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The high prevalence of obesity is a major public health concern 

worldwide. Conventional strategies have failed to provide solid solutions, 

greater than 90% of individuals who lost weight by diet and exercise 

eventually regained the weight (Arner and Spalding, 2010a). As such, 

biological factors including genetic contributions have become the research 

focus on pathogenesis of obesity and the target of effective disease control. 

Central to energy homeostasis is the mechanism by which animals 

regulate and/or response to fluctuation in energy intake and output. Adipose 

tissues participate in metabolic regulation by serving as an energy store and 

by secreting adipokines such as leptin and adiponectin. Leptin functions as 

the afferent signal to the central nervous system in a negative feedback loop 

that maintains homeostatic control of adipose tissue mass. Leptin gene 

expression is highly correlated with cellular lipid content in adipocytes but 

the transcriptional mechanisms controlling leptin expression in vivo are 

poorly understood. Leptin-BAC Luciferase transgenic mice combining with 

other computational and molecular techniques were used to identify 

transcription regulatory elements including a CCAAT-binding protein 

Nuclear Factor Y (NF-Y). The function of NF-Y in adipocyte was studied in 

vitro with 3T3-L1 cells and in vivo with adipocyte-specific knockout of NF-Y. 

The results showed that NF-Y binding site is essential for transcriptional 

regulation of leptin and NF-Y is also an adipogenic factor important for 

adipocyte development in vivo (Chapter 3 and Chapter 4). 

Qualitative and Quantitative Regulation of the Leptin Gene in vivo 

             Yi-Hsueh Lu, Ph.D.
The Rockefeller University 2016



Finally, since obesity is defined as excess accumulation of adipose 

tissue, understanding developmental control of adipose tissue size and body 

adiposity will aid the study on disease progress of obesity. We employed a 

blastocyst complementation method where wild-type ES-cell is injected into 

AZIP lipodystrophic blastocyst. The result suggested that while leptin 

production adipocyte-autonomous, adipose tissue expandability and glucose 

metabolism is controlled by other factors inv olving other cell types in 

adipose tissues and/or other organs (Chapter 5). In sum, the thesis identifies 

adipocyte specific quantitative and qualitative control of leptin transcription, 

at the same time presents the complexity of metabolic regulation in vivo.   
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CHAPTER 1: INTRODUCTION 

1.1 Obesity as a Health Concern 

In 2011-2012, the prevalence of obesity in the United States was 

16.9% in youth and 34.9% in adults (Ogden et al., 2014). Obesity is a major 

cause of morbidity and mortality in the United States. Studies show that the 

risk of death rises with increasing weight. Even moderate weight excess (10 

to 20 pounds for a person of average height) increases the risk of death (Calle 

et al., 1999; Patel et al., 2014). It is estimated that the annual number of 

deaths attributable to obesity is about 280,000 in the United States with 

more than 80% of deaths in people with BMIs (body mass index, see below) 

of at least 30 kg/m2 (Allison et al., 1999a). Aside from mortality rate, obesity 

substantially increases morbidity and impairs quality of life, and that clinical 

studies consistently show that weight loss improves health and happiness 

among obese people (Allison and Pi-Sunyer, 1995). In the midst of the energy 

crisis in the 70s, Hannon and Lohman expressed the cost of obesity in terms 

of the total fossil energy equivalent of the food calories saved by reducing the 

present degree of obesity to optimum body weight (2.3 billion pounds for the 

adult population in the US) (Hannon and Lohman, 1978). Later studies have 

shown that approximately 4% of direct healthcare costs are attributed to 

obesity itself (Allison et al., 1999b). Across all payers, per capita medical 

spending for the obese was $1,429 higher per year, or roughly 42 percent 
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higher, than for someone of normal weight, summating to a total of $147 

billion dollars in 2008 (Finkelstein et al., 2009). 

1.2 Definition of Obesity 

Obesity is defined as excessive adiposity (body fat). The historical 

method for estimating adiposity was by calculating a person's buoyancy, 

which was done by measuring his or her body weight under water (Ward et 

al., 1978). However, this method is cumbersome, so a surrogate measure 

known as the body mass index (BMI) is now routinely used. BMI (weight in 

kilograms per square of height in meters) is a convenient measure and useful 

for assessing the weight status of a population over time (Romero-Corral et 

al., 2008). The common classification system determines whether you are 

underweight (<18.5 kg/m2), normal weight (18.5-24.9 kg/m2), overweight 

(25-29.9 kg/m2), or obese (>30 kg/m2). There are three degrees of obesity: 

class 1 (30.0–34.9 kg/m2), class 2 (35.0–39.9 kg/m2) and class 3 (≥40 kg/m2) 

(WHO, 2015). 

However, BMI is often unreliable to assess an individual’s weight class 

because it does not account for body proportion, nor does it account for the 

wide variation in the nature of obesity between different individuals and 

populations (Kopelman, 2000). Particularly, BMI does not distinguish 

between fat and muscle mass or adipose tissue distribution (so called ‘pear-

shaped’ versus ‘apple-shaped’), both of which result in profound differences 
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in body metabolism. Other direct methods that measure adiposity include 

air-displacement plethysmography (commercial name BOD POD) and dual-

energy x-ray absorptiometry (DEXA) (Fields et al., 2002). The waist-to-hip 

circumference ratio distinguishes between central obesity and other types of 

obesity, and it has been suggested that waist circumference should be 

measured along with BMI to adequately classify obesity-related health risk 

(Cervellati et al., 2014; Wakabayashi, 2013). 

1.3 Obesity as Risk Factor 

Despite some shortcomings, there is a close relationship between BMI 

and the incidence of several conditions caused by excess body fat. This 

relationship is approximately linear for a range of BMIs less than 30 (kg/m2), 

but all risks are greatly increased for those subjects with a BMI above 30 for 

both genders (Willett et al., 1999). Obesity increases the risk of several 

debilitating diseases, including type 2 diabetes mellitus, cardiovascular 

disease, and some cancers. The condition most strongly influenced by body 

weight is type 2 diabetes, where men with BMIs of 30 (kg/m2) or higher had 

a sevenfold higher risk of developing type 2 diabetes, and women with BMIs 

of 30 or higher had a 12-fold higher risk compared with their normal-weight 

counterparts (Guh et al., 2009). Numerous studies have demonstrated a 

direct association between excess body weight and coronary artery disease 

and ischemic stroke, though the contribution is multifactorial (Whitlock et al., 
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2009). Obesity is associated with cancers of the esophagus, pancreas, colon 

and rectum, breast, endometrium, and kidney (Keum et al., 2015). Also, 

studies have shown correlation between obesity and depression, though it is 

likely that reciprocal interactions exist between the two conditions (Faith et 

al., 2011). To date, the integrated effect of obesity across physical, 

psychological, and social functioning as scored by a concept known as health-

related quality of life (HRQoL) in adults and youths is an active field of 

research being pursued (Jia and Lubetkin, 2005; Swallen et al., 2005). Obesity 

can influence various aspects of reproduction, especially in women. Both 

infertility rates and pregnancy risks increase with BMI, including both 

natural and assisted pregnancies (Brewer and Balen, 2010). Encouragingly, 

however, numerous studies have shown that weight loss, even 5 to 10 

percent of weight, offers meaningful health benefits to the obese person 

(Ben-Menachem, 2007). 

1.4 The Obesogenic Environment 

While the aforementioned studies were performed in the US, obesity 

is no longer a problem for developed countries alone. The largest expansion 

of obesity since the 1980s has occurred in developing countries in Latin 

America, Oceania, North Africa, and Asia (Finucane et al., 2011). This global 

upsurge of obesity is associated with the increased availability of food, 

especially energy-dense items with fat and sugar, as well as sedentary 
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lifestyle from industrialization and urbanization, best described as 

the  “obesogenic environment” (Kirk et al., 2010). Global changes in diet and 

physical inactivity have been fueled by changes in agricultural practices, food 

processing, marketing, transportation, and other aspects of urban planning. 

It is worth noting that obesity often co-exists with malnutrition in low-

income urban areas, presenting a complex socioeconomic problem for 

policymakers (Oliver and Hayes, 2005; Pearce et al., 2007; Robert and 

Reither, 2004). However, since not everyone who has unlimited access to 

food develops obesity, lifestyle and environment may be necessary but 

insufficient to cause obesity. 

One of the confounding phenomena is that people are well aware of 

and are sincerely concerned about being obese, owing to exposure of media 

and health campaigns (Kassirer and Angell, 1998). However, the battle 

against obesity is largely failing. At any given time of the year, an astonishing 

15 to 35 percent of Americans are trying to lose weight (Horm and Anderson, 

1993). Despite all the investment of a staggering amount of time, money, and 

effort, greater than 90% of individuals who lost weight by diet and exercise 

eventually regained the weight (Arner and Spalding, 2010a). Moreover, 

recent studies have suggested that individuals possess less control over their 

own weight than they themselves believed, and that biological factors and 

the modern environment are the main causes of obesity (King, 2011). Thus, 

understanding the physiology of obesity is critical to effective obesity control. 
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Individual differences in a common environment are reflective of 

genetic contribution (FIGURE 1.1), as is established through family studies, 

investigations of parent-offspring relationships, and the study of twins and 

adopted children (Maes et al., 1997; Stunkard et al., 1990). These studies 

estimated the heritability of obesity is 40-70%, which is slightly less 

heritable than height (Farooqi and O'Rahilly, 2006). Just as nutritional 

improvement has increased the mean of adult height in many populations, 

environmentally-driven changes in body weight occur against a background 

of susceptibility to weight gain that is determined by genetic factors (Barsh 

et al., 2000; Bouchard et al., 1990; Comuzzie et al., 1996; Price and Gottesman, 

1991). For instance, different inbred strains of mice respond differently to a 

high-fat diet (HFD) with varying caloric intake and weight gain (West et al., 

1992). Moreover, in the presence of gene-environment interactions, the 

effects of high genetic susceptibility are amplified by a high-risk environment 

(Barsh et al., 2000). Several known mutations that lead to obesity in mice 

have been cloned, and some homologous mutations have been identified as 

rare causes of human obesity (see below). These genes and their products 

provide the molecular basis for obesity and thus promising therapeutic 

targets of a complex and highly heterogeneous disease. However, these are 

rare and severe conditions that do not account for common forms of body 

weight variation and obesity. Overall, the etiology of modern obesity arises 

from interactions of multiple genes, environmental factors, and behavior, 

which makes the search for obesity genes especially challenging. Recent 
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human genome-wide studies estimate that common genetic variation 

accounts for approximately 20% of BMI variation (Locke et al., 2015). 

The rapid growth in the obese population in a short period of time 

excludes the possibility of significant change in the population’s genetic 

makeup. Therefore it is conceivable that obesity genes have long existed in 

the human genomes, which now become expressed as an obese phenotype 

FIGURE 1.1 Potential effect of genes and environment on adiposity 
assessed by body mass index. The modern “obesogenic” environment 
on the right side is characterized by the increase availability of high-
calorie density food and decreased need for physical activity. The 
variability in BMI will depend on the genetic susceptibility to weight gain 
of individuals. Note that due to gene-environment interaction, the 
distribution of BMI will have a higher mean and higher standard deviation 
under the high-risk obesogenic environment. Figure adopted from Energy 
metabolism, fuel selection and body weight regulation (Galgani and 
Ravussin, 2008). 
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under modern environmental conditions. Several explanations for the 

existence of obesity genes have been proposed. If genetic predisposition to 

energy efficiency conferred a fitness advantage, the genes that enhanced 

energy storage (as body fat) and avoided energy expenditure would likely be 

favored by selection. Individuals with alleles of these “thrifty genes” (Neel, 

1962) that favored efficient fat deposition would then survive subsequent 

famines, whereas those individuals with alleles that were inefficient would 

not survive. This view is supported by observations of animals that deposit a 

large amount of fat prior to hibernation and migration, presumably in 

prediction of reduced food availability (Klaassen and Biebach, 1994; Kunz et 

al., 1998; Martin, 2008; Moore and Kerlinger, 1987). In the modern 

environment, where food is abundant, the consequence is that people who 

carry the “thrifty” alleles more efficiently store energy by depositing 

enormous amounts of fat in preparation for a famine that never comes. The 

rise in obesity among different animal species living with or around humans 

in industrial societies may indicate that the “thrifty” alleles are a common 

survival strategy among many animal species (Klimentidis et al., 2011). It is 

worth noting that because food supplies were probably always low in 

preindustrial eras, the levels of obesity, even in those carrying the “thrifty” 

alleles, were probably quite modest, and individuals never became obese 

enough to experience the detrimental impacts of obesity on health. Others 

have proposed alternative scenarios where obesity genes arise as a side-

product of other selection forces and genetic drift (the “drifty gene” 



9 

hypothesis) from a neutral evolutionary process (Himmshagen, 1979; 

Rothwell and Stock, 1979; Speakman, 2008, 2013). 

1.5 Historical Perspectives on Energy Homeostasis 

At the beginning of the 20th century, the patriarchs of physiology, 

Claude Bernard and Walter Cannon, developed the concept that the internal 

environment of an organism remains constant, despite frequent fluctuations 

in the surrounding variables. Organisms respond to perturbations from the 

external environment with counteracting forces, a process that Cannon called 

“homeostasis” (Woods and Ramsay, 2007). Subsequently, animal studies by 

Gasiner and Mayer demonstrated that body weight remained remarkably 

constant over long periods of time, despite environmental perturbations 

including diet and physical exercise (Blundell and Bellisle, 2013). It was 

thought that the animals adjusted the amount of food intake in order to 

maintain constant body weight. Several theories were proposed to explain 

the physiological connection between regulation of body weight and feeding 

behavioral control. It was proposed that the beginning and terminating of 

feeding is controlled by some satiety factor, but was felt dissatisfactory in 

explaining long term body weight homeostasis. 

Around the same time, studies of the brain identified two discrete 

neurological pathways in which the hypothalamus controls feeding behavior 

in rats. Electrolytic lesions in the ventromedial hypothalamus (VMH) 
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resulted in hyperphagia and profound body weight gains due to excessive fat 

deposition (Hervey, 1959). Lesions in the ventrolateral hypothalamus (VLH) 

resulted in hypophagia and weight loss (Bernardis and Bellinger, 1993). 

Further studies showed that the “satiety center” and “feeding center” in the 

hypothalamus not only control food intake, but also regulate body weight 

and energy expenditure to maintain a body weight “set-point” (Keesey and 

Hirvonen, 1997).  Gordan Kennedy was the first to suggest that fat might 

produce a signal that was sensed by the brain, where it was compared with a 

target level of body adiposity; any discrepancy between the target and signal 

would subsequently trigger changes in intake or expenditure that would 

regulate the levels of body fat to bring its signal back in line with the target 

(Kennedy, 1953). This “lipostatic” model was based on a simple negative-

feedback system, yet the signal produced by adipose tissue remained elusive. 

1.6 Discovery of Leptin 

The existence of an appetite suppressing hormone was demonstrated 

by the results of a set of parabiosis experiments (FIGURE 1.2; a technique 

that allows continuous, low-volume blood exchange between two live 

animals) between genetically obese (ob) and diabetic (db) mice (Coleman, 

1973; Coleman and Hummel, 1969). 
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It was known that the ob and db loci are fully-penetrant autosomal 

recessive mutations that produce seemingly identical phenotypes such as 

obesity, hyperphagia, hyperglycemia, and hyperinsulinemia. Since these two 

genes are located on separate chromosomes (ob on chromosome 6 and db on 

chromosome 4), the implication was that the observed phenotype was 

secondary to some yet unidentified single primary defect. Parabiosis of db 

and normal mice resulted in hypoglycemia and death from starvation in the 

normal mouse, but no apparent change in its db partner. In contrast, 

parabiosis of ob and normal mice produced drastic a weight loss in the ob 

mouse. From these results, Coleman postulated that the db mutant produces 

but does not respond to a satiety factor that is missing in the ob mutant 

(Coleman, 1973). Supporting this viewpoint, parabiosis of normal rats with 

FIGURE 1.2 Schematic of effects 
on obese phenotypes of 
parabiosis of ob, db and wild-type 
mice. From these studies Coleman 
inferred that it ob might encode a 
secreted molecule, for which db was 
the receptor. Figure adopted from 
Molecular physiology of weight 
regulation in mice and humans 
(Leibel, 2008). 
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rats harboring VMH lesions or genetically obese Zucker rats (the rat version 

of db), resulted in the normal partner becoming emaciated and showing no 

interest in food (Harris et al., 1987; Hervey, 1959). 

The cloning and characterization of the ob gene in mice showed that it 

encodes leptin (leptos from Greek: thin), a 167-amino-acid protein secreted 

from adipose tissue (Zhang et al., 1994). In one of the mouse models, 

C57BL/6J ob/ob1J, a nonsense mutation in leptin results in the synthesis of a 

truncated and nonfunctional protein. In this mutant, the level of leptin mRNA 

is elevated, suggesting that expression of the gene is under feedback control 

(Maffei et al., 1995a). Subsequent studies showed that plasma levels of leptin 

are highly correlated with adipose tissue mass with increased plasma levels 

in obese humans and several obese mouse models and decreased levels 

following weight loss (Maffei et al., 1995b). Administration of leptin by 

intraperitoneal injection or constant subcutaneous infusion results in a dose-

dependent decrease in body weight that is restricted to adipose tissue with 

sparing of lean body mass in both wild-type and ob/ob mice, but not db/db 

mice (Campfield et al., 1995; Halaas et al., 1997; Halaas et al., 1995; 

Pelleymounter et al., 1995). These results indicate that leptin is an afferent 

signal in a negative feedback loop that regulates adipose tissue mass. 

Discovery of leptin provided the molecular basis for Kennedy and Keesey’s 

adipostatic set-point model of body weight regulation. 
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1.7 The Central Nervous System in Regulation of Food Intake 

Leptin's primary site of action is in the central nervous system 

(FIGURE 1.3), in particular, the hypothalamus, where a dense population of 

neurons expressing leptin receptor (encoded by Lep-R) reside (Mercer et al., 

1996; Vaisse et al., 1996). Using purified leptin protein, expression cloning 

from a phage library of the choroid plexus isolated Lep-R that binds to leptin 

(Tartaglia et al., 1995). The Lep-R candidate was confirmed by mapping to a 

db mutant, which contains a premature stop codon resulting in abnormal 

splicing (Chen et al., 1996; Chua et al., 1996; Lee et al., 1996). Positional 

cloning of Lep-R showed that this gene encodes five alternative spliced forms, 

but only one variant, Lep-Rb, is essential for leptin’s weight-reducing effect 

and the function of other forms are quite modest compared to Lep-Rb (Li et 

al., 2013). Taken together with the fact that db mice and mice with 

hypothalamic lesions are leptin resistant (Halaas et al., 1995; Maffei et al., 

1995a), these findings support the conclusion that the hypothalamus is an 

important site of leptin action. 

Several hypothalamic nuclei, including the arcuate nucleus, VMH, LH, 

DMH, and PVN express neuropeptides and neurotransmitters that regulate 

food intake and energy balance. Neuropeptide Y (NPY) and its receptors 

respond to the absence of leptin, whereas melanocyte-stimulating hormone 

(MSH) and its receptors, melanocortin-4 receptor (MC-4R) and agouti-

related receptor (AgRP), respond to increased leptin levels (Fei et al., 1997; 

Friedman, 1997; Mercer et al., 1996). Upon binding to leptin, the leptin 
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receptor activates the downstream pathways JAK/STAT3 and PI3-kinase, 

both of which are required for proper control of energy metabolism (Bates et 

al., 2003; Gao et al., 2004; Hill et al., 2008; Niswender et al., 2001). Chronic 

and acute dosing of leptin via intracerebroventricular (ICV) injection reduce 

food intake and induce other metabolic effects at doses significantly lower 

than peripheral administration (Halaas et al., 1997; Kamohara et al., 1997). 

Such leptin-induced anorexia is transient and is attenuated once the adipose 

FIGURE 1.3 Summary of leptin signaling pathway. Leptin is the afferent 
signal in a negative feedback loop that maintains constancy of adipose 
tissue mass. Leptin is secreted from adipocytes (bottom left) at levels 
correlated with body adiposity. Increased plasma leptin results in 
negative energy balance, whereas decreased levels lead to positive energy 
balance. Leptin acts mainly on the hypothalamus (top), via which leptin 
acts to decrease food intake and modulate glucose and fat metabolism 
(right). Figure adopted from Leptin and the regulation of body weight in 
mammals (Friedman and Halaas, 1998). 
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tissue is depleted, suggesting the presence of yet undiscovered afferent 

signals (Halaas et al., 1997; Montez et al., 2005). 

1.8  Metabolic and Physiological Effects of Leptin 

Animals treated with leptin voluntarily decrease their food intake and 

induce weight loss that selectively depletes body adipose stores (Halaas et al., 

1997). Although decreased food intake is a prominent effect of leptin 

treatment, the decrease in food intake alone cannot account for the metabolic 

changes observed. First, pair-fed ob/ob mice that are food restricted to the 

level of intake of leptin-treated ob/ob mice lose significantly less weight than 

the leptin-treated mice (Levin et al., 1996). Second, while leptin-induced 

weight loss is restricted to fat mass, starvation causes a loss of both lean 

body mass and fat mass at a ratio that maintains body adiposity (Halaas et al., 

1997; Pelleymounter et al., 1995). Third, leptin treatment does not lead to 

the compensatory drop in energy expenditure generally evident with 

decreased food intake (Halaas et al., 1997). Consistently, leptin-treated ob/ob 

mice showed a reduced respiratory quotient, indicating a preference for fat 

oxidation over carbohydrate oxidation (Hwa et al., 1997). Overall, both leptin 

replacement in genetically leptin-deficient animals and pharmacologically-

elevated leptin in wild-type animals within the physiological range have 

profound consequences on energy utilization independent of food intake and 

change in body weight. 
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Leptin directly regulates glucose metabolism. This is evident by the 

antidiabetic effect observed when ob/ob mice are treated with a low dose of 

leptin that does not decrease body weight (Pelleymounter et al., 1995). 

