular cloning and complementation of B. anthracis dcsaB 

The csaB gene and 500 bp upstream and downstream of the gene was amplified 

using B. anthracis Sterne gDNA as template with primers csaB_comp_F and 

csaB_comp_R and Q5 Polymerase (NEB). The PCR product was gel-purified, cut 

with Kpn1-HF restriction endonuclease (NEB) and further purified with QIAquick 

PCR Purification Kit. Plasmid pASD2 (Schuch and Fischetti, 2009) was mini-

prepped from an overnight culture with QIAprep Spin Miniprep Kit, cut with Kpn1-

HF, dephosphorylated with Antarctic Phosphatase (NEB) and ligated with the csaB 

DNA fragment using T4 DNA Ligase (NEB) to form pDRD1001. 2 µL of ligation 

mixture was used to transform One Shot TOP10 Chemically Competent E. coli 

(Thermo Fisher) according to manufacturer’s directions. Colonies were screened via 
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PCR using primers pASD2_F and pASD2_R, and PCR products Sanger sequenced 

with GENEWIZ (South Plainfield, NJ). A single colony harboring the desired csaB 

sequence was grown overnight, miniprepped, and pDRD1001 shuttled into the dam-

/dcm- Competent E. coli SCS100 (NEB) following manufacturer’s transformation 

protocol. Miniprepped pDRD1001 from SCS100 cells was electroporated into 400 µL 

electrocompetent Sterne dcsaB prepared as described in (Koehler et al., 1994) using 

a Bio-Rad Gene Pulser and a 0.4 cm electrode gap Gene Pulser Cuvette with the 

following conditions: 2.5 kV, 400 W, 25 µF.  

 

B. anthracis Sterne dcsaB harboring pDRD1001 was then subjected to the following 

growth protocol to promote plasmid integration followed by excision and curing to 

generate a csaB revertant strain. A single colony from BHI-kanamycin agar was 

grown for 5 hours in 10 mL BHI-kan at 30°C, then grown for an additional 5 hours 

at 39.5°C (non-permissive temperature for plasmid replication), before plating at  

10-1  - 10-4 dilutions on BHI-kan agar and overnight growth at 39.5°C. Single 

colonies the following day were struck on BHI-kanamycin agar and grown overnight 

at 38°C. Colonies were screened via PCR using primers pASD2_F and 

csaB_check_seq_2 for plasmid integration. A single colony with integrated 

pDRD1001 was then grown in 10 mL BHI at 30°C the following day for 8 hours, 

back-diluted 1:100 and grown in 10 mL BHI at 39.5°C overnight. Following 

overnight growth, the culture was plated on BHI agar at 10-3  - 10-6 dilutions and 

grown at 39.5°C. Resulting single colonies were restruck on BHI and grown at 
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39.5°C, then replica plated on BHI-kan agar plates and grown at the non-

permissive temperature to screen for plasmid loss. Colonies that grew on BHI but 

not BHI-kan plates were restruck on BHI agar, grown at 30°C, and the csaB gene 

region amplified via PCR and DNA sequenced via Sanger sequencing (GENEWIZ) 

to check for the wild-type csaB DNA sequence, using primers csaB_check_seq_2 and 

csaB_deep_seq_R. The resulting revertant strain was termed B. anthracis Sterne 

comp-csaB. 

2.24 In vivo virulence mouse models 

The Rockefeller University institutional animal care and use committee approved 

all in vivo protocols. Overnight cultures of B. anthracis Sterne and Sterne dcsaB 

grown at 37°C, 200 RPM in BHI, were back-diluted 1:100 into pre-warmed BHI and 

grown 2.25 hrs at 37°C, 200 RPM. Cultures were spun down at 4000 RPM, 4°C for 

10 min and washed in ice-cold 1X PBS and resuspended in PBS and diluted to the 

following concentrations for chain length normalization: for B. anthracis Sterne, 1.0 

x 107 CFUs/mL; for Sterne dcsaB 1.5 - 2.0 x 106 CFUs/mL. To calculate the 

normalization factor, Sterne and Sterne dcsaB were prepared as described and 

images taken of individual chains on a phase-contrast microscope. Chain lengths for 

each strain were measured for over 100 individual chains using ImageJ and the 

average chain length determined. For mouse experiments, 4-6 week old C57BL/6 

female mice from Charles River Laboratories were injected intraperitoneally with 

0.5 mL bacterial suspensions. Survival was observed and recorded for 10 days 
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following injection after which all animals were sacrificed. Survival and virulence 

comparisons were calculated using the Gehan-Breslow-Wilcoxon Test and curves 

generated using GraphPad Prism software. For experiments examining infected 

tissues, a protocol was followed as described above, except animals with established 

infection were sacrificed 48 hours after injection, with organs removed and 

manually ground to homogeneity in 1X PBS. The cellular suspension was incubated 

with GFP-PlyGBD and bacterial cells imaged as described previously by microscopy. 

2.25 RNA-seq of B. anthracis Sterne and Sterne dcsaB in BHI and FBS 
cultures 

For RNA-seq studies, all growth conditions were 37°C, 150 RPM.  Sterne and Sterne 

dcsaB were established from overnight cultures in BHI, then passaged 1:1000 into 

BHI or FBS and grown overnight. The following morning, cultures were back-

diluted 1:100 into the same pre-warmed media, grown to late-log phase (an OD600

approximately 2/3 of the maximal logarithmic growth OD600), and 1 mL culture 

removed for preparation of RNA. Sterne dcsaB grown in BHI was removed at 

comparable time point as it was not amenable to OD600 readings.  Four groups of 

samples were generated: Sterne-BHI; Sterne-FBS; Sterne-dcsaB-BHI; Sterne-

dcsaB-FBS. Samples were washed 2X in PBS, cells lysed using PlyG and suspended 

in 600 µL TRI Reagent (Zymo Research). Samples were frozen at -80°C, until RNA 

was purified. RNA was prepared using the Zymo Research Direct-zol RNA Mini-

Prep Plus Kit, following manufacturer’s directions including an in-column DNase 
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digestion. Additional DNase digestion was performed with DNase I, Amplification 

grade (Thermo Fisher) as needed until RNA samples showed no DNA 

contamination measured by 40-cycle PCR with B. anthracis-specific 16S rRNA 

primers. RNA samples were quality checked after DNase digestion using an Agilent 

RNA Nano Kit on an Agilent 2100 Bioanalyzer. RNA samples were then rRNA 

depleted using the Illumina Ribo-Zero rRNA Removal Kit for Gram-positive 

Bacteria. All samples were in prepared and sequenced in duplicate, except for 

Sterne dcsaB, which was in triplicate. 

rRNA depleted samples were submitted to The Rockefeller University Genomics 

Resource Center for library construction and sequencing. Libraries were 

constructed using the Illumina TruSeq stranded mRNA LT kit starting at the RNA 

fragmentation step to prepare libraries. Libraries were prepared with unique 

barcodes and pooled at equal molar ratios. The pool was denatured and sequenced 

on an Illumina NextSeq 500 Sequencer, generating 75 bp single reads, following the 

manufacturer’s protocol. Reads for each sample were generated as FASTQ files and 

downstream analysis done offline.  

Reads generated for each sample were first aligned to the Sterne Genome 

(Accessions: NZ_CP009541, NZ_CP009540) using Bowtie2 (Langmead and Salzberg, 

2012) and BAM files sorted, indexed, and converted to SAM files using samtools (Li 

et al., 2009). Files were processed using RStudio and Bioconductor. Count and 
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differential expression (DE) data was processed using a protocol adapted from (Love 

et al., 2016). Read counts were generated using GenomicAlignments package 

(Lawrence et al., 2013) to create a SummarizedExperiment (Morgan et al.) and 

DESeq2 (Love et al., 2014) was used to generate graphical visualizations and 

differential expression analysis. The following four DE comparisons were generated: 

1) Sterne-BHI against Sterne-dcsaB-BHI; 2) Sterne-BHI against Sterne-FBS; 3)

Sterne-FBS against Sterne-dcsaB-FBS; 4) Sterne-dcsaB-BHI against Sterne-dcsaB-

FBS. DE was called using a minimum fold-change cut-off of 2, and an adjusted p-

value of < 0.01. DE comparison tables were saved as CSV files. 

2.26 Western Blot of protective antigen from B. anthracis culture 
supernatants 

Supernatants for Western blot were prepared as follows: Sterne, Sterne dcsaB, or 

Sterne comp-csaB strains were grown as described for RNA-seq sample preparation, 

but upon reaching late-log phase, cultures were spun down, resuspended in fresh 

pre-warmed media and allowed to continue growth for 1 hr. After 1 hr growth, 

cultures were spun down and the supernatant sterile filtered through 0.22 µm 

filters. DSterne supernatant was used as a negative control for protective antigen.  

Supernatants were normalized for OD600 values/cell number and were run on 

Thermo Fisher NuPAGE 4-12% Bis-Tris Protein Gels, with MOPS running buffer at 

200 V for 1 hr. FBS supernatants, and BHI supernatants compared to FBS 

supernatants were diluted 1:100 in PBS to allow for distinct FBS protein bands on 
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the gel. For blots containing only BHI samples, BHI supernatants were 

concentrated 5x using Vivaspin 500 3 kDa MWCO filters (GE). Gels were stained 

with the Colloidal Blue Staining Kit (Thermo Fisher) as per manufacturer’s 

directions. Protein gels for Western blots were transferred onto Immobilon-P PVDF 

membrane (Millipore) following standard protocols, blocked and probed with 

Anthrax protective antigen antibody (Invitrogen Cat. # PA1-41695) as primary and 

Peroxidase AffiniPure Donkey anti-rabbit IgG (Jackson Cat. # 711-035-152) as 

secondary. Blots containing FBS and BHI supernatants were developed using 

SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Fisher). Blots 

containing only BHI supernatant samples were developed using SuperSignal West 

Pico Chemiluminescent Substrate (Thermo Fisher). Developed film was 

photographed using an iPhone 6 camera.  

2.27 Determination of B. anthracis Sterne spontaneous resistance rate to 
fBACA1 

To determine the spontaneous resistance rate of Sterne to fBACA1, an overnight 

culture of Sterne was back-diluted 1:100 in 5 mL BHI and grown at 30°C, 150 RPM 

to an OD600 = 0.1 – 0.2. The culture was then split and infected with MOI = 10 of 

fBACA1 or mock-infected with an equal volume BHI. Cultures were then grown for 

an additional 30 mins, before plating both untreated and treated cultures for CFU 

counts. Resistance rate was determined by comparison of treated to untreated CFU 

counts. Experiments were performed in triplicate. 
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2.28 Determination of B. anthracis Sterne dcsaB genomic reversion 

To observe potential reversion of dcsaB, an overnight culture of Sterne dcsaB was 

back-diluted 1:100 and grown in 5 mL BHI or FBS at 37°C, 150 RPM. Following 

overnight growth, each culture was examined under a microscope for Sterne-like 

morphologies and phenotypes. 10 µL of each culture was then passaged into the 

same media (BHI or FBS) and allowed to grow overnight in the same conditions. In 

addition, 10 µL of each culture was also used to inoculate 10 mL of BHI, grown at 

30°C overnight. 30°C BHI cultures (inoculated from 37°C BHI or FBS cultures) 

were examined the following day for turbidity and visualized for Sterne-like 

morphologies and phenotypes. This protocol was repeated for seven consecutive 

passages. 

2.29 PCR amplicon preparation and deep-sequencing of csaB 

Genomic DNA for use as template in PCR reactions amplifying the csaB gene region 

were prepared as follows: colonies from a BHI plate grown overnight at 30°C were 

scraped and resuspended into 25 µL 0.5 M NaOH, before adding 25 µL of 1 M Tris 

pH 7.0 and 450 µL nuclease-free water. PCR reactions used the Q5 High-Fidelity 

DNA Polymerase (NEB), csaB_deep_seq_F and csaB_deep_seq_R primers, and 0.5 

µL of previously prepared template DNA in a 50 µL reaction. PCR amplicons were 

gel-purified using the QIAquick Gel Extraction Kit, quantified with Qubit, and 

diluted to 0.2 ng/µL in QIAGEN EB. DNA libraries and sequencing was carried out 
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as described previously in Section 2.22, with the exception that library quantitation 

was performed using the Agilent High Sensitivity D1000 ScreenTape Assay on an 

Agilent TapeStation. FASTQ files were saved for each sample, and bioinformatic 

analysis done using Geneious software. Variants with strand biases > 98% or Phred 

quality scores < 30 were filtered out from results.  
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CHAPTER 3. EXTRA-CHROMOSOMAL DNA SEQUENCING REVEALS 
EPISOMAL PROPHAGE CAPABLE OF IMPACTING VIRULENCE FACTOR 
EXPRESSION IN STAPHYLOCOCCUS AUREUS 

INTRODUCTION 

3.1 Impacts of prophage on the biology and virulence of S. aureus 

As discussed in Chapter 1, S. aureus is a major human pathogen which employs an 

array of virulence factors to execute a highly successful infection program 

(Thammavongsa et al., 2015; Thomer et al., 2016). Many of these determinants are 

encoded by prophage elements (Novick and Matthews, 2005). In addition to the hlb-

converting phages previously discussed, other phages of S. aureus carry virulence 

factors important for pathogenesis. These include the pore-forming Panton-

Valentine leukotoxin (PVL), and exfoliative toxin A (ETA), the causative agent of 

staphylococcal scaled skin syndrome (SSSS) (Kaneko et al., 1998; Yamaguchi et al., 

2000). Important phage-encoded virulence factors of S. aureus are listed in Table 

3.1. 

The dependence of S. aureus on its resident prophage is clear, as phage-cured  

strains show markedly reduced virulence (Bae et al., 2006). In addition, the 

coordination of chromosomally-encoded regulators (e.g. Agr) with phage-encoded 

virulence determinants suggests a long co-evolution and dependence on phage by 

the bacterial host (Fischetti, 2006). As such, the importance of positive conversion 
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for S. aureus’s virulence cannot be overstated, however, recent reports have 

revealed that other processes such as phage excision/integration and atypical 

genome localization play roles in the virulence potential of the organism in addition 

to the “traditional roles” of positive and negative conversion (Goerke et al., 2004; 

2006; Utter et al., 2014). 

Table 3-1. Important phage-encoded virulence factors of S. aureus. 

Virulence factor (gene) Encoding Phage 

Leukocidin (lukS, -F, -M) fPVL, fPV83 

Enterotoxin P (sep) fN315 

Enterotoxin A (entA, sea) fMRSA252*, fMu50A* 

Exfolative toxin A (eta) fETA, fSTL 

Toxic shock syndrome toxin (tst) SaPI-1** 

Staphylokinase (sak) f13* 

Chemotaxis inhibitory protein of S. aureus (chips) f13* 

Staphylococcal complement inhibitor (scin) f13* 

*f13 and other hlb-converting phages can encode sak, sea, scin, or chips

**SaPI-1 is a mobile pathogenicity island transduced by helper phage 
Adapted from (Boyd and Brüssow, 2002) with permission. 

For example, in S. aureus isolates from cystic fibrosis and bacteremic patients, 

genomic alterations driven by hlb-converting phages were found to occur in the 

transition from nasal colonization to invasive infection. Specifically, in infection 

isolates, hlb-converting phages (Figure 3-1a) were found integrated at atypical 

chromosomal locations, resulting in Hlb+/sak+ phenotypes (cells with an intact hlb 
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gene, but also positively converted by prophage encoding sak) (Figure 3-1b). Rarely, 

in some strains, prophage appeared to undergo duplication and dual integration, 

generating populations with a Hlb–/sak2 phenotype (cells with one prophage 

integrated in hlb and a duplicated prophage integrated in another chromosomal 

location, with both phages encoding sak) (Figure 3-1c) (Goerke et al., 2006). Such 

phage mobilization occurred to a significantly lesser degree however in nasal 

(colonization) isolates from healthy individuals, indicating selective pressure for 

Hlb-producing strains in the transition to invasive infection, with atypical prophage 

integration as a mechanism to allow for dual Hlb and SAK production. Previous 

work in the Fischetti Laboratory uncovered a plasmidial prophage, fBU01, with the 

phage DNA sequence highly homologous to known hlb-converting phages. 

Importantly, fBU01 did not appear to integrate within the S. aureus chromosome 

(Utter et al., 2014), suggesting that in addition to atypical chromosomal integration, 

maintenance of prophage in the extra-chromosomal compartment can result in a 

Hlb+/sak+ phenotype (Figure 3-1d) (Deutsch et al., 2016). 
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Figure 3-1. Illustration of phage localization in S. aureus cystic fibrosis 
and bacteremic isolates. Atypical hlb-converting phage localization is described 
in (Goerke et al., 2006). A) hlb-converting phage typically integrate in the 
chromosome and disrupt hlb, but positively convert cells for sak, sea, scin, and/or 
chips. Cells are Hlb–, sak+. B) Atypical phage localization (off-target chromosomal 
integration) results in Hlb+, sak+ phenotypes. C) Phage duplication and dual 
integration results in disrupted hlb, and 2 copies of sak. D) Alternatively, phage 
localization in the extra-chromosomal compartment could also result in the Hlb+, 
sak+ phenotype. 
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3.2 The importance of phage-mobilization for bacterial pathogens 

Excision/integration dynamics of lysogenic prophage also have important roles in 

other bacterial pathogens. S. pyogenes SF370 contains the episomal, phage-like 

chromosomal island, SpyCIM1, which integrates within the cell’s DNA mismatch 

repair operon, disrupting transcription of the mutS-mutL genes and consequently 

increasing the mutation rate of the cell approximately 200-fold (Hendrickson et al., 

2015; Scott et al., 2008). The phage-like element was found to be excised at low cell 

densities, allowing fidelitous genome replication, but would integrate and increase 

the cell’s mutation rate at higher cell densities (Scott et al., 2008)—conditions 

where mutation might be beneficial (i.e. low nutrient availability) (Figure 3-2). 

Here, excision/integration is a dynamic, switch-like process; in S. aureus however, 

phage excision and re-integration (or extra-chromosomal localization) as previously 

described creates stable isolates with prophage not believed to continuously pop in 

and out of the chromosome. SpyCIM1’s temporal dynamics suggest that S. pyogenes 

is using the phage-like element for its own benefit as a molecular switch at the 

DNA-level.  

Phage acting as such DNA-switches have been found in a number of distantly 

related bacterial species, suggesting such a phage-role has existed over a long time 

scale.  Feiner et al. review SpyCIM1’s behavior and discuss a number of other 

species (Listeria monocytogenes, Bacillus subtilis, and Escherichia coli) where 

bacterial hosts have been found to employ similar beneficial strategies with their 
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lysogenic phages, allowing control of activities such as phagosomal escape (L. 

monocytogenes) (Rabinovich et al., 2012), sporulation (B. subtilis) (Kunkel et al., 

1990; Takemaru et al., 1995), and biofilm formation (E. coli) (Wang et al., 2009). In 

all three cases, phage excision allows the transcription of key chromosomally-

encoded genes, altering bacterial behavior (Feiner et al., 2015). 

Figure 3-2. Illustration of SpyCIM1 genome and integration dynamics. 

SpyCIM1 is a phage-like chromosomal island of S. pyogenes. In the exponential 
phase, SpyCIM1 excises from the chromosome and the mismatch-repair operon 
(MMR) is fully transcribed. At higher-cell densities, the episome integrates between 
mutS and mutL, disrupting transcription of the operon and increasing the cell’s 
mutation rate. OD600 and % episomal SpyCIM1 analysis reveals excision is a 
temporally controlled process, with the episome acting as a DNA-level switch. 
Reprinted with permission from (Nguyen and McShan, 2014). 
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Importantly, for SpyCIM1 and the phages described in (Feiner et al., 2015), excision 

from the chromosome is not associated lytic induction; if it were, the impacts of 

phage excision would be lost as phage induction leads to likely cell death. (Host 

benefits from phage induction into the lytic cycle are described in Section 1.3.4  

(also well-reviewed in (Nanda et al., 2015).) While excision here is associated with a 

lysogenic state, in some cases it is irreversible, i.e., phages are cured or lost after 

excision. In B. subtilis, for example, excision of the phage-element skin allows 

reconstitution and transcription of a functional sk gene (sigk), promoting 

sporulation. In this case, skin and the bacterial cell die, however a copy of the phage 

genome remains in the new spore (Feiner et al., 2015; Kunkel et al., 1990; 

Takemaru et al., 1995). Regardless of reversible or irreversible excision, Feiner et 

al. describe phage capable of controlled excision/integration within the lysogenic 

cycle as “active lysogens” and termed the process “active lysogeny” (Figure 3-3c). 

Active lysogeny is distinguished from the more traditional effects of the lysogenic 

cycle, as phage excision allows the expression or regulation of chromosomally-

encoded factors, in contrast to positive conversion (Figure 3-3a), or even the 

induction of a proportion of the population into the lytic cycle (Figure 3-3b).  
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Figure 3-3. Forms of lysogeny and mechanisms for expression of virulence 
or fitness factors. A) Lysogenic (positive) conversion involves the expression of 
phage-encoded factors in the bacterial cell. For S. aureus, phages carry an array of 
virulence factors (Table 3.1) and contribute to the pathogen’s virulence potential. B) 
Induction of a subpopulation of cells into the lytic cycle can allow the increased 
production of phage-encoded virulence factors. For S. aureus, enterotoxin A and 
staphylokinase expression increases with induction (Sumby and Waldor, 2003). For 
other species (e.g. E. coli) increased expression of toxins via induction allows for 
more successful host invasion and infection by the remainder of the population. C) 
Active lysogeny is a feature of temperate phage capable of controlled 
excision/integration within the lysogenic cycle. Phage integration can disrupt 
transcription of virulence or fitness factors, and excision (without lytic induction) 
allows the reconstitution and expression of genes. Excision can be reversible or non-
reversible, leading to prophage reintegration or loss, respectively. Reprinted with 
permission from (Feiner et al., 2015). 
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3.3 Uncovering extra-chromosomally localized prophage in S. aureus 

Given the importance of prophages in S. aureus, and the potential impacts of active 

lysogenic phage, research specifically targeted at uncovering extra-chromosomally 

localized phage can lend important insights into the virulence potential of S. aureus 

strains, either through the identification of novel phages, or the discovery of active 

lysogenic phage. Previous work in the Fischetti Laboratory screened clinical isolates 

of S. aureus for the presence of rare, cytoplasmically-localized prophage using an 

extra-chromosomal DNA enrichment and next-generation sequencing (NGS) 

approach. In this report (Utter et al., 2014), the plasmidial (non-integrating) 

prophage fBU01 was identified and sequenced from the vancomycin-intermediate 

S. aureus (VISA) NRS19, and found to encode multiple virulence determinants 

including sea, sak, scin, and chips. In addition, an episomal prophage (found both 

chromosomally-integrated and extra-chromosomal in a population) was also 

uncovered in VISA NRS26 (Utter et al., 2014). Enrichment and screening of the 

cytoplasmic compartment in this previous report revealed that extra-chromosomally 

localized prophage were fairly widespread in S. aureus, and that such “hidden” 

elements could alter the virulence potential of a strain. 

The following sections of this Chapter describe an expansion of this work, 

employing NGS to screen-by-sequencing 15 additional clinical isolates of S. aureus. 

Unlike the prior study however, the strains selected for this study had previously 

sequenced chromosomes, facilitating the classification of any extra-chromosomally 
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enriched prophage uncovered as either episomes or plasmids, and allowing the 

identification of potential active lysogenic phage. In this screening, we find extra-

chromosomal prophage present in 5 of 15 strains, but surprisingly, these strains 

contain only episomal and not plasmidial prophage. Experimental work 

demonstrates that the enriched episomal prophages identified are circular DNA 

elements, and qPCR experiments reveal that enrichment and detection of such 

prophages by NGS would not occur if using conventional whole-genome DNA 

preparations. In addition, we find that in the S. aureus strain MSSA476, 

enrichment of its episomal phage (fSa4ms) is growth-phase dependent and that 

fSa4ms does not appear to replicate after its excision, suggesting its existence as a 

candidate “active lysogenic phage”. Follow-up experiments find that the excision of 

fSa4ms can alter the promoter sequence and transcription of the stress-response 

serine protease-encoding htrA2, with promoter alterations affecting heat-stress 

survival in S. aureus COL. Here, the expanded and improved extra-chromosomal 

enrichment and sequencing of S. aureus clinical strains is shown to allow the 

detection of active lysogenic phage, giving greater insights into the genome 

dynamics and mechanisms by which phage generate diversity and enhance the 

virulence potential of the pathogen. 
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RESULTS 

3.4 Extra-chromosomal sequencing reveals the presence of episomal 

prophage elements within S. aureus clinical isolates 

For this study, we expanded our previously developed extra-chromosomal DNA 

enrichment and sequencing approach to screen S. aureus clinical isolates for 

prophage elements in the extra-chromosomal compartment of the cell (Utter et al., 

2014). We selected 15 clinical isolates sourced from different geographic regions, 

containing a diverse array of antibiotic resistances and virulence factors. In 

addition, these strains had fully sequenced chromosomes, facilitating the distinction 

of any detected prophage as integrated, episomal, or plasmidial. We enriched and 

prepared extra-chromosomal DNA (exDNA) as described in Materials and Methods, 

and sequenced samples with Illumina NGS. Extra-chromosomal DNA samples were 

analyzed by first mapping sequencing reads to their corresponding chromosomal 

sequences, followed by de novo assembly of unmapped reads. Visual examination of 

chromosomal read-mappings revealed areas of increased sequencing coverage, 

especially over prophage regions (Figures 3-4a, 3-4b). Coverage analysis of read-

mappings highlighted regions of significantly increased read depth, indicating the 

presence of episomal elements (and potentially active lysogenic prophage) that were 

enriched in sequencing due to specifically targeting and isolating DNA elements 

from the extra-chromosomal compartment of the cell (Figure 3-1c). Read-mappings 

and coverage analysis are shown for strain MSSA476 as a representative example. 
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Figure 3-4. Read-mapping and coverage analysis of MSSA476 extra-
chromosomal DNA sequencing. A) and B) Read-mappings of sequencing reads 
from MSSA476 exDNA. MSSA476 contains two integrated prophages: fSa3ms and 
fSa4ms. fSa4ms (B) has greater read coverage compared to fSa3ms (A) in exDNA 
sequencing. Selected portions of the read-mappings surrounding prophage 
integration regions for fSa3ms (A) and fSa4ms (B) are shown. Chromosomal 
positions are labeled at top, and consensus regions are shown below for MSSA476 
chromosome sequence and MSSA476 exDNA reads. Locations of fSa3ms (A) and 
fSa4ms (B) integrated prophage genomes are shown. Extra-chromosomal reads are 
shown below for each. C) Coverage analysis of MSSA476 extra-chromosomal read-
mapping. Portions of coverage analysis surrounding prophage regions shown for 
clarity. Chromosomal positions labeled at top of image, and approximate positions 
of fSa3ms and fSa4ms integrated genomes shown below. Histogram representation 
of higher read-coverage regions reveals enrichment of fSa4ms prophage due to 
exDNA isolation. Read-mapping across fSa3ms genome location does not contain 
any regions of higher coverage, indicating no or very low prophage enrichment by 
exDNA isolation. 
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For each of the 15 strains, we documented whether prophage elements were 

enriched in sequencing due to exDNA isolation and classified strains as: 1) 

containing enriched prophage, 2) not containing enriched prophage, or 3) containing 

unclear prophage enrichment, when partial but not complete prophage regions had 

increased coverage detected (Table 3.2). Surprisingly, de novo assembly of 

unmapped reads did not reveal any prophage elements, suggesting no plasmidial 

prophage in the sequenced strains, and that all prophage uncovered in the extra-

chromosomal compartment by our approach were episomal elements. Importantly, 

episomal prophage were identified in 1/3 (5 of 15) of the staphylococcal strains 

analyzed. These included: fSa4ms in MSSA476 (Sa4-like integrase), a geh-

converting prophage in NRS143 (Sa6-like integrase), one typically intergenic 

prophage in BK2529 (Sa7-like integrase), as well as two strains each with three 

episomal phages. One of these strains, HPV107, contained episomal prophages with 

Sa2- and Sa3-like integrases, and in addition, one prophage with an unclear 

integrase type, however its sequence was homologous to the integrase of a prophage 

from S. aureus SA268 (Qu et al., 2014). The other strain, NRS22, contained 

episomal prophages with Sa2-, Sa5-, and Sa7-like integrase sequences.  

Interestingly, when integrated into the chromosome, the Sa2-like prophage of 

HPV107 disrupts a 6-phospho-b-galactosidase encoding gene, which to our 

knowledge is a novel integration site for a S. aureus prophage. The other phages we 

uncovered as episomes have previously described chromosomal integration sites 

(Bae et al., 2006; Goerke et al., 2006; 2009).  Incidentally, known plasmids, such as 
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pSAS1 in MSSA476, were fully de novo assembled using the unmapped reads, and 

while they are not the focus of this current study, they do point to the sensitivity of 

this exDNA isolation and sequencing method. 

