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Breast cancer is a prevalent disease.  Metastatic disease accounts for the 

majority of deaths from breast cancer, as patients with distant metastatic disease 

have a much worse prognosis than those with localized disease. In order to 

better understand why some breast cancers metastasize and others do not, it is 

critical to identify and elucidate the determinants of breast cancer progression. 

Post-transcriptional control of gene expression plays a central role in modulating 

transcriptional output. The interactions between messenger RNA cis-regulatory 

elements and trans-factors control coordinated gene expression states. Post-

transcriptional regulatory programs that enhance metastatic capacity are selected 

for during cancer progression. In this study, the RNA binding protein Muscleblind-

like 1 (MBNL1) is identified as a novel suppressor of breast cancer metastasis. 

MBNL1 loss-of-function contributes to the pathogenesis of myotonic dystrophy, a 

human genetic disease, but has no reported role in tumorigenesis or cancer 

progression. In this study, MBNL1 is identified as a suppressor of breast cancer 

metastasis. MBNL1 was found to suppress metastasis of human breast cancer 

cells in a xenograft mouse model. Additionally, MBNL1 transcript levels are 

significantly correlated with metastasis-free survival of breast cancer patients. 

MBNL1 depletion was also found to enhance the invasion and trans-endothelial 

migration capacity of breast cancer cells. Identification of endogenous MBNL1 

protein-RNA interactions in breast cancer cells was carried out using HITS-CLIP. 

Transcriptome-wide analysis of MBNL1-dependent transcript stability and 
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MBNL1 HITS-CLIP data revealed that globally, transcripts directly bound by 

MBNL1 are stabilized by MBNL1. Two transcripts, DBNL and TACC1, were 

identified as transcripts that were bound by MBNL1 and also destabilized upon 

MBNL1 depletion. Both DBNL and TACC1, when overexpressed in breast cancer 

cells depleted of MBNL1, were found to reverse the pro-invasive and metastatic 

colonization phenotypes observed upon MBNL1 depletion. Therefore, DBNL and 

TACC1 were identified as modulators of the metastasis suppressive effect of 

MBNL1 in breast cancer. 
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CHAPTER 1: INTRODUCTION 

1. Breast cancer incidence, classification and clinical outcomes

Breast cancer is a common disease. Worldwide, there were an estimated 

1,671,000 new cases diagnosed and 522,000 deaths from breast cancer in 2012 

(Ferlay et al. 2012). In the United States, breast cancer is the most commonly 

diagnosed cancer. There will be an estimated 231,840 new breast cancer cases 

diagnosed and an estimated 40,290 deaths from breast cancer in 2015 (Table 

1.1). The lifetime risk of being diagnosed with breast cancer for a woman in the 

US is 12.3% (Howlader et al. 2015). 

Table 1.1 Incidence of common cancers in the United States for 2015 

Clinically, breast cancer can be classified by stage, grade, hormone 

receptor/HER2 status, and gene expression signature. Stage is defined by the 

size of the primary tumor and the degree to which it has spread to other sites in 

the body. The most commonly used staging system is called TNM (Tumor, 

regional lymph Node, Metastasis). This system assesses primary tumor size, 

degree of regional lymph node involvement and presence of cancer metastasis to 

distant organs in order to determine the cancer stage. Stages range from I to IV. 

Stage I breast cancers are small, have not detectably spread to regional lymph 



2 

nodes and have not metastasized, and stage IV cancers are those that have 

metastasized to distant organs. Stages II and III have intermediate levels of 

cancer size and spread (Sobin et al. 2010). Grade refers to the appearance of 

the primary tumor tissue and assesses how similar to normal breast tissue the 

tumor tissue appears. In the commonly used Nottingham grading system, each of 

the following factors contributes to the final assigned tumor grade: 1) The percent 

of the tumor tissue retaining normal milk duct structures. 2) The size and shape 

of the nucleus in the cancer cells. 3) The number of actively dividing cells. 

Hormone receptor/HER2 status refers to the expression of the estrogen receptor 

(ER), progesterone receptor (PR) and of the erb-b2 receptor tyrosine kinase 2 

(ERBB2, also known as HER2/neu) by breast cancer cells. The expression of 

ER, PR and HER2 is typically assessed by immunohistochemistry, and the 

cancer is then designated as being positive or negative for expression of each of 

these factors. The expression of these factors are important for deciding the 

treatment of a breast cancer, as the effectiveness of drugs commonly used to 

treat breast cancer is largely determined by cancer cell ER, PR and HER2 

expression. Breast cancers can also be categorized by their gene expression 

signature, also known as their intrinsic molecular subtype. Transcriptomic 

profiling of large sets of breast cancers has shown that breast cancers can also 

be divided into groups based on gene expression signatures (Bertucci et al. 