Treatment of lean animals with leptin leads to a reduction in serum glucose 

level without changing insulin levels and increases glucose usage during 

euglycemic clamp experiments (Sivitz et al., 1997). In type I diabetes mellitus 

(T1DM, also known as insulin-dependent diabetes), since insulin is required 

for the synthesis and storage of triglycerides in adipose tissue, weight gain 

cannot occur in untreated T1DM, and the associated loss of body fat is 

accompanied by markedly reduced plasma leptin levels. Leptin replacement 

prevents the development of insulin resistance, characteristic of T1DM in 

both humans and rodents (Defronzo et al., 1982; Ykijarvinen and Koivisto, 

1986). Also, the phenotype was associated with normalization of hepatic 

glucose metabolism and elevated plasma levels of glucagon and 

corticosterone (German et al., 2010; Yu et al., 2008). Such effects are likely 

mediated through the CNS, linking the known leptin signaling pathway to 

control of glucose metabolism and insulin sensitivity. For instance, rescuing 

Lep-R expression in the arcuate nucleus and pro-opiomelanocortin (POMC) 

neurons of Lep-R deficient mice normalizes their glucose and insulin levels, 

improves their hepatic insulin sensitivity, and reduces gluconeogenesis 

(Berglund et al., 2012; Coppari et al., 2005; German et al., 2009; Huo et al., 

2009). 



17 

Despite having enormous fat deposits, ob/ob mice show many of the 

abnormalities seen in starved animals, including decrease body temperature, 

hyperphagia, decrease energy expenditure and physical activity, 

compromised immune function, and infertility (Coleman, 1978). Low plasma 

leptin in ob/ob mice leads to a state of “perceived starvation,” which activates 

various response programs resulting in obesity under the presence of food 

(Friedman and Halaas, 1998). The striking similarity in metabolic 

implications between genetic leptin deficiency and lipodystrophy (loss of 

adipose tissue), despite being the complete opposites on body adiposity level, 

suggests that leptin is the key factor in mediating physiological consequences 

of energy imbalance (Haque et al., 2002). This is supported by the 

observation that leptin supplement attenuates the physiological responses to 

food restriction in mice, including changes in gonadal, adrenal, and thyroid 

axes in male mice, starvation-induced delay in ovulation in female mice, 

suppression of T-cell proliferation, and increase in circulating fatty acids and 

ketone bodies (Ahima et al., 1996; Lord et al., 1998; Shimabukuro et al., 

1997). These findings suggested that circulating leptin is a key signal to the 

brain regarding energy stores, and a fall in leptin results in the endocrine, 

behavioral, and autonomic responses characteristic of starvation. The nature 

of the efferent signals from the CNS that regulate metabolism in response to 

leptin are not well characterized, although some evidence suggests that the 

sympathetic nervous system may play a role (Dunbar et al., 1997; Elmquist et 

al., 1999; Haynes et al., 1997). 
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1.9  Leptin and Pathogenesis of Obesity 

The role of leptin in the pathogenesis of obesity can be inferred by 

measurements of plasma leptin in obese animals (Considine et al., 1996; 

Maffei et al., 1995b). An increase in leptin suggests that obesity is the result 

of resistance to leptin, while a low or normal level of leptin in context of 

obesity suggests an underproduction of leptin. These are analogous to insulin 

production in type II (insulin resistant) and type I (insulin deficient) diabetes. 

The molecular basis of known mouse models with monogenic obesity 

showing Mendelian inheritance have all been uncovered. The corresponding 

human disorder arising from homologous or similar genetic defects have 

been identified using a candidate gene approach. These genetic mutations 

include leptin (Montague et al., 1997a; Strobel et al., 1998), lep-R (Clement et 

al., 1998), and prohormone convertase 1 (Jackson et al., 1997), corresponding 

to the naturally occurring mouse mutants ob/ob, db/db, and fat. In addition, 

patients with mutations in POMC resulting in impaired melanocortin 

signaling are also obese (Krude et al., 1998). These mutations are rare and all 

result in severe obesity in childhood without pleiotropic developmental 

syndromes. Other human obesity mutations recognized by Mendelian 

inheritance have been determined for Prader-Willi, Cohen, Alstrom, and 

Bardet-Biedl syndromes, all of which obesity is one of its pleiotropic features. 

Using quantitative trait locus (QTL) analysis, no causative genes have been 

identified for these pleiotropic syndromes (Barsh et al., 2000; Gunay-Aygun 
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et al., 1997). Consistent with findings in monogenic forms of obesity, human 

genome wide studies have shown that genetic susceptibility to common 

obesity is mostly associated with the function of the central nervous system 

(Locke et al., 2015). 

It is striking how monogenic forms of obesity are all caused by either 

a defect in leptin itself or leptin downstream pathways. Yet, these defects do 

not account for common obesity associated with industrialized lifestyles, of 

which the molecular basis remains largely unknown. Obese humans and diet-

induced obese (DIO) rodents are hyperleptinemic yet do not showed 

decreased food intake or increased energy expenditure, suggesting that the 

pathogenesis of common obesity is leptin resistance (Considine et al., 1996; 

Van Heek et al., 1997). As such, therapeutic utility of leptin as an anti-obesity 

drug is limited to the rare cases of leptin deficiency and not the greater obese 

population (Heymsfield et al., 1999; Paz-Filho et al., 2011). 

Animal studies suggest that leptin resistance can be caused by 

reduced leptin access to its target and/or altered leptin signaling. Zealand 

obese (NZO) mice, a model with polygenic late-onset obesity, are resistant to 

peripherally administered leptin but responsive to centrally administrated 

leptin, suggesting leptin resistance is a result of impaired leptin transport 

into CNS (Halaas et al., 1997; Igel et al., 1997). Hyperleptinemic obese models 

AY and db/db mice have loss-of-function mutations in MC4R and lep-R 

respectively, both of which block leptin signaling in the CNS (Halaas et al., 
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1997; Ste Marie et al., 2000). Mutations can lead to altered processing of 

neuropeptides, or downstream intracellular signaling in the hypothalamic 

nuclei can also cause obesity with high leptin levels (Jackson et al., 1997; 

Naggert et al., 1995; Prada et al., 2013; Rovere et al., 1996). Study in DIO mice 

demonstrated that leptin resistance evolves over the course of diet treatment, 

and that both decreased access of leptin to the hypothalamus as well as 

defective STAT3 activation by the leptin receptor are involved (El-Haschimi 

et al., 2000). Furthermore, it has been shown that hyperleptinemia is 

required for development of leptin resistance (Knight et al., 2010). On the 

cellular level, chronic overstimulation of the leptin receptor and activation of 

negative feedback pathways block further leptin signaling through SOCS-3, a 

protein that directly inhibits leptin signaling (Bjorbaek et al., 1998; Bjorbak 

et al., 2000). Moreover, expression of a constitutively active form of STAT3, a 

key mediator of leptin signaling, is sufficient to induce central leptin 

resistance (Ernst et al., 2009). This mechanism is analogous to blunted 

insulin signaling under chronic insulin treatment mediated by IRS-1 (White, 

2006). 

In human studies, several groups have reported MC4R mutations 

(Hinney et al., 1999; Vaisse et al., 1998; Yeo et al., 1998), which remain the 

most common obesity syndrome found in 3-5% of people with BMI above 40 

(Barsh et al., 2000). The studies on MC4R demonstrated an overlapping 

continuum between monogenic and polygenic obesity, as it has been found 

the case in three other genes, PCSK1, POMC and BDNF (Choquet and Meyre, 



21 

2011). Various inheritance patterns have been reported for MC4R mutations 

(Farooqi and O'Rahilly, 2006), indicating that expressivity and penetrance of 

the phenotype can be modulated by other genetic and environmental factors. 

Together, these suggest that development of leptin resistance is likely 

multifactorial, especially within the context of environment-induced obesity. 

In humans, although the notion of leptin resistance is only inferred from 

elevated leptin in obese individuals, it has been shown that susceptibility to 

leptin resistance or leptin production and/or leptin signaling 

disproportionate to energy status underlies common obesity. For instance, 

lower leptin concentrations than would be expected from BMI is linked to a 

predisposition to weight gain (Ravussin et al., 1997; Scholz et al., 1996). 

1.10 Alternative to “Set-Point” Model 

While the leptin signaling pathway provides that strongest argument 

for a feedback system that maintains energy homeostasis based on energy 

storage (adipose tissue), development of leptin resistance in common obesity 

and increased prevalence of obesity over the past decades suggest certain 

shortcomings of our understanding. In other words, if, as Kennedy and 

Keesey (Keesey and Hirvonen, 1997; Kennedy, 1953), had put forth, each 

body possesses an energy status “set-point” in terms of adiposity, each 

individual ought to maintain his or her body weight through a negative 

feedback mechanism that offsets short-term energy fluctuation. However, 
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anthropological studies disprove such a system by demonstrating that 

modern obesity is dependent on socioeconomic status of an individual 

(Dykes et al., 2004; Poskitt, 2009) and is often associated with certain major 

life events such as attending college, marrying, and immigration to Western 

countries (Cluskey and Grobe, 2009; Oza-Frank and Cunningham, 2010; 

Sobal et al., 2009). In Western countries, most people gain weight throughout 

their life, suggesting at least age-dependent effect for an individual’s energy 

“set-point” (Kuczmarski et al., 1994). 

As such, a “settling-point” model was proposed from a mathematical 

model for weight regulation (Payne and Dugdale, 1977), where any 

imbalance between energy intake and energy requirement results in a 

change in body weight. Such change, in turn, alters the maintenance energy 

requirement so as to counter the original imbalance and the system would 

hence be stabilized. Since there is no actual set-point or feedback signal in 

the “settling point” model, altered energy status occurs whenever a regulated 

variable is adjusted to balance change in an unregulated variable. This model 

provides cogent explanations for the “obesogenic” environment where food 

intake can be increased by external cues such as large portion size, exposure 

to high density foods, frequency of dining out, as well as eating with others 

(O'Keefe and Abuannadi, 2010; Rolls et al., 2007; Thornton et al., 2011). The 

extent to which energy intake and expenditure are regulated appears to be 

determined largely by genetic factors (Vogels and Westerterp-Plantenga, 

2005; WesterterpPlantenga et al., 1996). In mice with fixed levels of plasma 
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leptin, nonetheless, gained weight in response to a HFD at a rate that was 

indistinguishable from wild-type animals on the same diet, and the two 

groups reached an identical body weight plateau (Knight et al., 2010; Tanaka 

et al., 2005). If proportional increase in leptin with weigh gain is necessary 

for establishing energy balance, these animal models with artificial leptin 

deficiency would be predicted to gain weight more quickly than wild-type 

controls. The fact that this was not observed indicates that a leptin-

independent mechanism specifies the body weight set point in animals fed a 

high-fat diet. Likewise, leptin infusion fails to prevent weight gain in wild-

type animals undergoing HFD treatment (Surwit et al., 2000). In aggregate, 

these results are consistent with settling-point model. How energy regulation 

is achieved through balancing various long and short term variables remains 

an important question. 

Despite its shortcomings in explaining development of obesity under 

over-nutrition, the “set point” model provides a better picture for energy 

regulation during starvation and deprivation. In the classical Minnesota 

Experiment, food-restricted individuals over-eat to replenish the body mass 

(both fat and lean) to pre-restricted level (Dulloo et al., 1996; Speakman et al., 

2011), suggesting an active regulatory mechanism in response to being 

underweight. Even after energy homeostasis, which is substantially 

perturbed in anorexia nervosa, recovered patients often return to premorbid 

body weight (Coners et al., 1999; Hebebrand et al., 1997). On the other hand, 

in both normal and overweight humans, diet-induced weight loss is resisted 
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by reduced energy expenditure (Dulloo and Jacquet, 1998; Luke and 

Schoeller, 1992). Perhaps most strikingly, body fat removed by surgery is 

restored within one year post-operation (Hernandez et al., 2011). In sum, 

body weight and body adiposity are defended in the face of energy 

deprivation, since loss of energy storage and intake due to starvation present 

an immediate risk to survival. Consistently, hypothalamic targets of leptin, 

including NPY, POMC, and CART neurons, are more responsive to leptin 

during fasting than in the overfed or obese state (Ahima et al., 1999). Low 

leptin levels induced by fasting and reduction in energy stores mediate 

various physiological consequences of energy deprivation (Ahima et al., 1996; 

Keim et al., 1998). As such, falls in body adiposity and leptin levels serve as 

signals of negative balance from the “set-point,” which activates adaptive 

response to starvation and defense against further deviation. 

1.11 Regulation of Leptin Gene in Adipose Tissue 

Acting as a surrogate for fat mass, plasma leptin levels are highly 

correlated with adipose tissue mass in animals and humans over a very large 

dynamic range (Frederich et al., 1995; Maffei et al., 1995b). Changes in 

plasma leptin levels are associated with changes in leptin mRNA per 

adipocyte and the levels of leptin mRNA per cell are highly correlated with 

intracellular lipid content (Couillard et al., 2000; Maffei et al., 1995a). This 

suggests that regulation of leptin is primarily achieved at the transcriptional 
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level with only a few in vitro studies demonstrating increased leptin 

secretion with insulin treatment (Barr et al., 1996; Bradley and Cheatham, 

1999; Lonnqvist et al., 1997; Moreno-Aliaga et al., 2000). Small amounts of 

leptin expression have been reported in brain, pituitary, stomach, mammary 

epithelial cells, liver, chondrocytes and muscle, but the physiological 

importance of this low level expression, if any, is unclear (Birsoy et al., 2008b; 

Rosenbaum et al., 2002). Both quantitative (fat mass dependent) and 

qualitative (tissue-specific) regulation of leptin gene expression is important 

for its physiological role in metabolic regulation, yet little is known since the 

cloning of leptin in 1994. 

Leptin production is regulated by various metabolic stimuli including 

positive regulator glucocorticoids (Devos et al., 1995; Slieker et al., 1996) and 

proinflammatory cytokines TNF and IL-1 (Grunfeld et al., 1996; Sarraf et al., 

1997), and negative regulators include beta adrenergic agonists and cAMP 

(Mantzoros et al., 1996; Slieker et al., 1996). Insulin has also been found to be 

capable of modulating leptin expression (Wabitsch et al., 1996), particularly 

as a suppressor during starvation where a rapid fall in leptin is 

disproportional to the fall in adipocyte energy stores (Ahima et al., 1996; 

Boden et al., 1996). Despite these external influences, it is likely that cell-

autonomous factors are the major links between adipocyte size and leptin 

gene expression. Recent studies have shown that individual adipocytes 

maintain idiosyncratic levels of fat accumulation and nutrient uptake during 

de-differentiation and re-differentiation (Katz et al., 2014; Varlamov et al., 
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2015). Which intracellular metabolites, signaling molecules, or transcription 

factors provide the necessary link is still unclear. 

Further studies have been impeded by lack of a tissue culture model 

for adipocytes, as leptin expression levels in preadipocyte cell lines are 1–2% 

of that seen in adipose cells in situ (Macdougald et al., 1995). Interestingly, 

cultured adipocytes transplanted subcutaneously can grow into fat pads, 

which showed a 10-fold increase in leptin expression to a level 10–15% of 

that seen in adipocytes in situ (Green and Kehinde, 1979; Mandrup et al., 

1997). These results suggest the existence of a key, unidentified, in 

vivo regulatory factor, and it mandates studies of leptin expression 

performed in vivo. 

The proximal promoter of leptin, a 762bp region upstream to the 

transcriptional start site (TSS) has been characterized by DNA sequence 

analysis in both humans and mice (de la Brousse et al., 1996; Gong et al., 

1996). This region contains several transcription factor binding sites of 

factors known for adipocyte functions such as the C/EBP family, Sp-1, CREB, 

and SREBP-1c (He et al., 1995; Hwang et al., 1996; Mason et al., 1998). 

The  promoter of leptin is positively regulated through by C/EBPα (He et al., 

1995; Miller et al., 1996), and suppressed by PPARg through functional 

antagonistic interaction between C/EBPa and PPARg (DeVos et al., 1996; 

Hollenberg et al., 1997). However, a transgene driven by the 762bp proximal 

promoter showed a lower expression than the normal physiological level and 
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did not confer adipose tissue specific expression (Chen et al., 1999; Hwang et 

al., 1996). This suggested that while the proximal promoter contains 

sequences sufficient to drive leptin transcription using ubiquitous machinery, 

additional mechanisms involving distal cis-elements and novel trans-factors 

are required to confer tissue specific regulation. Suppression of leptin 

transcription in other tissues remains to be explored. 

In adipocytes, leptin expression is proportional to cell size, which in 

turn is dependent on the amount of triglyceride stores. Several possibilities 

on cell-autonomous regulation of leptin expression have been proposed. It is 

known that membrane cholesterol concentration is inversely proportional to 

adipocyte size and that cholesterol regulates glucose metabolism in 

adipocytes via gene expression modulation (Le Lay et al., 2001). However, 

manipulation of cholesterol concentration in 3T3-L1 cells, despite alteration 

of many metabolic genes, does not change leptin expression (Le Lay et al., 

2001), and that membrane cholesterol composition may simply be the 

adaptive response to change in cell size and mechanical strain in the cell 

membrane (Khatibzadeh et al., 2012). Mechanical force itself has been 

implicated in regulating adipogenesis (David et al., 2007; Sen et al., 2008; 

Tanabe et al., 2004). Notably, the extracellular matrix (ECM), serving as a 

scaffold of adipose tissue, is also capable of regulating physiological and 

pathological responses of fat mass expansion. Up-regulation of many ECM 

components results in reduced mechanical plasticity of fibrotic adipose 

tissue and presents a hallmark of metabolically dysfunctional adipose tissue 
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in a state of obesity (Khan et al., 2009; Sun et al., 2011). The direct 

relationship and the signal transduction pathway between mechanical 

strains exerted on expanding adipocytes and increased leptin expression is 

unknown. Alternatively, hypoxic conditions encountered by large adipocytes 

with limited oxygen diffusion can directly regulate leptin expression through 

hypoxic response transcription factor HIF1α (Sun et al., 2013). Hypoxic 

stress is also prominent at the tissue level in obesity as capillary density is 

lower in the adipose tissue of obese humans compared with lean subjects 

(Pasarica et al., 2009; Rajala and Scherer, 2003). The molecular mechanism 

coordinating and connecting these different cellular responses to leptin 

expression remains to be explored. Chapter 3 of this thesis presents the 

identification of a distal enhancer sequence of leptin gene, and the 

identification of its binding protein and subsequent functional analysis is 

detailed in Chapter 4. 

From the approach of genomic study, transcriptional regulation of 

leptin can be considered as specific molecular programs in white adipose 

tissue that coordinates as well as responds to physiological and metabolic 

changes in animals. As such, comprehensive molecular characterization and 

comparison of white adipose tissue from different states of ambient leptin 

can elucidate specific cellular programs affected by leptin. Previous study 

had utilized a microarray technique to characterize the molecular events in 

white adipose tissue associating with alteration in circulating leptin levels 

(Soukas et al., 2000). These results uncovered a large number of metabolic, 
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inflammatory, and structural genes dysregulated with chronic leptin 

deficiency (ob/ob) as well as the acute responses of fatty acid and 

triglyceride metabolic pathway following leptin change. Chapter 5 of this 

thesis presents an updated work of similar approach, which utilized next-

generation-sequencing that allows unbiased molecular characterization. 

Since plasma leptin level is determined by aggregated production 

from all adipocytes in an animal, it remains uncertain how leptin gene 

regulation within individual adipocytes rely metabolic signal at an 

organismal level. Indeed, with the production of various adipokines with 

hormonal functions, adipose tissues should be considered, as a whole, an 

endocrine organ in addition to its classical role as a storage organ (Ahima, 

2006). Indeed, as organ size control is central to mammalian development, 

each species also possesses predefined body adiposity. However, prominent 

heterogeneity in adipocytes from different depots and within each depot 

complicates studies of adipocyte biology (Guo et al., 2004; Montague et al., 

1997b; Montague et al., 1998). In addition, two distinct processes, 

hypertrophy and hyperplasia, that accompany adipose tissue expansion 

during normal development and obesity (Jo et al., 2009; Sun et al., 2011), 

contribute to the complexity of the issue. Therefore, understanding the 

process of adipogenesis from the perspective of organ size control in 

multicellular organisms is essential to elucidate regulation of the leptin gene. 
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1.12 Transcriptional Regulation of Adipogenesis 

The mechanisms controlling cellularity of adipocytes in vivo is best 

approached by studying adipose tissue development. Adipogenesis is 

described as a two-step process: generation of committed adipocyte 

precursors (or preadipocytes) from embryonic stem cells and terminal 

differentiation of preadipocytes into mature adipocytes (Billon et al., 2007). 

Differentiation of preadipocytes has been studied extensively in vitro, from 

which several adipogenic transcription factors, such as peroxisome-

proliferator activated receptors PPARγ and PPARβ and CCAAT-enhancer 

binding proteins C/EBPα, C/EBPβ, and C/EBPδ, were identified (Chawla et al., 

1994; Christy et al., 1991). 

Adipogenesis in vitro follows a highly ordered and well characterized 

sequence of events (Rosen et al., 2000). Initially, there is growth arrest of 

proliferating preadipocytes, usually achieved in cultured cell lines after 

contact inhibition. This growth arrest is induced by the addition of pro-

differentiation hormones into the cultured models and is followed by one or 

two additional rounds of cell division known as clonal expansion. This 

process is followed by expression of the key transcription factors PPARγ and 

C/EBPα and a second, permanent period of growth arrest. Over the course of 

terminal differentiation, the preadipocyte converts to a spherical shape, 

accumulates lipid droplets, and progressively acquires the morphological 

and biochemical characteristics of the mature white adipocyte. The 

appearance of PPARγ and C/EBPα activate and/or enhance expression of 
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most or all of the genes that characterize the adipocyte phenotype, including 

glycerophosphate dehydrogenase, fatty acid synthase, acetyl CoA carboxylase, 

malic enzyme, Glut4, insulin receptor, and aP2 or FABP4 (Spiegelman et al., 

1993). At the molecular level, differentiation can be considered as a shift in 

gene expression patterns from that of a proliferative, multipotent state to 

that which defines the phenotypic appearance of the differentiated stage. In 

this sense, changes in transcription factor expression and activity define the 

process of differentiation. 

It is now well-accepted that the transcriptional network of 

adipogenesis involves a sequential activation of C/EBP factors and PPARg 

(FIGURE 1.4). First, C/EBPb and C/EBPd mRNA and protein levels rise early 

and transiently (Cao et al., 1991; Yeh et al., 1995) and induce the expression 

of PPARg through direct transcriptional effects (Fajas et al., 1997; Wu et al., 

1996; Zhu et al., 1995). PPARg is responsible for inducing C/EBPa, which 

further reinforces PPARg expression during the differentiation cascade 

(Kubota et al., 1999; Rosen et al., 1999; Wu et al., 1999). This positive 

feedback feature ensures that the cascade, once initiated, will maintain the 

expression of these critical factors as well as the terminal differentiated state. 