Table 3-2. Detection of episomal prophage in S. aureus strains from extra-
chromosomal DNA isolation and sequencing. 

Strain Resistance(s) 

# 

 Prophage 

Regions 

Notes 

Enriched prophage detected 

MSSA476 MSSA 2 • ΦSa4ms enriched, integrates immediately

upstream of htrA2

• ΦSa3ms not enriched, hlb-converting

NRS22 VISA/MRSA 4 3 enriched prophages: 
• Sa2-lke integrase, intragenic in

RK87_02365 (hypothetical protein)
• Sa5-like integrase, intragenic in

RK87_04825 (radical SAM)
• Sa7-like integrase, intergenic between

rpmF and isdB

NRS143 MSSA 4 • One enriched prophage: Sa6-like

integrase, geh-converting

HPV107 MRSA 4 3 enriched prophages: 

• Sa2-like integrase, intragenic in

RL05_04630
• Sa3-like integrase, hlb-converting phage

(fHPV107.1)

• Unclear integrase type, intergenic

between RL05_02285 (tRNA-Ser) and
RL05_01940 (enterotoxin)
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BK2529 MRSA 4 • One enriched prophage: Sa7-like

integrase, intergenic between rpmF and
isdB)

Unclear enriched prophage 

NRS153 MSSA 4 • Unclear enrichment of Sa1-like integrase

prophage, intergenic between sufB and
transposon-encoded integrase

RK79_06750

NRS387 MRSA 1 • Unclear enrichment of Sa3-like integrase

prophage, hlb-converting

NRS2 VISA/MRSA 2 • Unclear enrichment of Sa7-like integrase

prophage, intergenic between rpmF and
isdB

No enriched prophage detected 

BAA-42 MRSA 4 

NRS156 MSSA 2 

NRS127 MRSA 5 

NRS158 MSSA 3 

NRS271 MRSA 3 • Enriched ICE within RK77_00405

(membrane protein)

E2125 MRSA 5 

HDE288 MRSA 3 

Relevant resistances (MSSA, MRSA, VISA, VRSA) and total number of 
chromosomal prophage for each strain are listed.  
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3.5 QPCR characterization of MSSA476 validates extra-chromosomal 
sequencing data, but also reveals episomal prophage are detectable only in 
extra-chromosomal DNA samples 

Our screening-by-sequencing approach did not reveal any non-integrating 

plasmidial prophage, however, a number of the clinical strains did contain episomal 

prophage elements that were enriched by exDNA isolation. Thus, we were curious 

what insights prophage enrichment, as uncovered by exDNA isolation and 

sequencing, revealed about an individual strain. To better understand the nature of 

enrichment, we chose to focus on the well-characterized S. aureus strain MSSA476 

(Holden et al., 2004; Sumby and Waldor, 2003) and took a qPCR approach to 

determine the excision rates and copy numbers of its prophages. MSSA476 contains 

two prophages, fSa3ms and fSa4ms. fSa3ms is a hlb-converting prophage, while 

fSa4ms integrates 30 bp upstream of the serine protease-encoding htrA2. In our 

sequencing, fSa4ms was found enriched by exDNA isolation, while fSa3ms was not 

(Figure 3-4). Therefore, MSSA476 is ideal to understand the characteristics of both 

enriched and non-enriched phage in our screening.  

We first wanted to validate our extra-chromosomal sequencing results by qPCR, 

measuring prophage copy number in exDNA samples by targeting excised prophage 

attachment sites (attP) normalized to DNA gyrase (gyrA). Sequencing data should 

have a direct correlation to prophage copy number, predicting that fSa4ms copy 

number would be greater than fSa3ms in exDNA samples. Indeed, we found the 
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copy number of excised fSa4ms (copies attP/copy gyrA) was significantly higher 

than fSa3ms (P = 0.0004), supporting our exDNA sequencing data (Table 3-3, 

Figure 3-5a). Following this validation, we next measured the excision rates of 

fSa3ms and fSa4ms, since prophage enrichment in our exDNA samples suggested 

that the excision rate of fSa4ms would be higher than fSa3ms. We calculated the 

excision rates by targeting phage-less bacterial attachment sites (attB) normalized 

to gyrA. As attB sites are present on chromosomal DNA, we prepared the genomic 

DNA (gDNA) of MSSA476 using the same growth conditions as DNA prepared for 

extra-chromosomal sequencing and performed qPCR on gDNA.  Surprisingly, we 

found the excision rate of fSa3ms (copies attB/copy gyrA) to be significantly higher 

than fSa4ms (P = 0.0017), despite fSa4ms enrichment in our exDNA sequencing 

and higher copy number by qPCR (Table 3-3, Figure 3-5b). This result was 

confounding, but suggested that if we also examined the gDNA preparations for 

prophage copy number by qPCR, fSa3ms copy number might be higher than 

fSa4ms. Copy number qPCR of MSSA476 gDNA indeed revealed that the excised 

prophage copy number of fSa3ms was significantly higher than fSa4ms (P = 

0.0015) as suggested by fSa3ms’s higher excision rate, but in contrast to the copy 

number results from qPCR of exDNA samples (Table 3-3, Figure 3-5c). The qPCR 

and sequencing data obtained thus far for MSSA476 appeared conflicting; exDNA 

samples showed enrichment of episomal fSa4ms compared to fSa3ms, however 

fSa3ms had a higher excision rate and higher copy number than fSa4ms when 
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gDNA was examined. We therefore performed additional experiments to uncover 

the basis of these apparent conflicting results. 

Table 3-3. Copy numbers and excision rates of MSSA476 prophages from 
exDNA sequencing conditions. 

Prophage Prophage copy number 
(copies attP/copy gyrA) 

Excision Rate (copies attB/ 
copy gyrA) 

exDNA gDNA 

fSa3ms 0.146 ± 0.010 0.086 ± 0.008 9.35 x 10-4  ± 9.75 x 10-5  

fSa4ms 0.622 ± 0.042 0.023 ± 0.002  1.62 x 10-4  ±  3.37 x 10-5 
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Figure 3-5. QPCR characterization of MSSA476 excised prophage copy 
numbers and excision rates. A) Excised prophage copy number (copies attP/copy 
gyrA) from MSSA476 extra-chromosomally enriched DNA (exDNA) samples. 
Excised prophage copy number is significantly higher for fSa4ms than fSa3ms, in 
accordance with sequencing data. B) Excision rates of fSa3ms and fSa4ms (copies 
attB/copy gyrA). Excision rate of fSa3ms is significantly higher than fSa4ms. C) 
Excised prophage copy number from MSSA476 whole-genome DNA (gDNA) 
samples. Excised prophage copy number of fSa3ms is significantly higher than 
fSa4ms. 
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3.6 Extra-chromosomal DNA isolation enriches circular prophage elements 

To uncover why fSa4ms was enriched by exDNA isolation but not in gDNA 

preparations, we first compared fSa3ms and fSa4ms prophage genomes for %GC 

content, which could alter DNA capture efficiency. However, %GC content does not 

appear to play a role in enrichment differences as fSa3ms and fSa4ms contain 

almost equivalent %GC content at 33.2% and 33.3%, respectively. Part of the extra-

chromosomal enrichment protocol involves alkaline-lysis followed by centrifugation. 

We hypothesized that this step likely enriches for circular forms of prophage that 

would remain soluble after alkaline-lysis and not pellet during centrifugation (i.e., 

would be captured in the exDNA preparation). Linear prophage concatemers 

(contiguous copies of phage genome arising from prophage induced into the lytic 

cycle in a subpopulation of cells) would likely pellet with chromosomal DNA and 

other cellular debris and be removed from exDNA samples. The same linear 

concatemers however, would not be excluded in whole-genome preparations, 

potentially explaining the differences seen in qPCRs of gDNA and exDNA samples.  

We designed and performed a selective depletion experiment of fSa4ms prophage in 

exDNA samples to test this hypothesis. Specifically, we examined if fSa4ms could 

be selectively removed from samples only by the combination of fSa4ms-specific 

restriction endonucleases (linearizing circular prophage) followed by linear DNA 

digestion, and not solely by the exonuclease treatment. fSa4ms depletion only by 

sequential endo- and exonuclease treatment would indicate the prophage exists as a 
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closed circular DNA element. A schematic of the digestion procedure is shown in 

Figure 3-6. 

Figure 3-6. Schematic of endonuclease and/or exonuclease treatment of 
MSSA476 exDNA. ExDNA of MSSA476 (left) consists of both fSa3ms and fSa4ms 
genomes, in circular and linear (likely concatemer fragments) forms. Here, copy 
number of fSa4ms is higher than fSa3ms. Linear DNase (exonuclease) only 
treatment (A) removes linear concatemers of prophage DNA, leaving only closed 
circular prophage genomes (right). With exonuclease treatment, fSa4ms copy 
number should remain greater than fSa3ms. Sequential treatment (B) of MSSA476 
exDNA with fSa4ms-specific endonucleases (PshAI, PspXI) linearizes fSa4ms 
circular genomes (and cuts fSa4ms linear concatemers) and treatment with linear 
DNase completely eliminates fSa4ms DNA. Following this treatment, only fSa3ms 
DNA should remain.  

Linear DNase 

1. PshAI, PspXI digest
2. Linear DNase

Copy number: ΦSa4ms > ΦSa3ms Copy number: ΦSa4ms > ΦSa3ms

ΦSa4ms removed, 
only ΦSa3ms present
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Circular ΦSa4ms
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Thus, extra-chromosomal samples were treated as described in Materials and 

Methods and end-point PCR measurement was performed targeting gapdh, the attP 

sites of fSa3ms and fSa4ms, and the naturally occurring MSSA476 plasmid pSAS1. 

An agarose gel containing all PCR reactions is shown in Figure 3-7. Gapdh (a 

marker for linear DNA digestion) was depleted after linear DNase treatment but 

remained in high abundance after treatment with the fSa4ms-specific restriction 

endonucleases PspAH and PspXI. fSa3ms attP target was present in each condition 

tested, indicating that it does exist in the circular form in extra-chromosomally 

enriched DNA samples, however in low abundance. fSa4ms attP target is present 

and in greater abundance than fSa3ms in untreated, restriction endonuclease-only 

and linear DNase-only treated samples. Treatment with fSa4ms-specific 

endonucleases followed by linear DNase treatment results in the complete loss of 

fSa4ms target, verifying that fSa4ms is indeed abundant relative to fSa3ms in 

extra-chromosomally enriched DNA samples, and that this enrichment is due to 

circular forms of the prophage element. pSAS1, a circular plasmid in MSSA476, is 

not affected by any sample treatment (Figure 3-7). 
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Figure 3-7. Agarose gel of PCR reactions from fSa4ms selective-depletion 

experiment. 1% agarose gel stained with SYBR Safe DNA Gel Stain containing 
end-point PCR reactions from MSSA476 samples. MSSA476 exDNA was digested 
with Plasmid-safe exonuclease, PspAH/PspXI restriction endonucleases, both 
Plasmid-safe and restriction endonucleases, or left untreated with treatment 
indicated by (+) and (-). Gapdh, fSa3ms attP, fSa4ms attP, and pSAS1 target were 
amplified from treated and untreated samples. fSa4ms attP target is selectively-
depleted from combination exonuclease and endonuclease treatment but not from 
solely exonuclease treatment, indicating its existence as a circular element in 
exDNA samples. Higher levels of fSa4ms target compared to fSa3ms target 
correlate with the phage enrichment detected by DNA sequencing. Negative 
controls for each primer set are shown. 500 bp ladder band is indicated. 
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We were now curious if a similar pattern was present in other strains, which also 

contained episomal prophage enriched by exDNA isolation. To test this, we 

performed an inter-strain comparison, examining by qPCR the excision rates and 

excised prophage copy numbers of hlb-converting phages in three strains: BAA-42 

(containing fBAA-42.1), MSSA476 (fSa3ms), and HPV107 (containing fHPV107.1). 

Sequencing data revealed that only fHPV107.1 was significantly enriched by 

exDNA isolation, and qPCR copy number examination of exDNA samples confirmed 

this result.  fHPV107.1 had higher copy number as compared to fBAA-42.1 (P = 

0.0052) and fSa3ms (P = 0.0057) in exDNA samples (Table 3-4, Figure 3-8a (right)). 

When we examined excision rates of the three phages, we found that in this 

comparison, fHPV107.1 did indeed have the highest excision rate. The excision rate 

of fHPV107.1 was significantly higher than fBAA-42.1 (P = 0.0009) and fSa3ms (P 

= 0.002) (Table 3-4, Figure 3-8b). However as observed previously with MSSA476, 

prophage copy number data from gDNA samples did not correlate with exDNA 

data, verifying that the episomal prophage enrichment we uncover is only apparent 

in exDNA samples. Significant copy number differences in gDNA samples were not 

seen between fHPV107.1 and fBAA-42.1 (P = 0.3205), while fSa3ms had a lower 

copy number than either fHPV107.1 or fBAA-42.1 (Table 3-4, Figure 3-8a (left)). 

Similar to results for fSa4ms, qPCR of exDNA suggests that in a HPV107 

population, fHPV107.1 exists as a circular, episomal DNA element likely in a 

higher proportion of cells than that of fBAA-42.1 or fSa3ms in their respective 
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populations. Induction of phage however, likely masks uncovering these events in 

qPCRs of gDNA samples. 

Table 3-4. Copy numbers and excision rates of selected hlb-converting 
prophages. 

Prophage Prophage copy number 
(copies attP/copy gyrA) 

Excision rate 
 (copies attB/copy gyrA) 

exDNA gDNA 

fBAA-42.1 0.138 ± 0.005 0.270 ± 0.016 1.65 x 10-4 ± 5.15 x 10-5

fSa3ms 0.146 ± 0.010 0.086 ± 0.008 9.35 x 10-4  ± 9.75 x 10-5 

fHPV107.1 0.540 ± 0.073 0.291 ± 0.015 1.94 x 10-3 ± 9.94 x 10-5
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Figure 3-8. QPCR characterization of hlb-converting prophages. A) Excised 
copy numbers of hlb-converting prophages fBAA-42.1, fSa3ms, and fHPV107.1. 
Excised copy number experiments of prophage from gDNA (left) reveal no 
significant difference between fBAA-42.1 and fHPV107.1, however fHPV107.1 has 
significantly higher excised copy number than fBAA-42.1 or fSa3ms in exDNA 
samples (right). B) Excision rates of hlb-converting prophages fBAA-42.1, fSa3ms 
and fHPV107.1. fHPV107.1 has a significantly higher excision rate than fBAA-42.1 
and fSa3ms.  
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3.7 Extra-chromosomal localization of fSa4ms circular prophage is a 

temporal and rare event 

Since fSa4ms enrichment was due to episomal, circular copies of the prophage in 

the MSSA476 population, we were curious if such an event was merely a precursor 

to phage replication and the generation of linear concatemers or occurred without 

subsequent replication, suggesting that fSa4ms might exist in an “active lysogenic” 

cycle. To investigate this question, we repeated our qPCR approach, examining the 

excision rates and excised phage copy numbers of fSa3ms and fSa4ms at different 

time points of the growth cycle, to see if their values changed with different culture 

densities. We sampled cultures at OD600 = 0.35, 0.7, 1.0 and overnight, and 

prepared exDNA (to measure circular prophage copies) and gDNA (to examine 

excision rates and potential increases in overall excised prophage copy number). 

The excision rate of fSa3ms did not significantly change from OD600 = 0.35 to 1.0 (P 

= 0.2403) while that of fSa4ms did significantly decrease during this time (P = 

0.036) (Table 3-5, Figure 3-9a). The fSa3ms excision rate does however, increase 

approximately two-fold from OD600 = 0.35 to overnight. Excised prophage copy 

number, as measured by attP target for whole-genome preparations did not change 

from OD600 = 0.35 to 1.0 for fSa3ms (P = 0.118) nor fSa4ms (P = 0.527) (Table 3-5, 

Figure 3-9b). Levels of excised prophage copy number over the same range for 

exDNA also did not change for fSa3ms (P = 0.0982) but did however significantly 

decrease for fSa4ms (P < 0.0001) (Table 3-5, Figure 3-9c). 
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Table 3-5. Copy numbers and excision rates of MSSA476 prophages at 
selected optical densities. 

Prophage OD600 Prophage copy number 
(copies attP/copy gyrA) 

Excision rate (copies 
attB/copy gyrA) 

exDNA gDNA 

fSa3ms 0.35 0.380 ± 0.049 0.109 ± 0.010 4.64 x 10-4 ± 4.52 x 10-5 

0.7 0.338 ± 0.064 0.095 ± 0.005 4.80 x 10-4 ± 1.10 x 10-5

1 0.265 ± 0.021 0.137 ± 0.013 5.05 x 10-4 ± 2.73 x 10-5

O/N 0.256 ± 0.014 0.123 ± 0.010 9.58 x 10-4 ± 2.14 x 10-5

fSa4ms 0.35 2.220 ± 0.110 0.084 ± 0.006 1.51 x 10-4 ± 2.47 x 10-5 

0.7 1.257 ± 0.229 0.065 ± 0.002 9.91 x 10-5 ± 3.13 x 10-6 

1 0.427 ± 0.030 0.077 ± 0.008 8.44 x 10-5 ± 1.14 x 10-5

O/N 0.207 ± 0.019 0.070 ± 0.008 8.75 x 10-5 ± 8.15 x 10-6 

O/N = overnight culture 
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Figure 3-9. QPCR characterization of MSSA476 prophage excision rates 
and copy numbers from logarithmic and overnight cultures. A) Excision 
rates of fSa3ms and fSa4ms samples at indicated optical densities. fSa3ms does 
not show a significant difference in excision rates comparing OD600 = 0.35 and 1.0 
samples, whereas a significant decrease is found for fSa4ms. B) Excised prophage 
copy number from MSSA476 whole-genome DNA (gDNA) samples at indicated 
optical densities. Neither fSa3ms nor fSa4ms have significantly different excised 
prophage copy numbers comparing OD600 = 0.35 and 1.0 samples. C) Excised 
prophage copy numbers from MSSA476 extra-chromosomally enriched DNA 
(exDNA) samples at indicated optical densities. fSa3ms does not show a significant 
difference in phage copy number from OD600 = 0.35 to 1.0, whereas fSa4ms copy 
number significantly decreases in this interval.  
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The data above indicated fSa4ms was likely an active lysogenic phage, with the 

abundance of circular phage genomes not appearing to be a precursor to lytic cycle 

replication. The prevalence of fSa4ms’s stable excision however was unclear (i.e., 

the percentage of cells with excised “active lysogenic” fSa4ms). We employed qPCR 

using the naturally occurring circular plasmid pSAS1 to understand the level of 

enrichment imparted by our exDNA preparation protocol. We found that pSAS1 

existed on average at 1-2 copies per cell (copies pSAS1 target/copy gyrA) in gDNA 

preparations of MSSA476 at OD600 = 0.35 and 0.7, but that the plasmid was 

enriched 1500-fold to an average of 2322 copies pSAS1/copy gyrA in exDNA. That 

fSa4ms copy number in our qPCR assay reaches, at a maximum, 2.22 copies 

attP/copy gyrA (Table 3-5), suggests that the fSa4ms excision we uncover is a rare 

event. The percentage of cells with stably excised fSa4ms, as well as its copy 

number per cell, is presently unclear. 

3.8 Promoter alteration by fSa4ms excision/integration affects htrA2

transcription and heat-stress survival in S. aureus 

Since fSa4ms could act as an active lysogenic phage, a stable subpopulation of 

MSSA476 cells may exist with an altered important chromosomal sequence, since 

fSa4ms integrates 30 bp upstream of the stress response serine protease-encoding 

gene htrA2. Sumby and Waldor previously noted the possibility of altered htrA2 

transcription by fSa4ms excision/integration (Sumby and Waldor, 2003), and our 

data suggested that indeed a subpopulation of MSSA476 cells would harbor htrA2
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under an altered promoter (Figure 3-10a). We developed a PhtrA2-gfp reporter 

system to examine whether GFP fluorescence would be altered when the GFP-

encoding gene gfpmut2 was under the control of the fSa4ms-integrated (Pint) or 

fSa4ms-excised (Pex) promoters. Experiments were performed in S. aureus RN6390 

and COL htrA2 deletion knockouts, two well-characterized strains where htrA2 was 

shown to impact COL but not RN6390 survival in heat-stress (Rigoulay et al., 

2005). Comparisons of GFP fluorescence at 37°C and 44°C showed that in both 

strains, fluorescence was greater when gfpmut2 was promoted by Pex than by Pint, 

indicating that Pex is a stronger promoter of htrA2 than Pint. GFP fluorescence was 

greater in Pex constructs at both 37°C and 44°C at 3 and 6-hour time points (Figure 

3-10b).  

Due to its reported role in promoting heat-tolerance in COL, we examined if 

promoter alteration could affect survival of htrA2-complemented S. aureus RN6390 

and COL htrA2 knockouts. Complemented strains contained the full-length htrA2

gene under the control of the Pint or Pex promoter on the pCN35 plasmid or were 

left uncomplemented with empty pCN35 and grown in a dilution series at 37°C or 

44°C on agar plates. COL constructs at 37°C did not display any survival 

differences among the three strains, however at 44°C, COL Pex displayed 

approximately 2-log increased survival over COL Pint (Figure 3-10c, top). 

Surprisingly, COL Pint survived 1-log worse than uncomplemented COL htrA2, 

indicating that htrA2-mediated heat-stress survival may depend upon specific 
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promoter sequences and not solely levels of transcription or promoter strength. 

RN6390 constructs showed no survival differences at 37°C or 44°C, in accordance 

with previous reports of HtrA2 activity in the strain (Rigoulay et al., 2005) (Figure 

3-10c, bottom). Environmental conditions may select for cells with one promoter 

versus another, and fSa4ms’s excision/integration dynamics and active lysogeny 

could provide MSSA476 with a potential switching mechanism to create these 

advantageous subpopulations. 



	154 

Figure 3-10. fSa4ms excision/integration alters the promoter and 

transcription of htrA2. A) Diagram illustrating fSa4ms integrated and excised 
states in MSSA476 and the unique DNA regions of the Pint and Pex promoters. 
(Top) When fSa4ms is integrated in the chromosome, htrA2 is promoted by Pint. 
(Bottom) fSa4ms excision joins the Pex region immediately upstream to htrA2, and 
the gene is promoted by Pex. Pint unique DNA sequence is carried on circular 
fSa4ms when the phage is excised. B) Ratio of GFP fluorescence from Pex- versus 
Pint-promoted gfpmut2 constructs in COL and RN6390 htrA2 strains. Bars above 
the dashed line indicate samples where GFP fluorescence is greater with Pex-
promoted gfpmut2 than with Pint-promoted gfpmut2. C) Dilution series of COL and 
RN6390 htrA2 knockout strains complemented with htrA2 promoted by Pint (int) or 
Pex (ex). (-) indicates COL or RN6390 htrA2 knockout strains containing empty 
pCN35 plasmid. COL (top) or RN6390 (bottom) constructs are spotted in a log-
dilution series and grown at 37°C or 44°C for 24 hrs. Dilution factor indicated on 
left of plates; (ND) = not diluted. COL constructs display equal survival at 37°C, but 
COL Pex displays 2-log survival above COL Pint. Unexpectedly, uncomplemented 
COL htrA2 shows 1-log survival above COL Pint. COL Pint shows few colonies at 
44°C in the undiluted culture spot.  RN6390 displays no survival difference among 
constructs at 37°C or 44°C.  
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DISCUSSION 

This study described in this Chapter explores the prevalence of extra-chromosomal 

prophages in S. aureus as an extension of previous work uncovering the plasmidial 

phage fBU01 in S. aureus NRS19 (Utter et al., 2014). We isolated and sequenced 

the exDNA of 15 clinically-relevant S. aureus strains with known chromosomal 

sequences, but unlike our previous study, we did not find any prophages existing as 

solely plasmidial elements. We did uncover however, several episomal prophages 

appearing to exist as active lysogenic phages. It therefore seems that the existence 

of plasmidial prophage in S. aureus is uncommon and fBU01 may represent one of 

these rare prophages. Episomal prophages, on the other hand, appear to be fairly 

widespread and were identified in 33% of S. aureus strains (5 of 15) examined in 

this study.  

3.9 Strains and phages possess different mobilization capacities 

We distinguished strains that carried episomal prophage from those with no 

prophage detected in the extra-chromosomal compartment, but our study did not 

reveal why some strains have such a phage-mobilization capacity while others do 

not. Goerke et al. demonstrated a similar observation, finding that phages fs80b 

and fs84b (hlb-converting phages) were integrated within the hlb gene in S. aureus 

s64c, but were found to alternate between integrated and extra-chromosomal 

carriage in strain 8325-4 (Goerke et al., 2006). Both s64c and 8325-4 are phage-
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cured strains, suggesting that a host-factor (or factors) is likely determining phage 

localization and mobilization capacity within the cell. In a separate manner, phage 

induction capacity into the lytic cycle has also been observed to depend upon host 

background, with fSa2mw induced by mitomycin C in strains MW2 and Newman, 

but not 8325-4, RN6390 or ISP479c (Wirtz et al., 2009). We believe that the phages 

we describe here are localized and harbored within the extra-chromosomal 

compartment in a manner distinct from lytic excision and replication (Deutsch et 

al., 2016; Utter et al., 2014), however it is possible similar host factors may govern 

both events. The hlb-converting phages we characterized from strains BAA-42, 

MSSA476 and HPV107 contained high sequence homology over their 

integration/excision modules, however they displayed different levels of enrichment 

in extra-chromosomal sequencing and qPCR characterization, with HPV107 

carrying its hlb-converting phage extra-chromosomally in a greater proportion of 

the population. Host differences similar to those affecting fs80b and fs84b 

localization may account for the differences in hlb-converting phage localization 

among our three strains, however such factors have yet to be uncovered. 

Within individual strains, we also noted differences in phage localization. In 

MSSA476, fSa4ms—but not fSa3ms—was enriched in sequencing, with the 

localization of circular prophage confirmed by qPCR and selective-depletion 

experiments. fSa3ms and fSa4ms share the same host background, indicating that 

a phage factor is responsible for localization differences, but it is currently unclear 
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which factor(s) may be responsible. Prophage excision requires recombination 

mediated by integrase; stochastic higher expression of a phage’s integrase or 

excision-related genes may be one mechanism by which phage localize into the 

extra-chromosomal compartment. The process may also be controlled by as of yet 

uncharacterized factors in a more regulated process. If excision occurs without 

inducing conditions, then phages could be localized into the cytoplasm in a manner 

consistent with the lysogenic cycle. Feiner et al. reviewed such phage activity in a 

range of bacterial species, particularly those whose excision/integration dynamics 

can act as a molecular switch for the cell, terming the process “active lysogeny” 

(Feiner et al., 2015). 

The mechanisms behind differences in mobilization capacity among strains and the 

phages themselves are presently unclear, however an approach using a transposon 

or gene-knockout screening, coupled with a reporter system, may be able to 

elucidate such factors. Screening candidates for increased phage mobilization by 

PCR is too exhaustive a task, but a reporter system in which a visual phenotype is 

apparent with phage excision could facilitate such a screening. For example, a 

reporter gene (gfpmut2, xylE) could be fused to hlb, geh or another relevant phage 

integration site such that a phenotype is apparent when phages are excised, but 

absent with phage integration. Increases in fluorescence or pigmentation of colonies 

could indicate candidate genes that contribute to phage stabilization in the 

chromosome. In parallel, a screening in which potential factors are overexpressed 
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on a plasmid in the same reporter system could identify gene activity necessary for 

the phage excision detected. Outside of screening, candidate genes could also be 

identified between strains in which the same phage shows differential mobilization, 

e.g. S. aureus s64c and 8325-4. Such differences between the strains may attributed 

to changes in gene expression rather than sequence however, and could complicate 

such an approach. Regardless, research focused on uncovering such factors will be 

important in understanding the behavior of various strains versus others and 

contribute to our understanding of the interplay between bacteria and phage. Their 

presence would suggest a mechanism by which bacteria use phage to increase their 

diversity and create new subpopulations, capable of altered gene expression, 

virulence, and/or fitness. 

3.10 Episomal prophage are detected only in extra-chromosomally 
enriched DNA samples, and are circular DNA elements that appear to be 
active lysogenic prophages 

QPCR characterization of prophage excision rates and copy numbers revealed, 

surprisingly, that episomal prophages are detected only in exDNA samples and that 

their presence is masked in gDNA preparations. In MSSA476 for example, overall 

excised prophage copy numbers as measured from qPCRs of gDNA is relatively low, 

with fSa3ms and fSa4ms at 0.086 and 0.023 copies attP/copy gyrA, respectively. 