2000; Perou et al. 2000; Sorlie et al. 2001; Sorlie et al. 2003). The molecular 

subtypes of breast cancer based on gene expression profiling have been 
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identified as luminal A, luminal B, HER2-enriched, basal-like, normal-like and 

claudin-low, the last two of which are rare. The luminal and basal subgroups are 

so named because their patterns of gene expression are similar to that of normal 

breast luminal and basal tissues. Classification of breast cancers by gene 

expression subtype, in addition to classification by stage, grade and 

receptor/HER2 status, can add information that is useful for prognosis and 

treatment (Kittaneh et al. 2013). Each of these criteria for classifying breast 

cancer is correlated with survival outcomes, but the stage and receptor status are 

currently the primary determinants of which therapies are used for treatment. 

However, gene expression signature information is increasingly being used to 

develop and test new targeted therapies (Eroles et al. 2012). 

Depending on how it is classified using the systems described above, a 

breast cancer may be treated with surgery, radiation and non-specific cytotoxic 

chemotherapies or anti-angiogenic therapies. However, a primary consideration 

for breast cancer treatment is the receptor status of the cancer, as cancers that 

are ER/PR positive, and/or HER2 positive are treated differently from triple 

negative/basal-like cancers. This is because specific targeted therapies exist for 

hormone receptor positive and HER2 positive breast cancers, and these 

treatments confer a survival advantage over treatment with non-specific 

therapies. There is a lack of targeted therapies for triple negative/basal-like 

breast cancers, as these cancers do not express the factors that are targeted by 

these specific drugs. The established treatment for hormone receptor positive 
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breast cancers is administration of drugs aimed at reducing estrogen signaling, 

thereby reducing tumor growth. These drugs include tamoxifen, a small molecule 

that binds to ER and inhibits estrogen signaling in breast tissue. In post-

menopausal women, aromatase inhibitors, including the small molecules 

anastrozole, exemestane and letrozole, are used to inhibit the actions of 

aromatase. The enzymatic activity of aromatase converts androgens into 

estrogen, and anti-aromatase therapy reduces systemic estrogen levels (Miller et 

al. 2014). Additionally, in pre-menopausal women, drugs can be used to 

suppress ovarian estrogen production in order to reduce systemic estrogen 

levels, although the effectiveness of this therapy in addition to tamoxifen therapy 

is not dramatic (Francis et al. 2015). The established therapy for HER2 positive 

breast cancers is trastuzaumab (Herceptin), an antibody directed against the 

extracellular domain of HER2. Trastuzaumab is effective in improving the survival 

of patients with HER2 expressing breast cancers (Piccart-Gebhart et al. 2005; 

Smith et al. 2007). However, breast cancers that have metastasized to distant 

organs remain difficult to treat, and women with breast cancer that has not 

spread from the primary site, or has spread regionally have a much higher 5-year 

survival rate compared to those who have cancer that has spread to distant 

organs (Figure 1.1A). Therefore, the majority of deaths from breast cancer are 

due to metastatic disease. 
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Figure 1.1 Breast cancer survival and metastatic progression 

(A) The 5-year survival rate of breast cancer patients in the United States, 

divided by level of spread of the cancer. (B) Illustration depicting the metastatic 

cascade.  

2. Cancer metastasis

From the above data, it is clear that the survival rate of breast cancer 

patients is dependent on the extent of cancer progression (Figure 1.1A). Because 

of this, it is important to understand the mechanisms by which cancer cells can 

successfully spread through the body and colonize distant organs, a process 

called metastasis. In this process, a cancer cell from the primary tumor moves 
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away from the primary tumor and into the surrounding tissue, intravasates into 

blood vessels, survives in circulation, extravasates out of blood vessels, and 

successfully survives and proliferates in a secondary organ (Chiang and 

Massague 2008) (Figure 1.1B). It is unlikely that a cancer cell from the primary 

tumor has the capacity to carry out all of these steps. Indeed, very few cancer 

cells from a primary tumor make it through all of the steps of the metastatic 

process. In animal models of metastasis, less than 0.01% of cancer cells in 

circulation result in macroscopic metastases (Chambers et al. 2002; Luzzi et al. 

1998). In addition to the qualities intrinsic to the cancer cell, both the 

microenvironment of the primary tumor and the microenvironment of the distal 

organ to which the cancer has metastasized play roles in modulating the 

likelihood of metastasis (Joyce and Pollard 2009). Therefore, because of the 

complex nature and clinical importance of metastasis, it is of great interest to 

identify molecules that contribute to this process. 