How PPARg and C/EBPa orchestrate their transcriptional activities remains 

uncertain, although it is known that PPARg is sufficient to stimulate most, but 

not all, adipocyte markers (Wu et al., 1999) and that PPARg and C/EBPa act 

synergistically at many adipogenesis-linked loci (El-Jack et al., 1999; 

Lefterova et al., 2008). 
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1.13 Adipose Tissue Development in vivo 

Histological and microscopic observations performed on human and 

porcine embryos indicate that white adipose tissue forms early in life. 

Developmental history of adipose tissue starts with the sites of fat deposition 

in the embryo called the primitive organs of the white adipose tissue (Han et 

al., 2011; Wassermann, 2010). The primitive organs are characterized by a 

network of capillaries and cells with the appearance of fibroblasts except for 

the presence of small fat droplets in cytoplasmic vacuoles (Wassermann, 

2010). 

FIGURE 1.4 Transcriptional Regulation of Adipogenesis. The 
expression of Pparg is regulated by several pro-adipogenic (green) and 
anti-adipogenic (orange) factors. PPARg  itself is activated by an as-yet-
uncharacterized ligand. CCAAT-enhancer-binding protein a (C/EBPa) is 
regulated through a series of inhibitory protein–protein 
interactions. Figure adopted from Adipocyte differentiation from the inside 
out (Rosen and MacDougald, 2006). 
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In humans, lipid-filled adipocyte precursors are first visible around 

gestational week 14 in structures called fat lobules (Poissonnet et al., 1984). 

These primitive adipose tissue depots progressively increase in both size and 

number until gestational week 23, when fat lobule number begins to plateau. 

In the following weeks, fat lobule growth is almost exclusively accomplished 

through hypertrophy of existing adipocytes (Poissonnet et al., 1983; 

Poissonnet et al., 1984). In mice, the appearance of cells expressing 

adipogenic markers in subcutaneous compartments is observed relatively 

late in embryogenesis, with overt lipid filling of white adipocytes being 

initiated at birth (Birsoy et al., 2011). Visceral adipose depots form after 

birth during the first week of life (Han et al., 2011). Studies in rats show 

increases in both adipocyte number and size early in life, followed by a 

plateau in adipocyte number by 3 months of age, with WAT mass increasing 

thereafter resulting from increased adipocyte size (Greenwood and Hirsch, 

1974; Hirsch and Han, 1969). A recent study using inducible, irreversible 

labeling of mature adipocytes via the adiponectin promoter (termed 

AdipoChaser mice) supports these findings (Wang et al., 2013b). 

The developmental origin of adipose tissue in different depots has not 

been characterized, with the exception of depots in the head region, which 

have been shown to derive from the neural crest (Billon et al., 2007). It is 

generally considered that adipocytes are of mesenchymal origin based on the 

ability of mesenchymal cells and fibroblastic cell lines to form adipocytes in 

culture (Rosen and MacDougald, 2006; Taylor and Jones, 1979). Further, 
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recent studies using transgenic mouse reporter showed that mesenchymal 

cells expressing pref-1 form early precursors of adipocytes in vivo (Hudak et 

al., 2014). Other studies have suggested that white adipocytes are derived 

from endothelial (Tran et al., 2012) or hematopoietic lineage (Crossno et al., 

2006; Sera et al., 2009). However, conflicting results of these studies indicate 

that the appearance of endothelial lineage markers in mature adipocytes was 

due to proximity of adipocytes and vascular structures (Berry et al., 2014; 

Berry and Rodeheffer, 2013b), and that hematopoietic linage likely 

originated from contamination of macrophages (Berry and Rodeheffer, 

2013b; Koh et al., 2007; Tchoukalova et al., 2012). Lastly, based on the 

observation that differentiating preadipocytes reside within vascular 

compartments of adipose tissue, it was proposed that a subset of pericytes 

are adipocyte precursors (Cinti et al., 1984). Lineage tracing using pericyte 

marker PdgfRβ-cre:R26R-LacZ mice showed that all mature adipocytes stain 

positive for β-galactosidase, and PdgfRβ-expressing cells can form adipocytes 

when transplanted into mice (Tang et al., 2008). Developmental origin of 

adipocytes may reflect the interplay between vascular growth and 

adipogenesis in vivo (Fukumura et al., 2003; Rupnick et al., 2002). 

Several studies have isolated different cell subpopulations from total 

stroma vascular fraction (SVF) of adipose tissue in an effort to identify 

adipocyte precursors. Using flow cytometry and fluorescence-activated cell 

sorting (FACS), several recent studies were able to isolate populations of live 

adipocyte progenitors with adipogenic properties ex vivo in culture and 
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in vivo following transplantation (Lee et al., 2012; Rodeheffer et al., 2008; 

Tang et al., 2008). This leads to the identification of a population 

characterized by the cell surface marker profile 

CD45−;CD31−;Ter119−;CD29+;CD34+;Sca-1+;CD24+ (hereafter CD24+), 

which is highly adipogenic in culture and capable of considerable expansion 

prior to differentiation, leading to reconstitution of an entire functional 

adipose depot with correction of hyperglycemia and hyperinsulinemia when 

transplanted into lipodystrophic AZIP mice (Rodeheffer et al., 2008). Further 

analysis revealed that the CD24+ adipocyte progenitor loses CD24 

expression to commit into CD24− preadipocytes, which express early 

adipogenic factors PPARg and C/EBPa but not AdipoQ or Perilipin (FIGURE 

1.5). Interestingly, adipogenic capacity of CD24+ progenitors is dependent of 

FIGURE 1.5 Model of in vivo adipogenesis. A schematic representation 
of the adipocyte cellular lineage is shown. The defined lineage, cell 
surface, and transcriptional markers for each cell type are shown below 
each listed cell type. Figure adopted from Weighing in on Adipocyte 
Precursor (Berry et al., 2014). 
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adipose tissue microenvironment (Berry and Rodeheffer, 2013b), suggesting 

certain non-adipocyte autonomous factors contribution to regulation of 

adipogenesis in vivo. Chapter 6 of this thesis describes a novel blastocyst 

complementation technique to elucidate cell-autonomous versus non-cell-

autonomous mechanisms that participates in regulation of whole body 

metabolism and adiposity.  

1.14 Disease of Adipogenesis: Lipodystrophy 

While the disproportional gain of fat mass is described by obesity, 

disproportional loss of adipose tissue is termed lipodystrophy. 

Lipodystrophy is a heterogeneous acquired or inherited disorder 

characterized by the partial or general loss of adipose tissue (Prieur et al., 

2014). Based on linkage analysis of candidate gene screening, the molecular 

basis of lipodystrophy primarily involves genes that regulates adipocyte 

differentiation, nutrient uptake (particular fatty acid), and/or lipid droplet 

(its main component triacylglycerol) formation (Huang-Doran et al., 2010). 

The genetic forms of lipodystrophy are very rare, and a large number of 

patients carry no mutations in known genes. In contrast, the most common 

form of lipodystrophy is induced by protease inhibitors used to treat HIV, 

affecting up to 50 % of HIV patients (Asterholm et al., 2007). 

Loss of adiposity results in decreased adipokine secretion, 

particularly leptin, and excess lipid deposit in other tissues such as the liver 
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with the development of a severe metabolic syndrome, including insulin 

resistance, hyperglycemia, and dyslipidaemia in both humans and mouse 

models (Reue and Phan, 2006; Savage, 2009; Schott et al., 2004). Despite 

their opposite phenotypic appearance in adiposity, obesity and 

lipodystrophy syndrome share paradoxical similarity in these metabolic 

complications, suggesting common factors on the pathogenesis of these 

diseases (TABLE 1.1). In turn, the “lipid overflow” hypothesis proposes that, 

since the capacity of adipose tissue to accommodate excess energy in the 

form of triglyceride is finite, excessive lipid load, typically in obesity, leads to 

ectopic lipid accumulation and insulin resistance (Unger, 2003). Insulin 

resistance as a result of such “lipotoxicity” is most prominent in the liver, 

skeletal muscles, and pancreas (Huang-Doran et al., 2010). Lipodystrophy is 

an extreme example of reduced adipose tissue “capacity” and therefore is 

characterised by severe ectopic lipid accumulation and insulin resistance 

(Savage, 2009). Moreover, abnormal secretion of adipokines and hormones 

TABLE 1.1 Phenotypic Comparisons among Lipodystrophy, Obesity, and 
Leptin-Deficiency. 

Lipodystrophy Obesity Ob/Ob 

Fat mass ↓ ↑ ↑ 

Leptin ↓ ↑ ↓ 

Adiponectin ↓ ↓ ↓ 

Inflammatory cytokines ↑↓ ↑ ↑ 

Metabolic complications ↑ ↑ ↑ 
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from dysfunctional adipose tissue can lead to an altered energy balance and 

loss of dynamic metabolic regulation (Asterholm et al., 2007). Consistently, 

leptin replacement therapy improves both insulin sensitivity and lipid 

metabolism in patients and mouse models with generalized lipodystrophy 

(Colombo et al., 2002; Ebihara et al., 2007; Gavrilova et al., 2000; Javor et al., 

2005). 

Several mouse models of lipodystrophy have been constructed. These 

models not only contribute to understanding disease etiology, but also to 

providing different perspectives on the study of normal adipose tissue 

physiology. The induced lipodystrophy mouse model FAT-ATTAC  (Pajvani et 

al., 2005) make it possible to characterize the physiological functions of 

adipocytes and their secreted factors by acute fat loss without the 

confounding effects of long-term ectopic lipid accumulation in liver and 

muscles. Earlier constitutive loss of adipocytes during development, 

including PPARg2-knockout mice, flp mice with lipin mutation, and AZIP-F1 

(Barroso et al., 1999; Moitra et al., 1998; Peterfy et al., 2001; Zhang et al., 

2004), can be achieved by blocking adipogenesis. These animals seem to 

have much more profound consequences on systemic energy homeostasis 

compared to a late onset loss, suggesting the important role that adipose 

tissue plays during the early developmental stages. More refined time 

courses of fat loss during development are needed to understand the effects 

of adipose tissue on the developmental aspect of metabolic regulation. In 

addition, the ability to precisely block adipogenesis in utero or in the early 
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postnatal period will be useful in understanding adipogenesis in vivo. The 

blastocyst complementation technique described in Chapter 6 of this thesis 

presents a novel genetic approach to study adipogenesis in vivo. 
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CHAPTER 2: METHODS AND MATERIALS 

2.1 BAC Modificaiton 

Recombineering was performed as previously described (Gong et al., 

2003) on a leptin gene containing BAC (RP24-69D4) and with primer 

sequence included in supplementary to produce the -22kb to +18kb and -

22kb to +8.8kb leptin-luciferase reporter construct and the subsequent 

modified construct with 32 bp deletion. Sequences of cloning primers are 

included in TABLE 2.1. Genomic sequence and coordinates were based on 

NCBI37/mm9 mouse genome. Modified BAC were purified using CsCl 

gradient followed by restriction digestion using NotI (NEB) to remove the 

cloning backbone. Linearized BAC was separated by gel purification, followed 

by electro-elution and spot dialysis to remove debris and contaminants that 

might impede embryo manipulation.   

2.2 Animal Experiments 

Generation of transgenic mice: Leptin-luciferase reporter BACs were 

used to generate transgenic animals in either C57BL/6J or FVB N/J mice 

(Jackson Lab) using common pronuclear injection techniques (Birsoy et al., 

2008a; Nagy, 2003). 

Generation of chimeric mice: AZIP(FVB) chimeras were generated by 

injecting CAG-driven tubulin-YFP-ES-cells (B6-Tyrc; Gene Targeting Resource 
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TABLE 2.1 BAC Modification Primers. 
150kb kb GalK primer 

For 

5’CCTGTCTGAAATGCTGGTCCATGGAGACTTGTTCCCGGG

TGAGGTTCCACCTGTTGACAATTAATCATCGGCA 

22kb GalK primer Rev 

5’TGTTTTTTGAAATGTATTTAAATATTTATTTATTTTATGT

ATATGAGTATCAGCACTGTCCTGCTCCTT 

150-22kb 5' deletion oligo 

5’CCTGTCTGAAATGCTGGTCCATGGAGACTTGTTCCCGGG

TGAGGTTCCATACTCATATACATAAAATAAATAAATATTT

AAATACATTTCAAAAAACA 

150-22kb 3' deletion oligo 

5’TGTTTTTTGAAATGTATTTAAATATTTATTTATTTTATGT

ATATGAGTATGGAACCTCACCCGGGAACAAGTCTCCATGG

ACCAGCATTTCAGACAGG 

8.8kb GalK primer For 

5’TGCTGGAGACCCCTGTGTCGGTTCCTGTGGCTTTGGTCC

TATCTGTCTTATGTTCAACCTGTTGACAATTAATCATCGGC

A 

18kb GalK primer Rev 

5’CGGTACCCAATCAATGGTCATGGCTTTCTACGATGTTTG

AGTGTCTACAGACATCTCTCAGCACTGTCCTGCTCCTT 

8.8-18kb 5' deletion oligo 

5’TGCTGGAGACCCCTGTGTCGGTTCCTGTGGCTTTGGTCC

TATCTGTCTTATGTTCAAGAGATGTCTGTAGACACTCAAA

CATCGTAGAAAGCCATGACCATTGATTGGGTACCG 

8.8-18kb 3' deletion oligo 

5’CGGTACCCAATCAATGGTCATGGCTTTCTACGATGTTTG

AGTGTCTACAGACATCTCTTGAACATAAGACAGATAGGAC

CAAAGCCACAGGAACCGACACAGGGGTCTCCAGCA 

32bp GalK primer For 

5’AGGTTAATCTTTGAAGTCCCTAAAGATTTGAACTTTCCG

CAGAATTGGCTGCAGCGTCCCTGTTGACAATTAATCATCG

GCA 

32bp GalK primer Rev 

5’TGGTGGCTTCCTGCTGTGGCCTCTTCTTCCCTCCCCTCCC

CAGCACAGCTTCTTGCTTTCAGCACTGTCCTGCTCCTT 

32bp 5' deletion oligo 

5’AGGTTAATCTTTGAAGTCCCTAAAGATTTGAACTTTCCG

CAGAATTGGCTGCAGCGTCAAGCAAGAAGCTGTGCTGGG

GAGGGGAGGGAAGAAGAGGCCACAGCAGGAAGCCACCA 

32bp 3' deletion oligo 

5’TGGTGGCTTCCTGCTGTGGCCTCTTCTTCCCTCCCCTCCC

CAGCACAGCTTCTTGCTTGACGCTGCAGCCAATTCTGCGG

AAAGTTCAAATCTTTAGGGACTTCAAAGATTAACCT 

32bp deletion sequencing 

primer For 5’-AGTTGACCTGTGCTTCCATACCCT 

32bp deletion sequencing 

primer Rev 5’-TGTTCTCTTATATCCGCCCTGGGT 

4bp mutation oligo For 

5’TAAAGATTTGAACTTTCCGCAGAATTGGCTGCAGCGTCT

AGTGGGTTAGAGTCTAAcgtaAGTAGAGCAGAAGCAAGAA

GCTGTGCTGGGGAGGGGAGGGAAGAAGAGGCCACAGC 

1bp mutation oligo For 

5’TAAAGATTTGAACTTTCCGCAGAATTGGCTGCAGCGTCT

AGTGGGTTAGAGTCTAATTcGAGTAGAGCAGAAGCAAGA

AGCTGTGCTGGGGAGGGGAGGGAAGAAGAGGCCACAGC 

Center at Rockefeller) into 3.5-day blastocysts from breeding of wild-type 

FVB females (Jackson) to AZIP(FVB) transgenic males (Moitra et al., 1998). 

Since both the blastocyst and the ES-cells have white coat color, AZIP(FVB) 
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chimeras are completely albino. Degree of chimerism was determined by the 

percent of YFP-genotype cells in blood DNA samples. AZIP(B6) chimeras 

were generated by injection B6-Tyrc ES-cells into 3.5-day blastocysts from 

breeding of wild-type C57BL/6J females to AZIP(B6) transgenic males. 

AZIP(B6) transgenic mice were generated by backcrossing AZIP(FVB) male 

to wild-type C57BL/6J females for more than 7 generations. Chimerism of 

AZIP(B6) chimeras were scored by coat color and averaged from two 

independent observers as well as quantifying the percentage of Tyrc allele 

versus Tyr wild-type allel using Taqman qPCR (Applied Biosystem). AZIP 

transgenic mice are genotyped according to previous protocol (Moitra et al., 

1998). Primer sequences are detailed in TABLE 2.2. 

TABLE 2.2 Genotype and ChIP primers 

CRE For 5'-CAC GAC CAA GTG ACA GCA AT 

CRE Rev 5'-AGA GAC GGA AAT CCA TCG CT 

gLUC For 5'-GTT GTT CCA TTC CAT CAC GG 

gLUC Rev 5'-TCC TCT GAC ACA TAA TTC GCC 

gAZIP For 5'-CTG TGC TGC AGA CCA CCA TGG 

gAZIP Rev 5'-CCG CGA GGT CGT CCA GCC TCA 

gNFYAf_For 5'-GTA AGT CAG GCT CCA GGG 

gNFYAf_Rev1 

5'-AGG CAA GGC AGA TTT AGG AAG 

GTC 

gNFYAf_Rev2 5'-GGG TTG TCA GGA TGT TCG CAG 

YFP_For 5'-GCG AGG GCG ATG CCA CCT AC 

YFP_Rev 5'-GCG AAG CAC TGC AGG GCG TA 

FABP4_For 5'-AAT GTC AGG CAT CTG GGA AC 

FABP4_Rev 5'-GAC AAA GGC AGA AAT GCA CA 

chip_leptin5e_For 5'-CGC AGA ATT GGC TGC AGC GT 

chip_leptin5e_Rev 5'-GGT GGC TTC CTG CTG TGG CC 

chip_ins_For 5'-GGA CCC ACA AGT GGA ACA AC 

chip_ins_Rev 5'-GTG CAG CAC TGA TCC ACA AT 
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Housing condition for AZIP mice: Due to cold sensitivity of neonates, 

breeding pairs consist of AZIP male and wild-type females are housed in non-

ventilated cages and in elevated temperature (27˚C-30˚C). AZIP-pups were 

weaned around 4 weeks old, upon which the animals are transferred to 

standard housing condition.  

In vivo Luciferase imaging: Measurement of luciferase reporter 

activity in Leptin-BAC transgenic mice was performed with Xenogen IVIS 

Lumina imaging system (Caliper), 10 mins after ip-injecting 150mg/kg of 

luciferin (PerkinElmer) in 150uL 1XDPBS prepared freshly. 

Generation and experiments of adipocyte-specific knockout NF-YA: 

Adiponectin-CRE mice were purchased and genotyped according to standard 

protocol (Jackson Lab). NFYA-fl/fl strain and its genotyping were described 

previously (Bhattacharya et al., 2003). NFYA-fl/fl mice were backcrossed to 

C57BL/6J background for at least 8 generations prior to all experiments. 

Leptin at 350ng/hour (Amgen) or PBS was delivered for 14 days by 

subcutaneously implanted pre-equlibrated osmotic pumps, model 2002 

(Alzet). Insulin (Alpco), serum Leptin (R&D Systems), and serum total 

Adiponectin (Alpco) were measured by ELISA according to the 

manufacturers' protocols using serum samples collected by retro-orbital 

bleeding using EDTA coated capillaries (Drummond). Blood glucose was 

measured by tail vein sampling using a Breeze2 glucometer (Bayer). High fat 

diet treatments used 58Y1 60 kcal% fat (TestDiet). Body adiposity was 
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measured by DEXA scan using Lunar PIXImus2 Densitometer and analyzed 

with manufacture software (GE Medical Systems). Glucose tolerance test 

(GTT) was performed by IP injecting 10% glucose aqueous solution 

calculated to 1mg/g of body weight following a 12 to 16 hour overnight fast. 

For triglyceride quantification in liver, fresh liver tissue with known weight 

(between 60 to 80mg) was homogenized using Polytron in 5%NP-40/water 

on ice, followed the assay protocol outlined in Triglyceride Quantification Kit 

(Abcam). 

Metabolic profiling: Energy expenditure and oxygen consumption 

were measured using Oxymax Comprehensive Lab Animals Monitoring 

System (Columbus Instrument). Core body temperature was measured using 

IPTT-300 transponder probes and DAS-8001Console reader (Bio Medics 

Data Systems). The probes were implanted into the peritoneal space. 

All animal surgeries were performed under Isothesia (Henry Schein) 

delivered via a flow regulator. All animal experiments were performed 

incompliance with regulation and approved by institutional board at The 

Rockefeller University.  

2.3 Biochemical Assays 

In vitro Luciferase assay: Various tissues (spleen, muscle, stomach, 

brain, heart, liver, kidney, intestine, inguinal adipose tissue, epididymal 
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adipose tissue) were dissected and collected from transgenic mice and flash-

frozen with liquid nitrogen. The tissues are homogenized in cell lysis buffer 

(Promega) with a polytron homogenizer. Luciferase activity in tissue lysate 

was measured using the Luciferase Assay kit (Promega) and normalized to 

protein content with a BCA kit (Pierce). 

Western Blot: White adipose tissue and liver tissue were collected and 

minced with razor blade and heated in 95C in loading buffer for 5min. 

Antibodies against NF-YA H209 (Santa Cruz) and b-Actin 13E5 HRP 

conjugated (Cell signaling) were used. 

2.4 Molecular Experiments 

EMSA and supershift assays: EMSA was performed by incubating 6 µg 

of adipose tissue nuclear extracts from 12-16 weeks old Lep ob/ob mice 

(Jackson Lab) in a 20 µl reaction volume with 10 mM HEPES pH 7.9, 4% 

glycerol, 80 mM KCl, 1 mM MgCl2, 2 µg poly (dI-dC), 3 µg BSA, with 20,000 

cpm of the 32P-labeled DNA probe for 20 min at room temperature. Samples 

were then loaded onto a 4-6% polyacrylamide gel, run at 150V for 4 hours, 

dried, detected overnight in a phosphor screen (GE healthcare) and read in 

an Amersham Biosciences Typhoon 9400 imager. For supershift assays 2 µg 

antibody was added after 20 min of incubation with the probe and incubated 

another 20 min before loaded onto the gel. Antibodies were NFY-A (H209), 

NFY-B (FL207), C/EBPα (14AA), C/EBPβ (Δ198) from Santa Cruz 
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Biotechnology, Inc. The sequence of the wild type 32 bp probe is 

TAGTGGGTTAGAGTCTAATTGGAGTAGAGCAG (individual sequences of 

mutated oligos are shown in TABLE 2.3). 