This would correspond to very low increases in read-depth over the fSa3ms and 

fSa4ms prophage chromosomal locations if MSSA476 gDNA was sequenced and 
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read-mapped to a MSSA476 reference chromosome (likely 8.6 and 2.3% maximum 

increases, respectively). Using gDNA, coverage analysis tools would likely not find 

regions of significantly higher coverage spanning either prophage genome, so while 

fSa3ms copy number was greater than fSa4ms in gDNA samples, neither prophage 

would be found as enriched by this approach, and the episomal nature of fSa4ms 

would be overlooked. fSa4ms excised prophage copy number in exDNA samples 

however is much greater (0.622 copies attP/copy gyrA), and is sufficient for 

significantly high read-depth across the prophage location in the chromosome. The 

excised copy number of fSa3ms in exDNA samples, while elevated from that seen in 

gDNA samples (0.146 versus 0.086 copies attP/copy gyrA, respectively), was not 

high enough to have significantly higher read-depth or coverage over the fSa3ms 

genome in read-mappings. Thus, our exDNA isolation and sequencing approach 

allows the distinction of episomal elements, even when such elements would be 

masked in qPCR and sequencing of DNA prepared by other methods.   

We showed that our extra-chromosomal DNA isolation procedure enriches circular 

DNA elements, allowing the identification of episomes and plasmids, and that 

whole-genome approaches do not impart such selectivity in sample preparations. 

Why fSa4ms copy number was lower than that of fSa3ms in gDNA despite the 

presence of fSa4ms episomes, we believe, is likely due to the presence of linear, lytic 

cycle prophage genome concatemers in the MSSA476 population. pSAS1 plasmid 

enrichment by our protocol was approximately 1500-fold, suggesting that in qPCRs 
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of gDNA, the percentage of total attP targets encoded by circular prophage is very 

low. The copy number of linear prophage concatemers in gDNA samples therefore 

likely masks the presence of circular phage elements, making it doubtful that the 

DNA elements we uncover would be detected by sequencing or qPCR in the absence 

of extra-chromosomal DNA enrichment. That the excised prophage copy number of 

fSa3ms and fSa4ms is so low in exDNA samples despite ~1500-fold enrichment for 

pSAS1 suggests that for MSSA476, both fSa3ms and fSa4ms excised prophage copy 

number is primarily composed of linear elements, likely from a small subset of cells 

whose phages are undergoing spontaneous lytic cycle replication. While both phages 

in MSSA476 are capable of such lytic events, only fSa4ms showed enrichment for 

circular prophage in its cytoplasm, suggesting fSa4ms’s circular prophage is not 

participating in the lytic cycle, but is perhaps in a state akin to active lysogeny 

(Feiner et al., 2015). We also note that samples for sequencing were prepared in 

nutrient-rich conditions at mid-logarithmic phase, conditions unlikely to promote 

DNA damage and associated prophage lytic induction (Nanda et al., 2015). A model 

for how the MSSA476 population might exist in early logarithmic phase is 

presented in Figure 3-11. 
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Figure 3-11. Qualitative model of MSSA476 early logarithmic culture. At 
early log phase, MSSA476 culture contains cells with prophage in both the lytic and 
lysogenic cycles. The vast majority of cells are stably lysogenized (tan) with fSa3ms 
(blue) and fSa4ms (orange). A subpopulation of cells contains excised prophage 
elements that appear to be in an active lysogenic cycle (green). Of these cells, those 
with fSa4ms excised outnumber those with fSa3ms excised. Cells with phage 
induced into the lytic cycle are pictured in gray. Here, fSa3ms-induced cells 
outnumber fSa4ms-induced cells. Subpopulations are shown at relative percentages 
for illustrative purposes, rather than the quantitative levels suggested by qPCR and 
other data.  
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However, to further rule out the presence of circular prophage as a precursor to lytic 

cycle replication, we examined MSSA476 samples by qPCR over a range of time 

points. Surprisingly, the results revealed that excision of circular prophage into the 

extra-chromosomal compartment is temporal, with the highest levels of circular 

fSa4ms in early logarithmic growth but rapidly decreasing with increased cell-

density. This decrease occurred without any concurrent increase in overall fSa4ms 

copy number, showing that fSa4ms circular elements were not precursors to phage-

replication and are likely not participating in the lytic cycle, but rather are in an 

active lysogenic state. The data also indicates potential control of this event by the 

bacterial cell, with some factors either promoting excision at early log growth, or 

perhaps increased re-integration at later growth points. In addition, these data 

show that phage enrichment would likely go undetected in MSSA476 if samples 

were prepared at OD600 ³ 1.0. Therefore, it may be beneficial to purify extra-

chromosomal DNA at multiple time points in future studies, elucidating the entire 

mobilization dynamics of a bacterial genome over its growth cycle. 

The time-course qPCR data also showed that the excision rate of fSa4ms decreased 

from early to later log phase, suggesting some circular fSa4ms may be re-

integrating into the chromosome after excision. In addition, whether fSa4ms or 

related circular prophage elements undergo any replication or remain as single copy 

in this excised state is unclear. A previous study reported Hlb–/sak2 S. aureus 

strains with multiple hlb-converting phages integrated in the chromosome (Goerke 
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et al., 2006). Replication of excised lysogenic prophage could be the first step in 

generating such strains. Our qPCR approach examined bacterial populations as a 

whole, but cannot address these specific questions; further experiments on the 

single-cell level are necessary to uncover such exact excision/integration (and 

potentially replication) dynamics. One potential method to address this question is 

through fluorescence microscopy with fluorophores attaching specifically to modified 

phage genomes. Reporter systems have been previously developed to track P22 

phage localization and replication in live cells (Cenens et al., 2015) and a similar 

approach could be used in S. aureus to look at phage replication and determine if it 

occurs in a lytic or lysogenic manner (i.e. the degree of replication and whether cells 

survive after phage genome replication). A complicating factor here is that it 

appears in MSSA476 and likely other strains of S. aureus, prophages can be in the 

lysogenic cycle in integrated and excised states and it is unclear if such systems can 

distinguish these cell types. Additional co-localizing labels specific to the bacterial 

chromosome may be necessary to help determine if for lysogenic cells, phage are 

integrated or excised. Nonetheless, such a system should be able to help uncover the 

dynamics and some of the questions about the phage we uncover by extra-

chromosomal DNA isolation and sequencing.  
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3.11 What is the biological significance of episomal phage? 

The phages we describe as enriched in our sequencing appear to be active lysogenic 

phage that have excised from the chromosome, and the distinction between phages 

in the lytic versus lysogenic or active lysogenic cycle is important when considering 

the roles of prophage as molecular switches or mechanisms to generate diversity in 

bacterial populations. Excision by phage induction leads likely to cell death, 

whereas excision of (active) lysogenic phage will generate stable diversity in the 

population that can be passed on to daughter cells. While under our conditions the 

percentage of excised phage is relatively low, other external environments could 

select for and expand certain prophage-excised subpopulations. For example, 

fSa4ms was shown to alter the htrA2 promoter, with the phage-excised (Pex) 

promoter conferring increased heat-tolerance in COL. It is presently unclear if 

HtrA2 confers this tolerance in MSSA476, however if the protein plays a similar role 

as in COL, then qPCRs of phage excision rates and excised prophage copy number 

in cultures grown at elevated temperatures may show increased proportions of cells 

with excised (or lost) fSa4ms. Such growth could either select for survival of already 

fSa4ms-excised cells, or could drive fSa4ms lysogenic excision by an unknown 

mechanism. In either case, the overall percentage of cells with excised fSa4ms 

prophage would increase.  

In other strains, the external environment could also drive the expansion of 

subpopulations with excised prophage. In HPV107 for example, a subpopulation 
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containing excised hlb-converting prophage might expand in infection conditions 

(i.e., serum culture or low-iron environments). Goerke et al. found that hlb-

converting prophages moved to atypical chromosomal locations allowing Hlb 

production in invasive disease isolates; localization of typically integrated lysogenic 

prophage into the cytoplasm (without induction) could precede generation of such 

unique S. aureus isolates (Goerke et al., 2006), or alternatively, prophage harbored 

in the cytoplasm without reintegration could achieve the same phenotype. The 

extra-chromosomal DNA enrichment and sequencing approach described here may 

allow characterization of strains for such a mobilization capacity or potential. Other 

phages such as those that negatively convert geh could excise under conditions 

selecting for lipase activity as well. 

A clear question that follows from the research described in this Chapter is the 

biological role of phage mobilization. Two approaches may help drive at the answer 

for this question. One approach would be to grow cultures in a variety of conditions 

(e.g., BHI or serum culture, starvation or nutrient-rich conditions, or other relevant 

culture environments) and compare the extra-chromosomal DNA profiles of each 

sample. Comparison may show the favored excision of phage in one condition over 

another and suggest biological roles and help formulate better hypotheses of how 

specific phage may promote increased bacterial fitness. We did a “retroactive” extra-

chromosomal sequencing of S. pyogenes SF370 at mid-logarithmic phase, which 

indeed showed the expected enrichment of episomal SpyCIM1, the phage-like 
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element acting as a switch in the strain’s mismatch repair operon (Deutsch et al., 

2016).  Follow-up experiments examining exDNA of S. pyogenes SF370 in nutrient-

rich versus nutrient-deficient conditions should show the enrichment of SpyCIM1 in 

rich rather than nutrient-poor conditions and could serve as a test case for extra-

chromosomal DNA isolation and sequencing in a variety of environments. While the 

biological role of SpyCIM1 is already partially known (Hendrickson et al., 2015; 

Nguyen and McShan, 2014), without this information, extra-chromosomal DNA 

isolation and sequencing alone could offer promising potential avenues of research, 

i.e., exDNA sequencing of SF370 suggests SpyCIM1’s biological role without 

knowledge of prior reports. While the same conclusions can be drawn from qPCR-

based experiments, given the relative ease and low-cost of sequencing, profiling 

bacterial extra-chromosomal compartments in this manner will allow for multiple 

target identification and less bias in uncovering elements.   

A more direct approach to uncover the biological role of such phage excision would 

be to prevent it outright by creation of phage integrase knockouts. As previously 

described, the movement of hlb-converting prophage in S. aureus to atypical 

chromosomal loci has been shown to occur in isolates from cystic fibrosis and 

bacteremic patients, with phage mobilization thought to be important for infection 

(Goerke et al., 2006). An informative experiment could compare the virulence and 

dissemination of S. aureus harboring hlb-converting phage that can freely 

excise/integrate (WT), versus those that that are “locked into” the chromosome 
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(Dint), or are phage-cured. Here, the comparison of wild-type, Dint, and phage-cured 

strains should help elucidate both the role of the phage as a whole, as well as the 

specific benefits of phage excision/integration. Given that phage mobilization plays 

a key role in the transition from colonization to invasive infection, strains with 

locked-in phage may show a decreased virulence potential. However, negative 

conversion may allow for strains to better colonize in the first place, serving as a 

mechanism for the organism to “get a foot in the door”, or in this case, the nose. 

(Isolates harboring hlb-converting phage are overwhelmingly represented in the 

nasal cavity, but have not been found essential for colonization (Verkaik et al., 

2011).) If this is the case, then phage-cured strains should show decreased initial 

colonization and may be outcompeted by other strains or species. In addition, as the 

virulence factors typically carried on hlb-converting phages were shown important 

for infection (Bae et al., 2006), phage-cured strains may have weaker virulence 

potential. Thus, the most virulent strain of S. aureus may be the one containing an 

hlb-converting prophage capable of atypical localization, allowing colonization of the 

nose via phage gene products, and successful infection by concurrent production of 

Hlb and phage-encoded virulence factors. An illustration of the potential benefits of 

harboring mobilizing phage is shown in Figure 3-12. Comparison of these three 

strain types (WT, Dint, and Dfhlb-c) should illustrate some of the key biological 

roles of active lysogenic phage in the S. aureus lifecycle.  
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Figure 3-12. Mobilizing phage can generate diverse subpopulations of S. 

aureus. An illustration of a hypothetical experiment is shown above. Here, a S. 

aureus strain is lysogenized with a hlb-converting phage that can freely excise from 
and reintegrate into the chromosome (WT). Variants of the strain include an 
integrase knockout where the phage is “locked” in the chromosome (Dint), and a 
phage-cured derivative (Dfhlb-c). The WT strain can generate numerous 
phenotypically- and genotypically-altered subpopulations (I-IV) via phage 
mobilization. The external environment may select for the expansion of one or 
multiple subpopulations. For Dint and Dfhlb-c, the lack of phage mobilization and 
phage, respectively, prevents diversity in their populations. Dint can only exist as 
population I, and Dfhlb-c as population IV. WT can reversibly switch between I, II 
and III, and irreversibly lose its phage, creating population IV. Comparison among 
the three strains for colonization, virulence, and other phenotypes (e.g. biofilm 
formation capacity) could illustrate the importance of phage mobilization in S. 

aureus, and phage as a potential switch allowing the bacteria to alter its phenotypes 
for success in multiple environments. 
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III. Hlb+, SAK+, SCIN+, 
SEA+, CHIPS+

IV. Hlb+, SAK–, SCIN–, 
SEA–, CHIPS–

Phage-driven diversity

Changes in colonization? 

Virulence potential?

Other phenotypic alterations?

Phage-encoded virulence factor

Hlb

hlb gene

∆int (Hlb–, SAK+, 
SCIN+, SEA+, CHIPS+)

ΔΦ       -c (Hlb+, SAK–, 
SCIN–, SEA–, CHIPS–)

Φhlb-c
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In a related but converse manner, one study found S. aureus colonization of mouse 

ears was actually enhanced with Hlb production. In this report, the hlb-converting 

phage of S. aureus MW2 (fSa3mw) was frequently lost upon murine ear 

colonization, and a bacterially-controlled phage-switch to alter the organism’s 

infection program was suggested by the Authors (Katayama et al., 2013). Here, in 

contrast to typical observations in human isolates, fSa3mw was preferentially lost 

in mouse ear colonization. It is unclear why the loss of fSa3mw is preferred for 

mouse colonization while strains harboring hlb-converting phage are nearly always 

found in human nares, but it is known that the virulence factors encoded by 

fSa3mw are more human-specific (Katayama et al., 2013). Phage-loss in this case 

may be selected for due to the murine host, whereas in humans, the importance of 

such phage-encoded factors may select for strains harboring hlb-converting phage. 

In addition, this study did not examine the propensity of such strains to cause 

invasive infection; fSa3mw-cured strains may show weaker virulence potential and 

be selected against in such an experiment or environment. Regardless, for S. 

aureus, carrying lysogenic phage capable of excision without induction may allow 

the bacteria to successfully balance the needs of colonization and infection, which 

demand different sets of virulence factors.  

The research detailed in this Chapter uncovered potential active lysogenic phage 

that could modulate the expression of htrA2 (fSa4ms), and allow the full-length 

transcription of hlb (fHPV107.1) by excision from the chromosome. In addition to 
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these phage, this work also uncovered an intergenic prophage in HPV107 (unclear 

integrase type, intergenic between tRNA-Ser and enterotoxin), and 2 intergenic 

prophages in NRS22 and BK2529 (both with Sa7-like integrases, and intergenic 

between rpmF (50S ribosomal protein L32) and isdB (iron-regulated surface 

determinant)). The potential effects of their extra-chromosomal carriage on hosts 

are unclear, and phage integration in these loci has been previously reported (Bae 

et al., 2006; Goerke et al., 2006). Excluding fHPV107.1, the typically-intragenic 

phages we found enriched in our screening included a geh-converting prophage in S. 

aureus NRS143, a 6-phospho-b-galactosidase-integrating prophage in HPV107, and 

2 prophages in NRS22 (one prophage integrated within a hypothetical protein-

encoding gene, and one prophage disrupting a radical SAM-encoding gene). In 

addition, we uncovered an enriched integrative and conjugative element (ICE) 

typically located within a predicted membrane protein encoding locus in NRS271. 

Lipase has been implicated in biofilm and abscess formation in S. aureus (Hu et al., 

2012; Jabra-Rizk et al., 2006; Kuroda et al., 2007), however some clinical strains 

carry geh-converting phages without a clear mechanistic advantage. If some geh-

converting phages are acting as switches to control the expression of lipase for the 

bacteria’s benefit, then advantages to such prophage carriage would be apparent, 

and future work should investigate this possibility. The effects of the other 

intragenic phages are unclear, however their enrichment suggests that they could 

act as switches to also control underlying gene expression. Disruption of genes by 

the intragenic phages in NRS22 has been reported previously in other S. aureus 
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strains (Bae et al., 2006), however to our knowledge, disruption of a 6-phospho-b-

galactosidase encoding gene (HPV107) has not been previously reported and 

represents a novel phage integration site in S. aureus. The role of the uncovered 

ICE is also unclear, but its potential as a DNA-level switch is intriguing. Overall, 

exDNA isolation and sequencing revealed the episomal nature of specific typically-

integrated staphylococcal prophages. The reports of virulence program alteration by 

mobilizing hlb-converting phages suggests that the DNA elements uncovered by our 

extra-chromosomal DNA isolation and sequencing approach may act as diversity 

promoting elements in S. aureus. The prevalence and number of prophage elements 

uncovered in this screening suggests their widespread use and importance to the 

pathogen. Follow-up experiments will have to elucidate their specific biological 

roles. 
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SUMMARY 

This study screened the extra-chromosomal DNA of 15 clinical S. aureus isolates, 

uncovering the prevalence of episomal prophage with potential roles in virulence 

factor expression and regulation. QPCR characterization of one of these strains, 

MSSA476, verified that one of its phage, fSa4ms, exhibits episomal behavior, and 

may exist as an active lysogenic prophage. We show that episomal fSa4ms exists as 

a circular DNA element off the chromosome, and that it does not appear to be a 

precursor to lytic cycle replication. Importantly, the episomal prophage we uncover 

are only detectable in extra-chromosomally enriched DNA samples, and their 

presence would have been missed in sequencing or qPCRs of whole-genome DNA 

samples. Lastly, this work finds that fSa4ms appears to act as a phage-molecular 

switch, as its excision/integration alters the promoter sequence of htrA2, changing 

its transcription levels and affecting heat-stress survival in S. aureus COL. fSa4ms 

behavior suggests it is an active lysogenic prophage, and the other episomal 

prophages identified may exhibit similar activity, given their integration sites. 

Episomal lysogenic prophage, or active lysogenic phage, promote the generation of 

stable, diverse subpopulations with impacts on bacterial infection; extra-

chromosomal DNA isolation and sequencing should allow the increased discovery of 

such elements in S. aureus and other bacterial pathogens. 
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MATERIALS AND METHODS 

3.12 Bacterial strains and growth conditions 

Strains and constructs used in this study are listed in Table 3-6. For preparation of 

extra-chromosomal DNA, S. aureus strains were established from overnight 

cultures grown in Bacto Brain Heart Infusion Broth (BHI), and back-diluted 1:100 

into 50 mL BHI without shaking at 37°C unless otherwise noted. Strains were 

grown to an OD600 of 0.6 - 0.8. Cultures were centrifuged at 4000 RPM for 10 

minutes at 4°C and used immediately or frozen overnight at -20°C. For qPCR 

studies, strains were back-diluted from overnight cultures and grown to specified 

optical densities. For PhtrA2-GFP reporter studies, overnight cultures were back-

diluted 1:100 in 15 mL BHI and grown at 200 RPM at 37°C to an OD600 = 0.2. E. coli 

was grown at 37°C, 200 RPM in LB media with selection as necessary. 

Concentrations for antibiotics used are as follows, for Escherichia coli: ampicillin, 

100 µg/mL; for S. aureus: erythromycin, 5 µg/mL, spectinomycin, 50 µg/mL. For 

heat shock studies, plates were grown at 44°C.  
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Table 3-6. Bacterial strains and constructs used in this study. 

Strains Notes Source 

E. coli 

E. coli TOP10 Cloning host Invitrogen 

E. coli DC10B Cloning host Lab strain 

E. coli 
DH5⍺::pCN35 

Strain containing pCN35 
plasmid 

(Charpentier et al., 
2004) 

E. coli 

DH5⍺::pCN56 
Straining containing 
pCN56 plasmid 

(Charpentier et al., 
2004) 

S. aureus 

RN4220 Restriction deficient 
cloning host 

(Kreiswirth et al., 1983) 

RN6390 
htrA2 

RN6390, htrA2::spc SpcR (Rigoulay et al., 2005) 

RN6390 
htrA2 DD01 

RN6390, htrA2::spc SpcR, 
harboring pCN35, ErmR

This work 

RN6390 
htrA2 DD02 

RN6390, htrA2::spc SpcR, 
harboring pCN35 with full 
length htrA2 and 250 bp 
int-promoter, ErmR

This work 

RN6390 
htrA2 DD03 

RN6390, htrA2::spc SpcR, 
harboring pCN35 with full 
length htrA2 and 250 bp ex-
promoter, ErmR

This work 

RN6390 
htrA2 DD04 

RN6390, htrA2::spc SpcR, 
harboring pCN56, ErmR

This work 

RN6390 
htrA2 DD05 

RN6390, htrA2::spc SpcR, 
harboring pCN56 with 
phtrA2-int insert, ErmR

This work 

RN6390 
htrA2 DD06 

RN6390, htrA2::spc SpcR, 
harboring pCN56 with 
phtrA2-ex insert, ErmR

This work 

COL htrA2 COL, htrA2::spc SpcR (Rigoulay et al., 2005) 
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COL htrA2 

DD11 
COL, htrA2::spc SpcR, 
harboring pCN35, ErmR

This work 

COL htrA2 

DD12 
COL, htrA2::spc SpcR, 
harboring pCN35 with full 
length htrA2 and 250 bp 

int-promoter, ErmR

This work 

COL htrA2 

DD13 
COL, htrA2::spc SpcR, 
harboring pCN35 with full 
length htrA2 and 250 bp ex-
promoter, ErmR

This work 

COL htrA2 

DD14 
COL, htrA2::spc SpcR, 
harboring pCN56, ErmR

This work 

COL htrA2 

DD15 
COL, htrA2::spc SpcR, 
harboring pCN56 with 
phtrA2-int insert, ErmR

This work 

COL htrA2 

DD16 
COL, htrA2::spc SpcR, 
harboring pCN56 with 
phtrA2-ex insert, ErmR

This work 

Genome/Chromosomal 

Accessions for read-mapping 

BAA-42 MRSA ATCC JXZF00000000 

MSSA476 MSSA; Hyper-virulent, 
community acquired 

ATCC JXZG00000000 

NRS156 MSSA; vaginal tampon 
isolate 

NARSA JXZU00000000 

NRS271 MRSA; Linezolid-resistant, 
wound isolate 

NARSA JXZW00000000 

NRS153 MRSA NARSA JXZY00000000 

NRS127 MRSA; sputum source 
from Tenn., oxacillin, 
penicillin, ciprofloxacin 
and erythromycin resistant 

NARSA JXZZ00000000 

NRS387 MRSA; wound Washington 
State 

NARSA JYAD00000000 

NRS22 VISA; MRSA; inpatient 
ICU, bloodstream 

NARSA JYAG00000000 
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NRS143 MSSA NARSA JYAH00000000 

NRS158 MSSA; HT 2000 0319; 
Strain was isolated from 
skin infection in France 

NARSA JYAN00000000 

NRS2 MRSA; Mu3; ATCC 
700698; Purulent sputum, 
cardio thoracic surgery, 
Japan; Oxacillin and Tet 
resistant; VISA= MIC=4; 
white colonies, robust 
growth on BHI 

NARSA JYAO00000000 

E2125 MRSA; Denmark; 
SCCmec1; 1964 

VAF JYAX00000000 

HPV107 MRSA; Portugal; 
SCCmec1a, 1992 

VAF JYAY00000000 

HDE288 MRSA; Portugal; 
SCCmecIVvar; MRSA; 
1996 

VAF JYAZ00000000 

BK2529 MRSA; USA; SCCmecIV; 
1996 

VAF JYBA00000000 

ATCC = American Type Culture Collection 
NARSA = Network on Antimicrobial Resistance in Staphylococcus Aureus 
VAF = Vincent A. Fischetti 

3.13 Whole-genome and extra-chromosomal DNA isolation and 

manipulation  

Whole genome DNA isolations (gDNA) were performed using the QIAGEN DNeasy 

Blood and Tissue Kit, including an added manufacturer-detailed pretreatment step 

for Gram-positive bacteria. Enzymatic lysis buffer was composed of lysostaphin (100 

µg/mL) in 1X phosphate-buffered saline (PBS). Extra-chromosomal DNA isolation 
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was carried out as previously described (Utter et al., 2014).  Extra-chromosomal 

DNA samples were visualized on 0.7% agarose 0.5X TAE gels stained with SYBR 

Safe DNA Gel Stain. Electrophoresis was carried out at 50 V for 1 hr in 0.5X TAE, 

and visualized with UV transillumination. Prior to DNA sequencing, extra-

chromosomal DNA samples were concentrated as needed using Microcon DNA Fast 

Flow centrifugal filters, following manufacturer’s directions (EMD Millipore). 

3.14 DNA sequencing of extra-chromosomal S. aureus samples 

DNA sequencing of extra-chromosomal DNA samples was performed using the 

Illumina MiSeq sequencer. Extra-chromosomal DNA was quality checked prior to 

library construction and sequencing using the Thermo Fisher Scientific Qubit 

Fluorometer High Sensitivity DNA kit to measure quantity of DNA and the Agilent 

Technologies High Sensitivity DNA assay to measure size and quality of DNA.  

DNA libraries were constructed as per manufacturer’s instructions from 1 ng DNA 

per sample using the Illumina Nextera XT DNA Library Preparation kit. Each DNA 

library was barcoded to allow for multiplexing during sequencing using the 

Illumina Nextera XT Index kit. Libraries were quantitated and quality checked 

using Agilent Technologies High Sensitivity DNA kit. Libraries were sequenced 

using the Illumina MiSeq Reagent kit V2 (500 cycle). Prior to sequencing, libraries 

were normalized and pooled together to make a pooled amplicon library at 2 nM 

concentration. Sequencing generated FASTQ files to allow for off-instrument 

analysis.  
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3.15 Bioinformatic sequence analysis of extra-chromosomal DNA samples 

Bioinformatic analysis was performed using CLC Genomics Workbench software 

unless otherwise described. Extra-chromosomal reads were mapped to respective 

chromosomal sequences (Table 3-6), and unmapped reads were saved as a separate 

file and de novo assembled for plasmidial elements. Read-mappings were visually 

examined for regions of increased read-depth corresponding to DNA element 

enrichment in extra-chromosomal DNA samples. Read-mappings were then 

subjected to coverage analysis to identify regions with significantly higher (P < 0.05) 

coverage. Prophage and other mobile DNA element regions with high coverage were 

noted for each sequenced sample. 

3.16 QPCR analysis of S. aureus strains 

For qPCR experiments, strains were grown as described for extra-chromosomal 

DNA sequenced samples, or to other desired optical densities. Cultures were 

divided, with one portion of the culture subjected to the QIAGEN DNeasy Blood and 

Tissue Kit for gDNA isolation, and the rest undergoing extra-chromosomal DNA 

isolation. gDNA samples were used to determine excision rates and phage or 

plasmid copy number per cell of the bacterial population, while exDNA samples 

were used only for phage and plasmid copy number measurements. Primer pairs 

and probe sequences for each target are listed on Table 3-7. All primers and probes 

were designed and purchased from Integrated DNA Technologies (Coralville, IA). 
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Amplification was carried out using the TaqMan Gene Expression Master Mix 

(Thermo Fisher) using the Life Technologies QuantStudio 12K-Flex Instrument 

following manufacturer’s cycling protocol. Standard curves for each primer-probe 

set were generated for each experimental run, with amplification efficiencies and 

linear regression analyzed using QuantStudio Software. All primer-probe sets had 

efficiencies 90-110% and R2 > 0.98. Excision rates, excised prophage copy numbers, 

and plasmid copy numbers were calculated by normalizing target (attB, attP, 

pSAS1, respectively) to gyrA. All targets were measured in biological triplicate and 

technical duplicate. Graphical and statistical analysis was performed using Prism 

GraphPad with significance testing done using two-tailed Student’s t-tests. Values 

are reported as mean ± standard error.  

3.17 Linear DNase and restriction endonuclease treatment of extra-
chromosomal DNA samples and end-point PCR of DNA targets 

Prior to linear DNase and/or treatment with restriction endonucleases, extra-

chromosomal DNA samples were treated with PreCR Repair Mix (NEB) to repair 

nicked DNA. PreCR-treated samples were then either 1) treated with PshAI and 

PspXI (NEB) following manufacturer’s protocol, 2) treated with Plasmid-Safe-ATP-

Dependent DNase (Epicentre), 3) treated with the fSa4ms-specific restriction 

endonucleases PshAI and PspXI, then the Plasmid-Safe-ATP-Dependent DNase, or 

4) left solely PreCR-treated. Plasmid-Safe treated samples were treated over the

course of 16 hours, where 2 µL ATP solution and 2 µL DNase were added at 2 and 4 
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hour time points, with the reaction incubated at 37°C. Samples were heated to 

inactivate enzyme prior to PCR. End-point PCR was carried out using target-

specific primers (Table 3-7) and the KAPA2G Robust Hotstart Polymerase (KAPA 

Biosystems) with the following cycling protocol: 1) Initial denaturation 95°C, 3 min; 

2) Denaturation 95°C, 15s; 3) Annealing 60°C, 15s; 4) Extension 72°C, 15s; 5)

Repeat steps 2-4 33 times. Samples were normalized for total DNA prior to loading 

individual PCR reactions. PCR products were visualized using 1% agarose 0.5X 

TAE gels stained with SYBR Safe DNA Gel Stain. Electrophoresis was carried out 

at 100 V for 25 min in 0.5X TAE, and visualized with UV transillumination. Images 

were captured using Alpha Imager HP software. 