The first step of metastasis is cancer cell movement into blood vessels, a 

process called intravasation. Cancer cells may intravasate into vessels that are in 

direct contact with the tumor, or the cancer cell may first invade into the 

surrounding tissue and then intravasate into blood vessels. Cancer cell invasion 

can be promoted by local environmental stresses such as hypoxia, pH level and 

nutrient deprivation as well as the presence of various stromal cell types and the 

composition of the extracellular matrix (Chang and Erler 2014; Quail and Joyce 

2013). Cancer cells invade by moving through the extracellular matrix and normal 
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tissue that surrounds the primary tumor. These cancer cells can then intravasate 

into systemic circulation by moving through the layers of endothelial cells that 

comprise the blood vessel walls. Normally, endothelial cells act as a barrier to the 

movement of cells in to or out of the bloodstream, and therefore cancer cell 

movement across the endothelial cell layer is an aberrant occurrence. Cancer 

cells may intravasate through active and passive mechanisms. Tumor 

vasculature is abnormal, with leaky endothelial cell junctions and abnormal 

coverage by pericytes, features that allow for easier cancer cell intravasation 

(Dudley 2012; Xian et al. 2006). Cancer cells may also actively intravasate into 

vessels through either paracellular (movement through the junctions between 

endothelial cells), or transcellular (movement directly through the body of an 

endothelial cell) mechanisms. Many molecules that enhance invasion generally 

also enhance intravasation. Molecules expressed by breast cancer cells that are 

important for paracellular intravasation include N-WASP, which reorganizes the 

actin cytoskeleton by promoting invadopodia formation, and also enhances 

invasion and intravasation (Gligorijevic et al. 2012). Increased cancer cell 

expression of the matrix metalloproteinase MT4-MMP disrupts blood vessel 

integrity in the tumor environment, which allows for increased cancer cell 

intravasation (Chabottaux et al. 2009). Another metalloproteinase, ADAM12, is 

expressed in breast cancer tumor vasculature but not in the vasculature of 

normal breast tissue. The ectodomain shedding of endothelial cell vascular 

endothelial cadherin and of the angiopoietin 1 receptor TIE2 is mediated by 
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ADAM12, and could play a role in promoting cancer cell intravasation by 

disrupting endothelial cell junctions (Frohlich et al. 2013). Microenvirnomental 

factors can also affect intravasation: macrophages can enhance breast cancer 

cell intravasation by inducing cancer cell expression of Mena (an epidermal 

growth factor-responsive cell migration protein) through colony-stimulating factor-

1 receptor signaling (Keirsse et al. 2014). Transcellular intravasation is another 

method breast cancer cells can use to move into vessels, and a role for 

endothelial cell myosin light chain kinase has been demonstrated in this process 

(Khuon et al. 2010). Once successfully intravasated, cancer cells in circulation 

encounter and must survive multiple stresses, including the mechanical shear 

stress of the bloodstream, detachment from the ECM, and destruction by immune 

cells. 

Cancer cells then move out of circulation in a process called 

extravasation. During extravasation, cancer cell must again traverse the 

endothelial layer of blood vessels. The first step of extravasation is the adhesion 

of cancer cells to the endothelial cells of a blood vessel. This adhesion can occur 

after cancer cell arrest in capillaries due to size constraints, but can also involve 

cancer cell rolling on the vessel wall before firm adhesion (Geng et al. 2012; 

Kienast et al. 2010; Stoletov et al. 2010). Adhesion involves a large number of 

factors on both the cancer and endothelial cells. Initial attachment can occur 

through the interactions of cancer cell expressed N-cadherin, Sialyl Lewis A 

and/or CD44 with endothelial cell expressed N-cadherin and/or E-selectin. 
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Stabilization of cancer cell-endothelial cell interaction further depends on 

integrins, CD44 and/or Mucin 1 (Reymond et al. 2013). The cancer cell then 

migrates through the endothelial cell layer and into the surrounding tissue. Once 

the cancer cell has extravasated and is located in a distant organ, the 

environment of that organ and the intrinsic programing of the cancer cell both 

contribute to the suppression or promotion of cancer cell survival, proliferation, 

and ultimately formation of metastatic nodules in that distal organ. 

3. Post-transcriptional regulation of gene expression

For metastasis to occur, cancer cells must acquire cellular phenotypes 

that enable their migration into distant organs, where their subsequent survival 

and proliferation lead to end-organ failure. The enhanced invasiveness and 

migratory capacity necessary for metastasis can be generated through the 

coordinated expression of specific gene sets. Post-transcriptional regulation of 

gene expression is a method of doing this, and refers to processes that affect the 

expression of a messenger RNA (mRNA) after transcription. The post-

transcriptional control of mRNA expression is determined by interactions between 

regulatory cis-elements and trans-factors. Therefore, regulated modifications to 

cis-elements and interacting trans-factors determine the identity, localization and 

expression of a transcript. These processes include alternative splicing, 

alternative polyadenylation site selection, RNA editing, post-transcriptional 

nucleotide modification, and non-templated polyadenylation of the 3’ end of a 

mRNA (Li and Mason 2014; Liu et al. 2014; Norbury 2013). Alterations to 
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regulatory trans-factors can also affect post-transcriptional gene expression. The 

major types of trans-factors are RNA binding proteins and microRNAs, both of 

which carry out their regulatory roles through direct interactions with transcripts. 

Importantly, a single trans-factor can interact with and regulate the expression of 

multiple transcripts, thereby coordinating the expression of gene sets. 