CHIP assay and luciferase reporter assay: Adipose tissues were 

harvested from 8 to 10 weeks old C57BL/6J male mice of either wild-type or 

Lep ob/ob genotype (Jackson Lab). Tissues were washed in cold 1XPBS and 

minced with razor blade on ice, followed by cross linking in 1% 

formaldehyde/PBS for 20min and quenching with glycine for 5min at room 

temperature. The tissues were washed with 1XPBS three times and flash-

freezed in liquid nitrogen. Frozen cross linked tissues were thawed in buffer 

A (20mM Tris, pH7.9, 25% glycerol, 0.1mM EDTA, 0.5% TX-100, 0.5% NP40, 

0.5mM PMSF) and homogenized with a douncer on ice. The lysate was span 

at 2000xg for 5min to collect the nuclei, which were suspended in CHIP 

buffer (50mM HEPES/KOH, pH7.5, 140mM NaCl, 0.1% Na-deoxycholate, 1% 

TX-100, 1mM EDTA, 0.1% SDS) with complete protease inhibitor cocktail 

(Roche). The nuclei were sonicated at 50% amplitude for 15min on ice. The 

1mL of supernatant was used to perform one IP reaction using ProteinG 

Dynal beads (Invitrogen), preincubated with 2ug antibody against NF-YA 

(H209; Santa Cruz) for 2 hrs. After overnight incubation at 4C on a rotator, 

the reaction was washed with high salt buffer (20mM Tris pH8.1, 500mM 

NaCl, 2mM EDTA, 1% TX-100, 0.1% SDS) three times and EB buffer once. 

Reverse cross link was performed using TE with 1% SDS at 65C for 15min on 

a thermomixer. Sample was treated with RNase and protrease K (Sigma), 
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TABLE 2.3 Gel shift and super shift assay oligonucleotides. 

32bp wt F TAGTGGGTTAGAGTCTAATTGGAGTAGAGCAG 

32bp wt R CTGCTCTACTCCAATTAGACTCTAACCCACTA 

32bp mut1F TAGTGGGTTAGAGTCcAATTGGAGTAGAG 

32bp mut2R CTGCTCTACTCCAATTgGACTCTAACCCA 

32bp mut2F TAGTGGGTTAGAGTCTcATTGGAGTAGAG 

32bp mut2R CTGCTCTACTCCAATgAGACTCTAACCCA 

32bp mut3F TAGTGGGTTAGAGTCTAcTTGGAGTAGAG 

32bp mut3R CTGCTCTACTCCAAgTAGACTCTAACCCA 

32bp mut4F TAGTGGGTTAGAGTCTAAcTGGAGTAGAG 

32bp mut4R CTGCTCTACTCCAgTTAGACTCTAACCCA 

32bp mut5F TAGTGGGTTAGAGTCTAATcGGAGTAGAG 

32bp mut5R CTGCTCTACTCCgATTAGACTCTAACCCA 

32bp mut6F TAGTGGGTTAGAGTCTAATTcGAGTAGAG 

32bp mut6R CTGCTCTACTCgAATTAGACTCTAACCCA 

32bp mut7F TAGTGGGTTAGAGTCTAATTGcAGTAGAG 

32bp mut7R CTGCTCTACTgCAATTAGACTCTAACCCA 

32bp mut8F TAGTGGGTTAGAGTCTAATTGGcGTAGAG 

32bp mut8R CTGCTCTACgCCAATTAGACTCTAACCCA 

32bp mut9F TAGTGGGTTAGAGTCTAATTGGAcTAGAG 

32bp mut9R CTGCTCTAgTCCAATTAGACTCTAACCCA 

32bp mut10F TAGTGGGTTAGAGTCTAATTGGAGcAGAG 

32bp mut10R CTGCTCTgCTCCAATTAGACTCTAACCCA 

purified with PCR purification kit (Qiagen), and analyzed with qPCR (see 

supplementary for primer sequences). For Luciferase reporter assay, 115bp 

leptin enhancer site (GAGAACACTTAACAGCAAAGGTTAATCTTTGAAGTCCCT 

AAAGATTTGAACTTTCCGCAGAATTGGCTGCAGCGTCTAGTGGGTTAGAGTCTA

ATTGGAGTAGAGCAGAAGCAAG) was PCR amplified using -22kb to +8.8kb 

leptin BAC as template and primers 5’-gcggcgcg CTCGAG AAC ACT TAA CAG 

CAA AGG TTA ATC and 5’-cgcccggc AGATCT CTT GCT TCT GCT CTA CTC CAA 

TTA GA. The PCR product was cloned into pGL4.15 (Promega) between XhoI 

and BglII sites. Expression plasmids of NF-YA, NF-YB, NF-YC, and CEBPa in 

pCMV-SPORT6 vector as well as vector plasmid were commercially available 
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(Open Biosystem). The constructs were transfected into 293T cells using 

Lipofectamine 2000 (Invitrogen). The assay was performed using Duo 

Luciferase Reporter Assay System (Promega).    

Gene expression analysis: To extract RNA from adipose tissues, 

approximately 70mg of adipose tissue was harvested and flash-frozen in 

liquid nitrogen. The frozen tissue was homogenized with a Polytron 

homogenizer for 30 sec in 700uL of Trizol Reagent (Invitrogen) on ice. After 

removing debris with centrifugation, the lysate was added to a column of 

Direct-zol RNA MiniPrep (Zymo) and processed according to the 

manufacture’s manual. cDNA was synthesized using qScript cDNA SuperMix 

(Quanta Bioscience). Quantitative PCR was done using Quantitect SYBR Green PCR 

Kit (Qiagen) and 7500 Fast Real-Time PCR (Applied Biosystem) with primers 

specific for each gene of interest (TABLE 2.4). 

2.5 Tissue Culture Experiments 

Gene knockdown and differentiation in 3T3-L1: Knockdown 

of NFYA in 3T3-L1 cells was achieved by lentiviral vector-mediated shRNA 

expression with MISSION shRNA plasmids 439 (CCGGAGCAAGTTACAGTCC 

CTGTTTCTCGAGAAACAGGGACTGTAACTTGCTTTTTTG) and 441 (CCGGCCA 

AACCAAGCTGACGAAGAACTCGAGTTCTTCGTCAGCTTGGTTTGGTTTTTG) 

(Sigma). Lentivirus was generated in 293T cells using 2nd generation 

packaging system (Addgene) and Lipofectamine 2000 (Invitrogen). Viral 
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TABLE 2.4 qPCR primers for gene expression analysis 

Gene Forward Reverse 

NFYA 5’-ATC AAC AGG CCA ACC CAT CA 5’-CTG GAT CTG TCC AGG AGG CA 

HPRT1 5’-TCA GTC AAC GGG GGA CAT 

AAA 

5’-GGG GCT GTA CTG CTT AAC 

CAG 

AdipoQ 5’-GCC GTG ATG GCA GAG ATG 

GCA C 

5’-GGA AGC CCC GTG GCC CTT 

CAG 

Leptin 5’-GCA AGA AGA AGA AGA TCC 

CAG G 

5’-CAG ATA GGA CCA AAG CCA 

CAG 

Adipsin 5’-CAT GCT CGG CCC TAC ATG G 5’-CAC AGA GTC GTC ATC CGT CAC 

Resistin 5’-AAG AAC CTT TCA TTT CCC CTC 

CT 

5’-GTC CAG CAA TTT AAG CCA 

ATG TT 

TNFa 5’-TCC CAG GTT CTC TTC AAG GGA 5’-GGT GAG GAG CAC GTA GTC GG 

FABP4 5’-AAG GTG AAG AGC ATC ATA 

ACC CT 

5’-TCA CGC CTT TCA TAA CAC ATT 

CC 

PPARg 5’-GCA TGG TGC CTT CGC TGA 5’-TGG CAT CTC TGT GTC AAC CAT 

G 

CEBPa 5’-CAA GAA CAG CAA CGA GTA 

CCG 

5’-GTC ACT GGT CAA CTC CAG CAC 

CEBPd 5’-CGA CTT CAG CGC CTA CAT TGA 5’-CTA GCG ACA GAC CCC ACA C 

CD36 5’-ATG GGC TGT GAT CGG AAC TG 5’-GTC TTC CCA ATA AGC ATG TCT 

CC 

Glut4 5’-GTG ACT GGA ACA CTG GTC 

CTA 

5’-CCA GCC ACG TTG CAT TGT AG 

Ehhadh 5’-ATG GCT GAG TAT CTG AGG 

CTG 

5’-GGT CCA AAC TAG CTT TCT GGA 

G 

Hadha 5’-ACT ACA TCA AAA TGG GCT 

CTC AG 

5’-AGC AGA AAT GGA ATG CGG 

ACC 

Ctsk 5’-GAA GAA GAC TCA CCA GAA 

GCA G 

5’-TCC AGG TTA TGG GCA GAG 

ATT 

PGC1a 5’-GAT GCG CTC TCG TTC AAG AT 5’-GGT GTC TGT AGT GGC TTG AT 

UCP1 5’-GCT TTG CCT CAC TCA GGA TT 5’-TAA GCC GGC TGA GAT CTT GT 

Pref1 5’-AGT GCG AAA CCT GGG TGT C 5’-GCC TCC TTG TTG AAA GTG GTC 

A 

Klf4 5’-ACA CCT GCG AAC TCA CAC AG 5’-ACT TCT GGC ACT GAA AGG GC 

supernatants were supplemented with 8 μg/ml polybrene and added to cells 

for infections for 36 hours. Cells were selected with 3 μg/ml puromycin 

(Sigma) for 48 hours, expanded and seeded for differentiation experiments. 

3T3-L1 cells were maintained in DMEM with 10% heat inactivated NCS 

(Invitrogen) in 5% CO2. Differentiation was performed as previously 

described (Zebisch et al., 2012). Oil red staining was performed as previously 
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described (Zebisch et al., 2012). Non-differentiated controls were maintained 

in DMEM with 10% FBS. RNA extraction was performed using RNeasy 

(Qiagen) following manufacturer’s instruction. 

2.6 Statistical Analysis 

Two-ended, unpaired Student T’s test was used. Error bars indicated 

standard error of mean. Unless specifically mentioned, * indicated p<0.05, ** 

indicated p<0.01, *** indicated p<0.001, and **** indicated p<0.0001. 

Outliers were detected by comparing to corresponding Thomspon Tau values. 
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CHAPTER 3: TRANSCRIPTIONAL REGULATION OF LEPTIN BY 
DISTAL ELEMENTS 

3.1 Introduction 

Leptin is an adipocyte hormone that functions as the afferent signal in 

a negative feedback loop that maintains homeostatic control of adipose 

tissue mass. When weight is lost, leptin level falls thus stimulating appetite 

and altering metabolism and neuroendocrine function leading to weight gain 

(Coll et al., 2007). Conversely, in leptin responsive individuals, weight gain 

results in an increase in leptin levels and a reduction of food intake and body 

weight (Friedman-Einat et al., 2003; Jequier, 2002). Leptin production by 

adipocytes is highly correlated to body adiposity (Frederich et al., 1995; 

Maffei et al., 1995b) and is capable of exerting profound effects on both 

energy intake and energy expenditure (FIGURE 3.1). A fuller understanding 

of the elements of this system could have important implications for the 

pathophysiology and treatment of obesity. 

Particularly, the changes in plasma leptin levels are associated with 

changes in leptin mRNA per adipocyte, and the levels of leptin mRNA per cell 

are highly correlated with intracellular lipid content (Couillard et al., 2000; 

Maffei et al., 1995b; Marikovsky et al., 2002; Motyl and Rosen, 2012). These 

observations have raised the possibility that the regulatory elements of the 

leptin gene consist of a putative lipid sensing mechanism that regulates leptin 

expression in response to changes in the amount of intracellular lipid and 

adipocyte size. However, the nature of such a mechanism is not known. To 
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elucidate this, we undertook a similar approach to that used to identify a 

cholesterol sensing pathway. In Brown and Goldstein’s seminal work on the 

regulation of cholesterol metabolism,  the identification of the sterol response 

element (SRE), a key cis-element, led to the identification of SREBP (SRE 

binding protein) and the cholesterol sensor SCAP (SREBP cleavage-activating 

protein) that controls a set of cleavages that leads to the transport of this 

transcription factor to the nucleus (Brown and Goldstein, 1999; Lee et al., 

1994; Nohturfft et al., 2000). As such, we focus our endeavor on dissecting 

the transcriptional regulation of the leptin gene, although there is no 

FIGURE 3.1 Plasma Leptin is Highly Correlated with body adiposity. 
In leptin responsive individuals, weight gain results in an increase in 
leptin levels and a reduction of food intake and body weight. By this 
mechanism, body weight is maintained within a relatively narrow range. 
Plasma leptin thus serves as a surrogate for fat mass. The changes in 
plasma leptin levels are associated with changes in leptin mRNA per 
adipocyte and the levels of leptin mRNA per cell are highly correlated with 
intracellular lipid content.  
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evidence to exclude other means of gene expression regulation such as post-

transcriptional modification.   

Analysis of quantitative expression of the leptin gene necessitates that 

studies be conducted in vivo because cultured adipocytes express orders of 

magnitude lower amounts of leptin mRNA compared to adipcoytes in vivo 

(Macdougald et al., 1995; Mandrup et al., 1997). A previous study from our 

laboratory showed that a leptin-luciferase BAC reporter construct extending 

from from -22kb to +150kb (RP2469D; mm9 chr6: 28987901-29158589) 

showed faithful qualitative and quantitative expression in vivo with 

increased reporter expression in ob/ob adipocytes and decreased expression 

in adipocytes after fasting (Birsoy et al., 2008b). This finding was consistent 

with data from another report showing that this BAC and a second clone 

extending from -160kb to +18kb (mm9 chr6:28854232-29028379) showed 

fat-specific reporter expression, although in the previous report, studies of 

reporter expression in ob/ob and fasted mice were not performed (Wrann et 

al., 2012). This part of the thesis presents the follow-up study on a series of 

modified leptin-luciferase BAC reporter mice to identify cis- and trans-

elements regulating leptin transcription. 
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3.2 Results and Discussion 

In aggregate of previous leptin-BAC reporter mice, it is inferred that 

DNA sequences between -22kb to +18kb (mm9 chr6:28987900- 29199010) 

are likely to be sufficient for leptin transcriptional regulation (FIGURE 3.2A). 

To test this directly, we generated a BAC-transgenic luciferase reporter 

mouse carrying a single 40kb leptin-luciferase BAC that extends from -22kb 

to +18kb, the region of overlap between the aforementioned BAC clones 

(FIGURE 3.2B). Using the same strategy as in a previous study (Birsoy et al., 

2008b), luciferase was cloned into the leptin start codon in the second exon 

of the leptin gene together with a polyadenylation signal (this construct is 

used to generate all subsequent constructs presented in this chapter) so that 

luciferase is expressed under the control of the leptin promoter. 

Two out of two founders expressed luciferase specifically in adipose 

tissue as shown using in vivo luciferase imaging and by analyzing luciferase 

activity from tissue lysates under chow-fed ad libitum (one representative 

animal shown as “fed” in FIGURE 3.2B). In addition, we did not find luciferase 

expression in the GI tract, muscle, brain or any other visceral organs in which 

low levels of leptin gene expression have previously been reported (Birsoy et 

al., 2008b; Rosenbaum et al., 2002). Quantitative regulation of luciferase 

expression was assayed by crossing the reporter mice to ob/ob animals, 

which increases endogenous leptin expression (Note, the ob mice that were 

used carry a mutation of the leptin coding sequence but still show marked 

induction of leptin gene expression), and by food restricting wild-type mice 
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for 48 hours to lower endogenous leptin expression (representative images 

are shown and labeled as “ob/ob” and “fasted” respectively in FIGURE 3.2B). 

Luciferase expression was increased 3.3 fold in eWAT, p=0.02, and 4.7-fold in 

iWAT, p=0.0083,  in ob/ob background  (n=4) and decreased 145.4-fold in 

eWAT, p=0.094, and 35.6-fold in iWAT, p=0.0054, after fasting(n=4); both 

results are compared to 7 animals from transgenic line -22kb to +18kb that 

FIGURE 3.2 Analysis of Leptin-Luciferase BAC-transgenic animals. (A). A 
luciferase construct including a poladenylation signal was cloned into the Leptin 
initiation codon of two nested leptin-BAC clones by homologous recombination 
in bacteria, -156kb to +18kb (RP2433803; chr6:28854232-29028379) and -22kb 
to +148kb (RP2469D4; chr6: 28987901-29158589) and both recapitulate leptin 
expression in vivo, suggesting that the essential regulatory element of leptin 
must be contained in the 40kb region -22kb to +18kb. (B). Transgenic founders 
carrying a single clone of -22kb to +18kb leptin-luciferase BAC, the region of 
overlap between the two BACS in (A), showed adipose tissue specific luciferase 
expression using in vivo imaging (one representative mouse out of 2 founder 
mice as “fed”). The level of luciferase with metabolic status where fasting 
reduced Luciferase expression by 145.4-folds in eWAT (p=0.09) and 35.6-folds 
(p=0.0054) in iWAT and crossing to ob/ob genotype increase expression by 3.3-
folds in eWAT (p=0.02) and 4.7-folds in iWAT (p=0.0083) (labeled as “fasted” 
and “ob/ob” respectively in B). The numbers of animals used are 4 for fasted, 7 
for fed, and 4 for ob/ob. Luciferase assays from tissue lysate confirm that 
luciferase expression is qualitatively and quantitatively regulated similarly to 
leptin.  
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are fed ab libitum. These data confirmed that all of the cis-elements required 

for qualitative and quantitative expression are within this 40 kb interval and 

provided a starting point for the identification of cis-elements and trans-

factors responsible for this regulation. 

We then generated a comprehensive set of 5’ and 3’ deletions, the data 

from which revealed that there were redundant cis-elements upstream and 

downstream of the leptin transcription start site. Thus in order to further 

study leptin gene regulation, we needed to subdivide the leptin gene into 

separate 5’ and 3’ reporter constructs. A manuscript on the complete series 

of leptin-luciferase BAC transgenic mice study is in preparation and partial 

data is available in previous thesis work (Birsoy, 2009). 

To further study the 5’ cis-element without the complication from 3’ 

element, we then generated a leptin-luciferase BAC that extends from -22kb 

to +8.8kb BAC clone (chr6:28987900- 29019010, ending at exon 2 of the 

leptin gene, thus excluding any element 3’ to leptin gene). All of the founders 

(5 out of 5) of this new -22kb and +8.8kb leptin-luciferase BAC were found to 

express luciferase specifically in vivo. Quantitative regulation of leptin 

expression was confirmed by crossing the transgenic animals to ob/ob where 

we found a 1.5-fold increase in luciferase in eWAT, p=0.46, and a 3-fold 

increase in iWAT, p=0.0013 (n=3 for ob/ob). Fasting resulted in a 17-fold 

decrease in eWAT, p=0.019, and 6.5-fold decrease in iWAT, p=0.0002, leptin 

expression (n=6 for starved), compared to 8 wild-type ab libitum fed animals 
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(FIGURE 3.3A). Individual founders showed similar expression pattern 

(FIGURE 3.3B). These data confirm that sequences between -22kb to +8.8kb 

can, or in another word the 5’ upstream of leptin is sufficient to, recapitulate 

qualitative and quantitative expression of the leptin gene in vivo. 

We next performed a homology search of sequences within this -

22kb and +8.8kb interval and identified an 115bp sequence (mm9 

chr6:28993746-28993860) that is highly conserved among all mammals 

including mice (FIGURE 3.4). We found that 84.4% of the 115bp sequence is 

identical between human (GRCh37/hg19 genome) and mouse (NCBI37/mm9 

genome) and there is 73.9% sequence identity between platypus (WUGSC 

5.0.1/ornAna1 genome) and mouse. Gel shift assays using a series of 5 

overlapping 32 bp oligonucleotides spanning this 115bp region assays were 

performed using nuclear extracts from adipose tissue of ob/ob mice and 

other tissues. One of these 32 bp oligonucleotides showed a clear gel shift 

activity using nuclear extract prepared from adipose tissue, as well as liver 

and spleen (FIGURE 3.5A; data for liver and spleen not shown). This 32 bp 

segment included a CCAAT-box on the minus-strand which is known to be a 

binding site for a number of transcription factors including the CEBP and the 

NF-Y transcription factors. Further, gel shift assays with mutant oligos 
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FIGURE 3.3 Analysis on -22kb to +8.8kb leptin-luciferase BAC-
transgenic animals. (A). A leptin-Luciferase BAC extending from -22kb to 
+8.8kb (5 founders) also recapitulates leptin expression in vivo, showing 
that the included sequences along are sufficient for leptin regulation. 
Schematic maps of the three reporter transgenes are shown over the 
respective animals with the yellow bands indicating luciferase, the black 
segments indicating exons of leptin, the white segments indicating introns 
of leptin, the blue segments indicating genomic sequence framing leptin, 
and the red band indicating an internal deletion. All heat maps are scaled 
to minimum 0 and maximum 2000 luminescence counts in the 
manufacturer’s program. (B). Individual founders of -22kb to +8.8kb, 5 
mice, all showed adipose tissue specific leptin expression. Each tissue of 
individual transgenic founders (5 mice) of -22kb to +8.8 kb construct is 
shown. Luciferase activities are normalized to total protein amount as 
measured by BCA assay. Schematic maps of the two reporter transgenes 
are shown over the respective panels. 
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showed that base changes within the CCAAT sequence abrogated this DNA-

protein interaction (FIGURE 3.5B). 