Table 3-7. Primers and probes used in this study. 

Primers Sequence Notes 

qPCR/end-point 
PCR primers 

gyrA_F CGTGAAGGTGACGAAGTTGT For per cell 
normalization 

gyrA_probe TGTTTGCATGAGCTACATCAAGCCC 5' 6-FAM/ZEN/3' 
IBFQ 

gyrA_R CCTTTACCACCACGATTTGA For per cell 
normalization 

phihlb_attB_F ACGTTTATATGTTATCGACCGT for excision rates 
of hlb-converting 
prophage 

phihlb_attB_probe ACGCGCTGATTTAATCGGACAATCTTCT 5' 6-FAM/ZEN/3' 
IBFQ 
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phihlb_attB_R TTGTCTGATGCACCATTATCA for excision rates 
of hlb-converting 
prophage 

phiSa4ms_attB_F GACGCTTACGTCGGTACT for phiSa4ms 
excision rates 

phiSa4ms_attB_probe ACCAATATCCACTAATGTCCACTCCATTCA 5' 6-FAM/ZEN/3' 
IBFQ 

phiSa4ms_attB_R TTGATGTGAAGCGGACAATC for phiSa4ms 
excision rates 

hlb_attP_F AAAGTCTCCAGTTTGGATACATAGA for hlb-converting 
prophage copy 
number/ end-
point PCR 
measurement 

hlb_attP_probe CAACAGTATTTATTGGGTTTGGAGTCC 5' 6-FAM/ZEN/3' 
IBFQ 

hlb_attP_R GAAAGTATGTAATTTAGGGACCCATTAG for hlb-converting 
prophage copy 
number/ end-
point PCR 
measurement 

phiSa4ms_attP_F CCTTGCAACACATTCTGAACAC for phiSa4ms 
copy number/ 
end-point PCR 
measurement 

phiSa4ms_attP_probe ACGGCCATTCTCAAACGTACACGA 5' 6-FAM/ZEN/3' 
IBFQ 

phiSa4ms_attP_R TAAGAGCAAACACGAGTGGAAA for phiSa4ms 
copy number/ 
end-point PCR 
measurement 

pSAS1_F CCTCGGAACCCTTAACAATCC for pSAS1 copy 
number 

pSAS1_probe ATGGTCGGCTTAATAGCTCACGCT 5' 6-FAM/ZEN/3' 
IBFQ 
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pSAS1_R GCGTTGAGAAGAACCCTTAACTA for pSAS1 copy 
number 

gapdh_PCR_F GTCAACGAATATTGCAATTAATGGTATGG for measuring 
gapdh target via 
end-point PCR 

gapdh_PCR_R CGCACCAGTAGAAGTAGGAATAATGC for measuring 
gapdh target via 
end-point PCR 

pSAS1_PCR_F GAAGGTCGTCTATCTCTCAGATGTC for measuring 
pSAS1 target via 
end-point PCR 

pSAS1_PCR_R AAGGATGGTCTCAAGAGGAATTAGCC for measuring 
pSAS1 target via 
end-point PCR 

Pint/ex and htrA2- 

related primers 

Pint_upstm GCTTATGGATCCATAAATGATCAAACCACACCACCT 250bp upstream 
of htrA2 gene, 
phiSa4ms 
integrated 
primer, BamHI 
restriction site, 
for Pint 
construction 

Pex_upstm GCTTATGGATCCAAAAATCGCATAAATAATTGATGTGAAG 250bp upstream 
of htrA2 gene, 
phiSa4ms excised 
primer, BamHI 
restriction site, 
for Pex 
construction 

P_dwnstm GCTTATGGTACCCTAAGGAATTACATGTTTTTTACCAATATC 30bp within 5’ 
end of htrA2 gene, 
Kpn1 restriction 
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site, for Pint/ex 
construction 

Pint_upstm_seq ATAAATGATCAAACCACACCACCT for Sanger 
sequencing of 
Pint 

Pex_upstm_seq AAAAATCGCATAAATAATTGATGTGAAG for Sanger 
sequencing of Pex 

P_dwnstm_seq CCTAAGGAATTACATGTTTTTTACCAATATC for Sanger 
sequencing of 
Pint/Pex 
constructs 

full_htrA2_dwnstm GCTTATGGTACCTTATTTTAGTTTAATATTAATTTCTTTC 3' end of htrA2, 
for 
complementation 
of htrA2, Kpn1 
restriction site 

full_htrA2_seq1 GTACTGACTTTTAGGAATTACATGT For Sanger 
sequencing of 
htrA2 constructs 

full_htrA2_seq2 GTAATTACTGAATTAGATGGC For Sanger 
sequencing of 
htrA2 constructs 

full_htrA2_seq3 GTCTGAAACGGTGGGATATC For Sanger 
sequencing of 
htrA2 constructs 
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3.18 Construction and testing of PhtrA2-GFP reporter system and htrA2-
complemented knockouts 

For construction of a PhtrA2-GFP reporter system, 250 bp upstream of the htrA2 

gene and 30 bp of htrA2 were amplified from MSSA476 gDNA template using 

Phusion High-Fidelity DNA Polymerase with two primer sets 1) 

Pint_upstm/P_dwnstm or 2) Pex_upstm/P_dwnstm (Table 3-7) to amplify two 

versions of the htrA2 promoter and 5’ gene region (Pint or Pex). PCR products were 

gel purified, cut with restriction enzymes KpnI and BamHI (NEB), and further 

purified. pCN56 vector (Charpentier et al., 2004) was mini-prepped, digested with 

KpnI and BamHI, dephosphorylated with Antarctic Phosphatase (NEB), and gel 

purified before ligation with T4 ligase (NEB) to the purified PCR products. 2 µL 

ligation mixture was transformed into One Shot TOP10 Chemically Competent E. 

coli (Thermo Fisher) and resulting colonies screened by PCR and Sanger sequenced 

(GENEWIZ; South Plainfield, NJ) using primers Pint_upstm_seq/P_dwnstm_seq or 

Pex_upstm_seq/P_dwnstm_seq for desired vector insert (Table 3-7). E. coli 

harboring pCN56 with Pint or Pex inserts were grown and miniprepped, and the 

vectors electroporated into electrocompetent S. aureus RN4220 using a Bio-Rad 

Gene Pulser with the following settings: 2.5 kV, 25 µF, 100 W. Empty pCN56 vector 

was also introduced into RN4220. Vectors from RN4220 colonies were transduced 

using fNM4γ4 (Heler et al., 2015) into S. aureus RN6390 htrA2 and S. aureus COL 

htrA2 (Rigoulay et al., 2005) following an established protocol (Olson, 2016). Colonies 
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were screened via PCR and inserts Sanger sequenced to ensure the correct DNA 

sequence.  

To examine GFP fluorescence in each strain, overnight cultures of constructs were 

back-diluted 1:100 in 15 mL BHI supplemented with 5 µg/mL erythromycin and 50 

µg/mL spectinomycin and grown at 37°C, 200 RPM to an OD600 = 0.2. Cultures were 

then grown at 37°C or 44°C with shaking. At 3 and 6 hr time points, 1 mL culture 

was removed, an OD600 value measured, and 200 µL culture pipetted in a quartz 96-

well plate and RFUs measured on a Molecular Devices SpectraMax M5 instrument 

(485 nm excitation, 515 nm emission). Fluorescence of pCN56 (empty vector) 

cultures was subtracted as background, and OD600 normalized RFUs for each 

sample were measured. Comparison of construct-GFP fluorescence was calculated 

as a ratio of Pex/Pint. The experiment was performed in triplicate. 

For construction of htrA2–complement vectors, the htrA2 gene and 250 bp upstream 

of the gene were amplified using the primer set 1) Pint_upstm/full_htrA2_dwnstm 

or 2) Pex_upstm/full_htrA2_dwnstm (Table 3-7) with Q5 DNA Polymerase (NEB) to 

generate two DNA fragments containing the full length htrA2 sequence with 

different 250 bp promoter sequences. PCR products were treated as described above 

but ligated into pCN35 vector (Charpentier et al., 2004). The ligated vectors and 

pCN35 empty vector were transformed into electrocompetent E. coli DC10B 

prepared by standard techniques, shuttled into RN4220, transduced into S. aureus 
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RN6390 htrA2 and S. aureus COL htrA2, then screened and sequenced as previously 

described using primers full_htrA2_seq1, full_htrA2_seq2, full_htrA3_seq3, 

full_htrA2_dwnstm, Pint_upstm_seq, and Pex_upstm_seq (Table 3-7). 

To test viability and survival of complemented and mutant (empty vector-

containing) S. aureus htrA2 strains, constructs were spotted in a log-dilution series 

onto BHI-spectinomycin-erythromycin agar plates and incubated at 37°C and 44°C 

for 24 hours following a protocol from (Rigoulay et al., 2005). Plates were examined 

visually for survival and photographed the following day using a Cell Biosciences 

AlphaImager HP instrument using AlphaImager HP software. 
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CHAPTER 4. CONCLUSIONS AND OUTLOOK 

Despite a wealth of research over the past 100 years, we are still constantly 

surprised by the activities of the most abundant biological entity on earth: 

bacteriophage. While larger themes of phage biology and phage-bacteria 

interactions are clear, many of the details have yet to be filled in. Given the sheer 

number of bacteriophage in the biosphere, and the magnitude of their interactions 

with bacteria, there is clearly a long way to go.  

Phages are the smallest “organism” on earth, and represent an evolutionary unit 

with an extraordinarily rapid turnover time. While their genome size suggests they 

are relatively simple, their dynamics allow nearly boundless opportunities for 

evolution, and thus are far more complex that we can presently appreciate—

explaining our limited knowledge of them and their activities.  The phage genome is 

on average 1% the size of a bacterial chromosome (Hatfull, 2008), and such a 

relatively small genome suggests that elucidating functional roles for phage genes 

should be a straightforward task. However, 80% of bacteriophage genes show no 

homology to known proteins; we simply do not know what the majority of phage 

genes do, how they affect the phage, and likely, how they affect the host (Hatfull 

and Hendrix, 2011). 

From what we do know, phage have an enormous influence on the biosphere and 

their hosts, and play major roles in virulence and bacterial survival (Brussow et al., 
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2004; Feiner et al., 2015; Gillis and Mahillon, 2014; Wilhelm and Suttle, 1999). The 

details of this which we can currently describe are likely just the tip of the iceberg, 

and as we learn more about the phage, we will no doubt uncover their invisible 

hand in many biological processes. One area where phage are likely to be found in 

increasingly important roles is bacterial genomic regulation. It is typically assumed 

that in comparison to eukaryotes, bacteria are relatively simple and do not encode 

the more advanced features of eukaryotic organisms. While true in some cases, 

many analogues of eukaryotic systems have been uncovered in bacteria, i.e. 

CRISPR systems (Marraffini, 2015). Bacteria are not thought to contain as many 

regulatory mechanisms as eukaryotes for transcriptional regulation, however we 

find examples where bacteria utilize phage to achieve the same end goal, either 

through disrupting transcripts (SpyCIM1, hlb-converting phages (Feiner et al., 

2015)) or promoter-sequence alteration (fSa4ms).  It is likely that more eukaryotic 

system-analogues will be found in bacteria, and phage may turn out to be the tools 

to accomplish some of these tasks. 

Even for known prophages, determining why they are maintained by bacteria in 

some cases has proven difficult. The geh-converting phages of S. aureus contain no 

obvious virulence or fitness factors, but are stably maintained in the chromosome. 

Prophage in this case may be kept around to prevent lipase expression or perhaps 

the phage encodes a virulence factor not yet uncovered. It is also a possibility that 

there is an effect beyond an obvious phenotype that we as researchers are currently 
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not measuring. It is hard to imagine that the effects of removing a 40 kb DNA 

element from a genome will be limited to simple on/off production of encoded 

virulence factors. Indeed, curing of SpyCIM1, a 13.5 kb DNA element of S. pyogenes 

SF370, was found to change global gene expression of the organism, affecting 

seemingly non-related portions of the genome (Hendrickson et al., 2015).  

In light of the many ways phage affect their hosts, a new term with a “big tent” 

should be established to cover the all the mechanisms of phage influence, including 

the more recently discovered phage-based switches, phage-driven gene expression 

changes and other novel host-modifying activities. “Conversion” could serve as such 

a term, with modifiers added (e.g., positive, negative, (active) lysogenic, lytic, 

regulatory, etc.) to label specific classes by which phage affect the host (Figure 4). It 

is likely that in almost every case of prophage carriage, there is always conversion, 

we just don’t have the tools or aren’t looking for phenotypes in the right way. 

Regardless of if we can observe conversion phenotypes, it is clear that phage-

bacteria interactions generate diversity within bacterial populations, either 

contributing to altered genotypes and/or phenotypes. With the exception of 

successful bacterial defense against phage infection, almost all other bacteria-phage 

interactions are likely to alter the host and may generate distinct, biologically 

significant subpopulations. (Even successful defense can alter bacterial genome 

content, e.g., new phage spacer acquisition within a CRISPR array.) Whether or not 
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such subpopulations have increased fitness and success depends upon the external 

environment for selection. 

Indeed the work presented in this Thesis for the Gram-positive pathogens B. 

anthracis and S. aureus show that phage do serve to create diverse subpopulations 

in each species.  The research on B. anthracis illustrates a specific example of phage 

biology and a bacteria-phage relationship that we need to better understand: 

selection by lysis for phage-resistant bacterial populations. In S. aureus, a method 

to more easily get at unexplored phage biology is developed, and proves to uncover 

an example of a novel phage-switch: htrA2 promoter alteration driven by active 

lysogenic phage excision/integration. These are two examples in a likely near-

limitless array of phage impacts on the host, and given the ubiquitous nature and 

importance of both phage and bacteria, advances in biology necessitate further 

study of their relationships. 

In infectious disease for example, such research will allow us to 1) better 

understand mechanisms by which phage drive bacterial adaptations in infection 

environments (e.g., htrA2 regulation by phage excision/integration, superantigen 

and DNase upregulation by S. pyogenes via phage lytic induction in the throat 

(Broudy and Fischetti, 2003; Broudy et al., 2001; 2002)), and 2) better understand 

the biology of bacteria’s natural enemy and aid in the development of new 

therapeutics. 
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Figure 4-1. Illustration of “conversion” and phage effects on bacterial 
hosts. Conversion is a broad-acting term, encompassing all of the ways phage affect 
their hosts. i) Positive conversion alters the phenotype of the host, where phage-
encoded factors often contribute to virulence or fitness potential (e.g., conversion of 
S. aureus to SEA+, SAK+, SCIN+, CHIPS+, or promotion of vegetative survival in B. 

anthracis by phage-encoded sigma factors). ii) Negative conversion by phage 
integration can disrupt expression of host-encoded factors (hlb in S. aureus). iii) 
Selection by lysis is the expansion of phage-resistant (R) or lysogenized (L) over -
sensitive (S) cells in a population. In B. anthracis, selection by lysis expands a CsaB-
deficient subpopulation harboring a markedly altered phenotype which may impart 
important survival advantages. iv) Conversion by induction refers to altruistic 
subpopulations of cells where phages induce into the lytic cycle for the benefit of the 
whole population. Phage induction can increase expression of phage-encoded factors 
and help promote infection (e.g., stx phage) or alternatively, cellular debris (eDNA) 
from phage-lysed cells can help increase biofilm formation (Nanda et al., 2015). v) 
Regulatory changes mediated by phage-excision or “active lysogeny” can alter gene 
expression in a number of species, including S. aureus (e.g., fSa4ms and htrA2 

expression). vi) Phage sequences can serve as anchor points for genomic 
rearrangements (S. pyogenes SSI-1); alternatively, phage excision and reintegration 
can alter bacterial genomes. vii) Phage transduction is one of the most important 
HGT mechanisms and can drive the dissemination of virulence and fitness 
determinants. viii) Novel mechanisms by which phage alter their hosts are likely to 
be discovered. In all cases i-viii, phage serve to increase the diversity of their hosts, 
creating subpopulations which may alter bacterial fitness. 
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For research focused on phage-based therapeutics, it is important to study phage-

bacteria interactions not just for antibacterial development, but also to understand 

how resistant variants post-treatment may survive and cause further disease (i.e., 

how selection by lysis affects a bacterial population). For health and wellness in 

general, phage likely play roles in microbiome-associated bacterial species, and 

uncovering these interactions can potentially allow new strategies to improve 

human health. In addition, the more we learn about phage, the more tools we have 

at our disposal (e.g., CRISPR-based genome editing, endolysin and other phage-

based therapies (Fischetti, 2005; Salmond and Fineran, 2015)). 

Bordet suggested nearly a century ago that phage are the products of bacteria and 

not a distinct entity. Today his finding is obviously viewed as inaccurate, but in 

many ways, perhaps it is not far off from reality. Phage are selfish elements and the 

predators of bacteria—but their survival and propagation absolutely depends on the 

bacteria themselves, and clearly bacteria have in turn adapted their predators as 

tools integral to their own survival and success. Regardless of which lens the phage-

bacteria/bacteria-phage relationship is viewed, it is clear we’ve only scratched the 

surface of its intricacies. Uncovering more of the story requires one thing from 

researchers: to look.   
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APPENDIX 1. RAW SEQUENCES OF fBACA1 CONTIGS 

Sequence file is available in FASTA format at: 
https://www.dropbox.com/sh/b3alrq7k5y7q6pq/AABh2Usqstjt2MTzHXh2zJoSa?dl=0 

Password:bacillusphage 

fBACA1 Contig 1: 