Pre-mRNA alternative splicing and alternative polyadenylation site 

selection 

Pre-mRNA alternative splicing is a major method of transcriptome 

diversification. Although there are approximately 20,000 genes in the human 

genome, analysis of high-throughput RNA sequencing data has revealed that 

from 95-100% of human genes express alternatively spliced transcript variants 

(Pan et al. 2008; Wang et al. 2008). Interestingly, the amount of alternatively 

spliced transcripts increases with increasing organism complexity, and therefore 

the prevalence of alternative splicing in humans is thought to be necessary for 

diversifying the human proteome (Nilsen and Graveley 2010). Pre-mRNA 

alternative splicing is the process by which specific exons and introns are actively 

included or excluded from a transcript. Four major types of alternative splicing 

exist: exon inclusion, exon exclusion, mutual exon exclusion, and intron retention. 

Alternative splicing adds a regulatory layer to the basal splicing of all intron-

containing transcripts. The basic mechanism of splicing, where introns are 

removed and exons are joined together, is controlled by cis-elements in the pre-

mRNA. The conserved elements that are recognized by the spliceosome are 



11 

exon-intron junctions at the 5’ and 3’ ends of introns, the branch point sequence, 

located upstream of the 3’ splice site, and the polypyrimidine tract, which is 

located between the branch point sequence and the 3’ splice site. The 5’ splice 

site has a conserved GU dinucleotide and the 3’ splice site has a conserved AG 

dinucleotide. These elements are then bound in a defined order by the small 

nuclear ribonucleoprotein particles (snRNPs) U1, U2, U4/U6, and U5, which are 

central components of the spliceosome. The spliceosome is a large RNA-protein 

complex that catalyzes the removal of introns and joining of exons (Lee and Rio 

2015). In eukaryotes, exon definition is the major mechanism used by the basal 

splicing machinery. 

Alternative splicing is directed by cis-regulatory sequence elements and 

trans-factors. These regulatory elements are divided into four types: exonic 

splicing enhancers (ESEs), exonic splicing silencers (ESSs), intronic splicing 

enhancers (ISEs), and intronic splicing silencers (ISSs). The best-studied classes 

of proteins that bind to these regulatory elements and influence exon choice are 

the ubiquitously expressed members of the heterogeneous nuclear 

ribonucleoprotein (hnRNP) family (Huelga et al. 2012), and proteins in the serine-

arginine rich (SR) protein family (Anko 2014). Another class of proteins that play 

roles in regulating alternative splicing are those that exhibit tissue-specific 

expression patterns and are involved in tissue differentiation. These include 

proteins from the NOVA (neuro-oncological ventral antigen)(Ule et al 2003; 

Zhang et al. 2010), RBFOX (Fox RNA-binding)(Weyn-Vanhentenryck et al. 2014; 
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Yeo et al. 2009; Zhang et al. 2008), CELF (CUG binding, Elav-like), and MBNL 

(Muscleblind-like) (Kalsotra et al. 2008; Ladd et al. 2001; Wang et al. 2012, 

Wang et al. 2015) families. These proteins control alternative splicing by binding 

in the upstream intron, downstream intron or in the regulated exon itself to control 

exon inclusion or skipping. Some of these factors act to recruit spliceosome 

machinery, while others act to block the actions of the spliceosome. These 

regulatory factors have also been shown to antagonize each other’s functions 

(Zhu et al. 2001). It is thought that the developmental stage and tissue-specific 

expression patterns of these factors dictate their activity. 

Although deadenylation and decapping accounts for bulk mRNA turnover, 

cis-elements and trans-factors allow for the modulation of transcript stability. Cis-

elements that regulate mRNA decay are commonly found in 3’UTRs. Many such 

elements have been identified, and are usually defined by sequence. However, 

cis-elements defined by structure rather than sequence have been identified as 

modulators of mRNA decay (Goodarzi et al. 2012). Both sequence-specific and 

structural elements interact with trans-factors, which then can affect the stability 

of the transcript through recruitment or inhibition of mRNA decay machinery. 

In addition to alternative splicing, pre-mRNAs are subject to alternative 

cleavage and polyadenylation (APA). APA produces transcripts with different 3’ 

ends, which can affect post-transcriptional gene regulation. APA is a prevalent 

mode of regulation, as approximately 70% of human transcripts have alternative 

poly(A) containing products as assessed by RNA sequencing methods (Derti et 
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al. 2012). The location of many regulatory elements, 3’UTRs are enriched in sites 

recognized and bound by trans-factors. These interactions can control the 

expression of that transcript. Therefore, shortening of a 3’UTR through APA can 

allow escape from regulation by specific trans-factors. This type of dysregulation 

has been observed in cancers (Mayr and Bartel 2009). In a subset of breast 

cancers, among transcripts with significantly different 3’UTR lengths, shorter 

3’UTRs were associated with shorter overall patient survival (Lembo et al. 2012). 