To assess whether it was NF-Y or another DNA binding protein that 

was responsible for the activity, the gel shift assays were repeated in the 

presence of anti-NFYA (H209, Santa Cruz) and anti-NFYB (FL207, Santa 

Cruz). These data revealed a clear super-shift in the presence of the antibody 

which is directed against two subunits of the factor, NF-YA and NF-YB 

(FIGURE 3.5C). In contrast, antibodies to two other CCAAT-box binding 

protein C/EBPA or C/EBPB (14AA and Δ198 respectively, Santa Cruz), both 

of which are known to play a role in adipocyte function, did not result in a 

super-shift. To confirm that NF-Y binds to the CCAAT sequence of the leptin 

gene in vivo, chromatin immunoprecipitation (ChIP) assays from adipose 

tissue nuclear extract were performed. The ChIP assay revealed a 2.7-fold 

enrichment (p=0.02) of the NF-Y binding sequences from ob/ob inguinal 

FIGURE 3.4 Conserved Non-Coding Region Upstream of leptin. The 
figure includes an 115bp region at -16.5kb of leptin (mm9 
chr6:28993746-28993860) that is highly conserved among all mammals 
including mice. We found that 84.4% of the 115bp sequence is identical 
between human (GRCh37/hg19 genome) and mouse (NCBI37/mm9 
genome). Genome information extracted from UCSC Genome Browser.    
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FIGURE 3.5 Identification of an NF-YA binding site between -16.401kb to -
16.370kb. A series of overlapping radioactive oligonucleotide probes were used 
to perform gel shift assay using adipose tissue nuclear extract from ob/ob mice in 
this region to identify enhancer site. Two of the five probes showed DNA-binding 
activity in (A) and the 5’5 site containing a 32bp sequence from -16.401kb to -
16.370kb (mm9 chr6: 28993820- 2899385) was further analyzed. (B). A series 
of oligos of the 32 bp sequence of 5’5 site with single mutations (from “wt” 
sequence to “mut” in figure) identified a core binding sequence of a DNA binding 
protein compatible with NF-Y binding. (C). Super-shift assays shown in were 
performed for possible CCAAT binding proteins NF-YA (H209), NF-YB (FL207), 
C/EBPa (14AA), or C/EBPb (Δ198) to gel shift reaction with wild-type 
oligonucleotide. A super-shift using the NF-YA (H209) and NF-YB (FL207) 
antibodies is indicated with an arrow. Antibodies against CEBPs did not cause a 
super-shift. (D). CHIP assay in mouse subcutaneous white adipose tissue using 
anti NF-YA shows binding at the identified 32bp enhancer sequence (labeled 5’e) 
in 10 week old ob/ob mice. Fold enrichment is normalized to insulin (labeled 
Ins), a locus that is not expressed in adipose tissue. (E). NF-YA mRNA levels as 
normalized against HPRT1 expression are indistinguishable in fast, fed, or ob/ob 
adipose tissue. (F).  An ex vivo luciferase assay was performed using a luciferase 
construct driven by an 115bp region encompassing the 32bp sequence co-
transfected with  NF-YABC subunits (lane NF-Yabc) showed a 60-fold increase in 
luciferase activity compared to vector-only control (VC), while co-expression of 
the reporter with CEBPA,  or NFYA alone did  not increase activity. 
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adipose tissue using the anti-NFYA antibody (H209, Santa Cruz) compared to 

DNA sequences from the insulin gene (FIGURE 3.5D). Insulin was used as the 

control region because the gene is not expressed in adipose tissues. We next 

assayed the levels of NF-Y mRNAs and did not find a change in mRNA levels 

among ob/ob, and wild-type mice fed ab libitum and fasted (FIGURE 3.5E). 

A functional analysis of the transcriptional activity NF-Y was 

demonstrated by co-transfecting plasmids expressing three subunits of NF-

YA, NF-YB, and NF-YC together with a luciferase reporter cloned downstream 

of the 115bp homologous sequence of leptin enhancer. We found a 60-fold 

increase in luciferase expression when the NF-Y plasmids were co-

transfected compared to vector control (FIGURE 3.5F). Consistent with the 

super-shift data, expressing C/EBPA failed to increase luciferase expression 

in the same assay, nor did NF-YA alone consistent with previous data 

showing that all three NF-Y subunits are required for its transcriptional 

activity. Together, these experiments showed that NF-Y binds to the CCAAT-

box 16.5kb upstream of the leptin TSS and can increase the level of 

expression of a reporter construct. The identified cis-element is a true 

enhancer that can activate transcription independent of their location, 

distance or orientation with respect to the promoters of genes (Ong and 

Corces, 2011). Note that since NF-Y was identified using a candidate 

approach, it is likely that other transcription factors also interact with this 

enhancer site. Other trans-elements can be identified using the same in vitro 
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luciferase assay combined with cDNA library of transcription factors, which 

is an approach under active pursue. 

Although the C/EBP family transcription factors are known for 

inducing preadipocyte differentiation and in modulating gene expression in 

the fully differentiated adipocyte (Darlington et al., 1998), it is not 

unexpected that we did not detect bindings of either C/EBPa or C/EBPb at 

the identified distal enhancer. As mentioned, leptin is expressed at much 

higher levels in vivo versus in vitro such as in differentiated 3T3-L1 or F442 

cells (Macdougald et al., 1995; Mandrup et al., 1997). Since these cultured 

models express C/EBP factors and their targets in abundance (Soukas et al., 

2001), it can be inferred that adipocyte specific expression of leptin is 

controlled by a different set of transcriptional mechanism from that dictating 

adipogenesis, at lease in vitro. Nonetheless, since expression of leptin serves 

as a hallmark of adipocyte maturation both in vivo and in vitro (Hwang et al., 

1997; Slieker et al., 1998), the in vivo adipogenesis events leading to leptin 

activation during development is worth of further investigation. 

To confirm a role for the 32 bp sequence that includes the NF-YA 

binding site in vivo we generated a -22 kb to +8.8 kb leptin-luciferase BAC 

reporter line in which there was an internal deletion of the 32 bp that 

included the NFY-A CCAAT-sequence. (GTCTAGTGGGTTAGAGTCTAATTGGA 

GTAGAG found between mm9 chr6: 28993820- 2899385; FIGURE 3.6A).  

This deletion completely abrogated reporter expression in all 11 transgenic 
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FIGURE 3.6 Deletion of a 32bp sequence abolish leptin expression in 
vivo. (A) A 32bp sequence internal deletion of the 32 bp NF-YA binding 
site (GTCTAGTGGGTTAGAGTCTAATTGGAGTAGAG; mm9 chr6: 28993820- 
28993851) in the -22kb to +8.8kb BAC (11 mice) abrogated Luciferase 
expression, confirming that these sequences are essential for leptin 
expression in vivo. (B). Luciferase activity of individual tissues from each 
founders of the -22kb to +8.8 kb leptin-luciferase gene with the 32 bp 
deletion are graphed, showing no adipose tissue specificity nor 
comparable expression level to wild-type construct. Luciferase activities 
are normalized to total protein amount as measured by BCA assay. 
Schematic maps of the two reporter transgenes are shown over the 
respective panels. 
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founders using in vivo Luciferase imagining as well in biochemical assays 

from tissue lysates as described above (FIGURE 3.6B). To confirm that the 

reverse CCAAT-box is essential for the transcriptional activity observed from 

the -22 kb to +8.8 kb leptin-luciferase BAC reporter line in vivo, we generated 

two additional transgenic lines: a 4bp mutation from 5’-ATTGG to 5’-Acgta 

(construct NFY-4bp; mm9 chr6: 28993840- 28993843) and a 1bp mutation 

to 5’-ATTcG (construct NFY-1bp; mm9 chr6:28993842). For NFY-4bp 5 out 

of 5 and for NFY-1bp 4 out of 5 transgenic founders lost leptin expression in 

vivo (FIGURE 3.7A and B). These data confirmed that the CCAAT-box element 

is essential for leptin and led us to test the function of NF-YA in adipocytes in 

vitro and in vivo (see Chapter 4). 

This finding is in contrast to data from a prior publication by Wrann et 

al suggesting that a DNA sequences between -5.2kb and the proximal 

promoter are responsible for leptin expression in vivo (Peterfy et al., 2001). 

In this prior report, the authors generated the same -22kb to +18kb Leptin 

BAC clone (except for using EGFP as oppose to Luciferase), that we used to 

recapitulate Leptin expression. They then used a -5.2kb to +18kb BAC clone 

and showed that these sequences can also recapitulate fat specific leptin 

expression though quantitative expression in ob/ob and fasted mice was not 

analyzed. The authors thus concluded that the regulatory element controlling 

fat specific leptin expression must reside within the 5.2kb 5’ region. However, 

we have found that there are redundant elements controlling leptin 

expression including either the 32 bp sequence on the 5’side at -16.5kb 
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presented here or a 3’ sequences at approximately +14kb (manuscript in 

preparation). Either of these 5’ or 3’ sequences is capable of independently 

conferring fat specific expression of the leptin gene (manuscript in 

preparation). For example, we find that a BAC clone that extends from -

16.4kb to +8.8 kb does not lead to fat specific expression of a luciferase 

reporter thus excluding sequences between -5.2 kb and +1bp as being 

capable of supporting leptin expression. Thus the reason the BAC extending 

from -5.2kb to +18kb shows fat specific expression is because of sequences at 

~ +14 kb, not sequences between -5.2 kb and the transcription start site. The 

FIGURE 3.7 Point mutations at NFY binding site ablate leptin 
transcription. Two transgenic lines were generated by point-
mutagenesis on -22kb to +8.8kb leptin-luciferase BAC (top diagram). The 
red bar corresponds to the sequences in each line and mutated base pairs 
are in low case red letters. (A). Four base pair mutation of reverse CCAAT-
box from ATTGG to Acgta abolishs leptin expression in 5 out of 5 founders. 
(B). Single base pair mutation from ATTGG to ATTcG abolishs leptin 
expression in 2 out of 2 founders. Biochemical assay from tissue lysate of 
individual founders are on the right.     
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findings explain our data showing that there is faithful qualitative and 

quantitative expression of a 5’ reporter extending from -22 kb to +8.8 kb, and 

that an internal deletion of a 32 bp sequence at -16.7 kb abrogates this 

expression despite the fact that more proximal promoter elements between -

5.2 kb to +1bp are intact. 

To investigate in vivo function NF-Y binding site, it will be necessary to 

generate knockout mouse model. With the recent advance in genome editing 

technique using CRISPR (Wang et al., 2013a), precise deletion or mutation of 

the sequence of interest can be achieved in one generation. Although the 

aforementioned redundancy of multiple cis-elements could mask the 

potential effect of knockout, such mouse model will also provide information 

on broader role of leptin regulation in vivo that was beyond the scope of 

luciferase reporting.   

Since NF-Y is ubiquitously present in many tissues, adipocyte specific 

and fat mass dependent expression of leptin cannot be explained by the 

regulatory function of NF-Y factor alone. Recent advances in understanding 

transcriptional mechanism suggested an important role of repressor in 

conferring spatial and temporal gene expression (Ong and Corces, 2011). 

Since leptin gene is not expressed until late gestation in mice in differentiated 

adipocytes, transcription of leptin must be repressed in the early 

developmental stages of adipocytes. Indeed, several studies have suggested 

that NF-Y is capable of activating as well as inhibitory regulation, either by 
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direct interaction with different DNA sequences or by recruiting different co-

factors (Peng and Jahroudi, 2002; Zhu et al., 2012). Genome wide study 

showed that NF-Y functions as “switch” between proliferation and 

differentiation in stem cell by re-directing the transcriptional profile in global 

level (Ceribelli et al., 2008; Donati et al., 2008). The precise molecular 

mechanism of leptin transcriptional regulation remains to be explored. 

Particularly, identification of other cis-elements and corresponding trans-

element will facilitate further investigation on interactions among these 

factors. One straightforward speculation is that other cis-elements are 

modulated by some yet unknown adipocyte specific factors, while NF-Y 

serves as co-factor in transcriptional activation. Unfortunately, there is a lack 

of unbiased method to identify trans-factor to a known sequence, and 

classical biochemical purification of transcription factor requires large 

amount of material that is impractical to obtain from animal tissue (Yang, 

1998). 

Recent studies highlight the importance of NF-Y on stem cell 

proliferation and maintenance, notably in mesenchymal linages including 

myoblast and hematopoetic stem cell (Bungartz et al., 2012; Farina et al., 

1999; Gurtner et al., 2008; Gurtner et al., 2003). Similar to our observation in 

3T3-L1 cells where NF-Y expression is reduced during adipogenesis, down-

regulation of NF-Y accompanies differentiation in both the hematopoetic and 

muscle lineage. NFY has also been shown to control tissue specific gene 

expression by interacting with other cell specific DNA binding proteins. For 
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instance, a study comparing fetal and adult erythrocytes shows that NF-Y 

differentially recruits activators or repressors to induce or inhibit the 

gamma-globin gene during development (Zhu et al., 2012). Biochemical 

studies also showed that NF-Y displays histone-like DNA binding activities, 

and can regulate transcription in a non-sequence specific manner (Nardini et 

al., 2013; Oldfield et al., 2014). Further studies of NF-Y and other factors will 

be required to dissect how NF-Y controls qualitative and quantitative leptin 

transcription. 
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CHAPTER 4: NF-Y KNOCKOUT AS A NOVEL LIPODYSTROPHY 
MODEL 

4.1 Introduction 

Identification of NF-Y as a trans-element regulating leptin gene 

expression, described in Chapter 3, prompted us to study its function in the 

3T3-L1 adipogenesis model and in a knockout mouse model. NF-Y (also 

known as CBP, CCAAT-box Binding Protein) is a transcription factor 

composed of three subunits, NF-YA, NF-YB, and NF-YC (also as CBP-B, CBP-A, 

CBP-C respectively). NF-Y recognizes the CCAAT sequence mostly through 

the conserved C-terminus of NF-YA, although all three subunits are required 

for DNA binding activity (Mantovani, 1999). A germ line knockout of NF-YA is 

embryonic lethal at E8.5, demonstrating that NF-Y is essential for early 

development (Bhattacharya et al., 2003). In addition, NF-Y is required for 

stem cell maintenance and for controlling cell type specificity during 

differentiation, particularly in mesenchymal lineages such as blood cells, 

myoblasts, and osteoblasts (Bungartz et al., 2012; Goeman et al., 2012; 

Gurtner et al., 2003; Zhu et al., 2005). NF-Y has been implicated in human 

diseases including myodystrophy, neurodegenerative diseases, cancer, and 

cardiovascular diseases (Ly et al., 2013; Tohnai et al., 2014; Yamanaka et al., 

2014). From in vitro studies, NF-Y binds to the promoters of genes 

controlling cholesterol and fatty acid synthesis as well as adiponectin 

although its function in adipogenesis and tissue specific gene regulation in 

vivo has not been evaluated (Park et al., 2004; Reed et al., 2008). 
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In Chapter 3, we showed that a 32bp sequence at -16.5kb of the leptin 

gene is essential for in vivo expression of leptin in luciferase reporter mice. A 

computational analysis identified a CCAAT-box sequence this 32 bp segment 

and NF-Y was identified as the binding protein using a candidate approach in 

super-shift assay. ChIP using an anti-NFY antibody confirmed that it binds to 

this site in vivo. A knockdown of NF-YA in vitro and a fat specific ablation of 

NF-YA in vivo both decreased adipogenesis and leptin gene expression, but 

the decrease in leptin expression appeared, in part, to be a result of a general 

effect on adipocyte development rather than an exclusive effect on the leptin 

gene. Thus animals with a knockout of NF-YA develop a moderately severe 

lipodystrophy with low leptin levels and a metabolic phenotype that is 

remediable with leptin therapy. Overall, these data identify a new etiology for 

lipodystrophy and further suggest that there could be a large number of 

other causes for this disorder. The data also provide a framework for future 

studies aimed at identifying the gene regulatory mechanisms that control 

leptin gene expression. 
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4.2 Results and Discussion 

Preadipocyte culture model 3T3-L1 has been widely used in studies of 

adipogenesis. Since 3T3-L1 cells can be induced to differentiate into lipid-

filled adipocytes in vitro in the presence of insulin, dexamethasone and IBMX 

(FIGURE 4.1A), this model allows precise control over the process of 

adipocyte differentiation (Zebisch et al., 2012). In wild-type 3T3-L1 cells, the 

mRNA levels of NF-YA were detected early in undifferentiated 3T3-L1 cells 

and decreased approximately 10-fold after induction of adipocyte 

differentiation by hormone treatment starting from day3 (FIGURE 4.1B). This 

pattern is similar to other preadipocyte genes such as KLF4 and Pref-1 

(FIGURE 4.1C). In contrary, adipogenic transcription factors PPARg and 

C/EBPa as well as mature adipocyte markers show increase expression 

following differentiation (FIGURE 4.1D and E).  

To assay a role for NF-Y in adipogenesis, we next introduced RNAi 

constructs, labeled 439 and 441, targeting NF-YA into 3T3L1 cells using 

lentivirus. We first confirmed that NF-YA down-regulation is an adipogenesis 

specific effect, because un-differentiated cells do not show lowered 

expression (FIGURE 4.2A). Construct 439 and construct 441 achieved 34% 

and 62% knockdown of NF-YA mRNA levels respectively (FIGURE 4.2B). 

Despite the incomplete knockdown, both constructs abrogated adipogenesis, 

with a markedly decreased number of oil-red stained cells after 

differentiation of cells (stained on day10, 7 days post induction) compared to 

wild type cells or cells expressing a non-hairpin control (SCRAM) construct. 



72 

These data show that adipogenesis is quite sensitive to even a modestly 

reduced expression level of NF-YA (FIGURE 4.2C top panel). Cells that were 

not induced to differentiate showed comparable viability versus SCRAM cells, 

FIGURE 4.1 Differentiation of 3T3-L1 cells. (A). Schematic summary of 
differentiation protocol of 3T3-L1 cells. The red bars indicates presence of 
hormonal induction. Top panel depicts oil red staining of cells in three 
different time points. (B). NF-Ya expression lowers during differentiation 
and remains low in mature adipocytes. (C). Two other preadipocyte 
factors Klf4 and Pref1 show similar expression profile as NF-Ya. (D) and 
(E). Adipogenic factors and mature adipocyte markers are induced by 
initiation of terminal differentiation and remain expressed in mature 
adipocytes. 
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showing that the defect did not affect pre-adipocyte viability and rather that 

NF-YA is essential for adipogenesis (FIGURE 4.2C bottom panel). Consistent 

with an effect of an NF-YA knockdown on adipogenesis, on day14, mRNA 

levels of adipocyte markers C/EBPa, FABP4, LPL, leptin, and adipoQ were 

reduced, further confirming that there is a defect in adipogenesis in the NF-

YA shRNA targeted cells (FIGURE 4.2D). 

Our results showed that NF-Y expression reduces with differentiation 

and that knockdown of NF-Y reduces adipocyte differentiation, both of which 

suggest that it plays a role either to prime pre-adipocytes prior to 

differentiation or functions early in the process before the point of adipocyte 

development when it is no longer expressed. Further studies will be needed 

to distinguish these possible mechanisms. Consistent with the former 

possibility, NF-Y has been shown to play a role in the proliferation and 

maintenance of stem cell precursors, although we failed to note any 

difference in the proliferation or viability of preadipocytes after an NF-Y 

knockdown (Benatti et al., 2008; Bhattacharya et al., 2003; Bungartz et al., 

2012). Moreover, since many adipocyte markers including leptin are only 

expressed in mature adipocytes that are terminally differentiated, the altered 

expression of a differentiated marker reflects defects during differentiation 

process to some extent. Consistently, expressions of many mature adipocyte 

genes are dependent on adipogenic factors PPARg and C/EBPa (Rosen et al., 

2000). While C/EBPa was shown to transcriptional activation of leptin via 
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FIGURE 4.2 NF-YA Expression and Function of NF-YA in 3T3-L1 adipocytes 
in vitro. (A). NF-YA mRNA is expressed at a high level in undifferentiated 3T3-L1 
and its level is decreased during day3 to day7 after differentiation using a 
standard cocktail of insulin, dexamethasone and IBM treatment after which NF-
YA remains expressed at a low level in differentiated 3T3 cells (black diamonds), 
as compared to non-differentiated controls (white diamonds). (B). Two lentiviral 
mediated shRNA targeting NF-YA, denoted 439 and 441, were introduced into 
undifferentiated 3T3-L1. After puromycin selection, normalized NF-YA mRNA 
levels were reduced by 34% and 62% in cells expressing 439 (white diamonds) 
and 441 (grey squares) respectively compared to SCRAM (black circles). After 
differentiation of 3T3-L1 cells, NF-YA levels become comparable in knock down 
and SCRAM cells. (C) Despite an incomplete knockdown, both lines show reduced 
adipogenesis after 7 days of differentiation with staining with oil-red for lipid 
droplets on day10. The bottom panel shows virus-treated, non-differentiated 
controls with comparable cell numbers in knocked down and non-hairpin 
control cells. SCRAM indicates scramble, non-hairpin control construct. (D). The 
mRNA levels of CEBPa, PPARg, LPL, leptin, and adipoQ in the shRNA knockdown 
3T3-L1 were measured and normalized to housekeeping HPRT1). The 
adipogenic transcription factors CEBPa and PPARg were lowered by 78%/47% 
and 45%/16% in the knockdown cells, LPL was lowered by 52%/36%, and 
adipokine genes leptin and adipoq were lowered by 59%/46% and 55%/32% 
respectively.  
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proximal promoter (He et al., 1995; Hwang et al., 1997; Miller et al., 1996), it 

the functions of other distal elements that interact with C/EBP factors 

remain unknown. Nonetheless, recent genome-wide study uncovered 

cooperative binding of PPARg and C/EBPa at many adipocyte genes, 

including non-coding regions of leptin, suggesting global transcriptional 

regulation in differentiated adipocytes (Lefterova et al., 2008). 

Since a total body knockout of NF-YA is lethal (Bhattacharya et al., 

2003), we generated an adipocyte-specific NF-Y knockout by crossing the 

adipocyte-specific Adiponectin-CRE mouse to conditional knockout NFYA-fl/fl 

mouse to study the function of NF-Y in adipocytes in animals (FIGURE 4.3A). 