CTCCCTGGAGACCGCCGCCTAGCTTTCCATGCAAAAAATTCGTTTTATTTCATA
AAAGGGGGTTCAACTAAAGGAGGTGGTTCACATAGGACGAAAAGCGAAACCGA
TCCATTTGCAAATACTTGAAGGTAACAAAAATCGATTAACTAAACAGGAAATAG
AACAACGTGTGAAGGCTGAACAAAATATTCAACCGAAAGCGAATAGAATCAAA
GCTCCAACTTGGTTGAATGCTGTAGCTAAAAAGGAATTTAATCGTATTTCTAAA
GAATTAATGGAATTAGACCTTATTACAAATGTAGACATTAATGCTTTGGCGGCT
TATTGTGACGCCTACTCTGATTACGTTGAATGCACAAAGATTATCAGTGAAGAA
GGGTTAATGGTAGAGTATACGAATAAAGCAGCTGAAACCAATAAAGTCCCTCA
TCCCTTATTAACTAAAAAGAAACAATTGCATGAACAAATGAAGTCGTTGGCAAT
TGAATTTGGATTAACGCCGAGTTCTAGAGCATCTTTAGCAAAACCCAAGGGTGA
TGATAAACCAAAAACCAATGCTGAAAAGCGGTTTGGTGATAGGGTATGAGATT
AGAAGAAAGACTAATGCAATATGTTTATGACATTTCGGATGGTAACATATTGGC
TTGTAAGAAACATAAATGGGCTTGTGAGCGTTTTTTAAGAGATTTAGAACGTAC
ACAAGAGGATGAGTGTCCATTCTATTTTGATATTGAACAGTTATATGATTTTTA
TGAATGGTGCAAGCAGTTTAAACATTTTAAAGGTGTATTAGCAGGGCAATATAT
TGAGTTAACCGATTTTCAGTTATTTGTAGCAGCTAATATATTTTGTTTTCTTATC
AAAGCTACAAATAATAGACGTTTTCTACGTGCATTTATTGAACTTGCAAGAAAA
AATGCAAAATCGCAATTCTTGGCCCTTATTGCTTCTTATATAACCTTTTTATCTG
ATCAACAAGAAGAATGTTATATAGCTGGTTGGGATAGACAACAATCAAGCCTTG
TGTACAATGATATTTTAAAGCAACTAGGCGCATGTGATATGTTATCCAAAAAAT
ATAAGGATTCTTATGGGAAAATTACACATATAAAAAGTGGTTCAACAATAACAC
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CACTTTCTAAAGAAGCAAAAAAGACCGGTGATGGTACAAACCCATCGCTTGGT
ATTGTCGATGAATATCATGCTCACGATACTAGTGAAATTTATGATGTAATCGAT
TCTGGAATGGGTGCACGTGAGAATACATTGATGTTCATTATCACCACAGCAGG
ATTTAACATCAATGGACCTTGTTACAAGGAGTATAAATATTGTTCAAGGATATT
AGATCCAAACGATGCAGGTGTGGAGAATGATGAGTATTTTGTTGTTATTTGTGA
ACTTGATAAAGATGATGATATCAAGGATGAAACTAATTGGATAAAAGCCAATCC
AATCGTAGCAACTTATGAGGCTGGGATGAAGAAGCTACGTAGTGACTTGAAGG
TTGCTCTTGATAATCCTGAAAAAATGCGTTCTTTTCTAACGAAACGTATGAATA
TATGGGTTAACAGAAAAGAAAACGGTTATATGGATATGTCCAGATGGAATAAG
TGTGATGAAGTAATTGATCTATCTGAATTAAAAGGCATGGAATGCACAGTAGGT
GCTGATTTATCAGCGAAAATTGACTTGACTAGTGTAGATTTTGAATTCAAGAAA
GACGAGAAATACGTCGTGATTAGTCATAGTTTTATACCGGAAGACACTTTATTC
GAGAAAATGAAAACGGATAAGGTGCCATATGACATTTGGGCGCAGCAAGGTTG
GATTACTGTAACACCTGGTTCAGTAGTAGACTATAATTTCGTGAAAGAGTATAT
AAAAACGATGGAATCAGATAATGAGTTTAAAATAAAAGAAATATGTGCTGATCC
ATGGAACGCAACTCAATTCATGCAGGATATGGAAGCGGAAGGGTATGTCGTTG
TAGAAATCCGGCAAGGTATGGCTACTTTATCAGGCCCAACAAAAGACTTTCGG
GAGCAAGTGTATCAAAAGAAAATTATTCATAATAACAATCCAGTACTGAATTGG
GCAATTGGAAATGCTGTTACTAAGCAAGATGCTAACGAAAATATTATGTTGGAT
AAGTCAAAAGCAACAGAAAGAATTGATCCGATTGCGGCTGTAATTAACTCGCAT
GTTAGATGCATGCTCAATTCTGGTGAAATGGATTTGAATTCATATATTTTAAGT
CAAAATTTCTCATTCTAGGAGGAATTACATGCGGTTTTTAATGTTTTTTATCAGT
GTTTTAGATGATATTTTATTCGTTTCAGGGTTGTCCATTATTATAGGGACGACT
TTTTTTATTAACCCTATTTATGGATGGTATTTGTTGGGTATTATTCTCACAATGC
TGGGGGTGGTAATGATCAGAAGATAGAAAGGAGGTGAAATTTTTGATTTTTCG
GCAGCTATTTAAGAATCAGGATACAACAAACTTAAAAAATCCGACTCCTTGGTT
TAAAAGTTTATTTGGTTATCAAGCCGCAAGTGGTGAGAAGGTAACAGTTGAATC
ATCTTTAAGTGTTCCAACAGTTTACCGATGTATTAATATCCTTGCAAATAGTGTT
GCAATGCTTCCATTTCAAACATTTAAAGGGACAGCAAAGGGAAGGGAACGAGA
TAAGATGCATCAAGTGTCTTTTGTATTAGAAAGAAGACCAAACCCATTTCAAAG
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TCCATTTAAATTCAAACATTTAATCGAAACACACCGTAATACATGGGGAAATGC
CTATATCAATATTCATTGGGGTGTGGATGGAAGACCGAAAGAATTGTGGGCAT
TAAATCCGGCTGTTACAACCCCAATCGTGGATCTGAAGACGAATAAATTATGGT
ATTTTACAAATTTACCAGATGGTACACCTATTAAAATATCTGATGATGACATTAT
TCATCTTACTACGTTGTCTACTGATGGATTGAAGGGAAAACCACCTATTCAGAT
TGCAAGGGAGTCTATAGGCAGCTCACAAGCGGCACAAAAATTTAAAGGTAAAT
TTTTTACAAATGGTGCAGCGCACAGTGGGCTATTAAAAACTCAACAAACATTGG
GTAAAGAGGCGAAAGAAATACTTCGTGACGCTTGGGAAGAAGCGAATACAGGA
TTAAATAACGCTCAAAGGATTGCCATTTTAGATGCTGGACTAGAATTTGAAAAG
GTTGGTATGCCTTTAAAAGATGCTCAATTTATTGAAGGTATGAAATTTGATAAA
GGTGAGATTGCAAATATTTTTAACATTCCTTTGCACATGATTAATGAGTTGGAT
CGTGCTACTTTCTCCAATATTGAGCAACAGGCGTTGGACTTTATTCAAAATACA
TTGAGTCCAATTCTTATACAGTATGAAGAAGAGTTTTCCTACAAAGCCTTTTCA
TTTAATGAGCAAAAACGTTATTATTTAAAGTTTAATCTGACAAGTTTATTGCGC
GCTGATTCTAAATCACGAGCAGAATTTTACAAAATCATGCTAGATGCCGGTGCT
TTCTCAATTAATAAAGTACTAGAACTAGAGGATATGGATGGAATTGGAGAATAT
GGTGATAAACATCGTGTTGATTTAAACCATGTATCCATTGAAATTGCGGATGAA
TACCAATTAGCAAAAGCTAGTGGAGGTTCGTCTCTGAAAGGAGGTGAGGACAA
TTAAAGACGTGTTTACTATTAAAAACCAAACAGATTCGTCAGCCGATCTATTCA
TTTATGGCGACATCATAAACAATTCCGGATGGAAATGGGATGATTCAGATGTTA
TGCCTGATGATGTAAAAAACATTTTAGGGCAATTGGATGATAAAAGTAACTTAA
ATATCTATGTAAATAGTGGTGGCGGCTCTGTATTTGCTGGTTTAGCCATTTATA
ACATGTTAAAGCGCAATAAGGCTCAAAAAACTGTTTATGTGGATGGTGTTGCAG
CTTCTATTGCTTCTGTAATTGCTTTGGCTGGTGATCGTGTTGTTGTCCCTTCTAA
TGCTTTCTTAATGATTCATAAACCTTGGACCTATGCAGCAGGAAATGCAATTGA
TTTCCGAAAAGCGGCAGAGGATCTTGATAACATTGAGTCAGGAATCATGAATG
TATACAAAGAGAACTTAAAAGAAGGCATTGAAATTGAAGAAATTCAACAATTAG
TAGATGCCGAGACCTGGTTAAGTGGTGAAGAAGCTGAAAAATACTTCAACATC
GAGGTTGTGGAAGCAAAAGATGTTGCAGCATGTATGAGTGATTACTTTGATAA
ATATCAAAAAACACCTAATAAGGTAGTAGCAAAAGCTCCTTCCATTCCAAAGAA
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GGATACTAATGAACAATTAAAAATTAAAAATGCACTAGACCTGTTAGAACTATA
GGTCTATTTTTGGTGCCAAAACAAGGAGGAAATACCGAATGGATAAACATGAA
CAAGAGTTACGTCAAAAAGTTGCTGATTTAAAAGCGAAAGCAGAAGAGTTTAAT
AATAGCGGTAAATATGAAGATGCTAAGGCGAAGATTGAGGAAGCAAAAAACGC
GAAAAATGAACTAGATAATTATCTAGCCATGAAGCAAATCCAAGTTCCCGATCC
TGTAAATTCACAAGCAGGAGTATTACCTCCAGCATCAGTAAAAAACGAAGACCC
ATCATATAAAGAAGTGTTTATGAAAGCTATCCGTGGTCAAAATTTAACTCATGA
AGAAGCAAGTGTTATGCAGGAATATAAAGCAGCATTATCTGAGAATGCAGGTA
AAGATGGCGGTTTTATTGTACCGGAAGATATTACTACAACTATTAATCAGTTAA
AACAAACGGTTGATAACTTAGAACAATATGTAAATGTACAACCTGTTTCAACAA
ACAAAGGAGCTCGTACATTAGAAAAACGTGCGGCATCTACACCTTTTGCACCAT
TATCTGAGTATGGTAAGCCAAATGCAATGCAAGAAATCGCTTCTCCTGAATTTG
ATCGTTTATCTTATGCTATTGAAGATTACGCAGGATTCTTACCAGTACCAAATG
ATCTATTAGATGATACAGATCAAGCTTTAGAAGAATATTTACGCCAATGGATCG
CGAAGAAATCTATTGCCACTCGTAACTACCTAATTTTACAAGAACTCAACAAAT
TGACAAAGGTTGATTTTAAGGATTATAAAGGCATTAAAACAGCATTAAATGTTA
CATTGGACCCAGCTTTTGCAGCCGGAGCTAATATTTTCACTAACCAAGATGGAT
TCAATTACTTAGATCAATTAGAAGATAAGGATGGTCGTCCGCTTCTTCAACCAG
ATCCAACAAATCCAACTCGTAAATTATTGTCAGGAAAGCCAGTTATTGTTTTAT
CCAATAAGACAATCGCTACAGATAAAGATGGGAAAGCACCTTTCATTGTTGGTA
ATTTAAAAGAAGCTATTATTCTTTGGGATAGAAAACAATTATCTATCGATATGA
CTACAGAGGGTGGAAACGCTTGGAGAACAAATACTTCTGAGTTCCGAGCGATT
GAGCGTGAGGATGTTACACCATGGGATACAGAAGCGGTTGTATATGGGCAAAT
TAATATCACACCGAAAGCTGGAGTTTAATAAAATAGGGGGTGTCCTTCTTGGTA
CTGAAATTAGAAGAAGCGAAAGAGTATCTTCGTGTGGATGGTGATGAGGAGGA
CACACTCATTTCCTCCTTGATAATAGCAGCTGAACAATATATTAAAAACTCAAC
AAGTAAAGATGTAAATTTGAATGACGAGCTTGCTAAATTAGCAGCTCGTATTTT
AATTGCTCATTGGTATGAAAATCGTGAGCCAGTTGGGAAAACTGGAAAACTATC
ATTTAGTTTGCAGTCAATATTAATTCAATTGCAATATTGTGTAGGTGATTCCAC
ATGAACCCAGGGAAATTAGATAAACGTCTTACATTCCAAGTAATAGACGAGGAT
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GCAAAGGGCCCAGATGGTGATCCAATAGAAGGATATAAAGATTCTTTTACTGTA
TGGGGCTCTTTTATTTTTTTAAAAGGAAGAAAATACTTTGAAGCAGCCGCAGCG
AATAGCGAAGTCCAAGGTGAAACAGAAATCAGATATCGTGCTGATGTGAATGC
CGATATGAAAATTAAGTATAAGAATACGATTTATGACATTGTTTCGGTTATTCC
AACTGAAAAACACACGTTGTCAATCATGTGGAAGCGTGGTGGAATGAATGGCT
GATGGTTTAGATTTATTAGGTTTTGATCGTTTAATCACTGAATTAGACCAGATG
GGACTACGTGGGGAAAAAATTGAAGATAGAGCTCTTGCAGCAGGTGGAGAACC
TATTCGAAAAGCTATTTCTGAAATAGCCCCAAGAAGTGATAACCCTAAAACAGC
AACAAAAAGTGAACCATGGCGTACAGGACAACATTTAGCTGATAATATCCGTGT
TACAAAGGCTAAAATGGAGGGCGGCATAAAAACTATCAAAATCGGTATAGATA
AAGCAGATCGTTCTCCATATTTTTACGGGAAGTTCGTGGAATGGGGGACATCTA
AAATGCCAGCCCAACCTTTTATAGAACCTGGATTTAATTCTTCGAAAGAAGCGG
CAATTCGTGCTATGACAGATATTTTGAAGAATGAAATGAGGCTGAATCTATGAT
AAATTTGCGCCCTGAAATTGTACAAGCTCTTGAAAATAATCAGGAGCTGGTTTC
TTTATTAGGTGGAAAACGCGTTTATTATCGTAAAGCCAAAAATGCTGAAGAGTT
TCCACGTATTACATTTTTTGAATTAGACAATAGGCCAGATGGATTCGCAGATAA
TAATGAAAGCGAAAGTGAAATAACATTCCAAATCGATATTTGGTCAAAAGGCAG
TACAACAGCAATCCACCAAAAAGTGAATGAGGTCATGAAAAGTATTGGTTTCTC
ACGTTATAAGGTTGCTGATTTATATGAAGAGGATACGAAAATCTTTCATTACGC
GATGCGATTCGCGAAAGGAGTGGAATTATAGATGGCTGGAGAAATTATTACAA
TTAGTTCGACTGTCGGTGTAGATAGTCTTGTTTATTCGAAATTATTGAAAGATG
ATACAACAGGCGTCAACTACGACACAGTAAAGAAATTGGAAGGTGCTGTAAAG
GTTAAAACATCTAAAAAAGTAGCTTCTGAAATTATGTGGAGCGATAACAAGAAA
TCGGAAATTGCTGAATCTGACGGTGAAGTTGAAGTTGAAATTGAAGTTAGGGG
ACTTTCACTATCCACGAAAGCAGATATTGAAGGATATCCAGAAGTTAAAGATGG
CGTATTAGATGAAAAACGTGTGGGAGAAAAACCATATTTAGCAATTGGATATCG
CTTTTTAAAAGCTAACGGTAAATATCGTTATGTTTGGTTACTTAAAGGAAAGCT
TTCGCAAGAGGAAGAAGAAGCCGAAACTAAGAAGGATAAACCAAACTTCCAAA
CAACTAAACTTAAAGGTTCATTCATTGAACGCGATTTCGATGATAGACCAAAAT
TTACAGCTGATGCAGATGAACCGACATTTACAAAAACGGTAGGAGATACTTGG
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TTTAGTAAGGTGTATGAAAAACCAGTAGGTAAGTAAGAGGGGGGGAGCAAAAG
CTCTCTCTTTCTTTATTAAATTTAGGAGGAATAAACTATGAAACTAACATTAAAA
ATCGATAAGGAAAATAAAACTTTTAATTTACCGGAGTTCATTCCAGCTCGTTTA
ATCCGTCAAGCACCTGAGCTTGCTGAAATCCCAAACAATCCTGGTCCAGAAGAT
ATGGATAAAATGGTTAAATTTGTGGTGAAAGTGTATGATGGTCAATTTACATTA
GACCAGTATTGGGATGGTGTTGATGCTCGTAAATTCTTATCGACAACTTCAGAT
GTAATTAATGCAATTATAAATGAAACTGTGGAAGCAGCTGGTGGTAATCCTGTA
TCTGGAGAAGAAAACCCAAACGCGTAGAGGGGGGAGGGCTAACGTTCAGTGA
GTTTATGGACGAGCTTTACCTCTCTTTATTACGTCAGGGATATAAACACCATCA
CATCGATAACGAAATGGATATTTGGCATTATTTAAGGTTAAATCAGAAACATCG
TGAACAAGGTAATTCAAATGGCGGGAGCCAAAATTCAAACGAGATTGAAGTAC
CAGCAGAAAATATTATCTAGCAAGGGGGTGAGACATTGGCGAATGAAATGAAT
AATTTAGTAGTTAGACTTTCGCTTGATAATGTTAATTTCCGTCAAGGTATTGCA
AATTCAGGCCGTGCAGTAAGGACATTACAGAATGAATTGAAATCTGTAAGTACA
GGTATGGGCGGTTTCGCTAGTGCTAGCCAACAAACACAAGCAAAAATGGATAC
TCTAAGCAGGCTCATTGACGCGCAAAAAGAGAAAGTTAAAGCGTTAAGGCAAG
CTTATGATCAAAATAAGGCTAAATTAGGTGAAAATGATGCAGCAACTCAAAGAT
ACGCTTCACAAGTTAATAAGGCTGTTGCAGATTTAAATAGATTTGAAAATGAAT
TAAAGCAAGTAAATAAGCAAGCTGAACAAAAGGGAATCGATAAGTTAAACAAT
TCTTTAAAGTCTCTACAAGCTGAATTCCAGTCTATTACATCCGGTATGGGCGGT
TTTTCTAATGCAACTGAACAAACACGCGCTAAAGTAGATGTTTTAACTAGAATG
GTAGATAAGCAAAAAGAGAAGATTAGAGAACTTCAACAAGCTTATAATCGTGCT
AAAACAGAAGAAGGCGAAGCAAGTCAGTCAGCACAACGATATGCTGAACAACT
TCATCGGGCAACAGCTGAACTTCATCAATTTGAAACTGGATTGCAACAGGCAAA
TCGTGAATTGGAACAGCAAGGCAATCGTCTATTGAACTTCGGTAATCGTATGGA
GACATTAGGTAATCATTTGCAAAATGCTGGAATGCAGATTGGCATGGTATTTGG
TGGTATGACTTATGCAATTGGTCGAGGATTGAAATCAGCTGTGGAAGAATCCAT
GAACTTTGAACAACAGATGGCTAATATAAAAGCAGTATCTGGTGCAACAGGAG
ATGAAATGAGAAAACTCTCTGAATTAGCTGTTAAATATGGGGAAGACACAAAAT
ATTCTTCTGTAGAAGCTGGAAAAGGAATTGAAGAACTAATAAAAGCTGGTGTTG
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GTTTAACCGACATCATCAATGGTGGATTAGAAGGAGCTTTAAACTTAGCAGCCG
CAGGTGAATTGGAACTAGGAGAAGCAGCAGAAATTGCGTCAACCGCTTTAAAT
GCATTTAAAAGGGATGGTTTAAGTGTTACAGATGCCGCTAACTTACTTGCAGGA
GCCGCTAACGCTTCAGCCACTGATGTACATGAACTGAAATACGGTCTATCAGCT
TCTGCAGCTGTTGCAGCCGGAGCAGGTATGACATTTAGGGATACATCCACAGC
TTTAGCAGTATTTGCACAAAATGGTTTAAAAGGATCTGATGCAGGGACGTCCTT
AAAAACGATGCTTATGAGGTTGAACCCCTCTACTAAAGAAGCATATAACAAAAT
GAAAGATTTAGGTCTAATCACATACAACGCTCAAGCTGGATTTGATTTCTTAGT
ACAAAATGGGATTACACCAGCATCTAGAAGTGTGGGAGACATCGAAGTCGCAT
TAGAAAAATATGTAATGAAAACTGAAGGAGTTAAGAAATGGAATGATAAATGC
GAAACTACATTCCGTGAATTAGCAACTAGTTCAGCTTTCTTATCATCAAAATTC
TACGATCAACAAGGGAAAATCCAAAGTTTAGAAAATATATCTGGAATTCTTCAT
GAATCCATGAAAGGTTTAACAGACCAACAACGAAGTATGGCTTTAGAAACATTG
TTTGGTTCTGATGCAGTTCGTGGCGCAACAATTTTATTTAATGAAGGCGCGCAG
GGTGTGAATAAAATGTATGGTGAGATGTCTAAAGTAACTGCTTTAGAGACAGC
CAATACAAAAATGAACACTTTGAAAGGTCGAATTGAACAATTGAGTGGAGCATT
CGATACAATGAAAAAGACAATTGGTGATGCGCTTGCCCCTGTGGTTAGTGCTTT
TGTTGCTGGGCTACAGAAACTTGTGGATGGGTTCAATGCATTACCTGGTCCAGT
ACAAAAAGCGATTGCGATTACAGGTGGAATTGTTCTTGCTTTAACGGCTATTGC
AACAGTTATTGGCGTAGTTCTAGCAGCGGTTGGAATGGTGGTTTCGGGAATTG
GTTCTTTAGGAGTTGCACTCGCAGCAGTTGGTGGTGTTGCTGGAATCACAGCA
GGAGTAGTAGGATTTTTAGGCGGTGCAATAAGTTTATTATTGGGACCAGTAGG
ATTGATAGCGGCGGCGCTTATCGGAACTGGAGTCGTAGCGTATAAAGCGTATC
AGAAAGCAACTGAGGACAGTATCGCGTCAGTGGATCGCTTTGCTACTAATACA
GAAGGGAAAGTGAGTTCCTCCACAAAGAAAGTTCTTAGTGAGTATTTCAAATTA
TCGGATGGCATTAGACAAAAGTTAACTGAAATTAGACTAAATCATGAAGTAATT
ACAGAAGAACAATCGCAGAAATTAATTGGTCAATATGACAAATTAGCTAATACC
ATCATTGAAAAAACCAATGCAAGACAACAAAAAGAAATTGAAGGACTTAAAAA
GTTTTTTGCTGATTCATATGTTTTAACAGCTGAAGAAGAAGCAAAGCGAATAGA
ACAAATGAATCAGCACTATGAACAGGAAAAATTAAAAACGCAAGAAAAGGAAA
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ATAAAATTAAAGAAATCTTACAAACAGCAGCTAGAGAAAACAGAGAATTAACAA
CATCTGAGCGCATCTCTTTACAAGCATTACAAGATGAAATGGACAGAGTTGCAG
TTGAACATATGTCTAAAAATCAAATGGAGCAAAAGGTTATTCTTGAAAATATGC
GTGTGCAGGCTAGTGAAATTTCAGCTAGACAAGCAGCAGAAGTTGTTAAGAAT
AGTGCTGATACTAGAGACAAGGTTATAGCAGATGCAAAGAAAACTCGTGATGA
TAAAATTGCAGAAGCTATTCGTCAAAGAGACGAAAATAAAACCATTACAGCAGA
AGAAGCAAATGCAATTATAGCCGAAGCAAAACGTCAGTATGATAGCACTGTTTC
TACAGCAAGAGATAAACATCAAGAAATTGTAAGCGAAGCTAAGGCGCAAGCTG
GTGAACATGCTAATCAGGTAGATTGGGAGACTGGTCAAGTAAAATCTAAATTTG
AAGTTATGAAAGATGATGTTGTTAGAAAAATGAAAGAAATGGGTTCGGATGTTT
CTAATAAATATGACGAAATGAAAAATGCAGCCAGCAATAAAGTAGAAGAAATA
AAAAATACAGTTTCAAGAAAATTTGAAGAAAAGAAAAAAGCTGCTTTAGATAAA
ATGTCAGAAATAAAAAGTGGTATTGAAGATAAGTGGAATGCAGTTGAAAAGTT
CTTCAGTACAATCAATCTTTATTCCATAGGTAAGAGTATTCTAGAGGGACTTGG
AAGAGGTATCGATGATGCATCTGGTGGTTTATTTAGTAAAGCGGCCGGAATTG
CAAGCGAGATAAAAAAAACCATTTCAGGAGCTCTTGAAATAAACAGTCCATCGA
AAGTAATGATACCCGTTGGTAGTGCGGTTCCAGAAGGTGTTGGTGTTGGGATG
GATAAAGGGAAACGTTTTGTTGTGGATGCAGCAAAGAATGTAGTCGGAACTGT
TAAGAAGCAGATGGGTAATATGCCATCTGTATTTGATTTTGGATTCCAAACCTC
TCATTATAGTGTTCCAAATGATTTAGTGAGTGGTTTTACAGATTATACGCAGCC
TAATACTTCTCATAGTAGCTCATCTACTTCTAAAAAAATATTCCCGAATAGACA
AGCTGAAGAAAAAGAATTAAATCTCACATTGAATATGACTAATGTTTTAGACGG
GAAAGAATTAGCGGGTGGAACTTATATGTATACGACAGATTTTCAAGATCGTGA
TAAAAAACGTAAATCTCAATTTTAAAGGTGGTGGCAATGTGGGGAAACTAAGCT
TTACATTTAATAATGTTCGAAAAGATTATGTGCAAATGCTTGCAGGAAGAAAAC
GTCCAACATGGGCTCCAATTAAACGAAAACTCTTAAAAGTCCCCCATCGTCCAG
GGGCTTATTTTATTAATACAGAAACTGAGGAACGTCATATCGATGTTCCTATTT
TTATTAGTGCAAAAAAAGACATTGCTGATTTGCAAAAGTTAAAAGAAGACTTAG
CGAACTGGTTGTATACTGAAACGCCGGTTGAGTTAATATTTGATGATGAACTAG
ATCGAACGTACTTAGCTTTTATTGATGGAGCCTTAGATTTGGATGAGTTAGTTA
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ACAAAGGAAGAGGTATTATTAGCTTTCTTTGCCCAATGCCATACAAATTAGGCG
CTACTAAAACAAGTGAGTTCGTTCAAGGTTGGACTACAGAAACCACAGCGTATT
TTACAAATGAAGGTAGCGTTGAAACATCGCCGATAATCGAAATTGAGGTTAAAA
AGCCAAGTACCTTTTTAGATGTCTGGTTTGGTGAATATCCCAATGAACGTGATT
ATTTTCGCCTTGGTTATCCCCGAACTGTGGAGGAAACACCAGTGCAAGCGCGT
GAACGCGTGATGTGGGATGAAATGGGTTCGCCTATAGGTTGGACTCCTGTTAC
AGGTCAATTTGAGGACATGAAAGGGACAGGTAGTTTTAAATCAAGGGATGGTC
ATGCACTGTATTGTGAAAATTACGGACAAGATAAAGGGTTCTATGGTGCAATAG
CTAAGAAAAACATTCCAGGCGGACCATTACAAGATTTCGAAATAGAGGCATGG
ATGACTTTTCAGTCTAAAAGCATCGAAGAAATGGGGCGTTGTGAAGTTCTCTTA
CTGGATGACACAAGCAATCTGGTAGCTCGCATTAACATGAATGATTTATACGTC
ACTGCAGAAATCACAAAAGCGCATATGAAAATGGGGAATAGTGGAACGCCTAA
TAGCATTCGTAAATTGGTCGATACCAGCGGATTTTATTCAAATACATTCAACAA
ATTTCGGGGGCGCTTGCGTATCGCTAGAAGAGGGAAACAATGGTCTGTTTATG
TAGCTAAATTTAAAGATGGTACAGAGATAGACGGAGCATCACTAGTTGAACAAT
GGAACGATGTTGACAACAGTAATCCAATGACAAATCGGAAAATCGCACAAGTA
ATGATTGCAATGTGCAGATGGGACAATCACCCCGCAGTTGATATCATGCAAATT
GATGACTTGAAAATTTGGAAAGTGAATAAAGTTGATGAGAACGCAAGACCATA
TATCTATGATGTTGGCGACAAAATTATCATTGATACCGAAAAAAGCCTCGTCAC
AATCAATGGTAAGAATGCTATAAATTTTAAGGATATCTTCAGTAACTTTCCAAC
GGTCATACAAGGATATAACCGTATGGATATTTCTCCTCCTGACGTTAAGGCGAA
AGTATCGTTTAGAGAGAGATACCGATGAGGAAACCTAGTGGAACATTTCATATT
GTTGATTTTAAGAGCGATCAAATCATAGCGGCTATTCAACCACAAGATTATTGG
GGTGATAAGCGACATTGGGAAATTAAAAATAACATTGATATGCTTGATTTCACT
GTATTTGATGGAACAGAACAAGCAACTACATTAATGCAACAAAATTTAGTTTTA
AAGGAAGTAAGAGACGGTCGTATAGTTCCGTATGTCATCGATGATACGGAAAA
AAAATCCGATGGTCGTTCCATGACGGTGTATGCTTCAGGTGAATGGGTGTTGTT
GAAAAAGGCAGGAATTATCAAACCACAACGGATTGAGAGCAAGACAGTGAATG
AATTTATTGATATGGCGCTTGTAGGAACCAAATGGCAGCGTGGAATTACAGAAT
ATGCTGGTTTTCATACAATGACAATCGAAGAATTTATTGATCCACTCAAATTTC
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TAAAAGATATCGCCTCACTTTTTGGTTTGGAAATTGTTTATCGAGCAGAAGTTG
TTGGTTCTCGTATTGTTAGCCGTTATGTAGACATGGTGCAAAAAAGAGGTAGAG
ATACTGGGAAAGAGGTTACTTTAGGTAAAGATCTAAATGGAATTACTAGGAGA
GAAAACTCTCAAAATGTTTGTACAGCACTTGTGGGATTTGTAAGGGGAGAAAA
CGAAAAAATAATAACTGTAGAGAGTATTAATAATGGTCTCCCTTATATTGTCGA
TAGTTCAGCTTTTCAGCGTTGGAACGAAGACGGTCAACATAAATTTGGTTTTTA
CACGCCAGAAACTGAAGAACAAAATATGACACCTGAACGTTTAATGGCACTTAT
GAAGATTGAATTTAAAAAACGGATGAATTCTACTGTTCAATATGAAGTGGATGC
AATTGCACTTGATAAGATATTTGGATTGTCACACGAGGAAACTGTAGAAGGTGA
CATTATAAGGATTAAAGATACAGGGTTTACCCCTGAATTATATCTAATTGCTCG
TGCTATCGCTGGCGATGAATCATTTACAAATCCATCTGAAAATAAATATGTGTT
TGGTGATTATATAGAAGTAATCGATACGAGAGAAGAAATGCAAAAGTTATACAA
TAAGATTCGAAATTCCCTGTGGGATAAAGCAAGTAACGAGGCATTAAAGCTGC
TAGAAAAGCAATTAGAAGACACGTCTAGTGGTTTTAATGAAAGATTAATTGCTA
TGAAGACAAGTATTGAAAAAACGGACGAATCTATTATTTTAAATGCCCAAGCTG
TTAATCAAAAATTAGAAAAGCTAATAGCTGACTTGAAAGTTACTGCTCAACAAA
TAAGTGCAAAAGTCGGAAAAGGTGATATCGCTTCTGAGCTAAATATTAATCCAC
AAAGTGTACTTATAAAGTCAGAACTTATCGACCTAGTTGGTAAAGTAAAGGCAG
AATGGTTAATTGCGGGATTACTCGAAGGTATGACCATAAAAACTAGTAACTCTA
AAGAGCATATCCATATGCAGAATCAAGTGGTTAAGTTCGTTAATCAAGGTATCC
CTAAAATGATAATGGGGTTTGAGAATGAGTACAACAGTAGCACTTCAAATCCAT
ATATTACCTTAGGACAGGGGGATGGATCAGGACGAAATGTTGGTACCATTTAT
AAAGATGGTGGTGGACTTTACTTACGTTTTATAGATTTAAATGGTGCTGAAAAT
AATATTCGCTTAACAGCACAAGGGAATATAGGTGTTACAGCTCAAGATGGTATT
TGGGTAAATTCCAAAAGAACAAATTTTACATCTCTAATAGAAGTCCCAGCCATT
AGGTTTAATTCGTTAGGTACTACTCCAGGTTCGCAGCAGGGTAATTTTTGGATT
GGCAATGGATATAAAGGATTTGGAATATATTACTACGATAATTATTGGAAGTTT
GTACAAGGTTCATAATAAATAAATGAAGGAGAAATAAAATGAATAAATTTTTAG
GGGTTTTAACAGTAGTTGGGGAAGATGGAACGATAAAAGTACCATTAGACAAG
TTACAAACCGCAGGTATTAAGCCTAATTCAAAAGTGGAAATATTCAGCGACAAT
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TCTAACTTATTCATTAGAACCGCAGAGAAATTTTGTGATATTTGTGGCACTAAT
ACTAATACTACGAGTGTTGGTAATCAAGAAATTTGCAAAGACTGTTTAGATAAA
ATTACAAAAGCGTCACAAGAGAAACAACAGACGGTCTCAGAATAGAAAATTTA
ATTAGTTAAAACAGATGGAGCAGCAAACGCTGGTCTTTTTTATTTTGCATAAAG
GAGTGATTTTATGACATTCAAGACCTATGAAATTAACGTAGATTTAGTAAATGA
TACATCCACAACTAGTTCCAATCGCTTTTCGCAAAATGATAGAAACTCCGCTAA
ATTTGTATTAAATATAACAAATGAAGGACGGGAATTAGATTTAAGCCAAGCGAA
ATCGGTGCGGATGTCATTTAAGAAGCCAGATGGAACTCGTGTTTTCCAAAACG
ATTGCCAACCGATTAATGCAATGAAGGGTAAATATCAAATTGTATTAAAGACCC
AAACTCTGACTTCAGTTGGTAATGTTATCGCGCAGATCCACATTGAGGAAGAG
GACAGAATCCTTGATACACAAAAGTTCTTTTTTGTAGTAAATGATTCGTTGGCA
AGTGATGAAGCGATTGAGAGTACAAATGAATTCACAATTATTCAAAAAGCAATT
GAAGCAGGGAAGAAACTTGAAGGTGTAGATATCAACGGGATTATTGACGCTGG
CGTGAAAGCGGAGGGGGCCGTAAAGAAAACAGGGGATACGATGACGGGGCAC
CTTGATTTAGATGTGACTATTACAACAAAAAGCATTAGAAGCACCTCAAGTGGA
AATAGACAATCTGGAATATTTTTTGATCCAAACGGGGACTTAGGTGCCTATGAT
TGGGGGAATCCTGATGGCGGGACAGCTCTTTTTAGATACACTAGAGCTAGTAA
ATCATTCGATATAACCGCCCCCACTACTAATCTCGTAAGGAAGGCAGAGGTATT
TACAGATATAGCTAAACCTAATGGTGACGCAGCTATTTCGATACAAACAGGACA
AGACATGCTTGCAGAAGTAATAAAACTAGGGAGAGGTATCCGTACTATATACG
CTCCAGGTAGCGCGCTTAATAGCCCTTCAGATAAAGTGTTCCGTGGTATTGCAA
ACCTTCAAGGTACTTCTTATGGGTACATAATTGGAGTTAGTTCTGATAATAAAG
TTTGGTCTAATTTTATCAATGGTTCTACCTGGTCGGGTTGGGTTTGTGCTAATG
GGAATATAAAAGATGGACAAGCTACTCTTACTTTAACAGATAACGCCGCTCAGT
ATGGCACAACATATACGCCTATAGCTATTAGAAGAGGTAATACTGTAACTATTC
GAATGGCAATTACTCGAAACAGTAATGCAAGTGGAATTTTAACTACTTTACCAT
CCGATATGCGACCTAAAAATGGATGGATCTCTACGATTATTTCGACTGACGGAA
TGCCAAGTGATTTAACTATTAGAGTAAATGGTGAGGTTGAAGTTCTCACTAAAA
GTAAAACATTCTACATCACGCTTACTTACGTAGTAGATTAAAAGGAGGATATCA
CATGGCTAAATATTACGGTTATTGTTATGACGAAAACGGTAAATTCACTGAAAT
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GATTCCTTTAGAAGAAAAGGAAATTACTGAAAAACAAACTTTTTACCGAGAAGA
AATGAAAGAGATTGTTACAGAAGAGAAACTATGTAAGCTTCATCAATCGATTGT
GGAGGGAGCTTACAAGCCGTCTGAAGGTGAGGAAGAACCAATCAGTAAATACG
ATTGTCCTGATTGTGTAATGGCAAATGTAGAGTATGAAACTTTTAAAGTACCAT
ACGAGGAAGATGTTGTTATAGGTTATGAGCCTGACATCCCTGAAAACTGTACCT
TAGAGGTTTGTCCTGATGGAATTTATTATCCAATATTCAAGGATGGTAAATGGA
TAAAAACAGTTGAACCGAAGCCTGAAGAACCACAACCACAAGAACCATCTGAA
TTAGAAAAAGTAAAAAAGCAACAGGAATTAATGCAACAAGCAATGGATGAAAT
GATTATACAAAATCCAACCCCGGATGAATTAGTAGAGTTAAAGAAACGTTTGAT
ACTTATGCAATCAGCAATTGATGATCTCATTATTTCCGCTACTCCAGCAACACT
GGAAGGAGGTAGTAACTAATGGCTGAATATATGGCGCAACGAATTATTGATGA
AGCTTTTACCTATACGTTTATCATTATAAAAATGAAGGCGTACAAGGAGCGAAT
TGATAAATACCTAACTGATAATGGTAGAGCAGATTTAATTACAGATAACGTAGT
AGCGGCTTATTTAGTATAAAATACGGCTTTGAGTAAAAATTCAATTCATAGATC
AAGAGAGGCATATACATGCTTCTCTTTTTATTTTGAGGAGATGATCAGTGTGAA
ACGAATAGTAGACCAAGCAATTTATGAAAAGCATGTTAGCCATGAAAATAAAAA
CCTAGTCAAAGATTTTCTAATTGAAAAGAAAGCACAAGGGAAAGCGGCAAGCA
CTTTACAGCAATATCATTGGGACTTACGAATTATTTTGTTTCTAATACATCAACA
CTTCGAAAATAAAAATCTTATTGAATTAACACGAAAAGACATTCGCAATTTATC
TATTATTTTTCAAGAGCTGGGAATGTCTAATGCACGTGTGAATGGATTAATGAG
TGCATTAAGATCCGCATTAGAATTTTGTGCGGATGACGACGACTATGCTTATGA
ATTTAATGTAGGTTCACGAGTTCGAGGATTACCTAAAAATCCAGTTAGAGAAAT
TACTTTTATAACTGAAGAACAAATTGAGTGGTTAATCGATGAATTACTTAAACA
AGAGAAATATATGTTAGCAACTTATTTAGCGCTTTCTTACTACAGTGCAGCAAG
AAAGAATGAGGTTTATCAGGTTCAAAAGGAAGAGCTAACAGAGCGATATTATA
CAAATATCGTTCGAGGGAAACGCGGTAAAAAGTTTAGGTTATATTACAATCCCC
GAGTACAAGAATGTATTCGTTTATATATAAATCAACGAGGTAAGGATACTGTTC
CAGATTTGTTTGTAAGAGTTTATAAGAATGGTGAACGAAGAGTGTTAAATAAGA
GTGTATTCAACTACTGGTGCAAGATATTCGCTAAGATGCTGTATGAAAAAGAAG
GAAAGGAATATAAAATCAATCCTCATTGTTTCCGTCATAGCAGATTAGATAATT
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TGAAAGTACAAGGCGTACCATTAGAAAAGTTAAAATCGCTTGCAAATCATTCAG
ATATTTCAACAACACAATCCTATTTAAAAGATAGAAGTGAAGAGGATATTGCAG
ACATCTTTGAAATGGATCCAAGTTGTTTTGCAGCGTAAAAGGAGATGAGGAGA
TTGCCAGAACATGAAAATCATGATGATTTTACAAAAGTAATTATTGGATTAACG
AGGGTAGAAACAAAGATTGATGGTCTTGGTAATGTAAGGGAGCTTGCGATTGA
AGCGCAACAATCAGCGAAAAGTGCTCATTTACGCGTTGATCGATTGGATAGGC
TTGTATTTTGGATGGGAACAACAGTTATCGGTTCGCTTATCGCCGGTGCGATAG
CGTTACTTTTTAAATTTGCAGGAAAGTGATCGTATATACGGTCACTTTTTTTATT
GAAGGGAGGTGAAAATATGAAAAATTTTGATACGGCTTCAATTAGTCGATATGT
CGTATTAGTAATCGCTGTGATTAATAGTGTCTTAAATCTTGTGGGATACCAAAC
GATTGATGACAAAATCACGAACGATTTAGTCGCGGTAATTACAGGGGCATTCA
CTTTGTATGTAGCTTGGAAAAACAACTATTTAAGTAATAAAGGCTTACAGCAAA
AAGATGTATTAGAAAAAAATAACTTACACTAAGAGGAGATGTTGAATAATGGCT
AAATATAGTTTACATGGTGGTCACAATAATATTGTACAAGGTGCTAATTATGGT
GGCCGTAAAGAACATATTATGGATCGACTTGTTAAGGATGCAGTTGCAGCTAA
ACTTCGAGCATTAGGGCACACGGTATATGACGATACAGATGAAACGGGTTCTA
CACAAGCACAAAACTTATCAAATATTGTTCGTAACTGTAATTCTCATGATGTTG
ATTTAGTTATCTCATTCCATTTAAACGCTTATAATGGAACAGCTAATGGGGTAG
AGGTTTGTTATTATGACCAACAATCTTTAGCAGCAAAAGTGTCGGCTCAACTTG
CAAAAGATATCGGTTGGTCTAACCGTGGCGCTAAAGAGCGAAAAGAACTTTAC
GTATTGGCAAACACTAAAGCACCAGCAATCTTAATTGAACTTGGGTTCATTGAT
AATGATGCGGATATGGCCAAGTGGCATGTAGATAATATCGCAAACTCAATTGTA
TATGCTTTAACTGGACAAACTGTCGGTGGTAATGGGAACACAACAACTCCACC
GTCTAAACAAAATATCATTCAATCAGGAGCGTTTTCACCGTATGAAGCTCCTGA
TGCTATGGGCGCGCTAACGTCCTTAAAAATGACAGCTAAATTCATTTTACAATC
TGATGGATTAACATATTTTGTTTCTGACCCAACATCGGACGCTCAATTAAAAGC
AATGAAAGAATACCTTGACCGTAAAGGTTGGTGGTATGAAGTTAAATAATACAA
AAGAATAGTTTTATGAACAAAAAAAGCCGTCATTAGACGGCTTTTTTAATTTTT
CCATTCAACGAGAGTACGTTTATTACATCTACGACAGATAAACCCCTCAGCTTT
ATGTACAATAGGCTGTTTTTTGTTACAATTTGGGCATTTTACAAGTTGCTTACCT
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AAAGCGGAATATATAAAAAGTGCAGAAAAGAATGCTAAACCTAAACCTGGTAA
TATTCCAATTATGGTAAAGCATAGCACTACTGAAATTAATAAACCGAACGATCC
GATTAAAAAGTATATAACTCTTTTCAACTGATTAGCTGTAGAACTTTTCTTTTCT
TCTAATTCAATAATGAATGTTTCTCCATCAGCTGTTTTTCGTAGCTCCATAAAAC
CTCCCCCTTATATTAAGTAAATCATACCAATTAATTGTATATTTTAAAAGTGTGA
TTTTATTCAATATCCACCCATATATCCTCAACCCGCATATTGAGTGCCTGGGCT
ATACGCATTGCAACTCGTAGTGTTGGTTCGCTCTTCCCCCGTACTATCATACTT
AATGTTTGATCTGTTATGCCAGCTCGTTTTGCTAATGCAGATTGTTTAATCATTT
TATCAGCTAAAATTACTTTCAATTTGCACTGCATAAAATCCCTCCTTTTAAAATA
CTCAATCATATTTTTGAAAAAACTTTTGATTTTTTTATTGTTGGACAAACAAGTT
TTTAGTAGTGAAGTCATATACCTATATCAAAGTAACTACAAAGGTAAGGAAACA
GGCGTTATTACCATGAAAAGGAGACGGTCTACAAAGGTAGCTGAAATTGTAGA
TGTTTCAAAATTAACAAAGTAATTACCAATGTATATATCAAGGTTCGATTACCA
TGGTTTTGAGTCCTGCAACATAATGAGAATGGGATTTTAAATTTTGTTTATAAG
GGAGCGAGGAAGATGGGAAGCGGAGGAGCTACGAGATTAGAAAATGGATATG
AGGTTATTGGAAACAAAATAAAGTTCTTTTTAAATCAAGATCCAACAAAAGGGT
GGAACCAAATTCCGAAACCTAAATTTAGAAACATTCAAGAAATAAATGAGTGGT
GTGGAAGTTCTGCTAATGAGATAGTTTGTCAATGGGATGCACTAAATCAAAATG
CAATGAGTACATCGGAAACCACAGATTTTTTATATAGGTGGATGAGTTGGTATG
TAACCAAACCTTTAGATAGCACAGCAGTCGAAATAAGGAAATTGCCGGATGAG
TTAGCGATATTCATTACGAATGTTCCATTCGATGCAATTGATTTATTGAAGCGT
ACTTCTCAGATGGTTTTAGAGTGCGTGTGTTTGATGTTTAAAATGTTCATGTGA
AGGAGTGGTCTTATGTTTAAACGAAAAGAAATCATACCATTTCGTGACTTTATG
GATGGATCATTTAAGAAGCAAAAGCAAACAAAGATACTAAGCGTTGAACCAAT
AAGTCCAATAGCATTTTTTCATATGGCTCAACCGCTTGTACACACATATGTAGC
GCTAGGGATATTAGGGGGACTTACAATTGGAGCCGTGTTATTGGAAAGATACT
TAGTTCAAAATGATCATATTACAGCGGGTAAAATGGTATCCGATGGGTTGTATC
ATGGACTCCGGATAGGTAGTATTGGCTTCATTGTATATGTGTTCATTCGTATCG
TAAGGATGTTTTAAAGGGGAGTGTATGAACTTGATGAAGGAATGGTTTCATAAA
AGAGCTGTCAAGAATCTGTTAATTGAGGTATTCAAAAAAAGTGGTATCTATTAT
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GAACATCAAACAAGGGGCGGTAAATTACCCGTTTTCCCTAAAATCCATAATGTT
TTAGAAACAAAAGATTCTATTCGATATACATTTACTTTACCGAATGGAGTAGAT
CCACAAACGATTGAAAAGAAATGGTTTTGCTTTCAGCAAATCTTAGGAAAGGAA
CTGGCGATCGAAGGGGATATCAAGCGCTTTGTACTTCACTCGTTCAAACATAAT
AAAAGTTTACAAGCATACTCGTATAACTATTCAGATTGGTTACCACATCTAAAA
GGACATAGCATCCCTGTAGTGGTAGGAAAGGACCAATTTGGGAAATGGATTGT
ATATGATATGACGGATTCCAATAGCCCACACCTATTAATAGCAGGAGAAACCG
GATCAGGAAAAAGTAGTATGGTTCGAGTTATATTGTCTACATGGATTCAATATT
TGCCACCAGAATCATTGCAGCTGTATTTAGGTGATCTGAAGAACTCAGAATTTC
ATTTTTTAAGAAGAGTGCAGCATGTAAAGAAAGTGTGCATGGAAGAAGCAGAA
ATGGAGTTAATGTTAAATCAGTTGTGGATGGAAATTATTAAAAGACGTAAGTGC
ATGGAGAAATATGAAGTGGACCATGTTAACGAATACAACAAAGTAACCAGAGA
AGAAAAATTACCTTATATTGTAATTTGTATTGATGAAGTGGCTATGTTGGAAGA
TGAAACCGATAGTATGAAGATTGTTAGAAAAATATCAGCTGTTGGACGATCGCT
AGGCGTGTTTTTACTGTTATCGATGCAACGTCCGGATGCAACAGTTATAGATGG
TAAATTGAAAGTGAATATGACAGTTCGAATGGGTTTCCAGTGTGATTCATCACT
AAACGCAGGGATTATTGGTACACCCGGATCAGAACTGTTAGAACAATCAGGAC
AAATGATTTTCAAATTAAAAGGATTAAAGAAAGTGCAAGCTCCAGAGCTAAAGT
TAGAAAAAGCAAAAAAAATAGTGGCTCCTTTCAGAATGAAAAAAGAAATAGAA
GTAAGTACTGAAGTGAAAGAGGAGCCTTTATTTGGGGTGTTAGATGATGAGGA
ATAGAGATATGGCTATTTTGAAGGATTTGACTAAATTTCGTTGTATGTCACGGG
ACGACATTATGGAATTACACTTCGGCCATTTGAAAAATCCAATCACATCATGCA
ATACAGTATTAAAAAGATTACGTAGAGATGGACATATAGAAGTGAATACTACAT
TTCAGCCATATGTATATTTTCCGCAACCAAGTACAATTAGGAAAACAAGTCAAA
AAATACCACACTTTTTAGGCATAGTAGACGCGTATAAACAGTTAATTCCACATG
AGAAACCTAAGATTTTTAAAGTAGAACCTAAGTATGGAAAAGAATATATGGAAC
CTGACATATTTACGATTTGGCGAAAAGCTCCATTTTTTATTGAAGTACAAAAAT
CAATATACAGTAAAGCCGTAATGCAAGAAAAAATTAAAAGATATGAAGTGTATT
TTTGTAGTATGAAATGGCAAGAAGAATCATGGCAACCATCCAATAAAAAAATAT
TCCCCGCCATTTTAATTCTTACTGATAGAAAGTATGATGTCTCCAGCACAAATT
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TCCGTATTTTTCAAGCGAATTCAATTAAAGATTTCCTCAATCAAATAACACCTAA
ACAACCTAAAAAAGATATTTCTATTCAAGTTGGATCAAGAAAAAATTAATTTAA
AAGGAGCGATTTATTATGAGTGAAGCAACAAAAGAGTTAAATGAAATTTTTTGT
AAGTATGATGTGAGTGCTGAAGAAATAATCGAAATGATGTCACAATGGTTAGA
AAGAAAAGTTTGTGATAATCATGAAGAAACTTTAGAGGAATATGGAGAAAACG
ACTTTATACGTTTAGATAACCTTCATGCTGATATAAATAAATTAGATTGGAAGT
ATAATTTCCCGTATTAAAAATAAATCACAAAAAAAATAATGGGCATATATATAA
GAAGAGAGTGTCACTCAAAATGACCACTCTCTTTTGACCACACAGACCACATTG
ACCACAACTGGTACCACATTTATTATTTACTTTATGTCCATTTTGTCTAAAATAG
AAAATATAGCTAGACAAGAAGGTACGTTTTAACACATAATGGACACAATGCTTC
TTTAGAGGTGTAAAGAAAAAACTTACACTATAAAAGCATTATATCACTTATACC
GCAGGGTTTAACCTTCTTGTTTTTCTTCACCGACCACTTTTTGACCACTTCGAC
CACTTTTTAGTACATTTCCAAGCATTTCAGTTACTTCAATTTGACGTTCTTCATA
AACATCAGTATAAATATTTAAAGTTGTAGAAACATTTGTATGACCAAGTAATTT
CGAAACAACCTTTGCATTTGCACCAGAATCGATTAAAATAGTTGTAAACGTTCT
TCGGATATCGTGGAATCTAATATACGGTACGTCAATTGCTTCGCACAAAGCTTT
CATTTGATAGCGTATCGTATATGGATGCACGATTTTTTTATTTCTTGTACAAATT
AATAGGTCGAAAGAATTTTCCTTCTTGTGATTTTGATATTTTAACAATTCTCCCA
TTAATTCTTCTGTCATTGGGATTATACGATTAGATGCTTCGGTTTTTGTCTCACC
TAATTCATACTTACCATCCACAAGTGTTAACGTCCTTTGAACATGGATAGTCTT
GTTTTCGAAATTAATATCATTCCACTTTAGAGCCAATACTTCTCCGATACGCAT
GCCTGTATGCAATGCTAAAACAAATGTAATATAGTAACTTCCTTGTATTTTTGC
ATACTCCATAAATTTCATTGCTTCTTCAATTGTCCAACTAGCTTGCGCTTTCTTT
TTAACTTTTGGTCGTTTTGCTTTCTTAGCTGGATTAGAGTTAATCATTTCTAGCT
CTACACCTTTATCAAGTATTTGTTTTAACATAACATCAACAGATGAAATGTATTT
CGTAGTTAGACCCTCTTTAAGTAGTTTCTGGTGAAAATTATGAACAGTTAGGGG
TTTTATATCTGATAACCTCTTCTCGCCAAATTCAGGCATAACACGAGAGCGTAG
AATGCGTTTGTATTGATACAATGTTGATGGTCTACATGATGATTCTTTTTCTTGC
ATCCAGATTTCTACGAGCTGAGAAAAGCGAATATCACTATTCTCATAATCCCCA
TTTGCTAAATCATTTGTTACCCTAGCCACTTCTTCTTGAGCAGCTTTCTTTGTTT
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TAAAACCACCTTTAGTGATTTGTTTCCGTTTACCTGTGAGAGGGTCTTTGCCGA
TATCCATAGTAAAAGACCACCTCTCACCACGTTTACGAAAGTATGCCATGATTT
TTCACCTCGTCATAGTCGTTTTCTAGATACAAGCTGTGATATGTGGTAGTGGTA
TAAGAAATGATAGCATGTAAGCCTAATTTCTGTAAAAGGAAATTTACAGATATA
AAAGAAGTGAGCTACAATATTTGTATATTAAATAAAGGAGGGGAAAATATGTG
GGAATTTACAAAGGACCCTGGTGGTCACAGAGGAACCGATCCTGGTGTAGGGT
GGCATAACGATCCAGGCGGTGGTGGCTGGAAATACAATGAAGATCCAGGAACA
GGATGGAAACCAATTTATGGTCCGGGGACAGGTGTATAAAAAGGGGGAGAGTG
AGATTATGAAAATCTACATAAAAGACCCAGGAGGCTCAAAGGTAATTTCTGATC
CAGGAGGAGCAGGTGGAAGTCCGTTAGTACTTGATCCAGGTAATGGGGGCACA
GGATTAAAAATAGAACCAGGTGGACATAGAATGAACGAGCCAGGTGGTGGAGG
TTTAAAAAATAATACTGATCCAGGAGGATGGTAATTATGTTATTACACTCTAAA
GAATCACAGGAACCTGGTACAGGATGGAATTTATACGATCCGGGTACAGGAAT
GGGTATTTTCGATCCAGGTGGCGGAATGGGTATGTATGATCCTGGGGCAGGTG
GAGGATACATAAAAGATCCAGGCACAGGAATATAAAAAAGAGAGCTATATGCT
CTCTTTTTTATCGGTAAAAATTTGTTAATTTTTACCGTTGCGATTGGAAATCATT
TCTTCTAAAATCAAATCATAACAACTCGTTATGATTTTTAAGAAACTTTGCATAC
AAAACGAGTTGCTTGCAGAATTGCTCTCGATGAGACTCATCCAGGCCTGCGAA
AACCGTTTGAATCTCATTGAGAGTATTTGCTATATTCTTCTCGTTTAGTGTAGTT
GTTCTTCCCATTAAAGCATCAACCGATACACCTAGATATGATGCAATGCGATCC
AATGTGTCGAGATCAGGCTGATTATAGTTGATTTCTAAATTACCAACCTGGCTA
CGACTTAATTGTACTTTTTCACCGAACTCTGATTGAGTCAGGGAACGACTTGCT
CTAAACTTTTTTAAATTTTCTCCAAATGTATTCATAATTTCAGTATAAATACATG
AGAATTTTTAGACTATACATGTCATGAAATTTGTCTATATAATATTAATTATCAC
GTAAATTGACAATGAATTTGAAAACGTATAGAACAAATGTTCTTTTGGTGGTAA
AATATTCTTAATGAAAAAATTGATTTTTTGAAAAAAACTTTCTCAACATGATTTG
ACCATAATCGGAACGAACATTCTAAATCTTATGATAAACTGAAATTAATAAAAA
AAGGAATGAAAAAAAGACCCACGGTGTTATAGATGTGAGGCCACACATCTATA
ACATTTCACCCTAGCCTAGATAGGGAAAAGTTTCCATGAGTCAGTACATAGTAT
ATCATACTTCGTAAGCATAAAGAGAATTATGGTTCGTTTTCCTATTGAGAAATA
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AGGGATGTGTTTTGGGTTCTGATTTAGGAGGAATTTTATAATGAAGAGCTTTAT
CAAGAACTTACAAGAACATATCAATTATGTTAAGTTGGACGTTGGCACATTAGC
TAAAAAAGCAGAAATTGATAGAACTAATCTTAATAGGGTATTAAATGGGAAAAT
TAAAGAAATGAAGTTAGATTCATTTTTATTAATGGCTCCTGATCTGTATCCGAA
CTGGGCAGAACGTAGAAAGAAAATTAGAGAGTTTATATTAGTTTGCGAGAGTG
ATTTAAACATAAAAAAGGGGCTGTCTTATTGTCAAACAGTCGGTGAGTATCAAT
TAATGAGAAAGTTAATAAAGAAACATATTAGCAGTGATAAGAAAGGGAAAATA
AACAAATATTTACATTTGTATGATTTATACAATCAAAGGAATCTCAGTAAGTTG
GAAGGAGAAGGATTACAACGAAAACTAAATGAATTACCTTTCTCTAAAAATGTT
GACTATCAAATAATAGTAGACATGCTGCATGGATTCTCTCTATATGACAGTAGT
AATTTCATGGCTATGGTCCCGTATTCTAAAAAAATTGATCTAAACTTACCTCTA
GTAGAAAATGCATTTATAAAAAAACATTTGGATTTGCAACACGATGATCGAAAA
GCTCATATTAATTTGTTTAGCAATAAATTAAAAGAATGCAGAGACATTTGTAAT
AGTATTATAAAATCGGCTCCGGAAGATTCAGTTATAAAGGCCAAAGCATTAAGT
TGCTTAGGGGAGTCTTTTATATTTGAAAACCCTTTGCAGGCGGAAATGTACTTT
TTGGAAAGTTTAAAGTTAATAAAAAAATTAGGTATTACTGATTATAGTAAATTG
TATCGTGCAGTACATGGCACATTAGCCTTTTTACGAATTGAATATGGAATAAAC
TTAGATGAAATAGATTGGAATTTTGTAGGTGAAGCAGAAAAAGCATTCTTTGAT
GCTAAATTTGGGTCTGGGGATAAAGCTAAAGTTTATTTTGAAGACTTAAAAAGA
CAAGGAAAAACTTTGTCTGCATTTAAATTATATTATTTATTTTTTGTAGATGGAA
ATGATATAATGGTTCTTAAAGATGCGTTAGAAAAATTTGCGAATAATGGAAATG
TATTCTATTCAAATTTAATTACACGTGTATTAATTAAAGAGGGAGTGAAGTAGG
TTGAAAAAAATTATTATTACAATGGTATGTGTCTTAGGATTACTAGGAGTATTT
GAACAAAATAAAGATACTTCACAAGTGCATTCGATTAAGGCAGAAACAACATAT
TTCATGGTTGATCCAGGAACTCATTAAAAAAATAAAAGTTATTTTTTCAAGACG
CTACTAAAAAGTAGCGTCTTGAGTGCTTTTTAGGGGATATGCATTTTTGAAATG
CGTAACAAAAATGCACAGTTTGTTAAAAGAATCACATAGTTATTGGGATGGAGG
AGTTCGTATTGTTAATAAGTGGCGAAGATAAAATAAAATCCATGATTAAATATT
TATTGGGGGATAAAGTCTCAGAAAATGATACTCTTCATGCTTTAGAAGAAATAC
ATAAACAAGGATTCATTACTGATAATGAATTAAGTGAAGTCATACAGCTAATGG
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AACCAAAAAAAGGACTAGCCTCATGCTAATCCTTTTTTCTTGTTTTAACATTCTT
TGGATAGCTACTTCTAAAAGTGCTTTGACACTTTCGATCTCGTCAGGAGACAGT
TTTCTTCCATCCCAATGTAATTCGTCACTTTCAAATATTTCTTTTATATTATTGC
TGATTTTAATGGTGCTATCACTTTTCCCTAACAAAAAGTCAGTGGGTACATTGA
AGAAATCAGCTAATTTTTCAATGTTCTCACGAGAAGGGATTTTCGTCCCTTTTT
CATATTTAGAAACAGTTTGCTTGCTAACACCAATGTTTTCGCCTATTTTTTCTTG
AGTTAGCTTCTTTTCTTTTCTTAACTCAAATATTCTCTCCCCTATGATATTCATC
TATAACATCCTTTCCCGCTACTTGTAAAAAAGTATCTAGTTTAAATGTATCAATC
AGTAGCTCTATTGGCAACGCAAAAATAAAAAATAAATTTTTAAAAATAAAATGT
TGCCTTGAGGGCTACTTTTGGTTATACTAAGTTTAGAAGTTGAAGGTGGTGACT
TAAAATGCTAAATACACAAAGAATTAAATCTTTACGACAAGAGAATGGACACTC
TTTAGACTATGTTTCAAAAGCTTTAGGTCTAAAATTTAAACGTTCATATCATAAT
GTTGAAAAAGGCGAATCAGGTTTATCAGTAGAGAAACTAAAAAAACTTTCAGA
GCTTTACGGTGTACCAATTAGTGATTTAATAAAGTGAGTGAGTTTTTTTTTACA
ATTAAAGTCGCCCTGAAGACTACAAGTTAAGGGCGACACTACATGATAGTGTAT
CCATATTTATATTTCTAAAAAATGATTGGAGTGAAAAGAATGTATCAAATAAAG
CAACTACCATTCTCGATGAAAGCGGAGGATGTACAAGAATTCTTAAATATTTCT
CGTTCATCTGCATATGCACTTATGAAGAGAAAAGATTTTCCCACAATCGTAATC
GGAAAAAGCAAACGTGTTAAAGCGGAAGATTTTCTTAAATGGGTGGAAGCACA
AAAGGTGGGAGCAAATGCTAGTTAAAATTAAATTTCGGATTTTCGATAAAATTA
CCGTTTGATAAATAAGGGGGTGATTTAGTGGAAGATTTAACAGCATTAGCTATA
TTCGGATTTTCAACCACAGGTGGTTTATGGCTGCTTTATATCACTTATGAGCCG
ATAAGAAAATGGGCTTGGAGTGATGTAGAACAAAATAAAAAGACCCATGGCAG
TGGGTCCATTAGAAAAAACAAATTTTTATAAGTATACCACGGAAAGTAGGGAAA
TGGTACATGGATTTAATCGAATATCAAGTGCTATTACCTAATAAGTTTTGGAAT
TTAGCAAAAAGCCAAGATGAATTAAAAAGAATGATTGAACAGTATCTCAGTATC
GGTTATCCGCATTATGAAATTCAACAAATTATTAAAAGTGGACAAGCGCATATA
GCAATTTGCACGAGGAGGTAAGGGCTATGTCTGAAGTAAAAGTGAAATGGATA
AAACTCTCAACAACGATGTTTGAGGATGAAAAAATACGCCTAATTGAGAGCATG
CCTGAAGCTGATACATTATTAATCATATGGATTAAGTTATTAGCTCAAGCTGGT
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AAAACAAATGCAAGTGGTTATATTTTTTTAAACGAGAATATCCCATATACGGAA
GATATGCTAGCGACGCTATTTAATCGACCTCTAAATACAGTTCGGATGGCACTA
GGTGTATTTAAAAATTTCGGAATGATTGATATTGACGATAACCATTACATCAAC
GTCGTTAATTGGGGAAATCATCAGAATCTAGACCGTTTAGAAAAGATAAAGGA
AGACACTAGAAAACGCGTAGCGGCACACCGAGAAAGAAAAAAACAACAAACAC
TTAGTTGTAACGTTACAGGTAACGATGACGTAACGGACATAGATAAAGATTTAG
ATAAAGATATAGATAAAGAAATAAAAAAGAATTATAGTCCTGAAAAACCTCAGG
ACATCGTTCAATCTATTCCATATCAAGAAATTGTTGATTATCTCAATATGAAAG
CAAAAACCAATTACAAATATACATCTAAAAAAACACAAGATCTAATTAGGACAA
GATGGAAAGAGGGTTTCAGATTAAATCATTTTCAACAGGTAATTGATATCAAGG
TTTCACAATGGATCGATAATACGGAAATGAGTGGCTATTTGAGACCTATCACTT
TATTTGGAACTAAATTCGAAAGTTATTTAAATGAAAAACCTGTACGACGAAAAG
GAGTCTATAAAGGAGGTTCAACTAATGCAAGCGATCAAAAAGATAGTAGCTTC
ATCAACAAATACGACTTCAAGAAACGTTAATCAAAGATATGTATTGTCGCCTAA
TAGATGTACGAATGTATTTTTAGTAGGAAAAGAAAATTTTAAGGATGTTTGCAG
TAAACGCATGTTGATAGATACAGAAACATGCGAGGAATTTTGTCCGCAATGCA
GATCGGTAGAAAAGGAAGATCAGAAATTAGCTATAGAGACACTATCTATAAAA
AAGAAAAATGAAATCATTCATTTATATGATTCATTTGCTGATAACAGTTTAATAA
ATGACAAACTCAAAAAAGCTACATTTGAAAATTATGTACCTACCAAAAGGGACT
TAGCTGATGCAAAAGAAACAATAATGAATTTTGTTGCTTCATTCAATAAAGAAG
AACCAACAAGCATGATAATAACGGGTGATTATGGAGTAGGAAAAAGTCATTTG
TGTGTGGCAGCCACTAAAGGACTTATGAAAAAGGGTCACAGTGCAATGTTTATT
CAAATGAATAAGCTATTTACCAAAATCAAATCAACTTGGAATAAAAATAGCGAA
ATGACAGAGGACAAGCTTATGTCCCTTATAGCAAAAGTTGATGTCTTGATTATC
GATGACTTTGGAGCGGAATTCACAGAGAAAGATAAAGAAGGCGTCACTTGGAA
ACAAACGAAAACAAATGAAATTGTAGATAGCCGTATAGGTAAAAGTACATTATT
TACTACTAATTTTACGGTCGATGAATTAGCAGGAATGTATGGAGAACGTGATTT
CAGTCGGATGATGGAAAACGCTGAAATGTTAGAAATGTATGGGGATAATTATA
GATTACGTAATTTCAAAAAGGAGGAATAAGTATGTGTGTATTATGCCGTAATAC
AGGAATTATTCGTAAAGAAACTTATCCAGGTGTGATTGAAACGAGCGGTTGTAA
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TTGTGAAGTAGCAAAGAAACAGCAAGCAGAAAATGATAAGCGTTGGCAAGCAT
GGTTAATAAAATTCGAATCAATGAAACAAGAGTTACAGCGTAATAAACAACAAA
AAGTTAGTTAACAAGGGGGAGAAAGCTATGAAAAATACAGGTGTTGCAAGAAA
AGTGGACGAGCTAGGGCGTGTGGTAATTCCAGTTGAGCTACGCAGAACTTTGG
GGAGTGCTGAAGGAACGGCACTGGGATTTCATGTTGAGGGTGAAAATATTGTT
TTAAGAAAACAAGAAAAGTCATGCTTTGTAACAGGTGAAGTTTCTGAATCAAAC
ATGGAATTATTGGGCGGTCGAATGTTTTTGAGTAAGACGGGAGCAAGTGAGTT
ACTTGATGCTCTTGAAAAGAGTGTGAAGGTACATGCCTAAGCAACTAAATATTT
TCGATGTAGAGCCAGCAATTTGTGAGTTCGATGTAATGAAAGCCAATATTAAGA
AAGGAACTGGACGCAATACATACGCTGATGTACGCGTCCAAGTTCCAAATAAT
GCAAAGTGTACGGATGAGTTGCCACGCACAACTAAACAAGATGATCGCTATGA
CATCTTTGAACAATATGTAATAGCAATTTGGAGATTCCAACGTGCTGTAGATAA
GCTTTTTAGTTGGGATACAGCGGAAGAGTTATGTAAGGCAGCAAGGGATAAGA
AAGAAATTATCACGATAAGGATTTATTTAGGGAGTGGCTTTAAACCTGATGTTG
TCGAGTACATGCGGTAGTAAAGGGGAGTGGGACATATGAAAAAAATAGAAATT
GATGTTAGCAGCAACAAGCTGTTAATAGTGAAGGACGGAAATGTAACAGCAGT
AAATCCACCAATGAGTGGATTTGGTGAACAAGTCGCGGTTTGGATAAACGGTA
AAGTTGATCGTGTGGATACTAAGTTTACTGAAAAGATAAAATAATTTTTTGGAA
AGTAGGTTCGCTTATGAGTGTAGCAAGAAATCATGAAGCGATGAAAGAATCAC
GTTTAAAAATATACATCGCTTTAGAAGAAGCTAACTTCATTTGGGATGAAAGAG
ATGTAATTCGTTTTCGTGAAATGTGGAGTCAAGGTATGAGTTTGCCAGAAATGG
CAGAATCACTAAGGAGACACCATGCTGAGGTTGCGCTCCTTGTAATAGATCAG
GCTGATAAGTATTTAATTGAAAATCGTCCGATAGGATTAGGCATTTTCTAAATA
GGAAGTGGGAAAAAGAAATGGCAAAAGAAAGTCAACGTAAATTAAAACAGATG
TATGAAAATTTAGAACGGTATGGAATGGCGTTAAATGGTGCTGTATATGGTCG
GGATACGTTTGGTGGTGTTAGACAAAAGAAATCGAAAGATTATCGTGGCAAAC
AAAGAAGTGCGGATATGAAGGCGAGACAAAATTAACAGGGGTTAGCATGGACA
AGAAACAAATCTACATCGATGTATTACTACATAAAGGGATTTACAAGGAAAAAG
ATACAGGACGGCAGCTTTATGAAATGGATGAAATAGAGTTATGGAAACTATTAA
AGGGAGATGAAAAGAATGGAAGTAATAGAAAACAGTGTTTATGAAATCACTAA
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ATTATTAGCTGGATCTAAAGGTGGTAAGTAATGAAAAAAGAAACCGTGGTGCA
GGTGCAAAGTGAACTTGAGGTAGTAAAGAGTGAGATTCGTAAGATGGAATATC
ACCTGATTGGATTGAATAACGAAAAGCGTAAGACAAATATGGCTTTGGAAGAG
CTGAAGAATCGGAAAGAGAAGTTGAAAAGTTACTTATAAGGAGCGGGTTGAAT
ATGGAACTAACTAAATTATTCGTAGTACAAGCTGGGTTAAAAAAGCACATTGGG
TACAAAGGGAAAGATAAATTCAGCAAGATGATGTTAGCGATGTTAGTTGAATTT
ATGGAGTGTGCGAATGATTGGCGTGGTTTTAAATATTGGAGCGAGAACCCTAA
GGCAAAAGAAACGTTGTTAGAGGAATATGTGGATGGATTTCACTTTGTATTAGA
AACAGGACTGGATTTAAAAGAACACACTATAATCATGACGCTTCCAAATGAAGT
TGAATTACCAGAAGAAATTCATGACATGTCGGAACAACGTATCATAAAACAATA
CAAGATATTGACAGGTAAAGTGCTTGAGTTAGAAATTGAGGTTCATAACGGTAT
AGATTATATGGATGGATCATATGGAGACTTTATTTATCGATATTTACTGTTAGG
TAAATTATTAGGATTCACTGAAGAACAAATTGAAAAGGCGTATATGGATAAGAA
TGCGGTGAACCATCAGCGTCAGGAAAACGGATATTAAGACCGAATTTGAATTTT
GTTAAGAAATGAGGGTGATTGAAATAAGTTGGTGGGCAATAGCGATCGGTTTA
TATCTATTGATTGGAGTTGCATTACTTATATGGATAATCGCAACGGATAGTTGG
GGTTCGTTATTCTTATATCCTGTTTTTGCGGTAGTCATTGTTTTGGGATGGCTT
CCATTAATGATAAGAAGCATTGTACAAGAGATATCTAAAGCGATTCATAAGTGG
AAAAGAAAGCAGAAAACTGAATAGAAGTATTATTTCAGGGAGGGAGAATAAAT
GATTTATGAAGTTACAGATTATTGCAGTCAGTGTGATAGAAAAATAGAGAATTG
CGATTGCTGTTGTAATAAGTGTGATGAGTGGTTGCACGATTGTAAATGTAAAGA
TAAATAAGCAAAAAAGGGGAATGAAAGATATGAAATGGATGTACAACCTTGAT
AGCAATAATGAGATTTGGACAAGCGATAAATTTGAAATGAAAGAAGAAGCTATT
CAAGCAGCTTTAAAAGATTGGACAGATAAAATGGTAGCGGATAGAGCGGCAGT
CGATAATGAATTCCAAATTGGACAATTCAAACAGTATTCTCCATGGATCAATGC
AGATGTATTGTTGGATGAATTGTATGAACGAGCAACCGATGAATGTGGAGAGG
TTGCGGAATATTGGCTTTCAGGTGTGCCGATGGACGAAGGGGAAAAGCTTCAA
GAACAAATTAATAAGGTAGTTACAGAATGGCTAAAAGGAATAAATGAGCATCCT
AGCTTTGGTTCAATTGAAAATATTGAAACGATAGATGCTAGCAAAATTGAATAT
AAAGAAAACTAAACAAAAGCGTTATTT 
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fBACA1 Contig 2: 