The control of the length of the poly(A) tail is another important method the 

cell uses to regulate stability and maintain steady-state levels of transcripts. 

Normally, poly(A) tails of 100-250 nucleotides are added to the 3’ end of each 

mRNA by the actions of poly(A) polymerase (PARP) and nuclear poly(A) binding 

protein (PABPN1). The presence of a poly(A) tail allows a transcript to be 

exported to the cytoplasm and engage with the translation machinery. Once in 

the cytoplasm, the length of a transcript’s poly(A) tail is then controlled by the 

opposing actions of deadenylases and adenylases. Generally, the PAN2/3 

complex (poly(A) nuclease 2/3) is the initial factor that trims the poly(A) tail of an 

mRNA, and its activity is stimulated by PABP (poly(A) binding protein). Further 

deadenylation is carried out by the CCR4-NOT complex, which can be inhibited 

or stimulated by the binding of transcript-specific RBPs. Once a transcript has 

been deadenylated to a certain point, RNA degradation occurs (Norbury 2013). 

Molecular mechanisms of mRNA degradation 
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In eukaryotic cells, a combination of factors dictate the stability of 

messenger RNAs (mRNAs). Ribonucleases control mRNA degradation through 

defined pathways and trans-acting factors and cis-acting elements control the 

rate of mRNA decay. Two critical cis-acting determinants of mRNA stability are 

incorporated co-transcriptionally: the 7-methyl-guanosine cap (m7G) which is 

added to the 5’ end of the transcript, and the poly(A) tail which is added to the 3’ 

end of the transcript. These two additions protect the transcript from immediate 

destruction by exonucleases, and their removal is crucial to normal turnover of 

mRNAs (Yamashita et al. 2005). Transcripts are constantly subjected to the 

actions of ribonucleases so as to maintain steady-state levels of mRNA in the 

cell. Transcripts can be further subject to regulated decay, both by cis-elements 

in their sequence and in response to various stimuli that regulate the level of 

trans-acting factors such as RBPs and miRNAs. 

Messenger RNAs are degraded by the enzymatic actions of 

ribonucleases, and these RNA degradation enzymes carry out their actions in a 

specific order. Here, a general overview of the major factors in these pathways in 

eukaryotic cells is given. The primary pathway of mRNA decay is the 

deadenylation-dependent pathway. In this pathway, the first step of mRNA 

degradation is removal of the poly(A) tail. This requires the action of 

deadenylases, which are 3’-5’ exoribonucleases with a high preference for a 

poly(A) substrate. Deadenylases and poly(A) polymerases dynamically control 

poly(A) tail length in the cytoplasm, and poly(A) tail length is a major determinant 
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of mRNA stability. Generally, the poly(A) tail of a transcript is bound by PABP 

(poly(A) binding protein) in the cytoplasm, and PABP interacts with eIF4G, a 

component of the eIF4F complex which binds the m7G cap at the 5’ end of the 

transcript. This interaction promotes the recruitment of the translation initiation 

complex as well as protects the transcript from degradation. Once deadenylases 

have shortened the poly(A) tail below a threshold length, PABP no longer 

interacts with the tail and the transcript is left unprotected from further actions of 

ribonucleases (Kim et al. 2006; Tharun and Parker 2001; Wilusz et al. 2001). The 

major deadenylase containing complexes that are active in metazoans are 

CCR4-CAF1-NOT, PAN2-PAN3 and PARN (Yan 2014). After removal of the 

poly(A) tail by the actions of a deadenylase complex, the remaining RNA can be 

degraded in either a 3’-5’ or 5’-3’ direction. 3’-5’ degradation occurs through the 

action of the exosome, a large multi-subunit complex with exonuclease activity 

(Houseley and Tollervey 2009). The m7G cap is then removed by DcpS 

(scavenger decapping enzyme). Messenger RNA can also be degraded in the 5’-

3’ direction after deadenylation. The first step in this process is removal of the 

m7G cap by the decapping complex, which requires the enzymatic action of 

DCP2 (van Dijk et al. 2002; Wang et al. 2002). The decapping complex also 

contains proteins that enhance decapping. In metazoans, these cofactors are 

DCP1, EDC3, EDC4, PAT1B, DDX6, and the LSM1-7 complex. These factors are 

not all required for decapping of all mRNAs, but can act in a transcript specific 
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manner (Arribas-Layton et al. 2013; Fenger-Gron et al. 2005, Ling et al. 2011). 

After decapping, the remaining RNA is degraded 5’-3’ by the exonuclease XRN1. 

Messenger RNA may also be degraded in a deadenylation-independent 

manner. However, this pathway is thought to play a very minor role in bulk mRNA 

decay in eukaryotic cells. The existence of this pathway in yeast has been 

demonstrated by studying the regulated decay of the RPS28B transcript. 

Initiation of this pathway requires the recruitment of the decapping complex 

component EDC3 to the transcript, which in turn recruits the decapping enzyme 

DCP2. After removal of the m7G cap, the RNA is degraded 5’-3’ by XRN1 (Badis 

et al. 2004). 