(In the following sections, we refer to the Adiponectin-CRE; NFYA-fl/fl mice as 

NFY-KO and wildtype control NFYA-fl/fl as WT control). The knockout was 

confirmed by genotyping as well as by performing western blots to assay NF-

YA protein expression (FIGURE 4.3A). When fed a chow diet, the NFY-KO and 

WT had similar body weights beginning at weaning (3 weeks old) up until 28 

weeks old (FIGURE 4.3B). However, on chow diet the NFY-KO mice showed a 

significantly decreased adiposity as assessed using DEXA (p=0.002 at at 8 

weeks). Furthermore, while WT mice showed an age-dependent increase in 

body adiposity between 8 weeks to 28 weeks old, NFY-KO mice actually 

showed a progressive loss of body fat, with an adiposity of 9.7% at 28 weeks 

of age which is comparable to the fat content of lipodystrophic AZIP mice 

(FIGURE 4.3C). The result was confirmed by measuring the weight of 

individual epididymal, inguinal, and brown adipose tissues at different ages 
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FIGURE 4.3 Generation of an Adipose Tissue Specific NF-Y Knockout. 
NF-YA adipocyte specific knockout mice, NFY-KO, were generated by 
crossing Adiponectin-CRE to NFYA-flox/flox mice. CRE-negative NFYA-
flox/flox animals are used as WT control (A). Depletion of NF-YA protein 
is confirmed by western blot from adipose tissue. The NFY-KO mice 
(white diamonds) have lower body weight compared to the WT control 
(black diamonds) from weaning (3 weeks) to 6 weeks, but the difference 
becomes insignificant afterwards, n=9 (B). NFY-KO mice (white bars) 
show significantly reduced body adiposity (total fat mass divided by total 
body weight) by DEXA scan with an age dependent worsening with a % fat 
level consistent with lipodytrophy, n=9 (C). At 28 weeks, NFY-KO mice 
show 9.7% body adiposity, comparable to the previously published AZIP 
strain which shows generalized-lipodystrophic mouse model, at 10.7%  
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which revealed significantly decreased fat pad weights in NFY-KO mice 

(FIGURE 4.3D), while other visceral organs remain comparable sizes (Table 

5.1). A decreased body fat mass could be a result of extreme leanness or 

could be a sign of lipodystrophy, a condition in which a pathologic decrease 

in adipose tissue mass leads to a severer metabolic syndrome with decreased 

levels of serum leptin and adiponectin and diabetes, hyperlipidemia and liver 

steatosis. Constitutional leanness in contrast is associated with low levels of 

leptin and high levels of adiponectin without signs and symptoms of 

metabolic disease. Heterozygous knockout mice, though expressing lower 

level of NF-YA protein, showed no significant abnormality on body weight, 

body adiposity, plasma adipokines, insulin and glucose levels (data not 

shown), therefore it is not included in further investigation. It should be 

noted that the shRNA knockdown in 3T3-L1 resulted in less than 50% 

reduction in gene expression yet a rather dramatic impairment in 

adipogenesis. The phenotypic discrepancy between 3T3-L1 knockdown and 

NFY heterozygous knockout was likely due to the timing of gene ablation. In 

NFY-KO mice, NF-Y gene ablation was introduced following expression of 

adiponectin in mature adipocytes, while in 3T3-L1, the gene knockdown was 

performed prior to terminal differentiation. This result is consistent with the 

notion that NF-Y’s critical role in pre-adipocytes. In another word, using a 

CRE-line expressing in preadipocyte population (which is not yet available) 

will provide a comparable in vivo model to the 3T3-L1 experiment. 

FIGURE 4.3 (cont.) (grey bar, 7 age matched animals). (D) Gross tissue 
weight of EWAT, IWAT, and BAT of NFY-KO and WT animals of various 
ages are shown, n=9. Consistent with DEXA result, NFY-KO show 
significantly reduced amount of EWAT and IWAT, while other visceral 
organs remain comparable sizes (Table 4.1); BAT is less affected by NF-Y 
knockout. (E). NFY-KO show lowered levels of serum Leptin with age 
progressing lowering and (F) non-detectable (ND) level of serum 
adiponectin at all age groups measured, n=9. (G). Gene expression 
profiling in epididymal adipose tissues of 3-months old mice show 
significantly decreased levels of adipocyte marker genes (adipokines 
adipoQ, leptin, adipsin, resistin; adipogenic transcription factor FABP4, 
PPARg, CEBPs; adipocyte surface marker CD36, and lipid metabolism 
genes glut4, Ehhadh, Hadha, Ctsk) when expression level is normalized to 
HPRT1, n=2 for WT and n=4 for NFY-KO (G). Inflammatory factor TNFa 
shows increased expression.  
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Consistent with the possibility that a fat specific knockout of NF-YA 

can cause lipodystrophy, NFY-KO mice showed a 2-fold decrease of plasma 

leptin at 8 weeks and a 25-fold decrease in leptin level at 28 weeks with 

undetectable levels of serum adiponectin at all ages tested (FIGURE 4.3E and 

F). Epididymal adipose tissues were collected from 3 months old mice and 

mRNA levels of various adipocyte specific genes were measured using qPCR 

(Figure 4.3G). Consistent with ELISA results, the mRNA levels of adiponectin 

(AdipoQ) and leptin, as well as adipsin and resistin RNAs were significantly 

lowered in NFY-KO mice as were the RNAs for other adipose marker RNAs 

including FABP4, PPARg, C/EBPs, CD36, Enoyl-CoA dehydrogenase (Ehhadh), 

hydroxyl-CoA dehydrogenase (Hadha) and Glut4. These data showing a 

FIGURE 4.4 Histology of adipose tissue in NFY-KO animals. Prominent 
stromal structures in tissues from knockout animal is characteristic of 
lipodystrophy. Larger yet fewer adipocytes are present in knockout tissue, 
suggested possible compensatory growth of remaining cells. However, the 
mechanism of such growth is unknown. All slides were prepared from 5 
months old male mice.   
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general decrease in the expression of a battery of adipocyte specific genes 

are consistent with the adipogenesis defect observed in 3T3 cells after an NF-

Y knockdown. Histological study of the adipose tissue showed prominent 

stroma vascular structure characteristics of adipose tissue dysfunction 

(FIGURE 4.4). The enlarged adipocytes in NF-YA are likely mature cells that 

were not affected by the knockout and resulted in compensatory growth for 

loss of total cell number. As such, progressive lipodystrophic model like this 

one may be useful to study the dynamics between hypertrophy and 

hyperplasia processes. 

NF-Y, also known as CBP or CCAAT-binding protein, binds to the most 

prevalent enhancer sequences in the mammalian genome, CCAAT, and has 

been shown to be essential for a range of cellular functions including cell 

cycle, proliferation, and as mentioned stem cell maintenance (Bhattacharya 

et al., 2003; Bungartz et al., 2012; Dolfini et al., 2012a; Dolfini et al., 2012b; 

Mantovani, 1999; Zhu et al., 2005). A whole-body knockout a NF-Y is 

embryonic lethal due to a failure of cell proliferation during in utero 

development, and that other pluripotent stem cells such as mesenchymal 

stem cells and hematopoietic stem cells requires NF-Y to maintain their 

population (Bhattacharya et al., 2003; Bungartz et al., 2012; Dolfini et al., 

2012a; Tohnai et al., 2014). In adipocytes, prior studies have only showed 

that NF-Y can regulate adipocyte specific genes such as adiponectin and fatty 

acid synthetic pathway in vitro (Park et al., 2004; Reed et al., 2008), 

suggesting a role in mature adipocytes. Our results suggest that NF-Y also 
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plays a role in pre-adipocyte (and/or an adipocyte stem cell) maintenance 

and/or commitment to adipogeneis, leading to the development of an age-

progressive fat loss by and lowering of serum leptin in NFY-KO mice. 

The NFY-KO animals also showed an age dependent hyperglycemia 

and hyperinsulinmia. At 28 weeks old, NFY-KO mice showed 1.5-fold higher 

blood glucose (p=0.001) and 10-fold higher insulin levels (p=0.01) compared 

to WT (FIGURE 4.5A). Glucose tolerance tests (GTT) were next performed 

showing that the NFY-KO had higher blood glucose levels at all of the time 

points during the 120 minute assay (Figure 4.5B). The NFY-KO mice also 

showed reduced glucose clearance with an area under curve (AUC) of blood 

glucose 1.3-fold greater than WT control group (p=0.007; FIGURE 4.5C). 

During GTT, the NFY-KO mice showed an ~ 4-fold higher insulin level at 30 

minutes after glucose injection (p=0.03), suggesting insulin resistance 

contributed to the reduced glucose clearance (FIGURE 4.5D). Finally, the 

NFY-KO mice had hepatic steatosis with a 2-fold higher of triglyceride 

content in liver (p=0.009, FIGURE 4.5E).  

Leptin replacement has been shown to markedly improve the 

metabolic abnormalities of lipodystrophy in animals and humans and a leptin 

response can be considered a sine que non for this condition. To test the 

effect of leptin, we treated NFY-KO animals with 350ng/hour of recombinant 

leptin via osmotic pumps for 14 days (red graph in FIGURE 4.6). Control NF-Y 

KO mice received PBS (black graph in FIGURE 4.6). Leptin treatment of 20 



81 

week old NFY-KO mice normalized blood glucose at day 10 and day 14 

(p=0.006 and p=0.05 respectively) compared to control mice (FIGURE 4.6A). 

Leptin treatment lowered insulin level to wild-type levels (wide-type data 

not shown) (p<0.01 after day 4, FIGURE 4.6B). Leptin treatment also 

corrected the glucose tolerance during a GTT with a marked lowering of 

blood glucose (p=0.006) and the AUC (P=0.04) (FIGURE 4.6C and D). After 14 

days of treatment, the liver triglyceride content of NFY-KO was lowered by 

50% (p=0.002; FIGURE 4.6E) and the total wet weight of liver was lowered 

by 40% (p=0.001; FIGURE 4.6F). Cessation of leptin treatment led to a 

worsening of glucose tolerance and heaptic steatosis (data not shown). 

We next analyzed the effect of a high fat diet on these animals by 

feeding NFY-KO and WT mice a 60% fat diet (HFD) starting at 4 weeks old. 

On this diet NFY-KO mice failed to gain body weight with a statistically 

different body weight compared to WT mice beginning at 7 weeks of age 

(p<0.01 and p<10-5 after 11 weeks, Figure 4.7A). Similarly, DEXA 

measurements for body adiposity after 6 month of HFD showed that while 

WT showed a marked increase of adiposity of 40%, NFY-KO had an adiposity 

of 9% which is the same adiposity that is seen when these mice are on a 

chow diet (p<10-16; FIGURE 4.7B). Consistent with their low adiposity, serum 

leptin remained low, between 2 to 10 ng/ml, in NFY-KO mice (FIGURE 4.7C). 

The hyperglecemia and hyperinsulinemia were similar in HFD and CHOW fed 

NFY-KO mice, suggesting that a lack of adipose tissue caused the metabolic 
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complications and that the diet per se did not contribute to the phenotype of 

the knockout mice (FIGURE 4.7D). 

FIGURE 4.5 Mice with an Adipose Tissue Specific NF-Y Knockout 
Develop Lipodystrophy. (A). NFY-KO mice develop hyperglycemia (red 
graph) and hyperinsulinemia (blue graph) that progresses with age, n=9. 
At 5 month old, NFY-KO mice show significantly higher increase of blood 
glucose level. (B) The knockout caused an abnormal glucose tolerance test 
(GTT) compromised glucose clearance with (C) a significantly increased 
area under curve (AUC) after IP injection of 1mg glucose/g body weight 
given at time 0, n=16. (D). At 30min after GTT, NFY-KO animals show 3.5-
fold higher insulin level compared to WT, n=7 (E). The knockout mice had 
hepatic steatosis with a 2-fold increased triglyceride levels in liver tissue 
of NFY-KO, n=9. NFY-KO is indicated by white and WT is indicated by 
black in each result.  
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FIGURE 4.6 Leptin treatment ameliorates lipodystrophy phenotypes 
in 5-month-old NFY-KO mice. (A). 14 days of 350ng/hour of Leptin 
treatment via osmotic pump (red graph from day0 to day14 in figure; 
black graph indicates PBS treated NFY-KO animals) normalizes insulin 
level and (B) blood glucose in NFY-KO mice. The difference in insulin 
levels become significant after the initial response to surgery (after day 4) 
and the blood glucose difference becomes significant after day10 of leptin 
treatment. (C) .The GTT is normalized by Leptin at day14, with smaller 
AUC (D). Liver tissues harvested from animals sacrificed on day14 showed 
reduced liver triglyceride content (D left) as well as smaller overall liver 
weight (D right) after Leptin treatment. The numbers of animals shown 
are 10 for Leptin treatment and 7 for PBS control and age-matched 5 
months old. 
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To understand the mechanism of HFD-resistance in NFY-KO mice, we 

measured the energy expenditure of NF-Y KO compared to WT mice using 

calorimetry. Under chow diet, the NFY-KO animals showed decrease 

respiratory exchange ratio (RER), suggesting that these animals utilize 

primarily fat energy source as well as maintain a lower basal metabolism 

(FIGURE 4.8A). Consistently, the NFY-KO animals have lowered core body 

temperature (34.3˚C compared to 34.8 ˚C in WT control animals, p=0.02; 

FIGURE 4.8B). However, these differences were not due decreased food 

intake (data not shown). These result suggested that defect in adipose tissue 

is the primary cause of low adiposity as oppose to increase energy 

expenditure or physical activity. 

In addition to reducing leptin expression, a knockdown of NF-Y in 

vitro and a fat specific knockout in vivo also led to a general effect on 

adipocyte development. This raises the possibility that NF-Y might play a 

general role early in adipocyte development and functions later in 

development to regulate the leptin gene. Indeed, the data are consistent with 

the possibility that, together with other factors, NF-Y directly contributes to 

the regulation of leptin gene expression and that the identification of factors 

interacting with NF-Y could help elucidate the mechanisms controlling leptin 

expression. A recent study showed that NF-Y knockout in neural cells 

resulted in progressive neural degenerative disease via accumulation of 

dysfunctional ER membrane (Luo et al., 2008; Yamanaka et al., 2014). Recent 

studies reveal that ER stress occurs in adipocytes in obesity and diabetes
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FIGURE 4.7 NFY-KO mice are resistant to HFD. (A) The average body 
weight of NFY-KO and WT animals treated with HFD (60% fat) starting 
from 4 weeks old to 28 weeks old is shown, n=9. NFY-KO mice remain a 
lower body weight compared to WT and the difference is significant after 
6 weeks old. (B). After 6 months of HFD, the 28 weeks old NFY-KO mice 
show significantly lowered body adiposity compared to matched WT 
control mice, n=9. (C). NFY-KO mice did not show an increase in serum 
Leptin levels compared to WT animals on the high fat diet (D) Blood 
glucose and insulin levels of various age groups are shown, n=9. At 28 
weeks old hyperinsulinemia and hyperglycemia are present in both NFY-
KO and WT mice. 
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(Gregor and Hotamisligil, 2007; Ozcan et al., 2004); this would be a possible 

mechanism by which NF-Y regulates leptin expression under different 

metabolic states of adipose tissue. However, NF-Y’s general effect on adipose 

cell development with lower levels of expression of adipocyte specific genes 

appears to mask a specific effect on the leptin gene. 

FIGURE 4.8 Calorimetric measurements of NFY-KO mice under chow 
diet.  (A)Oxymax data of NFY-KO and WT animals under chow diet, n=4. 
NFY-KO animals show significantly lowered RER (respiratory exchange 
ratio) during dark cycle, indicating that these animals utilize fat energy. 
(B) During both dark and light cycles, the core temperature of NF-Y-KO 
mice are lowered for about 0.5 ˚C, p=0.02 for both condition, n=8. 
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One caveat of the in vivo studies is that the adiponetin-CRE line that 

was used is not expressed until somewhat later in fat cell development 

(Eguchi et al., 2011; Lee et al., 2013; Wang et al., 2010), and thus cannot be 

used to assess the role of NF-Y at early developmental stages (Jones et al., 

2005). It is thus interesting that a knockout of a gene in adipocyte precursors  

under the control of a promoter that is only expressed at later developmental 

times (the adiponectin promoter) can have a dramatic effect on adipocyte 

mass with an age- dependent worsening of lipodystrophy between 4 and 28 

weeks. One possible explanation is that an NF-Y knockout also has an effect 

on mature adipocytes that leads to reduced replenishment of adipocytes as 

they turnover (Arner and Spalding, 2010a). This would explain the 

worsening of the lipodystrophy with age compared to the normal trend of 

mice to gain fat mass as they get older. It has been previously suggested 

using a model of inducible lipodystrophy mouse models that total pool of 

adipocytes is finite (Pajvani et al., 2005; Wojtanik et al., 2009).  As such, if 

there were a defect in adipogenesis and/or a faster turnover of the knockout 

adipocytes in NFY-KO mice, the adipose tissues would be depleted over time 

manifesting in a progressive lipodystrophy similar to that which we 

observed. It should also be noted that when adiponectin-CRE mice are used to 

generate PPARg and Raptor adipocyte specific knockout mice, the knockout 

animals are lean, resistant to a high fat diet, but metabolically healthy and do 

not show signs of lipodystrophy (Jones et al., 2005; Polak et al., 2008). The 

phenotypic difference between these mouse models and ours suggests that 
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NFY could play a prominent role to specifically control leptin expression, in 

addition to its more general role in fat cell development. NFY could also play 

a functional role in preadipocytes, thus a knockout could exacerbate 

depletion of adipocytes by disruption of the generation and/or maintenance 

of a preadipocyte pool. This possibility is supported by our observations in 

3T3-L1 preadipocytes, as well as other studies where NF-YA was shown to be 

crucial for cell proliferation and stem cell maintenance (Bhattacharya et al., 

2003; Bungartz et al., 2012; Dolfini et al., 2012a). 

Thus one possible mechanism for the lipodystrophy in NF-Y KO mice 

could be that there is a population of adipocyte precursors that expresses 

adiponectin, and that NF-Y ablation in this population compromises the 

ability of animals to replace adipocytes over time. Indeed, recent studies 

report expression of late adipogenic genes including FABP4 and adiponectin 

in a population of preadipocytes in the stromal vascular fraction where 

adipocyte precursors reside (Berry and Rodeheffer, 2013b; Shan et al., 2013) . 

In addition, adiponectin expression can be detected during early 

development at E14 (Birsoy et al., 2011; Wang et al., 2013b). The possibility 

that lipodystrophy is a result of gene ablation in preadipocytes is also 

supported by a previous published lipodystrophy mouse model in FPLD 

(Dunnigan’s familial partial lipodystrophy). The FPLD mouse was generated 

by expressing a dominant negative form of LMNA, the major component of 

nuclear lamina, using the aP2 promoter (Wojtanik et al., 2009). The FPLD 

mice showed progressive fat loss and metabolic complication manifesting 
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lipodystrophy in human patient with the same genotype. Further, primary 

culture isolated from FPLD mice showed impaired adipogenesis in vitro. The 

FPLD mice and NFY-KO mice are phenotypically similar mouse models in 

that both are expressed later in development but also develop a more 

profound defect in adipogenesis than would be expected from an effect only 

on mature adipocytes. 

The importance of the early stages of adipogenesis is also highlighted 

by data from  a patient with congenital generalized lipodystrophy who had a 

de novo, homozygous point mutation in the promoter of c-fos (Knebel et al., 

2013). In 3T3-L1 cells, c-fos expression peaks at early times during hormone 

induction, which then modulates expression of other downstream 

proadipogenic factors during differentiation (Distel et al., 1987; Rangwala 

and Lazar, 2000). Genome wide in silico analysis showed co-localization of 

FOS and NF-Y, but whether this interaction has biological relevance in 

adipose tissue will require further investigation (Fleming et al., 2013). The 

importance of early transcriptional events is also supported by our findings 

for NF-Y which is also expressed only early in adipogenesis and can cause 

lipodystrophy in homozygous knockout mice. It is also possible that other 

mutations in NF-Y can act in a dominant negative manner as it has been 

shown that a dominant negative form NF-Y suppresses c-jun activity, a 

transcription factor that is also important for early adipogenesis (Nabokina 

et al., 2013; Rangwala and Lazar, 2000; Tiwari et al., 2012). 
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Several possible mechanisms for the pathologic loss of adipose tissue 

and lipodystrophy have been identified in both human and mouse models 

though none have appeared to have a specific role on leptin production. For 

instance, lipodystrohpy can be caused by an autosomal recessive mutation in 

AGPAT2, an acyltransferase highly expressed in adipose tissues and 

important for triglyceride synthesis, which leads to an imbalance in fat 

storage and lipolysis (Luckman et al., 1999; Rosenblum et al., 1996; 

Rosenblum et al., 1998). A dominant mutation of PPARg can cause human 

lipodystrophy, as the mutant PPARg showed reduced transcriptional activity 

with a reduced rate of adipogenesis (Rosenbaum et al., 1996; Zhang et al., 

2014). The fld mice (fatty liver dystrophy), a spontaneous form of 

lipodystrophy in mice, results from a point mutation in lipin-1(Peterfy et al., 

2001). Lipin-1 is a phosphatase that plays a role in triglyceride metabolism 

and transcriptional co-activation of PPARg during adipogenesis (Reue and 

Dwyer, 2009). Both dominant and recessive mutation of LMNA (the 

aforementioned FPLD mouse) causes lipodystrophy potentially due to its 

involvement in nuclear lamina that regulates nuclear trafficking and 

transcriptional activity (Schmidt et al., 2001; Wojtanik et al., 2009). Further 

studies will be needed to determine whether NF-YA interacts with any of 

these or other factors that play a role in adipocyte development and/or that 

can contribute to the development of lipodystrophy. It should be noted that 

the lipodystrophy can also be acquired resulting from what appears to be an 

immune mechanism or more recently in HIV patients on triple therapy that 
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includes protease inhibitors (Schott et al., 2004). Lipodystrohy can be the 

result of defective adipogeneis and/or an increase rate of loss of of mature 

adipocytes which then secondarily lead to a reduced leptin level. This 

condition is distinct from leanness, in which adipose tissue mass is reduced 

in the absence of metabolic disorders. Lipodystrophy is caused by a relative 

deficiency of leptin. Thus while fat cell transplants from wild type to 

lipodystrophic mice can correct this condition, transplants of leptin deficient 

adipose tissue cannot (Tran and Kahn, 2010). The fat loss in the NF-Y KO 

mice while significant is not as severe as it is in other etiologic forms (such as 

AZIP model) raising the possibility that the NF-Y KO could have a 

disproportionate effect to decrease leptin production.  

In summary of Chapter 3 and Chapter 4, In addition to establishing a 

role for NF-Y in adipocyte development in vivo and as a potential cause of 

lipodystrophy, these data also provide a framework for dissecting the 

regulation of the leptin gene. In unpublished studies we have identified other 

factors that interact with the leptin gene raising the possibility that leptin is 

regulated by a transcription complex of which NF-Y is a component, 

potentially through both sequence specific and non-specific mechanisms. The 

elucidation of the underlying transcriptional mechanisms by which NF-Y 

controls leptin gene expression could thus lead to the identification of a lipid 

sensing mechanism in fat cells that modulates adipocyte function and leptin 

production in response to changes in adipocyte lipid content. 
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TABLE 4.1 Weight of different organs of NFY-KO and WT control at various ages. 