AACAAAAGCGTTATTTTGCAGAAAAGTGAGGGAGTAGAATGGCTAAAACAGAA
AAGTTTAGTGTCGTCCTTGAGTTACCAAGGGATATAGAAGTAGGTTCAACTGTA
AAGCAAAAAGGAAAAGTGTTAACTATCACCAGTATTAGAAAGATTGAGTGTATA
TCAAGCAGATTAATTTTAGTTAGTGGAAATGCTACAGTCCAGAAATGAGGTGAA
AGCAACATGAAGCGTATTGGGATAAATGAAAAGTGCATTGGGTGTGGTGCGGA
TGTCAACGATCCAGAATGCGAATGTGAATGGAGAACATGCTCGTGTTGTGGTT
ATCCAGACTGTTTCGTTTATGAAGAAGGTCGCTATTATCATTGTAAAAACTGTG
ATCATTCAACTGATCCAGGACATTATACGTAATCAAAAAACTAAACAAAATAGT
TATTTTAATCGAAAAGTGAGGGAACAAAATGGCTAAAACAGAAAAATTCAGTGT
AGTTCTTGAGTTGCCAAGGGATATAGAAGTAGGTTCAACTGTAAGGCAAAAAG
GAAAGATATTAACTATTACGAGTATTAGAAAAATCGAGTGTATATCAAGCAGGT
TAATTTTAGTTAGCGGGAATGCTACAGTTCAGAAATGAGGTAAGGGCGACATG
AAGCGTATTGGTATAAATGATAAGTGTATTGGCTGTGGTGCGGAGGTTGATGA
TCCAGAGTGCGAGTGCGAATGGAGAACATGCTCGTGTTGTGGTTATCCAGATT
GTTTCGTTTATGAAGAAGGTCGCTATTACCATTGTAAAAATTGCGACCATTCAA
CTGATCCAGGACATTATATGTAAGTAAAAAAATAAGGGGATGGAAATCATGAG
AGAACGTGAAAATTGGGATGTATTGTGTGAAGAATGCGATAAAGTAATCATCAT
TGGTGTAAAAACGGAATCCGGGGATCATTATTGTGAAGCATGTTATGACAAGTT
AGCGTACGGAAACAAAGATAAGTAATTTAATAAAATCGTTATTTTATTAGAAAG
TGAGGAAGATAGCCATGAAAACATATGAAGAGTTGGTTGAAAAGTGTAAGGAA
CTGGTTGAAAAAGGATGGACTCCAGAATCAGTGCGTGAATGTTTCGAAGCATA
TTCTGAATTCGGCATTGATGCTATTCAATCCGCAATGAATGAAGCGCTACTTAA
TAATGGGTGTTCAGATAATGTATTAGATTATCGGCCGAATCTAGAAAATTTAAA
AGCGTTGGGATTGGAAGAGGATTATGTTTTCCAAGCTTTAGCTTATATGGGGAA
TGCTTCTCAATTTATGAGTTGGGCAAATACGGTACTGGCACTCGTGGACGATGT
TCCAGAACAGTTAAAACAAGATATCAAAAAAGTACATTCTGGTATTTATGAAAT
GCAAGAAAAATTAAGAGAATATAAGAAAGAGGATGATGAGTAATGGAAGAAAT
CTTAGTGCAGGGAAACATAACTGAAGATTTAAAAAGATTAGGTGTTAAGGCAA