An additional type of mRNA decay utilizes endoribonucleases. This 

method of mRNA degradation differs from the pathways described above 

because removal of the poly(A) tail or the 5’ cap is not necessary for initiation of 

decay. Instead, endonucleases act on a capped, polyadenylated mRNA and 

cleave it. The resulting RNA pieces are then destroyed by the actions of the 

exoribonucleases XRN1 and the exosome. Instances of endoribonuclease- 

mediated mRNA decay in metazoans have been reported, but have not been 

heavily studied. Generally, these endonucleases have highly specific transcript 

targets, their action is activated by external stimuli, their actions can be localized, 

and they cleave at specific sequences. This is in contrast to the deadenylation 

and decapping that facilitates constitutive bulk mRNA turnover. The best studied 

of these endonucleases is PMR1, which was discovered in Xenopus extracts as 
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the endonuclease responsible for deadenylation independent decay of the 

albumin transcript in response to estrogen (Yang and Schoenberg 2004). In 

human cells, the PMR1 endonuclease is associated with polysomes, and 

localization of PMR1 to the leading edge of MCF7 breast cancer cells enhances 

cell motility in a scratch assay (Gu et al. 2012). Other proteins that have 

demonstrated endonuclease activity on specific mRNA substrates in metazoans 

are IRE1/ERN1 (endoplasmic reticulum to nucleus signaling 1), ZC3H12A (zinc 

finger CCCH-type containing 12A), SMG6 (SMG6 nonsense mediated mRNA 

decay factor), and APE1 (apurinic/apyrimidinic DNA endonuclease 

1)(Schoenberg 2011). SMG6 acts in the nonsense mediated decay pathway 

(Eberle et al. 2009), and therefore typically acts as a quality control factor rather 

than a regulator of the decay of specific mRNAs in response to stimulus. 

 mRNA stability regulatory pathways 

Transcripts that do not contain open reading frames (ORFs) are subject to 

active degradation by the cell to ensure the production of functional proteins. The 

recognition of transcripts without ORFs occurs through multiple mechanisms, 

depending on the problem with the transcript. Together, these are referred to as 

surveillance pathways. These are 1) nonsense mediated decay (NMD), which 

occurs when an mRNA has a premature termination codon (Kervestin and 

Jacobson 2012). 2) nonstop mediated decay (NSD), which happens when an 

mRNA does not contain an in-frame termination codon (Frischmeyer et al. 2002), 

and 3) No-go decay (NGD), which takes place when ribosomes stall at the 5’ end 
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of an mRNA (Doma and Parker 2006). These pathways of decay are triggered by 

problems in the processing or sequence of the transcript. Interestingly, NMD can 

also participate in the regulated decay of transcripts in a process called 

alternative splicing coupled NMD (AS-NMD). AS-NMD acts through selective 

degradation of mis-spliced mRNAs. Types of alternative splicing that trigger NMD 

are retention of a premature termination codon-containing exon or intron, splicing 

that leads to an elongated 3’UTR, and splicing that results in the presence of an 

upstream open-reading frame (Sibley et al. 2014). Alternative splicing can also 

lead to intron retention. In addition to triggering NMD in the cytoplasm, this can 

lead to a block on the export of a transcript to the cytoplasm, and thereby induce 

transcript degradation by the nuclear exosome (Ge and Porse 2013). 

Cytoplasmic RNA granules and mRNA stability 

The subcellular localization of a transcript also contributes to its stability. 

Processing bodies (P-bodies) and stress granules are two major types of 

cytoplasmic RNA granules that are sites of regulated mRNA decay and storage. 

Stress granules form in response to various stresses. These stress stimuli 

include oxidative stress, hypoxia, amino acid starvation, endoplasmic reticulum 

stress, heat shock, UV irradiation and viral infection. These different stimuli each 

induce the activity of specific kinases that then phosphorylate eIF2-alpha 

(eukaryotic initiation factor 2) (Kedersha et al. 1999). This phosphorylation event 

halts translation initiation, but does not affect actively elongating ribosomes. 

Stress granules contain translation initiation factors, 40S ribosomal subunits and 
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mRNAs bound to the translation pre-initiation machinery. A large number of other 

RBPs have also been found in stress granules, and the specific composition of a 

given stress granule is dependent on the identity of the cell and the type of 

stress. Another characteristic of mRNAs in stress granules is that they retain their 

poly(A) tails and remain in a closed loop formation with the cap complex 

(Anderson and Kedersha 2008). Components of stress granules disperse once 

the stress is removed, and translation of the mRNAs can resume. Stress granule 

formation may play a role in cancer progression. In a mouse xenograft model of 

osteosarcoma metastasis to the lung, depletion of the stress granule nucleating 

factor G3BP1 reduced both number of stress granules per cancer cell and 

reduced the number of metastatic nodules in the lung (Somasekharan et al. 