Testicles Kidneys Liver Spleen 

KO WT KO WT KO WT KO WT 

3 mon 214±12 211±36 419±26 406±31 1408±94 1282±116 110±22 86±7 

5 mon 239±10* 213±8 439±8 422±5 1972±100** 1441±30 121±17 116±12 

7 mon 212±25 234±15 572±66* 422±24 1970±510 1573±106 208±63 94±3 

Pancreas Lung Heart 

KO WT KO WT KO WT 

3 mon 250±41 193±8 193±8* 167±8 215±27 242±26 

5 mon 398±92* 185±12 222±21 171±17 260±6** 186±7 

7 mon 508±140 251±23 367±85* 176±9 251±19* 185±23 
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CHAPTER 5: ES-CELL COMPLEMENTATION 

5.1 Introduction 

Based on the lipostatic viewpoint of energy homeostasis, adiposity 

level serves as a gauge for body energy availability. By modulating leptin 

production, adipose tissue signals the central nervous system to adjust food 

intake and energy expenditure, which are physiological and behavioral 

responses aiming to maintain adiposity homeostasis. As such, adipose tissue 

size control is central to energy homeostasis in animals. The collection of 

studies on adipose tissue development in humans and rodents suggests a 

framework of coordinated hypertrophy (increase in cell size) and 

hyperplasia (increase in cell number) in determining body adiposity. Under 

healthy conditions, total adipocyte number in an animal remains close to 

constant after the adolescence period (Greenwood et al., 1979; Greenwood 

and Hirsch, 1974; Knittle and Hirsch, 1968) and the average size of 

adipocytes also stabilizes in early adulthood (Hemmeryckx et al., 2010; Stiles 

et al., 1975). This leads to the hypothesis that the plateau in adipocyte 

number in adult animals is determined and controlled by their 

developmental program. Restoration of adipose tissue following lipectomy 

(surgical removal of adipose tissue) in rodents and humans further suggests 

that total adiposity is regulated (Espejel et al., 2010; Hernandez et al., 2011; 

Huang-Doran et al., 2010; Reyne et al., 1983). Experiments that studied 

adipose tissue cellularity in juvenile rats demonstrated compensatory 

growth to generate the same total number of adipocytes as control animals, 
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which was not observed when the same manipulation was performed on 

adult rats (Faust et al., 1977a, b). Nutritional manipulation by altering litter 

size during early development leads to a decrease in adipocyte numbers 

(Knittle and Hirsch, 1968), yet starvation and refeeding of non-obese adults 

do not affect the total adipocyte number (Hirsch and Han, 1969; Yang et al., 

1990). Additionally, it was recently shown that mature adipocytes turn over 

at a constant, albeit slow, rate in both adult humans and mice (Spalding et al., 

2008; Wang et al., 2013b). In sum, these results suggest developmental 

programming in determining adipocyte cell number, which is maintained 

through a fine balance of adipogenesis and adipocyte death. The mechanism 

involved in regulation of adipocyte cell number and coordination of 

adipocyte hypertrophy together in determining total adiposity is largely 

unknown. 

The plasticity of adipose tissue is most prominent in the case of 

obesity. Several studies have investigated the relative contribution of 

hypertrophy and hyperplasia to achieve massive adipose tissue accumulation 

in obesity, with varying results. The presented data consistently showed 

significant contribution of hyperplasia in early-onset obesity, prior to the 

developmental establishment of adipocyte number (Lemonnier, 1972; Salans 

et al., 1973), however, it remains in debate whether hyperplasia also 

contributes to late-onset obesity. Nonetheless, given the upper limit on 

adipocyte size (Leonhardt et al., 1972), which would limit adipose tissue 

expansion by hypertrophy alone, it is assumed that hyperplasia must 
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accompany hypertrophy at least in cases of extreme obesity. Mathematic 

modeling on total fat mass versus mean adipocyte volume supports this 

conclusion (Jo et al., 2009; Spalding et al., 2008). Additionally, the extent of 

hyperplasia contribution to adipose gain appears to be dependent on many 

factors including sex, genetic background, genetic versus dietary causes of 

obesity, as well as timing of the assay and the specific adipose depot of 

question.  A recent study using AdipoChaser mice demonstrated that the 

appearance of new adipocytes in visceral adipose tissue under HFD much 

precedes that in the subcutaneous compartment (Lee et al., 2012; Wang et al., 

2013b), while another study showed that HFD induced a higher adipogenic 

capacity in subcutaneous rather than visceral adipose tissue (Joe et al., 2009). 

Expansion of adipose tissue in response to HFD is critical to the metabolic 

health of animals. Under positive energy balance, adipose tissue not only 

stores energy for future use but also ensures that the storage is in a safe form. 

However, since the capacity of adipose stores is finite, sustained energy 

balance results in failure of adipose tissue to accommodate surplus energy as 

fat and results in lipotoxicity in other peripheral tissues. Such an 

“expandability” model (Virtue and Vidal-Puig, 2008) is supported by studies 

of human and mouse models on the opposite ends of the obese spectrum. 

Both lipodystrophy (with a very limited adipose capacity) and morbid 

obesity (with a very large capacity yet deficit compared with chronic energy 

surplus) represent conditions of stressed and unhealthy adipose tissue, thus 

various metabolic conditions ensue. Thus, it is possible to ameliorate insulin 
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resistance in the face of obesity by increased capacity of adipose tissue, 

which has been demonstrated by crossing adiponectin-overexpression mice 

to ob/ob (Kim et al., 2007). 

The mechanism by which obesity affects adipogenesis in vivo is also 

not clear, although the observation of similar turnover rates of adipocytes in 

obese and non-obese adults suggested that the state of obesity alters the 

adipocyte number set point (Spalding et al., 2008). Several HFD feeding 

studies have demonstrated that the appearance of new adipocytes coincides 

with existing adipocytes reaching their maximal size (Faust et al., 1978; Joe et 

al., 2009; Wang et al., 2013b). Although it has been shown that paracrine 

activity of mature adipocytes can affect adipogenesis (Janke et al., 2002; 

Marques et al., 1998), the details of these processes are not well understood. 

Adipose tissue, as a whole, is an essential regulatory component in energy 

homeostasis acting as both an energy reservoir and an endocrine organ. 

Moreover, it appears that adipocyte cellularity is predictive of whole-body 

metabolic health in obesity, in which hypertrophy is an independent risk 

factor for insulin resistance and T2DM regardless of BMI (Arner et al., 2010; 

Lonn et al., 2010; Weyer et al., 2000). Altogether, studying the mechanisms 

controlling adipocyte hypertrophy and hyperplasia is instrumental to our 

approach in viewing adipose tissue as a metabolism organ as well as 

understanding pathogenesis of obesity and metabolic diseases. 
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This chapter describes a series of experiments employing a novel 

blastocyst complementation assay to elucidate the molecular mechanisms 

that control adipose tissue deposition in mice in vivo. Specifically, wild-type 

embryonic stem cells (ES cells) are injected into the blastocysts of AZIP 

lipodystrophic mice (FIGURE 5.1). When pluripotent wild-type ES cells are 

injected into AZIP blastocysts, the resulting chimeras (AZIP-chimera) are 

expected to have restored adipose tissue and rescued AZIP phenotypes. As 

the AZIP blastocyst is defective in adipogenesis, such a developmental defect 

is complemented by the progeny of pluripotent ES-cells. By necessity, the 

adipocytes in AZIP-chimera are exclusively derived from injected ES cells. 

Since the ES cells are incorporated into the embryo and will contribute to all 

lineages including adipocyte precursors, this method allows us to observe 

the earliest developmental processes of adipogenesis in vivo. To date, there is 

no other tool capable of specific manipulation of early adipogenesis in vivo, 

since the nature of these stages is largely unknown. 

Similar blastocyst complementation assays have provided unique 

tools to test the ability of a mutant to form the cell type or organ in question. 

These are effective in vivo systems not only to study the developmental 

processes but also to study the effect of a genetic defect on adult tissues. 

Some examples include studies on lymphocytes (Chen et al., 1993), ocular 

lens (Liegeois et al., 1996), liver (Espejel et al., 2010), pancreas (Jonsson et al., 

1994), muscle (Cote et al., 1999), and CNS (Low et al., 2009). Analysis of cell 

lineage in chimeric tissues allows the distinction of cell-autonomous and 
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non-cell-autonomous effects of the mutant. A prominent example is the study 

on developmental determinant of pancreas and liver sizes (Stanger et al., 

2007). In such case, wild-type ES cells were injected into blastocysts of 

apancreatic Pdx1-deficient mice. The resulting chimeras are restored with a 

pancreas. However, the size of the restored pancreas is limited by the 

number of injected progenitor cells. In contrary, liver size is not limited by 

the number of progenitor cells and other intrinsic factors dictate its final size 

(Stanger et al., 2007). In a preliminary study, we determined the relationship 

FIGURE 5.1 Generation of AZIP-chimera by ES-cell complementation 
into AZIP blastocysts. AZIP transgenic animals possess lipodystrophic 
phenotype with complete lack of white adipose tissue (see right side 
photo). Multipotent wild-type ES-cells are injected into AZIP blastocysts, 
which will complement the lipodystrophic phenotype and restore adipose 
tissue exclusively derived from ES-cells. Photograph of animals adapted 
from Life without white fat: a transgenic mouse (Moitra et al., 1998). 
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between the number of progenitor cells and whole body adipose content and 

showed that adult adiposity under normal conditions is independent of 

progenitor number. This is consistent with various prior studies using 

individual animals that adiposity is maintained by some intrinsic 

mechanisms during external perturbations. Notably, HFD can be viewed as 

an external challenge under which adipose tissue responds with 

hypertrophic and hyperplastic expansion. Using AZIP-chimeric mice with 

varying chimerism, this part of the thesis discusses how predisposition of 

limited progenitor affects adipose tissue expansion during HFD exposure.  

Previous examples of a loss-of-function study of PPARg in 

adipogenesis utilized a similar approach. Homozygous knockouts of PPARg 

do not survive past embryonic day 10 due to a defect in placental 

development (Barak et al., 1999; Kubota et al., 1999). To circumvent this 

problem, one approach was to create an aggregation of chimeras derived 

from wild-type ES cells and homozygous PPARg knockout ES cells (Rosen et 

al., 1999). The result demonstrated that PPARg is required for adipogenesis 

in vivo by showing exclusion of knockout cells from adipose tissue, but not 

several other tissues. The alternative approach was to create chimeric 

embryos using wild-type tetraploid cells, which allow rescue of the placental 

defect, and PPARg knockout ES cells, which are the sole contributor to the 

embryo proper (Barak et al., 1999). Unfortunately, this resulted in only one 

live birth with a brown adipose tissue defect and died shortly after birth. In 

the second part of our study, we demonstrate the utilization of our ES-
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complementation model in the study of adipogenesis in vivo by first 

performing the proof-of-principle experiment with PPARg knockout cells. 
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5.2 Results and Discussion 

AZIP (FVB) chimeras were generated by injecting B6-Tyrc-YFP mouse 

ES-cells into 3.5-day blastocysts from breeding of wild-type FVB females to 

AZIP(FVB) transgenic males. Since both the blastocyst and the ES-cells (both 

harboring homozygous Tyrc alleles) have white coat color, AZIP(FVB) 

chimeras are completely albino. Within the AZIP positive group, 11 males 

carried YFP genotype, which indicated these are AZIP(FVB) chimeric mice 

with composed of both AZIP-positive cells and YFP-positive cells. 

Alternatively, the B6-ES cell derived cells can be distinguished from FVB-

blastocyst derived cells at agouti locus, where FVB strain carries the alleles 

for agouti A/A and B6 strain carries nonagouti a/a. However, we did not 

employ this genotyping strategy, nor did we compare measurements for 

chimerism using different loci. In practice, degree of chimerism of these 

AZIP-chimeric mice was determined by the percent of YFP-genotype cells 

comparing to a genomic locus common to both strains, fabp4, in DNA sample 

extracted from whole blood samples. This approach was rationed that, since 

adipose tissue are always 100% ES-cell contributed (see below) and that 

different developmental lineages may demonstrate variability in ES-

contribution (Kusakabe et al., 1988), a tissue type that is closely related to 

adipose tissue should be used as a surrogate for chimerism in preadipocyte 

population. In addition, this surrogate tissue is best collected via simple, non-

invasive biopsy. Since adipocytes are generally considered mesenchymal 

linage along with muscles, endothelial cells, osteoblasts, and blood cells, we 
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hypothesized that DNA extracted from whole blood could represent the 

genotype composition of DNA from adipose-lineage tissues. This hypothesis 

was tested by comparing DNA samples of wild-type chimeric animals (i.e. 

chimeric mice produced by combing wild-type ES cell and wild-type 

blastocyst), which are chimeric for every tissue including adipose tissue and 

blood (FIGURE 5.2). Our hypothesis is confirmed, because the percentage of 

YFP-cells in adipose tissue in wild-type chimeras highly correlated 

(R2=0.6968) to the percentage measured in whole blood samples. Using this 

method, we measured the degree of chimerism of 11 AZIP(FVB) chimeric 

male mice, and summarized the result in TABLE 5.1. Sectioning of the 

y = 0.0624x + 0.0017 
R² = 0.6968 
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FIGURE 5.2 Correlation between degrees of chimerism measured in 
genomic DNA of subcutaneous adipose tissue versus whole blood of 
WT-chimera. Chimerism is defined as amount of YFP genes (carried by 
ES-cells) out of amount of FABP4 gene (carried by both ES-cell and 
blastocyst).    
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adipose tissue collected from one of the chimeras showed 100% YFP mature 

adipocytes (FIGURE 5.3).  

Lack of adipose tissue in AZIP transgenic mice results in severe 

metabolic complications, including hyperglycemia, hyperinsulinemia, 

hyperlipidemia, and liver steatosis (Moitra et al., 1998). Moreover, it has 

been shown that surgical transplantation of adipose tissue (Colombo et al., 

2002; Gavrilova et al., 2000; Tran and Kahn, 2010) and isolated adipocyte 

FIGURE 5.3 Immunohistology of adipose tissue from one AZIP-
chimeric animal. The tissue is fixed in 4% PFA and paraffin embedded 
before sectioning. FABP4 staining indicates white adipocytes, which 
colocalized with YFP staining for ES cells.  
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progenitor cells (Rodeheffer et al., 2008) rescue these metabolic phenotypes, 

primarily by restoration of adipokine secretion (Colombo et al., 2002). In the 

AZIP-chimeric animals, adipose tissue was restored by providing ES-cells 

capable of adipogenesis in vivo. As such, the lipodystrophic defects caused by 

AZIP-transgene can be complemented and the metabolic phenotypes can be 

rescued if the ES-cells developed into functional adipocytes in the chimeric 

mice. At 8 weeks of age, all 11 out of 12 AZIP(FVB) chimeric mice showed 

normalized blood glucose from 580±12 mg/dL in AZIP(FVB) transgenic 

animals that are not complemented (n=10; labeled “uncomp.”) to 166±6 

mg/dL in complemented chimeric animals (n=11), p=3x10E-7 (FIGURE 5.4A). 

Age matched wild-type chimeric mice have blood glucose 167±7 mg/dL 

(n=9), which showed no significant difference with the complemented group. 

One additional chimeric mouse with 2% chimerism was hyperglycemic and 

leptin deficient, suggesting that the ES-cell did not complement adipocyte 

development in this animal. Compared to hyperinsulinemia AZIP(FVB) mice, 

which have plasma insulin of 9.3±0.4 ng/mL (n=5), AZIP(FVB) –chimera have 

significantly lowered insulin level of 3.5±0.9 ng/mL (n=11; p=2x10E-4). 

Wild-type chimeric mice have 0.8±0.2 ng/mL plasma insulin (n=7), which is 

slightly lower than AZIP-chimeric group with p=0.05 (FIGURE 5.4B). 

Euglycemia accompanied by potential hyperinsulinemia in complemented 

animals suggested partial insulin resistance and only partial rescue of AZIP 

phenotypes by wild-type ES cells. Body adiposity as measured by DEXA and 

serum leptin levels do not correlate with degree of chimerism, ranging from 
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1% to 97% in both AZIP- and WT-chimeras (FIGURE 5.5A and B). Moreover, 

body adiposity measurements correlate with leptin levels in both groups of 

chimeras, where the degrees of correlation are identical between the groups 

(FIGURE 5.5C). The three groups of animals showed no difference in total 

body weight from 4 to 13 weeks old (FIGURE 5.5D). This suggested that body 

adiposity and leptin level are controlled by adipocyte autonomous factors 

FIGURE 5.4 Metabolic phenotypes of AZIP(FVB)-transgenic animals.  
Hyperinsulinemia and hyperglycemia are rescued by YFP-labled ES-cell 
complementation in AZIP(FVB)-chimeras. All animals depicted are live 
born from blastocyst injection and categorized into three groups: 
AZIP(uncomp.) as AZIP animals without ES-cell contribution, AZIP-
chimera as animals carrying both AZIP-cells and YFP-cells, and WT-
chimera as animals carrying wild-type FVB cells and ES cells. (A). Blood 
glucose in AZIP-chimera is significantly lowered from 580 mg/dL in 
AZIP(uncomp.) to 166 mg/dL (p=3x10E-7). WT-chimeras have similar 
blood glucose level of 167 mg/dL. (B). Insulin in AZIP-chimeras is lowered 
from 9.3 ng/mL in AZIP(uncomp.) to 3.5 ng/mL (p=2x10E-4), yet this 
level is slightly elevated compared to 0.8 ng/mL in WT-chimera (p=0.05). 
n=10 for AZIP(uncomp.), n=11 for AZIP-chimera, and n=9 for WT-
chimera.  
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and that limitation on progenitor number per se does not affect adiposity 

under normal condition. 

Similar insulin resistance phenotype was observed in AZIP-animals 

underwent either transplantation of wild-type adipose tissue or leptin 

replacement (Colombo et al., 2002). On the other hand, ob/ob mice treated 

with leptin showed complete normalization on insulin level. Together these 

FIGURE 5.5 Relationships between degrees of chimerism, body 
adiposity, and serum Leptin levels in AZIP(FVB)-chimeric animals. 
Wild-type chimeric animals, which are chimeras that do not carry AZIP 
transgenes and therefore are chimeric at every tissues, are plotted in 
white diamonds, while AZIP-chimera are depicted in black diamonds. 
Degree of chimerism does not affect serum Leptin levels (A) nor body 
adiposity (B). Leptin level is correlated with body adiposity in chimeric 
animals (C), as would be expected in normal animals. (D). Both groups of 
chimeric animals showed no difference in body weight compared to 
AZIP(uncomp.) mice (green squares) generated from microinjection.    
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results demonstrated that while lack of adipocytes and leptin are the primary 

defect to insulin resistance, additional factors of adipose tissue that are 

missing in AZIP and/or other tissues remain important in glucose 

metabolism. In AZIP-chimeric mice, the only cell type completely derived 

from ES cells is mature adipocytes. As such, it is concluded that cell-

autonomous factors of mature adipocytes cannot fully rescue the metabolic 

defects caused by AZIP transgene. Non-cell-autonomous factors such as 

AZIP-associated defect in the stroma vascular fraction (SVF) of adipose tissue 

and in liver and muscle tissues can affect glucose metabolism. For instance, it 

has been shown that the residual adipose tissue of AZIP-mouse, consisted of 

primary SVF, presents a hyperadipogenic niche (Berry and Rodeheffer, 

2013b; Birsoy et al., 2008a). Moreover, it has been shown that certain 

population of isolated wild-type preadipocytes showed varied adipogenic 

capacity when transplanted into AZIP or wild-type mice (Berry and 

Rodeheffer, 2013a), suggesting non-adipocyte autonomous factors in SVF 

that can alter the cellularity and functioning of whole adipose tissue, despite 

all the mature adipocytes are wild-type. Since AZIP-transgene is expressed 

under adipocyte specific aP2-promotor, it is also unclear whether the 

phenotype is a result of leaky expression. Previous study has demonstrated 

the promiscuity of aP2-promotor in other tissues and especially during 

development (Lee et al., 2013), therefore it is possible that early 

developmental events contribute to the observed metabolic phenotypes in 

adult animals. 
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The AZIP(FVB) blastocyst complementation experiment provided the 

preliminary validation of the method. However, we experienced difficulties 

when manipulating the AZIP(FVB) blastocysts, which developed poorly in 

vitro after isolation at morula stage. We suspected that FVB-background was 

not ideal for embryo manipulation and it was not compatible with B6-

backgroung of ES-cells (Schuster-Gossler et al., 2001). Additionally, B6 is the 

common strain employed in HFD study and it the best characterized in 

metabolism (West et al., 1992). Thus, to study effect of HFD on adipose tissue 

accumulation in chimeric animals, we generated a separate set of chimeric 

mice using AZIP(B6)-blastocyst and B6-Tyrc-YFP ES-cell. These chimeric 

animals carried inbred B6 genetic background in all cells, thus also avoided 

potential complication due to background variability.  

We analyzed 17 AZIP(B6)-chimeras and compared the results to 17 

AZIP(B6) transgenic mice and 19 WT(B6)-chimeras generated as littermates 

from blastocyst injection experiments. While AZIP(B6) transgenic mice 

showed lowered body weight at weaning (3 to 4 weeks old) compared to 

both chimeric groups, no difference was detected among the three groups in 

adult animals (FIGURE 5.6). At 12 weeks old, AZIP-chimeras showed 

10.0±0.6% body adiposity measured by MRI, which was indistinguishable 

from that of AZIP-uncomplemented animals at 8.9±0.3% but significantly 

lowered compared to WT-chimeras at 16.9±0.4% (p=10E-4; FIGURE 5.7A 

and B). The same comparisons were observed for adiposity measured at 24 

weeks old, where AZIP-chimeras showed 11.0±0.9%, AZIP showed 9.2±.4%, 
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and WT-chimeras showed 20.9±0.1%, n=15, 13, 18 respectively due to 

mortality (FIGURE 5.7C and D). Difference between AZIP-chimeras and WT-

chimeras remained significant with p=2x10E-4. Scattered plot of adiposity 

versus degree of chimerism showed that AZIP-chimeras are leaner than WT-

chimeras across the board (FIGRUE 5.7B and D). Consistently, at 12 weeks 

old, AZIP-chimeras have lowered serum leptin levels at 5.25±0.97ng/mL 

compared to that of WT-chimeras at 10.45±1.49ng/mL (p=6x10E-3). 