	218 

ATAGAACATATGGTGATGAAACTACTTCGTACCAAGTATATGAAGTTTCGGAGG
AAGATTTTCGAAAGTTAAGTGATGATGCGGAGAATATGGATACAGATGATAGT
CATTGGAAAAATGGCGGATGGCGCTGGGATACAGGAAGTAATCAACCGATACC
TACCGACAAAGCTGAAGTCAACAACCAAGAATTAGTATGCTGGGTAGAAACAA
TAAACGATGACGAAGAAACATATCGAAATGATTGGTATGTGGATCTACTAGAAT
ACCTCGATGTTGGAGTTGGCTGCACAGCTTTCCGTAATGTGTGTGCCGTAACG
AAGGACTTGGCGAAATACAACAATATGTCAATGGCCGAGTTATTCAAAAAGTAT
CAAGGGTAATTCAAATAAAAACTTTATTTAATAGAAAAGGAGAATGAATATGGG
AACATTAGTTGTTAATTGTGGAGAATATGAATTTACTAGATTTGAAAGTGCTGT
CCGAACTTTGGAACAAGAATATGGTTATGAAGGCGAAGCTTGGGAAATGGTTG
TGGCAAGTGGTGATTTAGAGATATTAAGTGACTTCTTAAATTCTGATGGTTTGA
ATGCAGAAATCGAATAAAAATTTCATTTTGTCGAAAAGGGGAATGGATATGACC
GTAGTAAGCAGATCACATAGAGCATTAAAAAGAAAATACAGACCAATAAGAAA
AGAGTTTAAGAAAGATATTTTAGAAGCGACAAAGAATAATCGCGCTTTTGCAAT
GATGATTATTGAGACATATACAGCAAGTCAACATAGAACGCACATTATGAAAGT
TTGGGAGCTACTAGGAATTCATCATAGAGAAGCTTATAAAGATTATTGCGATAA
ATTGATGGGTAAGCATTTAACGGGACGTGATGAAATAATGAGGTCGATATATTT
TGCGGATAAAGTATTATACGACAAGTACCATCGCAAGTTACCAGAATGCTATGC
AATGGGTGATGCACTAGGTATTGCTTATAAGGTATTAAAACAATAAAAGAGCAG
CTAGCAAAAGCTAACTGCTCGGGTAATGGAATATGGTTCGAAATGGGTTGTCT
ACAGTATTGACGGAATATTGAGTTTTATTCAGGGGAGGAAGAGAATGAGTAAA
GTAATTGAAGGACAAGAAGTTTATGTAAGCACAAGTGGTGGATGGGTAGGTAA
GTCAGAACCTAATTTAAGAAAATACATCGTTGTCAGAGCTAATAAAACAAGTTT
TTACGCTAATCCTGAAGGGGTAGAAGATAAATCACCATATAGATTCAACCAAAA
GGATTTATCGCATAACACTGGATGGGGATATCATTATCAAGCTTATCGGACCGA
AAAGGAATATTGGGACATGATTGAGAGAGGTAAAGAAAAAGCTCAATTAAGAA
AAGAATTAAAGGATACGGTTGATAAGATGTCACTTATAGAATTACGGAAGTTAA
AAGAAGTACTGTTTGTAACAAAATAATCCTTTAATAGAAAGTGAGGTGAATACA
TGGATAAGATATATGCATTTCAGATTGCCACAACAGCGGGCTTGTTAGCCATGA
TTGTACTCAATATTATAACCGGTCAAGAAGTAAGATCATCCTCAATAGTTGTAG
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CAGCAGTTTGTTGCGTAGGAATGTTAAAGTTTAATCCGTTGTTTAGAGAAATGA
TTGATAAATATAGAAAGCGAGGTTAAGAGAATGAAACCTTTGAAGAAAAGAAA
GGTAAGAAAAGCTATTGCTCGCCGTGCTAAGGCAGTTGAGAAACATCAAGTTG
ATAAAGCTTGGAGAAACATTTTTGTACGAAATGGCTATTTAAAATAAATGAAAA
CCGAATACAGTCCGGCTAGAAAACTAGAGGACACCAATTCATTAAAACGGCGA
TTAAGGCTGTTTTAGGAATAGGTGTCCTTTTTATTTTGAAAAGGGAGATGGGGA
AATGAAGGTGTTAAAAGATCAATTACGTGAATGGAAAAAGCAATCTAATCAAAT
GAAAAAGAAACCTAAGAAGAAACGAAAAGAGAAGTTAAGCACACGTGACATTG
AAGGTTTAATGGGAATTCATGGGCCGCGTTATGAACGTAGACGTGGAGCATTA
AGACAAAAGTAATTTAAAAATAAAAAGGAGTGGTCTTACATGACTAAACAATTA
TCTTTCTTACCAAAAATTGATAGAACAGCGACACAGGAGGAATTAGAAGGTGT
GTTGGAAAGTGTACGTATACATAGACAATTTGGGATGATGCGTAAAGAAATGA
AAGTCACTCCTTCTTATGAAATACGTGAGCACGGTCCTACACATACAGTTGGTA
AGCCGTTAGAAGATGTTGCTATAGCAAATATTCAGCAAAGCAAACGAGAAGAG
TGGCTTGAAAGAATGTCAGTACGTATTGATCAGTTTTTAAATCGATTAGGAAAC
GGACGTGCTGGAAGCATCCAAAGAGATATTATTTATAAACGTTATTTAGAAGAA
GAGGACGTATGTGATTACATGGTTTATAACGAAATAGGAATGTCAGAGCGTAC
TTATCGACGTTGGAAGTCTAAAGCATTTTACAAACTTGCTTTTGCGCTTGGATT
AGAAGTTTACGAGACAGAAGAAACGGGAGGTAATGAATAATGAATTTCGTTCA
ACCGATACGTGATCCAGAACAAATACAGCAGCTAAAAGATTATTTTAAGGAGAA
GAGCTTACGTAATTACATTCTTTTCATTATGGGAATCAATACAGGCCTTAGAAT
CTCGGATATTTTGAAATTAAAGGTAGGAGACGTCAGAGGCAGTCATATATCTAT
GAGGGAAAAGAAGACAGGGAAGCAGAAACGCATACAAATTACTGCAGCACTGA
AAAGAGAACTTAAATGGTTCATTGAAGAAAGAGAAGATAATGAGTACCTATTGC
AAAGTAGACAAGGGAGGAATCGTCCTATTGGGCGCAGCATGGCCTATAAGATA
TTAAGTGGTGCAGCGGAAGAGTTCGGATTAGATGAAATAGGTACACATACATT
GAGAAAGACATACGGGTATCATATGTACATGCAAACGAAAAACATAGCATTACT
CATGGAGATATTCAATCACTCGTCAGAGAAGGTCACATTACGTTATATAGGGGT
AAACCAAGATGCAATGGATAAAGCAATGACTAGGTTTAAAATCTAATCATTGCT
TTTTTCTTTTTAAACACATACAGTTACTCATAAATTTCGTACTGTGTAACTCAAA
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AGGAAAAGTATTATAAAGTTAATGATACCAAGGGATTTGGCGAAGGGGTCAGT
TACACACAATATAAGATATGGGTAAGTCATTGATATAAAATACATATGAGTGAA
GAATAAAAATAAGTGGCAGAGTCATGACCGCTTTTTGGCAGGAAATGTGCCGG
TTGTTTTGGGATTTACGTGATATATTTGTATTGTGAGAAGTGGCGGAAAACACA
ACTCACTATGTTGATTCTAAAATTCTAAACGGCTTCATAATGACGGCGCATAAA
ATCCGAAACCAGCAGATGGTACTGATTGAATGTTACCGTTAATAAGGAGAGCTT
TTGCTCTTCTTTGAGCTAACAACATCCTAGGTAGACAGAATTAGGAGAACCTGA
TAAGTTTTCCGATGGTGTCTGTCGTGGTTGTTAGTTCAAAGAAGATTAAAACTT
CACATACCATAATTAAAAAGTAAATAAGAAAATGATGAAAAAAGCATCCATTCG
GGTGCTTTTTATTTTGAAGGAGGATGAAGGATGGAATTAACATTTGAGGGATTA
GAACAGTGTTTTAATGAAGCTAAAGATGTAGAGGCTAATTATGTAGCCGTACAG
ATCGAAATGGAAGAATTCCCTAGTGATGAGTTGATTATTAATGACAAACACAAT
ATCTCTTTAAAACTAGAGTACTATAAGAAAACTTATAACGAAGACTTAGAACAC
AGATATGCTCCAGGTATTCGTATTGTAGGTTATGCATACGGACATACGTTATCT
GGTATTCAACGTGAGTTAAAGTTACTCAATGATTAAGGAGGATGAATGATGAGT
GAACAGAAGAGCGCATTGTCAGTAAAGGTAGAAGTTGATACAAAAGAAGCGAA
TGAAAACATTAAAGAATTAACTGCTGCAGTTAATGAATGCGCGGAAGCATTTGA
TAATTTAGAAAAGGTTATAAGTAATTTTACAGGTCAGCATAGGAAGGTTAGATT
CTTTAATGATTGTGGCGAATTGATTGTTTCAAAGAAGGAGTGAGGATAGATGCA
AGTCTATTGTTCTAGCTGTAATAAAGATTACCATATGCAACCAAAAGTAGCACA
GCTTCCTAATCGTATTGAGAAGTGTTACTTCACTTGTCCTCATTGTGGCCATGA
ACATGTTGCGGCATATGTGAACGATAAGATTCGTAAACATCAAGCTGACATTGC
AAAGTGTCATGATCGTATTAACAAGAGGAACCTAGACATCGAGAATGAAATGA
AACGGTTGAGGAAGAGGATGGAGGGAAGTAAATGATGATGATATTAGGATATC
TTATTATTGGTTTACTTTATAGTTCCATTACAATGTATCCAGTTGCGAGAGACG
TTGGACAACGAAAGAAACATGACGGTGTATATATAGTAAGTACATTTATTATTT
CTATTGCATTTGCCATTTGTCTCGCTCCTTTCTGGATTATTCTTCTTGGGTTTAA
TATAGCTAAGTGGTTTTATAAATGGAAGAATAGAAACCAAATGAAGTGTGAATG
TTTTAATTGTGGTTATGAATCAACGATAGATATAGTAACAGGTGCTGGTAAACG
TTGCTCACAATGTAATGGTATAACAATACCTAAAGCGTCAGGTGGTACACATGC
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CAAGTAAACCATTCAAGCCATGTAAGTCGTTAGGTTGCAACGAACTAACAAGG
GATAAGTATTGCACTAAACATTTAGAAAAGGAAAACGAAACCGTAAAATATTAT
GACAAACATATCCGAAACAAAAGCTCACGTTCATTCTACAACTCAAGATTGTGG
AAGGATATGCGTGAGTTTATTTATCGTAGAGATCATGGTCTATGTGTTCAATGT
AGAAGCAATGACATCATTAAGATAGGTGATGTAGTCGATCACATCATACCCATT
CGAGTGGATTGGTCTAAACGATTAGAACCATCTAATTTACAAACGCTCTGTCAT
GCTTGCCATAATAAGAAAACAAAAGAAGACGAGAAGAAAAACAGAAAATAATT
CGAAAGAAAAAAATCATAAACAACCCCCCACCATGAAAAAGCAAAGGACGACT
CCCTGGAG 
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APPENDIX 2. PRELIMINARY DATA AND SUGGESTED FUTURE 
EXPERIMENTS  

A2.1 Determination of fetal bovine serum (FBS) component(s) responsible 
for dcsaB’s phenotypic switch 

To determine the FBS component(s) involved in dcsaB’s phenotypic switch, we 

fractionated FBS into >10 kD and <10 kD fractions. Briefly, FBS was filtered in 

10,000 MWCO Amicon Ultra-15 Centrifugal Filter Units (EMD Millipore). Flow-

through was collected and sterile filtered through 0.22 µm filters and labelled “FBS 

flow-through”. The >10 kD fraction was washed 3X in 1X PBS and resuspended to 

10% of its original volume (i.e., 1.5 mL from 15 mL starting material) and labelled 

“FBS proteins”. BHI broth was also subjected to this fractionation procedure and 

split into <10 kD “BHI flow-through” and >10 kD “BHI proteins” fractions. 

Sterne dcsaB from an overnight culture grown in BHI at 30°C, 150 RPM was back-

diluted 1:100 and grown in the same conditions, however in four different 

combinations of each fraction component: 1) reconstituted BHI (BHI flow-through + 

BHI proteins); 2) BHI-FBS (BHI proteins + FBS flow-through); 3) FBS-BHI (FBS 

proteins + BHI flow-through); and 4) reconstituted FBS (FBS proteins + FBS flow-

through). The 4 cultures were formulated as 90:10 mixtures, with 90% culture 

volume as flow-through and 10% culture volume as 10X concentrated >10 kD 
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fractions. Cultures were grown for 24-36 hours, the time until reconstituted FBS 

cultures were dispersed and resembled those grown in unfractionated FBS. 

Examination of cultures revealed that the two different fractions of FBS appear to 

play different roles in the dcsaB phenotypic switch (Figure A2-1). Reconstituted 

BHI and reconstituted FBS were used as controls for the dcsaB phenotype and to 

ensure that the fractionation procedure did not alter serum activity. dcsaB grown in 

reconstituted BHI resembled that of dcsaB grown in unfractionated BHI. The 

culture was connected as one bacterial mass that fell to the bottom of culture tubes, 

with the rest of the supernatant clear (Figures A2-1, A2-2a). Reconstituted FBS 

cultures were dispersed with dcsaB in shorter chains and possessing a Sterne-like 

phenotype (Figures A2-1, A2-2b). 

BHI-FBS (BHI proteins, FBS flow-through) cultures were of an intermediate 

phenotype between that of BHI and FBS alone. In BHI-FBS, the bacterial clump 

associated with dcsaB was less compact and its rope-like structures appeared 

unraveled, however dcsaB chains were still of longer length and cells did not 

disperse into the surrounding media (i.e., the culture was not turbid) nor did they 

show any apparent division septa (Figures A2-1, A2-3a). FBS-BHI (FBS proteins, 

BHI flow-through) cultures had a distinct phenotype where a compact bacterial 

pellet was present at the bottom of culture tubes, however, cultures were also turbid 

with dispersed cells harboring clear division septa (Figures A2-1, A2-3b-d). 
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Figure A2-1. dcsaB displays different phenotypes in fractionated FBS. 
Sterne dcsaB was grown in combinations of BHI and FBS previously split into >10 
kD and <10 kD fractions. Left) dcsaB grown in reconstituted BHI (BHI >10 kD and 
BHI <10 kD fractions) displays a bacterial clump at the bottom of the culture tube 
with non-turbid growth. Middle-left) Growth in BHI-FBS (BHI >10 kD and FBS <10 
kD fractions) results in a more loosely-bound bacterial clump, however still 
connected as one mass. Supernatant surrounding the mass is not turbid. Middle-
right) FBS-BHI (FBS >10 kD and BHI <10 kD fractions) culture displays turbid 
growth. Media contains bacteria with clear division septa and a tightly wound 
bacterial mass at the bottom of the culture tube. Right) Reconstituted FBS (FBS 
>10 kD and FBS <10 kD fractions) culture displays turbid growth typical of dcsaB 

in unfractionated FBS. No bacterial mass is present in the culture tube. 

  Reconstituted BHI BHI-FBS FBS-BHI Reconstituted FBS
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Figure A2-2. Sterne dcsaB growth in reconstituted BHI and reconstituted 
FBS. A) dcsaB grown in reconstituted BHI possesses long chains with multi-chain,
rope-like structures, resembling growth in unfractionated BHI media. Image 
captured at 100X magnification. B) dcsaB grown in reconstituted FBS has shorter 
chains and clear division septa, resembling growth in unfractionated FBS. Image 
captured at 100X magnification.  
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Figure A2-3. Sterne dcsaB growth in BHI-FBS and FBS-BHI mixed fraction 
cultures. A) dcsaB in BHI-FBS (BHI proteins, FBS flow-through) grows in long 
chains, however tight, rope-like multi-chain structures are less apparent. Image 
captured at 100X magnification. B) and C) dcsaB grown in FBS-BHI (FBS proteins, 
BHI flow-through) displays compact, twisted chains with an aberrant morphology 
(B), however cells contain clear division septa (C). D) dcsaB grown in FBS-BHI 
shows a mix of chain morphologies: 1) rope-like, multi-chain structures without 
clear division septa, 2) long chains without apparent division septa, but not 
associated with rope-like forms, and 3) shorter chains with clear division septa. 
Images in B), C), and D) captured at 1000X, 400X, and 100X magnifications, 
respectively. 
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These results suggested that multiple components of FBS likely promote different 

aspects of dcsaB’s phenotypic switch. Components <10 kD (likely small molecules or 

peptide fragments) appear to play a role in breaking-up/unravelling the multi-chain 

structures associated with dcsaB growth in BHI, however, cell separation was not 

observed in these cultures containing BHI proteins and FBS flow-through. The 

formation of multi-chain structures may be due, in part, to increased levels of 

SCWP on the dcsaB cell surface (contributing to dcsaB’s “stickiness” and the 

propensity of chains to bind together). We find in our RNA-seq data that a number 

of the genes associated with SCWP synthesis are upregulated 4-16-fold in dcsaB 

grown in BHI vs. FBS, and 4-8-fold in dcsaB BHI as compared to Sterne BHI. 

Sterne does not show differential expression of SCWP synthesis genes between BHI 

and FBS culture. B. anthracis may therefore respond to components in the FBS <10 

kD fraction and downregulate its SCWP synthesis genes to allow for multi-chain 

unravelling and in part, cellular dispersion associated with FBS and animal-host 

environments. Complementary to the <10 kD FBS fraction, the ability of the FBS-

BHI cultures (FBS proteins, BHI flow-through) to grow with turbidity while still 

containing a dense cellular pellet, suggests that a larger molecular-weight 

component of FBS plays a role in cell separation, however likely indirectly as heat-

killed FBS cultures were capable of turbid growth. When added together, these 

fractions of FBS appear to both unravel the bacterial mass associated with dcsaB 

growth in BHI and allow for cell separation and dispersion, critical events in B. 

anthracis’s pathogenesis. 
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Since multiple components of FBS appear to play different roles in the dcsaB 

phenotypic switch, experiments to specifically uncover these compounds will 

highlight molecular signals that the pathogen uses to sense its external 

environment and precipitate an infectious or non-infectious response. Such work 

will allow for a better understanding B. anthracis’s biology, and in addition, may 

allow avenues for development of novel approaches to treat infection. Interference of 

signaling pathways in B. anthracis may prevent the organism from sensing its 

external environment and executing its infection program (i.e., production of 

anthrax toxins and PDGA capsule in mammalian environments) and allow better 

treatment outcomes. 

Follow-up experiments could elucidate the FBS active principles by a variety of 

approaches. The approach described above could be expanded to fine-tune molecular 

weight cutoffs and find a range in which the active components are found (e.g., the 

“rope-unravelling” compound is <3 kD or <1 kD, or the “cell-separation” compound 

is >30 kD and <50 kD). Getting a better defined molecular weight range followed by 

mass-spectrometry could allow identification of switch signals. In addition, 

treatment of the lower molecular weight fractions could remove non-polar (e.g., 

charcoal stripped FBS) or other serum compounds. The absence or presence of 

fraction activity could help elucidate the nature of the components integral to 

dcsaB’s phenotypic switch.  
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A2.2 Uncovering fBACA1-pXO1 crosstalk in B. anthracis 

During the course of research conducted for this Thesis, it was discovered that 

fBACA1 presents different plaquing efficiency on B. anthracis Sterne compared to 

DSterne indicator strains (Figure A2-4). A similar observation was noted with other 

B. anthracis-infecting phages but not further explored in (Schuch and Fischetti, 

2009). Our result suggests potential fBACA1-pXO1 (and more broadly phage-pXO1) 

crosstalk that could allow for successful phage infection. We have observed DSterne 

lysis by fBACA1 previously, although at a much lower efficiency. 