2015). Although this is a correlative finding, it is consistent with stress granule 

formation promoting metastasis. 

A second major type of cytoplasmic RNA granule is processing bodies, 

which have distinct components from stress granules. However, P-bodies and 

stress granules also have many overlapping components and functions, and 

these protein components, as well as RNA transcripts, can move dynamically 

between the two granule types (Kedersha et al. 2005). P-body components 

include mRNA degradation, mRNA surveillance and miRNA-mediated gene 

silencing factors. The decapping enzyme DCP2 is a characteristic component of 

these foci. Unlike stress granules, P-bodies are constitutively present. Although 

they contain mRNA decay machinery, and are thought to be the sites of mRNA 
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decay, the presence of P-bodies is not required for global or specialized RNA 

decay to occur (Eulalio et al. 2007; Stoecklin et al. 2006). 

4. RNA binding proteins, tumorigenesis and cancer progression

RNA interacting proteins are abundant, with ~550 mRNA-interacting 

proteins common to both HeLa and HEK293 cells (Baltz et al. 2012; Castello et 

al. 2012). Through their interactions with RNA, these proteins mediate a variety 

of regulatory processes that have wide-ranging downstream effects in 

development, homeostasis and pathological processes. The majority of RNA 

binding proteins bind multiple RNA transcripts and/or other RNA molecules and 

in doing so can impact the regulation of those RNAs. Given their ability to 

coordinately regulate sets of transcripts, proteins belonging to this group have the 

potential to confer attributes that affect the metastatic potential of cancer cells. 

Indeed, recent studies have noted such effects on breast cancer progression for 

a variety of RNA-binding proteins. The metastasis modulating effects of these 

RNA-binding proteins have been shown to be generated through different post-

transcriptional regulatory steps, including direct modulation of transcript stability 

by TARBP2 (Goodarzi et al. 2014) and RBM47 (Vanharanta et al. 2014), as well 

as regulation of alternative splicing patterns by HNRNPM (Xu et al. 2014). The 

role of RNA binding proteins in breast cancer tumorigenesis, in contrast to cancer 

progression, has been more heavily studied. Among the best-studied RBPs in 

breast tumorigenesis are ELAVL1 (embryonic lethal abnormal vision-like 1, also 

known as HuR) and ZFP36 (zinc finger protein 36, also known as TTP). Both are 
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AU rich element (ARE) -binding proteins, and ELAVL1 is commonly upregulated 

in breast cancer, while ZFP36 is commonly downregulated (Sanduja et al. 2010; 

Abdelmohsen and Gorospe 2010). 

5. Muscleblind-like family: Identification and structure

One RNA binding protein that has been implicated in human genetic 

disease and in the regulation of alternative splicing is Muscleblind-like 1 

(MBNL1). The Muscleblind-like family of proteins is present in organisms ranging 

from worms to humans. Muscleblind-like proteins do not exist in bacteria, fungi or 

plants, and only occur in metazoans. Invertebrates have one muscleblind-like 

gene, while the majority of vertebrates have three muscleblind-like genes 

(Pascual et al. 2006). Members of this family contain highly conserved cysteine-

cysteine-cysteine-histidine (CCCH) zinc finger domains with which they bind 

RNA. These CCCH zinc finger domains are common, and are found in over 1000 

proteins. CCCH zinc finger domains bind specific sequence motifs in RNA. 

Consistent with this observation, SELEX studies have determined that MBNL1 

binds the RNA motif YGCY (Goers et al. 2010), while CLIP-seq studies have 

identified an enrichment of UGC and GCU containing 4mers in MBNL1-bound 

sites in mouse myoblasts (Wang et al. 2012). Crystal structures of the MBNL1 

CCCH zinc finger domains, both while bound to RNA with the sequence 

CGCUGU, and while not bound to RNA, have been solved (Teplova and Patel 

2008). These structures show that the two pairs of zinc fingers have a symmetric 

fold where the two zinc fingers in each pair are connected by a linker that orients 
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their RNA binding surfaces away from each other, making the RNA fold into an 

antiparallel form. This structure as well as other in vitro biochemical binding data 

(Goers et al. 2010) suggests a model where the zinc fingers of MBNL1 interact 

with the 5’-GC steps in RNA that folds into hairpin structures with bulged and 

unpaired uridines. 

MBNL proteins in development 

Work on a Drosophila melanogaster mutant led to the first characterization 

of a muscleblind family member, with the observation that in Drosophila, 

muscleblind is required for normal development of photoreceptor cells as well as 

for normal muscle differentiation and attachment (Begemann et al. 1997; Artero 

et al. 1998). In mammals, the three members of the Muscleblind-like family are 

MBNL1, MBNL2 and MBNL3, and all contain four tandem CCCH zinc finger 

domains. These highly similar proteins exhibit tissue-specific expression 

patterns. MBNL1 is the most highly expressed member of the family, and is 

detected in adult skeletal muscle, heart, brain, intestine, kidney, liver, lung and 

placenta. Mice with genetic knockout of MBNL1 develop muscle weakness, 

cataracts and cardiac pathology (Dixon et al. 2015; Kanadia et al. 2003). Loss of 

MBNL1 function results in a shift to fetal and embryonic stem cell-like transcript 

splicing patterns, and also impairs erythroid terminal differentiation (Cheng et al. 