Nonetheless, AZIP-chimeras showed significant rescue of leptin deficiency 

phenotype of AZIP-uncomplemented mice, in which serum leptin levels were 

below detection limit (FIGURE 5.7E and F). In both AZIP- and WT-chimera 
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FIGURE 5.6 Body weight of animals from AZIP(B6) blastocyst 
complementation. AZIP(uncomp.) showed lowered body weight 
between 3 and 4 weeks (p=0.008 and 0.01 respectively), but no difference 
is detected among all groups in other age measured. n= 17 for 
AZIP(uncomp.) showed in black squares, n=17 for AZIP-chimera showed 
in blue squares, and n=19 for WT-chimera showed in white squares.  
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FIGURE 5.7 Body adiposity and serum leptin of AZIP(B6) animals. All 
animals presented are pups of blastocyst complementation. (A). Body adiposity 
at 12 weeks old measured by MRI, where AZIP(uncomp.), AZIP-chimera, and WT-
chimera have 8.9%, 10.0%, and 16.9% adiposity respectively. AZIP(uncomp.) 
and AZIP-chimera are indistinguishable while both are significantly lowered than 
WT-chimera (p=10E-4). (B). Adiposity at 12 weeks old versus chimerism in  
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leptin level does not correlate with chimerism. Two WT-chimeras with high 

leptin levels were excluded based on outlier tests. 

Next, we examined whether metabolic complications in 

lipodystrophic AZIP-transgenic mice can be rescued by complementing 

adipogenesis defect with ES-cells. Hyperinsulinemia at 12 weeks old due to 

adipose tissue defect in AZIP-transgenic mice was rescued in AZIP-chimeras, 

from 111±11ng/mL to 8±4ng/mL (p=5x10E-12). Insulin level in AZIP-

chimeras is slightly elevated compared to WT-chimeras at 1.84±0.24ng/mL, 

p=10E-2 (FIGURE 5.8A). Insulin level was inversely correlated with 

chimerism in AZIP-chimeras but not WT-chimeras (FIGURE 5.8B). Moverover, 

insulin level was also inversely correlated with body adiposity in AZIP-

chimeras but not WT-chimeras, suggesting that the incompletely rescued 

metabolic phenotype was secondary to adiposity defect (FIGRUE 5.8C). On 

the other hand, no significant difference in blood glucose at 12 weeks old was 

detected among groups, primarily because AZIP(B6) animals, as previous 

reported (Colombo et al., 2003; Haluzik et al., 2003), were not hyperglycemic 

to start with (FIGURE 5.8D). Liver steatosis prominent in AZIP(B6) mice, as 

measured by total liver weight (Colombo et al., 2002), was rescued by 

FIGURE 5.7 (cont.) AZIP-and WT-chimeras. AZIP-chimera show lower adiposity 

across all range of chimerism. (C). and (D). Body adiposity at 24 weeks old. (E). 

Serum leptin in three groups of animals. AZIP(uncomp.) has undetectable level of 

leptin. AZIP-chimera has 5.25 ng/mL leptin, which is lowered compared to that 

of WT-chimeras at 10.45 (p=6x10E-3). (F). Serum leptin versus chimerism in 

chimeric animals shows that AZIP-chimeras have lowered leptin across all range 

of chimerism.    
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FIGURE 5.8 Metabolic phenotype in AZIP(B6) animals. (A). Insulin levels at 
12 weeks old. AZIP(uncomp.) mice are hyperinsulinemic at 111 ng/mL, while 
insulin level is significantly lowered in AZIP-chimeras at 8 ng/mL (p=5x10E-12), 
which remain slightly elevated compared to WT-chimera at 1.8 ng/mL (p=10E-
2). (B). And (C). Insulin level is inversely correlated with chimerism and body 
adiposity. (D). Blood glucose in each group of animals at 12 weeks old. Despite 
having elevated insulin levels, AZIP-chimeras showed wild-type level of blood 
glucose. (F). And (G). Liver steatosis as measured by total liver weight. Liver 
weight is comparable in AZIP-and WT- chimeras across all range of chimerism.   
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complementation, where liver of AZIP-chimera weighed 1786±48mg (n=4) 

and liver of AZIP-uncomplemented mice weighted 6058±479mg (n=5), 

p=10E-4. Liver of WT-chimeras weighted 1505±125mg, with no 

distinguishable difference compared with AZIP-chimeras independent of 

chimerism (FIGURE 5.8E and F). 

The observations that AZIP-chimeras remained slightly lipodystrophic 

and leptin deficient suggested that partial adipose tissue defect was the 

primary cause of insulin resistance. This is consistent with observation in 

human patients where metabolic complication is in general correlated with 

extent of adipose tissue loss (Huang-Doran et al., 2010). In AZIP-chimeric 

model, since all mature adipocytes are derived from wild-type progenitors, 

this may reflect non-adipocyte autonomous factors that contributed to 

dysfunction of adipose tissue. For instance, insulin resistance in adipocytes 

can lead to defective adipogenesis and lipid accumulation, which can lead to 

lipotoxicity in other tissues despite only moderate lipodystrophy (Laustsen 

et al., 2002; Rosen and Spiegelman, 2000). Impaired glucose metabolism in 

adipose tissues, such as in case of early stage T2DM, is primary to 

development of insulin resistance in muscles and liver (Abel et al., 2001; 

Shepherd and Kahn, 1999). By this mechanism, it is postulated that AZIP-

chimeric mice became moderately insulin resistant despite having 

adipocytes restored. Whether AZIP-transgene, which is expressed in varying 

degree in other tissues of the chimeras, directly affects other tissues remains 

unclear. Although previous report suggested PPARg down-regulation in liver 
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of AZIP-transgenic model as a mechanism of liver insulin resistance 

(Gavrilova et al., 2003), it cannot be deduced from such case if it originated 

from a liver-autonomous defect. Alternatively, reduced plasma leptin itself 

can result in hyperinsulinemia, because leptin has been shown to negatively 

regulate insulin secretion as part of the adipoinsular axis (Kieffer and 

Habener, 2000; Kulkarni et al., 1997). 

Next, we place AZIP- and WT-chimeric animals on HFD treatment to 

assay whether limited adipocyte progenitors in AZIP-chimeric mice limits 

diet induced obesity. After 6 weeks of HFD starting from 6 weeks old, AZIP-

chimeras showed averaged 47.3% of weight gain (n=14), which is 

significantly lower than 78.8% weight gain of WT-chimeras (n=11; p=5x10E-

3). Comparing to WT-chimeras, AZIP-chimeras with low chimerism gained 

less weight (FIGURE 6.9A and B). A subset of these animals that were 

littermates were further studies on change in body adiposity and insulin 

levels after HFD. Body adiposity elevated by 5.7% in AZIP-chimeras (n=7), 

which is significantly lower than the elevation of 21.2% in WT-chimeras 

(n=10; p=8x10E-5). Similar to total body weight, low-chimerism correlated 

with less adipose tissue accumulation in AZIP-chimeras but not in their WT-

counterparts (FIGURE 6.9C and D). Insulin resistance developed more readily 

in AZIP-chimeras than WT-chimeras, where insulin levels were 

3.17±0.95ng/mL and 0.95±0.25ng/mL respectively (p=10E-2) while glucose 

levels were comparable (FIGURE 6.9E, F and G). Interestingly, serum leptin 

correlates with body adiposity measured after 6 weeks of HFD in both AZIP- 
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FIGURE 5.9 AZIP(B6)-chimeras are resistant to obesity but not metabolic 
complication of HFD. (A). Percent of total weight gain after 6 weeks of HFD 
(from 6 to 12 weeks old). AZIP-chimeras on average gained 47% weight while 
WT-chimeras gained significantly more, 79% (p=3x10E-3). (B). Analysis on 
percent weight gain versus chimerism shows that, at lower chimerism, WT-
chimeras gained more weight than AZIP-chimeras. n=14 for AZIP-chimera and 
n=11 for WT-chimera. (C). Analysis of a subset of littermate chimeras on body 
adiposity change after 6 w of HFD. AZIP-chimeras (6%) accumulated less fat 
mass compared with WT-chimeras (21%), p=8x10E-5. (D). Change in adiposity 
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and WT-chimeras (FIGURE 5.10). In summary, the result suggested that 

leptin production is a cell-autonomous property of adipocytes, adipose tissue 

expansion and metabolic complications as a result of adipose tissue defect 

are not adipocyte-autonomous. 

There are two possible explanations for the apparent resistance to 

HFD observed in AZIP-chimeric animals. Since adipose tissue expansion is 

accompanied by hypertrophy and hyperplasia (Arner and Spalding, 2010b), 

defects in either or both processes can lead to failure in adipose tissue 

accumulation. If AZIP-chimeric adipose tissue is insulin resistant as 

previously discussed and since insulin signaling is required for lipid 

accumulation in adipocytes (Yu et al., 2008), AZIP-chimeras will not become 

obese on HFD through hypertrophic adipose expansion. Alternatively, defect 

in hyperplasia can be explained by limited adipocyte progenitor imposed by 

ES-cell complementation. Since it has been shown that the pool of adipocyte 

is finite in adult animals (Pajvani et al., 2005; Wojtanik et al., 2009), it can be 

inferred that variation in ES-cell versus AZIP-cells makeup in this pool affects 

adipogenic capacity of the animal. This is consistent with the observation 

where higher degree of chimerism conferred to greater increase of body 

weight after HFD. Consistently, AZIP-chimeras developed greater insulin 

FIGURE 5.9 (cont.) versus chimerism shows that AZIP-chimeras with low 

chimerism is defective at accumulate fat mass. (E). Insulin levels of HFD-treated 

chimeras shows AZIP-chimeras are more susceptible to development of insulin 

resistance. (F). Blood glucose of HFD-treated chimeras shows no difference in 

glucose level in AZIP-and WT-chimera. For figure (C) to (F), n=7 for AZIP-

chimeras, and n=10 for WT-chimeras.    
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resistance compared with WT-chimeras under HFD, consistent with previous 

observation that limited expandability of adipose tissue is causative to 

metabolic complication (Huang-Doran et al., 2010; Virtue and Vidal-Puig, 

2008). However, low adiposity phenotype compared to WT-chimeras was 

observed under both chow and high-fat diet cross all range of chimerism, 

FIGURE 5.10 Serum leptin versus body adiposity of AZIP(B6)-
chimeras measured by MRI. (A). Animals are fed on chow diet. Both 
AZIP-and WT-chimeras have serum leptin level positively correlated with 
adiposity. n=17 for AZIP-chimera and n=19 for WT-chimeras. (B). Animals 
are fed on HFD. n=14 for AZIP-chimeras and n=11 for WT-chimeras.     
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suggesting that low contribution of ES-cell to the adipocyte per se cannot 

fully account of the observed phenotype. Additional factors such as the 

presence of AZIP-cells in the SVF can limit adipogenesis, including 

accumulation of lipid during terminal differentiation, must be considered. 

It has been a long debate whether hyperplasia contributes to obesity. 

Hyperplasia is strongly correlated with severity of obesity, especially in 

morbidly obese individuals (Hirsch and Batchelor, 1976). However, the data 

was collected cross-sectionally, and therefore gives no direct information on 

the longitudinal relationship between adiposity and adipocyte cellularity. 

Therefore it is impossible to conclude whether the average increase in 

adipocyte number seen in obese individuals is the result of adult adipocyte 

recruitment or rather a reflection of a population of people predisposed (by 

their pre-adulthood fat cell number) to obesity. At least in short-term studies, 

adult humans do not show any increase in adipocyte number following 

significant weight gain (Salans et al., 1971). Consistently, our data 

demonstrated that resistance to obesity as a result of predisposed limited 

adipocyte numbers, although complication from other tissues including the 

SVF cannot be ruled out. 
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TABLE 5.1 AZIP(FVB)-chimeric animals. 
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5.3 Application 

The presented blastocyst complementation assay provides a novel 

platform to establish the role of specific molecules to regulate adipose tissue 

mass in vivo. This is potentially a better alternative to the common employed 

loxP-CRE system for the blastocyst complementation requires fewer breeding 

and provides higher tissue specificity. 

The most widely used adipocyte-specific CRE-mouse model has been 

the aP2 promoter, which drives expression of fatty acid binding protein 4 

(FABP4). However, in vitro studies have shown that aP2 is induced late in 

adipogenesis (Bernlohr et al., 1985) and in vivo results have suggested that 

aP2 is not expressed in adipocyte precursors (Rodeheffer et al., 2008). In 

addition, the aP2-promoter expresses in other tissues during developments 

such as macrophages and brain (Lee et al., 2013). Alternatively, Adiponectin-

CRE provides higher adipocyte-specificity, but it is also only expressed in 

mature adipocytes (Jeffery et al., 2014). Lastly, PPARg-driven mouse model 

has been shown to label adipogenic stromal cells in vivo (Tang et al., 2008), 

yet its application is also limited stages in late adipogenesis. Most recently, a 

novel preadipocyte factor, Zfp423, was identified as adipogenic marker both 

in vitro and in vivo (Gupta et al., 2010; Gupta et al., 2012). Although Zfp423 is 

expressed prior to aforementioned adipocyte factors in adipogenesis, its 

specificity in vivo remained to be accessed. Indeed, as adipogenesis in vivo 

and accompanying cell markers are poorly known, no suitable genetic mouse 

model for studying preadipocytes have been constructed. With the AZIP-
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chimera model, adipocyte specific gene modifications can be achieved in one 

step by introducing gene targeted mutations into the donor ES cells (FIGURE 

5.11). As such, gene modification is achieved in early progenitor cells, which 

is very useful to study the genetics of adipose tissue development in vivo. 

However, the current AZIP-chimera model is limited in several 

regards. First, since AZIP-transgene is driven by aP2-promoter, tissue 

specificity remains concerning. Additionally, since any complementing effect, 

in theory, cannot be assayed before the expression of AZIP-transgene, defects 

in early adipocyte stages remain masked. Secondly, the moderate 

lipodystrophy observed in AZIP-chimeras complemented with wild-type ES 

cells is indicative of inherent developmental defects of cultured ES-cells. It 

FIGURE 5.11 AZIP-blastocyst complementation as a method to 
generate adipocyte specific knockout in one generation. Green and 
red color depicts ES-cells that are labeled with different marker. Blue 
triangle represents a homozygous knockout of a gene of interest, 
presumably generated by CRISPR mediated genome modification.  
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has been shown that cultured ES-cells accumulate epigenetic modifications 

that affect in vivo development (Eckardt et al., 2011). Even if a specific ES-cell 

clone has been proven pluripotent (defined as capable of producing live born 

through tetraploid complementation), it could be a result of developmental 

compensation and that it does not provide direct information on its 

developmental capacity under normal conditions. In addition, AZIP-

blastocyst is likely developmentally dominant over ES-cells. Although the 

mechanistic details are unclear, it has been shown that, through inter-species 

blastocyst complementation, the blastocyst host is instructive in determine 

overall animal size and organ morphology in interspecies chimeras (Solter, 

2010). As such, it is likely that the developmental potential of wild-type ES-

cells in terms of its adipogenic capacity is limited by AZIP-blastocyst. Two 

possible strategies can circumvent this limitation. First, aggregation chimeras 

using two embryos will address the concern of developmental discrepancy 

between live embryo and cultured cells. Second, reverse the combination of 

blastocyst and ES-cell by injecting AZIP-transgenic ES-cells into wild-type 

blastocysts. This provides additional advantage of lightening up the breeding 

load on AZIP-animals, which has compromised fertility.      

Despite having limitation in studying adipocyte development, we plan 

to apply blastocyst complementation method to characterize the in vivo 

functions of novel factors involved in leptin regulation. As described in 

Chapter 3, we mapped the cis-elements that regulate leptin expression in vivo 

using leptin-luciferase reporter mice. Combining biochemical assays and 
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genome-wide bioinformatics, we have identified several candidate trans-

factors that interact with these sequences. In Chapter 5, we have performed 

RNA-sequencing on leptin specific gene expression pattern, upon which we 

have identified different genes co-regulated with leptin. These data provided 

gene candidate that can be subject to generating ES-cell knockout using 

CRISPR technique (Wang et al., 2013a). The presented blastocyst 

complementation assay will be useful in generating adipocyte-specific 

knockout of these candidates in one generation and reveal their in vivo 

function in adipose tissue.  
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CHAPTER 6: CONCLUSION 

Since the discovery of leptin in 1994, a staggering amount of effort has 

advanced our understanding of leptin’s critical role in the regulation of 

energy homeostasis and glucose metabolism. Yet the molecular and cellular 

mechanisms regulating leptin production in adipose tissue have remained as 

a gap in knowledge. In the face of the growing prevalence of obesity, the 

molecular basis of adipose tissue expansion in response to diet-induced 

obesity is a pressing question for disease management. While leptin serves as 

the afferent signal of a feedback system for regulating energy homeostasis, 

common obesity are characterized by leptin resistance developed from 

chronic hyperleptinemia. Understanding the mechanism of increase leptin 

production in response to increase adiposity is therefore fundamental to 

study of pathogenesis of obesity. Since serum leptin correlates with body 

adiposity and correlates with mRNA levels in each adipocyte, it was 

hypothesized that leptin expression is regulated by an adipocyte cell-

autonomous mechanism that senses lipid content within adipocytes.  

Lack of a suitable cell culture model to study leptin regulation 

compounded with a lack of understanding of adipose tissue development in 

vivo had made the study of leptin regulation in vivo particularly challenging. 

We address this by developing a luciferase BAC-transgenic reporter mouse 

model that allows us to assay qualitative and quantitative leptin expression 

in vivo. In Chapter 3, using a series of reporter mice, we first narrowed down 
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a 40kb region from -22kb to +18kb that is sufficient for quantitative and 

qualitative leptin expression in vivo.  We further demonstrated that the 5’-

end of this construct alone is sufficient for leptin transcriptional regulation. 

Combination of sequence analysis and gel-shift assays identified a novel 

distal cis-element of the leptin gene at -16.5kb that is essential for leptin 

transcription. Since this cis-element contains a CCAAT-box sequence, a 

candidate approach was taken in a super-shift assay and identified an 

adipogenic factor, NF-Y, as the trans-element for this enhancer site. 

To study the function of NF-Y in adipose tissue in vivo, we generated 

lentiviral mediated knockdown of NF-Y in 3T3-L1 cells and generated 

adipocyte specific NF-Y knockout mice via crossing adiponectin-CRE to NF-YA 

fl/fl mice. These experiments, described in Chapter 4, consistently showed 

that NF-Y is required for adipogenesis, since NF-Y knockdown 3T3-L1 cells 

do not differentiate and NFY-KO mice showed progressive lipodystrophy. 

NFY-KO mice were insulin resistant and dyslipidemic, both of which can be 

ameliorated by leptin treatment. These results show that the metabolic 

complications in NFY-KO mice are secondary to adipose tissue loss cause by 

the deletion. Unfortunately, leptin expression is reduced in NFY-KO mice but 

likely as a result of lipodystrophy. To study the direct function of NF-Y in 

leptin transcriptional regulation in vivo, an inducible model such as the 

adiponectin-ER-CRE system can be considered. Alternatively, deletion or 

point mutation of the -16.5kb cis-element directly in the genome, which is 
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made accessible with CRISPR technique, may provide insight to the 

endogenous function of this regulatory sequence.    

While the leptin-luciferase transgenic model proved to be an excellent 

tool in identifying cis-elements within the leptin gene, there is no good 

unbiased method in identifying the corresponding trans-factors. We address 

this by performing RNA-sequencing experiments in adipose tissue with 

animals under varying ambient leptin. Leptin treatment, in both wild-type 

and ob/ob mice, produces unique metabolic effects that result in fat loss. As 

such, it is postulated that gene expression profiles vary with leptin 

expression levels and that by comparing among samples, one can identify 

molecular and cellular profiles that modulate leptin expression. Sequencing 

experiments were performed with untreated wild-type, ob/ob, wild-type 

leptin withdrawal (model of acute leptin deficiency), and ob/ob leptin 

replacement (model of leptin induced weight loss).  Coupled with other 

genomic methods such as the DNAse hypersensitivity assay and ChIP-seq 

assay, we aim to understand the transcriptional network modulated by leptin 

levels in white adipose tissue. This part of study is under progress. 

Lastly, we took the developmental approach to study leptin regulation 

in vivo. Adipose tissue is the most plastic organ in the body, of which the size 

is determined by coordinated processes between hypertrophy and 

hyperplasia. Regarding adipose tissue as an endocrine organ for leptin and 

other adipokines, it is intriguing how organ size control is achieved. We 
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performed an AZIP-blastocyst complementation experiment to study 

developmental control of adipose tissue and leptin regulation. The unique 

property of blastocyst complementation allows the distinction between 

adipocyte autonomous versus non-autonomous factors that contribute to 

determine body adiposity and regulate metabolic functions. Specifically, 

because the AZIP-blastocyst cannot develop into mature adipocytes, all 

mature adipocytes were progenies of wild-type ES cells in the chimeric 

animals. As such, we first showed that adipocyte progenitor number as 

represented by degree of chimerism does not affect adiposity in adult 

chimeras in chow diet. Nonetheless, at least in the case of B6 background, 

AZIP-chimeras are partially lipodystrophic with moderate insulin resistance. 

Moreover, AZIP-chimeras with low chimerism were unable to expand 

adipose tissue upon HFD challenge, suggesting that hyperplastic expansion is 

required to accommodate excess dietary fat. Adipose tissue expansion is 

critical to metabolic health, as excess lipid that cannot be stored in adipose 

tissue results in lipotoxicity and insulin resistance in other peripheral tissues. 

Overall, an incomplete rescue of AZIP-phenotype by ES-cell complementation 

showed that the broad spectrum of metabolic health is controlled by intricate 

mechanisms involving other cell types and tissues.  Nonetheless, under both 

chow and HFD conditions, serum leptin is correlated with body adiposity, 

suggesting adipocyte-autonomous regulation of leptin transcription. 

Altogether, this thesis presents the molecular basis as well as the 

cellular basis of leptin regulation by using different mouse models. Leptin-
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luciferase BAC transgenic mice can be applied to the study of acute leptin 

regulation by live luciferase imaging following pharmaceutical or genetic 

manipulations. The AZIP-blastocyst complementation model is useful in 

generating adipocyte specific knockout within one generation, avoiding time 

consuming crossing with the traditional genetic approach. Both models will 

be instrumental in further elucidating the molecular and cellular mechanisms 

regulating leptin gene expression in adipose tissue in vivo.    
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