Figure A2-4. fBACA1 plaquing efficiency on B. anthracis DSterne versus 

Sterne strains. fBACA1 stock at 10-4 dilution was added to either DSterne (left) or 
Sterne (right) in a BHI soft-agar overlay. DSterne does not display any PFUs, 
whereas plaques are apparent on the Sterne plate. DSterne and Sterne displayed 
equivalent growth in BHI-only negative controls (not pictured). 
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Experimental work to uncover potential phage-plasmid crosstalk and the genes 

involved in this event should be a relatively straightforward task. Sterne could be 

cured of its pXO1 plasmid to generate a DSterne strain with a similar chromosomal 

background to Sterne. Following plasmid curing, pXO1 DNA could be purified and 

digested to make a library of ~2-3 kbp fragments hosted in DSterne. This library 

could then be tested for clones harboring increased fBACA1 susceptibility and 

candidates Sanger sequenced to uncover the gene(s) important for increased phage 

sensitivity. Uncovering such phage-plasmid crosstalk would, to our knowledge, be a 

rare finding, however it would be of critical importance in understanding the 

environmental interactions between B. anthracis and its bacteriophages. 

In addition to characterizing this pXO1-driven crosstalk, is also possible that the 

dcsaB phenotypic switch is partially (or fully) precipitated by a pXO1-encoded factor 

as well, as a number of pXO1 genes are differentially expressed with elevated 

temperature and/or CO2/bicarbonate conditions—some of the same conditions which 

appear to cause the dcsaB phenotypic switch. Generating a dcsaB mutant in 

DSterne and testing its ability to execute a phenotypic switch could identify pXO1 

as an integral part of dcsaB’s ability to overcome the limitations associated with 

CsaB-deficiency. If DSterne dcsaB cannot execute the phenotypic switch associated 

with Sterne dcsaB (or perhaps does so less efficiently), then the same library 

screening approach as described above could be undertaken, except in a dcsaB 

chromosomal background, and would uncover the pXO1 gene(s) associated with 
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dispersion and differential expression in FBS and likely in animal-host 

environments. Genes highlighted by this approach would give researchers more 

insights into the mechanisms by which B. anthracis executes its multifaceted 

lifestyle and deals with the threat and consequences of bacteriophage infection.  



APPENDIX 3. RNA-SEQUENCING DIFFERENTIAL EXPRESSION DATA 

Representative pXO1 differential expression (DE) data comparing dcsaB and Sterne in FBS culture are shown. The 
full DE dataset is available at: https://www.dropbox.com/sh/b3alrq7k5y7q6pq/AABh2Usqstjt2MTzHXh2zJoSa?dl=0 

Password: bacillusphage 

Table A3-1. Differential expression (DE) of pXO1-encoded genes comparing dcsaB and Sterne in FBS 

Gene 

Name 

Base Mean Log2 Fold  

Change 

(relative to 

dcsaB) 

Log2 Fold 

Change 

Standard 

Error 

Wald 

Statistic 

P-

value 

Adjusted 

P-value 

Gene 

Product 

AW20_RS
00005 

40.28794778 -0.490798703 0.38062251 -1.289463156 0.1972
37117 

0.346059833 hypothetical 
protein 

AW20_RS
00010 

95.3907458 -0.099657705 0.29940662 -0.332850705 0.7392
46981 

0.838469831 hypothetical 
protein 

AW20_RS
00015 

141.841706 -0.586029343 0.311808046 -1.879455486 0.0601
82326 

0.147014984 disulfide 
formation 

protein 
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AW20_RS
00020 

229.2474758 -0.725721958 0.283674816 -2.558288282 0.0105
18885 

0.039266833 ArsR family 
transcription
al regulator 

AW20_RS
00025 

1245.398124 -1.194286171 0.236542347 -5.048931774 4.44E-
07 

9.90E-06 RNA 
chaperone 

Hfq 
AW20_RS

00030 
98947.27241 -0.863221596 0.249173039 -3.464345896 0.0005

31523 
0.003679375 hisitidine 

kinase 

AW20_RS
00035 

319.4364786 0.145773982 0.241252511 0.604238196 0.5456
8529 

0.68695407 hypothetical 
protein 

AW20_RS
00040 

199.28654 0.469822078 0.279286127 1.682224902 0.0925
25237 

0.201549057 transposase 

AW20_RS
00045 

215.9477031 0.20666064 0.255799138 0.807902019 0.4191
46989 

0.579591376 hypothetical 
protein 

AW20_RS
00050 

1453.391531 -0.547510834 0.219591421 -2.493316143 0.0126
55611 

0.044947659 hypothetical 
protein 

AW20_RS
00055 

6715.447841 -0.500661095 0.229506752 -2.181465648 0.0291
48993 

0.085439802 recombinase 
XerS 

AW20_RS
00060 

8512.976489 -0.220167255 0.173325781 -1.270251053 0.2039
95218 

0.354104906 hypothetical 
protein 

AW20_RS 1442.322615 -0.47248248 0.268809962 -1.757682177 0.0788 0.179528642 metal-
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00065 01602 binding 
protein 

AW20_RS
00070 

163.2857252 -1.044700058 0.320002774 -3.264659383 0.0010
95958 

0.006573442 transposase;p
seudo=true 

AW20_RS
00075 

39.80538607 -1.163014458 0.591522954 -1.966135802 0.0492
82926 

0.126797388 transposase 

AW20_RS
00080 

263.8019101 -0.336857234 0.247516363 -1.360949356 0.1735
29694 

0.317247877 transposase 

AW20_RS
00085 

1077.399961 -0.197305634 0.172224852 -1.145628129 0.2519
49053 

0.410487689 transposase 

AW20_RS
00090 

6922.346539 0.027366035 0.239721538 0.114157596 0.9091
12865 

0.946964898 hypothetical 
protein 

AW20_RS
00095 

7802.140801 0.124144625 0.216353865 0.573803593 0.5661
00717 

0.702329306 type VII 
secretion 
protein 

AW20_RS
00100 

880.0068621 -0.051460847 0.261908783 -0.196483853 0.8442
3147 

0.906698924 membrane 
protein 

AW20_RS
00105 

505.0798772 -0.514809968 0.32901197 -1.56471501 0.1176
49747 

0.240528372 membrane 
protein 

AW20_RS
00110 

492.6544954 -0.700258148 0.3102765 -2.256884255 0.0240
15308 

0.07356784 membrane 
protein 
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AW20_RS
00115 

3056.12698 -1.462902866 0.367911604 -3.976234643 7.00E-
05 

0.00072877 hypothetical 
protein 

AW20_RS
00120 

657.5803757 -1.405356179 0.440697768 -3.188934185 0.0014
27984 

0.008137083 transposase 

AW20_RS
00125 

2474.705448 -0.713182998 0.283225111 -2.518078274 0.0117
9971 

0.042733678 integrase 

AW20_RS
00130 

81.53620979 -0.320648495 0.390043762 -0.822083381 0.4110
29443 

0.571692744 DNA-binding 
protein 

AW20_RS
00135 

319.4700036 -0.684821911 0.245562875 -2.788784381 0.0052
90628 

0.022672982 transition 
state 

regulator 
AW20_RS

00140 
145.0826688 -0.736757473 0.298723257 -2.466354578 0.0136

49614 
0.047531989 hypothetical 

protein 

AW20_RS
00145 

434.7144813 -0.489971204 0.267041331 -1.834814116 0.0665
33236 

0.159121837 ArsR family 
transcription
al regulator 

AW20_RS
00150 

2210.238201 -0.693300265 0.213213075 -3.251678003 0.0011
47259 

0.006809538 ATPase;pseu
do=true 

AW20_RS
00155 

20194.88175 -0.875852984 0.196343904 -4.460810672 8.17E-
06 

0.000121285 Lethal factor 

AW20_RS 3900.263686 -0.89332468 0.23216851 -3.847742664 0.0001 0.00110746 ribonuclease 
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00160 19211 
AW20_RS

00165 
356.9205462 -1.071375415 0.278585925 -3.8457629 0.0001

20178 
0.001112816 hypothetical 

protein 

AW20_RS
00170 

151.4991323 -1.124093446 0.3718195 -3.023223492 0.0025
00975 

0.012737107 hypothetical 
protein 

AW20_RS
00175 

12627.33504 -0.521245605 0.282880681 -1.842634159 0.0653
82443 

0.157226583 transcription
al regulator 

AW20_RS
00180 

177591.0628 0.216513963 0.272647886 0.794115688 0.4271
28085 

0.586786753 protective 
antigen 

AW20_RS
00185 

616.3591551 -0.820528024 0.278724518 -2.943867405 0.0032
41388 

0.015695144 hypothetical 
protein 

AW20_RS
00190 

493.2485061 -0.784489061 0.218001338 -3.598551591 0.0003
19994 

0.002485308 germination 
protein XC 

AW20_RS
00195 

1020.204571 -0.825115797 0.18572247 -4.442735418 8.88E-
06 

0.000127916 germination 
protein XA 

AW20_RS
00200 

1045.859044 -0.931241648 0.231182458 -4.028167429 5.62E-
05 

0.00061308 germination 
protein 

AW20_RS
00205 

1157.078063 -0.819698305 0.2377903 -3.447147786 0.0005
66539 

0.003851652 resolvase 

AW20_RS
00210 

8665.18771 -0.842555367 0.220960437 -3.813150341 0.0001
37207 

0.001240295 transposase 
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AW20_RS
00215 

518.5022341 -1.125746745 0.193555455 -5.816145804 6.02E-
09 

2.48E-07 hypothetical 
protein 

AW20_RS
00220 

3438.27036 -0.423457505 0.302835547 -1.398308455 0.1620
2046 

0.304001547 hypothetical 
protein 

AW20_RS
00225 

20261.22109 -0.450309252 0.22707776 -1.983061887 0.0473
60517 

0.12312871 anthrax toxin 
expression 

trans-acting 
positive 

regulator 
AW20_RS

00230 
176.7775063 -0.844698404 0.293542272 -2.877603958 0.0040

07079 
0.018552253 transposase 

AW20_RS
00235 

595.4803311 -0.541470943 0.200855493 -2.69582342 0.0070
21488 

0.028465221 transposase 

AW20_RS
00240 

2622.129431 -0.37688982 0.212521935 -1.773416098 0.0761
59783 

0.175379655 adenine 
phosphoribos
yltransferase 

AW20_RS
00245 

1113.809566 -0.2635663 0.258193916 -1.020807555 0.3073
45624 

0.471770571 adenine 
phosphoribos
yltransferase 

AW20_RS
00250 

8757.074351 -0.002289827 0.254770638 -0.008987798 0.9928
28871 

0.997902358 calmodulin-
sensitive 
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adenylate 
cyclase 

AW20_RS
00255 

1518.156802 -0.391075267 0.176797609 -2.211994102 0.0269
67072 

0.080576313 hypothetical 
protein 

AW20_RS
00260 

310.7777827 -1.133370892 0.242183205 -4.679807963 2.87E-
06 

5.06E-05 hypothetical 
protein 

AW20_RS
00265 

13635.594 -0.791363913 0.316270476 -2.502174474 0.0123
43308 

0.044206248 hypothetical 
protein 

AW20_RS
00270 

9574.538594 -0.66304155 0.303788351 -2.182577272 0.0290
66955 

0.085328024 hypothetical 
protein 

AW20_RS
00275 

7284.619741 -0.518508924 0.254467483 -2.037623503 0.0415
876 

0.112211764 hypothetical 
protein 

AW20_RS
00280 

812.2553554 -0.819040841 0.221784207 -3.692962869 0.0002
21656 

0.001821798 transposase 

AW20_RS
00285 

1637.819277 -0.300280391 0.181912164 -1.650688909 0.0988
02114 

0.21186739 transposase 

AW20_RS
00290 

307.3928467 0.30109773 0.219273018 1.373163616 0.1697
01488 

0.312755182 transposase 

AW20_RS
00295 

215.4565265 -0.873579346 0.330026485 -2.646997697 0.0081
20991 

0.032168146 hypothetical 
protein 

AW20_RS 1770.796188 -0.48359844 0.157348034 -3.073431729 0.0021 0.011186612 UDP-glucose 
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00300 16121 6-
dehydrogena

se 

AW20_RS
00305 

454.088118 -0.622686332 0.269381354 -2.311542068 0.0208
02932 

0.066105808 UTP--
glucose-1-
phosphate 

uridylyltrans
ferase 

AW20_RS
00310 

497.3734375 -0.627760585 0.247675252 -2.534611675 0.0112
57204 

0.041187358 hyaluronan 
synthase 

AW20_RS
00315 

100.3814544 -0.350703856 0.431943747 -0.811920205 0.4168
3742 

0.577097243 hyaluronate 
synthase 

AW20_RS
00320 

199.0323073 0.198536822 0.279565505 0.710162084 0.4776
0363 

0.631099917 hypothetical 
protein 

AW20_RS
00325 

6632.227967 -1.011115458 0.214830698 -4.706568792 2.52E-
06 

4.49E-05 phosphatidic 
acid 

phosphatase 
AW20_RS

00330 
132813.8708 -1.149459047 0.243426884 -4.721988921 2.34E-

06 
4.23E-05 S-layer 

protein 

AW20_RS
00335 

1130.043522 -1.281553467 0.243992371 -5.252432528 1.50E-
07 

4.00E-06 hypothetical 
protein 
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AW20_RS
00340 

784.5682394 -1.145897466 0.263625121 -4.346692987 1.38E-
05 

0.000187222 hypothetical 
protein 

AW20_RS
00345 

3519.146471 -0.915642326 0.245058324 -3.736426135 0.0001
86654 

0.001595352 cell surface 
protein 

AW20_RS
00350 

2186.763531 -0.275258126 0.197267037 -1.395357939 0.1629
07928 

0.304964497 hypothetical 
protein 

AW20_RS
00355 

814.7299149 -0.955540275 0.286402291 -3.336356955 0.0008
48841 

0.005361893 membrane 
protein 

AW20_RS
00360 

743.2068529 0.223189599 0.223560905 0.998339129 0.3181
1494 

0.481946246 CAAX amino 
protease 

AW20_RS
00365 

206.1556122 1.693143599 0.365591983 4.631238315 3.63E-
06 

6.15E-05 hypothetical 
protein 

AW20_RS
00370 

524.7986827 1.46946708 0.386466028 3.802318899 0.0001
43348 

0.001281594 hypothetical 
protein 

AW20_RS
00375 

960.7375923 1.734194226 0.38203669 4.539339465 5.64E-
06 

8.92E-05 membrane 
protein 

AW20_RS
00380 

84.4683098 -0.361137408 0.352321291 -1.025022947 0.3053
5236 

0.470169342 hypothetical 
protein 

AW20_RS
00385 

168.3689169 -0.162313041 0.274766394 -0.590731049 0.5547
0064 

0.694014576 lytic 
transglycosyl
ase;pseudo=t
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rue 
AW20_RS

00390 
64.08590631 -0.475284684 0.367571226 -1.293041047 0.1959

96863 
0.344307393 membrane 

protein 

AW20_RS
00395 

488.6030874 -0.340623306 0.251091718 -1.356569259 0.1749
18115 

0.318662704 hypothetical 
protein 

AW20_RS
00400 

124.5689047 0.092932182 0.281361717 0.330294337 0.7411
77571 

0.840101031 hypothetical 
protein 

AW20_RS
00405 

32.40852174 -1.639068861 0.545081378 -3.007016799 0.0026
38252 

0.013352785 hypothetical 
protein 

AW20_RS
00410 

36.71061686 -0.466949632 0.447278384 -1.043979877 0.2964
947 

0.46119601 hypothetical 
protein 

AW20_RS
00415 

112.3076433 -0.538997506 0.282058888 -1.910939631 0.0560
12339 

0.139700211 hypothetical 
protein 

AW20_RS
00420 

115.9115024 -0.829081134 0.397967888 -2.083286511 0.0372
25115 

0.102923926 hypothetical 
protein 

AW20_RS
00425 

432.8726726 0.650966577 0.206497592 3.152417276 0.0016
19247 

0.009037363 hypothetical 
protein 

AW20_RS
00430 

7295.531763 0.478733618 0.192512917 2.486761025 0.0128
91196 

0.045550212 ATPase 

AW20_RS
00435 

440.0056256 0.199374582 0.199300081 1.000373814 0.3171
29637 

0.481058177 hypothetical 
protein 
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AW20_RS
00440 

492.6717989 -0.82802337 0.325809355 -2.541435224 0.0110
3984 

0.040631221 hypothetical 
protein 

AW20_RS
00445 

3658.777802 -0.89960411 0.321713439 -2.796290114 0.0051
69297 

0.022286979 hypothetical 
protein 

AW20_RS
00450 

921.6523179 -1.597642487 0.378006765 -4.226491787 2.37E-
05 

0.000293056 hypothetical 
protein 

AW20_RS
00455 

826.1922088 -1.49084136 0.385479522 -3.867498203 0.0001
09958 

0.001048382 DNA-binding 
protein 

AW20_RS
00460 

176.779715 -0.669301931 0.27807877 -2.406878928 0.0160
89503 

0.054307157 hypothetical 
protein 

AW20_RS
00465 

201.7778963 -0.368506836 0.284311679 -1.296136821 0.1949
28351 

0.342852703 membrane 
protein 

AW20_RS
00470 

50.66702448 -1.145931596 0.385036853 -2.97616082 0.0029
18818 

0.014502557 hypothetical 
protein 

AW20_RS
00475 

45.07721675 -0.02827616 0.421852199 -0.067028594 0.9465
5894 

0.96846138 hypothetical 
protein 

AW20_RS
00480 

79.59185248 -0.611176864 0.334516404 -1.827046016 0.0676
92851 

0.160852346 hypothetical 
protein 

AW20_RS
00485 

101.6345659 -0.026152655 0.285740261 -0.091525971 0.9270
74671 

0.956812233 membrane 
protein 

AW20_RS 162.4220842 -0.002027731 0.233443662 -0.008686169 0.9930 0.99796839 hypothetical 
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00490 69527 protein 
AW20_RS

00495 
70.99709979 -0.602435248 0.371383233 -1.62213906 0.1047

73576 
0.220088784 chromosome 

partitioning 
protein ParA 

AW20_RS
00500 

94.94883553 -0.710453775 0.341511803 -2.080319829 0.0374
96207 

0.103522926 pilus 
assembly 

protein CpaB 
AW20_RS

00505 
189162.8175 0.458609249 0.1952193 2.34920036 0.0188

1378 
0.061147465 hypothetical 

protein 
AW20_RS

00510 
2876.116883 -1.402875308 0.309396142 -4.534236593 5.78E-

06 
9.11E-05 hypothetical 

protein 
AW20_RS

00515 
1468.567299 -0.473997878 0.223241437 -2.123252223 0.0337

32722 
0.095058521 hypothetical 

protein 

AW20_RS
00520 

1132.287783 0.393416163 0.242568552 1.621876206 0.1048
29857 

0.220088784 surface layer 
protein 

AW20_RS
00525 

68.61730551 -0.320398333 0.335741966 -0.954299328 0.3399
32148 

0.503760191 hypothetical 
protein 

AW20_RS
00530 

62.55730685 -0.219726934 0.360343917 -0.609770067 0.5420
14132 

0.683851915 hypothetical 
protein 

AW20_RS
00535 

128.7867504 -0.344388355 0.303602171 -1.134340883 0.2566
51586 

0.415420162 hypothetical 
protein 
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AW20_RS
00540 

131.6222278 -0.305642313 0.32900264 -0.928996538 0.3528
9088 

0.515993228 hypothetical 
protein 

AW20_RS
00545 

597.1041683 -0.277423122 0.270284961 -1.026409761 0.3046
98479 

0.469983808 hypothetical 
protein 

AW20_RS
00550 

284.451115 -0.469900958 0.280925518 -1.672688764 0.0943
88582 

0.20463416 hypothetical 
protein 

AW20_RS
00555 

7488.697885 0.374444318 0.198997519 1.8816532 0.0598
83118 

0.14648017 hypothetical 
protein 

AW20_RS
00560 

3528.430114 -0.882808217 0.389671492 -2.265519125 0.0234
80842 

0.07224095 cell division 
protein FtsZ 

AW20_RS
00565 

25524.10619 -0.754429607 0.276207834 -2.731383815 0.0063
06897 

0.026277197 plasmid 
replication 

protein RepX 

AW20_RS
00570 

1646.116972 -0.105217502 0.216224636 -0.486612 0.6265
33318 

0.753906088 hypothetical 
protein 

AW20_RS
00575 

92.52409772 -1.679239447 0.348879697 -4.813233509 1.49E-
06 

2.80E-05 hypothetical 
protein 

AW20_RS
00580 

1328.829374 -0.796633748 0.206964786 -3.849127007 0.0001
1854 

0.001103017 conjugal 
transfer 

protein TraG 
AW20_RS 3238.038611 -0.078864518 0.184602292 -0.427213103 0.6692 0.786194293 hypothetical 
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00585 24119 protein 
AW20_RS

00590 
1316.019332 -0.219272398 0.264930039 -0.827661518 0.4078

62218 
0.56909151 hypothetical 

protein 

AW20_RS
00595 

457.7892578 -0.12501907 0.276714332 -0.451798318 0.6514
14282 

0.773613796 Cro/Cl family 
transcription
al regulator 

AW20_RS
00600 

4360.692625 -0.89089181 0.284410154 -3.13241914 0.0017
33722 

0.009554733 hypothetical 
protein 

AW20_RS
00605 

2126.12283 -0.825788255 0.162850117 -5.070848393 3.96E-
07 

8.93E-06 transposase 

AW20_RS
00610 

431.8119866 -1.104354443 0.269210592 -4.102195359 4.09E-
05 

0.000468746 transposase 

AW20_RS
00615 

745.8985858 0.362313561 0.22034256 1.644319466 0.1001
1023 

0.213657165 GNAT family 
acetyltransfe

rase 
AW20_RS

00620 
1849.896387 -0.489937105 0.190640452 -2.56995354 0.0101

71215 
0.038421598 CAAX amino 

protease 
AW20_RS

00625 
523.884729 -0.212958596 0.234794573 -0.906999652 0.3644

06981 
0.526488708 hypothetical 

protein 
AW20_RS

00630 
13806.08837 -0.630448414 0.182436468 -3.455714865 0.0005

48836 
0.00376269 hypothetical 

protein 
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AW20_RS
00635 

1725.722958 -1.038416902 0.203547818 -5.101586992 3.37E-
07 

8.04E-06 transposase;p
seudo=true 

AW20_RS
00640 

351.2926219 -1.206385028 0.262534762 -4.595143972 4.32E-
06 

7.19E-05 TetR family 
transcription
al regulator 

AW20_RS
00645 

540.4027878 -1.108320579 0.221201082 -5.010466348 5.43E-
07 

1.17E-05 nucleotidyltr
ansferase 

AW20_RS
00650 

285.264997 -0.79133082 0.323717018 -2.444514118 0.0145
0474 

0.049870427 S1 RNA-
binding 
domain 
protein 

AW20_RS
00655 

766.9210729 -0.949623087 0.232967914 -4.076196888 4.58E-
05 

0.000514014 hypothetical 
protein 

AW20_RS
00660 

1312.69454 -0.924274539 0.170998259 -5.405169283 6.47E-
08 

1.92E-06 ATPase AAA 

AW20_RS
00665 

1635.161057 -0.957246181 0.28974627 -3.303739449 0.0009
54045 

0.00588947 hypothetical 
protein 

AW20_RS
00670 

2200.986624 -0.758230712 0.209356778 -3.621715622 0.0002
92656 

0.002318484 membrane 
protein 

AW20_RS
00675 

1033.050265 -1.378027053 0.24758817 -5.565803309 2.61E-
08 

8.60E-07 membrane 
protein 
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AW20_RS
00680 

20.2856091 -1.730175319 0.615633431 -2.810398576 0.0049
48018 

0.021623412 hypothetical 
protein 

AW20_RS
00685 

7263.086719 -0.729172523 0.157136053 -4.6403897 3.48E-
06 

5.96E-05 nucleotidyltr
ansferase 

AW20_RS
00690 

3786.939213 -0.961171431 0.163093283 -5.893384547 3.78E-
09 

1.66E-07 hypothetical 
protein 

AW20_RS
00695 

52483.152 -0.837348194 0.149038178 -5.618346967 1.93E-
08 

6.62E-07 group II 
intron 
reverse 

transcriptase
/maturase 

AW20_RS
00700 

8736.876998 -0.881426782 0.166023351 -5.309053086 1.10E-
07 

3.05E-06 DNA-binding 
protein 

AW20_RS
00705 

45.88027229 -0.048259142 0.449672991 -0.107320526 0.9145
34701 

0.949837206 phosphoaden
osine 

phosphosulfa
te reductase 

AW20_RS
00710 

1116.189197 0.171158803 0.173263979 0.987849892 0.3232
26169 

0.486976442 hypothetical 
protein 

AW20_RS
00715 

3566.035883 1.211678168 0.245553032 4.934486689 8.04E-
07 

1.65E-05 hypothetical 
protein 
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AW20_RS
00720 

353.7389678 -0.335889521 0.260766611 -1.288084851 0.1977
16428 

0.346474502 hypothetical 
protein 

AW20_RS
00725 

2105.35779 -0.661692619 0.168105209 -3.936181537 8.28E-
05 

0.000831118 integrase 

AW20_RS
00730 

882.1353058 -0.091515005 0.18383418 -0.497812785 0.6186
16004 

0.746001202 hypothetical 
protein 

AW20_RS
00735 

3834.727678 -2.529140712 0.365261283 -6.924195994 4.38E-
12 

4.10E-10 hypothetical 
protein 

AW20_RS
00740 

10497.36941 -0.395136412 0.227163696 -1.739434688 0.0819
58331 

0.184612754 XRE family 
transcription
al regulator 

AW20_RS
00745 

8200.559172 -0.479011147 0.153314977 -3.124359778 0.0017
81924 

0.009782576 hypothetical 
protein 

AW20_RS
00750 

2158.346426 -1.052783397 0.300234798 -3.506533562 0.0004
53984 

0.003230299 hypothetical 
protein 

AW20_RS
00755 

59.48491693 -0.309445864 0.358076787 -0.864188565 0.3874
84313 

0.54958796 hypothetical 
protein 

AW20_RS
00760 

111.7125042 -0.348566649 0.323972567 -1.075914087 0.2819
65681 

0.444905186 SAM-
dependent 

methyltransf
erase 
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AW20_RS
00765 

29.24870795 -0.93937892 0.476151928 -1.972855435 0.0485
12035 

0.125175222 hypothetical 
protein 

AW20_RS
00770 

398.8254697 -0.533092785 0.206360894 -2.583303327 0.0097
85924 

0.037287183 hypothetical 
protein 

AW20_RS
00775 

361.4242563 -0.305846043 0.254507291 -1.201718196 0.2294
72729 

0.384768475 group II 
intron 
reverse 

transcriptase
/maturase 

AW20_RS
00780 

103.4797797 -0.323014547 0.321680746 -1.00414635 0.3153
08077 

0.479604606 hypothetical 
protein 

AW20_RS
00785 

239.9134389 -0.383269169 0.256113657 -1.496480792 0.1345
2841 

0.265702925 transposase 

AW20_RS
00790 

59.72288321 -0.411173885 0.387997123 -1.059734366 0.2892
65464 

0.452915236 hypothetical 
protein 

AW20_RS
00795 

104.6837238 -0.47100818 0.344429156 -1.367503801 0.1714
67447 

0.315398361 hypothetical 
protein 

AW20_RS
00800 

2011.023637 -0.534865805 0.205734255 -2.599789737 0.0093
2809 

0.035757677 hypothetical 
protein 

AW20_RS
00805 

2383.688051 -0.465111377 0.17767383 -2.617782137 0.0088
50329 

0.034341685 hypothetical 
protein 
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AW20_RS
00810 

23.61520445 -0.859429859 0.587438463 -1.463012576 0.1434
63938 

0.278244917 hypothetical 
protein 

AW20_RS
00815 

1154.062111 -0.563658263 0.272288882 -2.070074473 0.0384
45371 

0.105683082 hypothetical 
protein 

AW20_RS
00820 

155.482404 -1.100883673 0.290238987 -3.793024793 0.0001
48823 

0.001326388 hypothetical 
protein 

AW20_RS
00825 

96.89868454 -0.456198971 0.327106294 -1.394650545 0.1631
21245 

0.305163523 transposase 

AW20_RS
00830 

366.4712863 -0.704037473 0.253854256 -2.773392431 0.0055
47518 

0.023526425 DNA 
topoisomeras

e I 
AW20_RS

00835 
14.18670735 -2.905992942 0.782115575 -3.715554368 0.0002

02759 
0.001709388 hypothetical 

protein 

AW20_RS
00840 

81.22748452 -0.171368971 0.334344603 -0.512551929 0.6082
64787 

0.736320531 hypothetical 
protein 

251
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