2014; Han et al. 2013; Lin et al. 2006). MBNL2, like MBNL1, is detectable in most 

adult tissues, with the highest expression in brain, and has decreased expression 

in heart and skeletal muscle compared to MBNL1. Mice null for MBNL2 do not 
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display abnormal muscle development, but they exhibit sleep disturbances, 

impaired learning and are prone to seizures (Charizanis et al. 2012). Of the three 

MBNL members, MBNL3 has the lowest expression levels. MBNL3 is primarily 

expressed during embryonic development, but is also detectable in adult lung, 

spleen and testis. Interestingly MBNL3 expression is decreased in myoblasts 

when they are induced to differentiate, and overexpression of MBNL3 

suppresses myoblast differentiation (Kanadia et al. 2003; Lee et al. 2007; 

Squillace et al. 2002). These expression patterns and developmental phenotypes 

are consistent with a model where MBNL1 and MBNL2 promote normal tissue 

differentiation while MBNL3 acts as a suppressor of differentiation. Together, 

these MBNL1-dependent developmental phenotypes and the lack of MBNL 

orthologs in single cell organisms suggest that MBNL family proteins function 

primarily to ensure correct differentiation of tissues. 

MBNL molecular mechanisms 

MBNL1 has a well-characterized role in the regulation of pre-mRNA 

splicing. The first pre-mRNAs found to have MBNL1-dependent alternative 

splicing were identified because these transcripts had been found to have altered 

splice forms in myotonic dystrophy, a disease in which MBNL1 has a pathogenic 

role, as discussed in the next section. These first identified alternatively spliced 

genes were TNNT2 (cardiac troponin T type 2) and INSR (insulin receptor) (Ho et 

al. 2004). In a study examining the mechanism of MBNL1-regulated alternative 

splicing of the TNNT2 pre-mRNA, MBNL1 was found to bind to a stem-loop 
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structure in the polypyrimidine tract of the intron upstream of the alternative exon 

in TNNT2 pre-mRNA. MBNL1 binding was found to inhibit the formation of the 

spliceosome complex by modulating the local RNA structure, which then 

interfered with U2AF2 binding and led to exon skipping (Warf et al. 2009). More 

recently, genome-wide sequencing and computational analyses have found 

many more MBNL family protein dependent splicing events (Charizanis et al. 

2012; Du et al. 2010; Wang et al. 2012). Mechanistically, MBNL protein splicing 

function is dependent on where the protein binds relative to the alternative exon. 

MBNL1 and MBNL2 binding on the alternative exon or within the upstream intron 

usually leads to skipping of the alternative exon (Charizanis et al. 2012; Du et al. 

2010; Wang et al. 2012). MBNL1 binding to the downstream intron promotes 

retention of the alternative exon. In addition to the cis-acting sequences in a 

transcript, trans-acting factors can also influence the binding of MBNL1 to RNA. 

A study has shown that the DEAD-box RNA helicase DDX5 promotes MBNL1 

binding to the stem-loop regulatory element in the TNNT2 pre-mRNA (Laurent et 

al. 2012). Interestingly, another DEAD-box helicase, DDX6, has been found to 

interact with and unwind CUG repeat expansion RNA hairpins, leading to a 

decrease of MBNL1 binding to these RNA structures (Pettersson et al. 2014). 

MBNL1 co-immunoprecipitates with several proteins in human myoblasts, 

including hnRNP H,H2, H3, F, A2/B1, K, L, DDX5, DDX17 and DHX9, and these 

may act in concert with MBNL1 to affect RNA splicing (Paul et al. 2011). More 

definitively, CLIP-seq analysis of MBNL and CELF1 determined that these 
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proteins have opposing effects on the splicing of a large set of alternative exons 

(Wang et al. 2015). 

MBNL1 has also been found to developmentally regulate alternative 

poly(A) site selection in mouse embryonic fibroblasts through directly binding to 

3’UTRs (Batra et al. 2014). CLIP-seq analysis of MBNL1 and MBNL2 in mouse 

myoblasts in combination with cellular fractionation and transcriptomic profiling 

led to a proposed model wherein MBNL1 binding to 3’UTRs promotes localization 

and cytoskeletal trafficking of transcripts, which then promotes secretion of their 

protein products (Wang et al. 2012). Another study analyzed CLIP-seq of MBNL1 

in mouse myoblasts and proposed that MBNL1 binding destabilizes transcripts 

(Masuda et al. 2012). Clearly, MBNL1 has multiple mechanisms through which it 

post-transcriptionally regulates gene expression. 

6. MBNL and human genetic diseases

Myotonic dystrophy 

To date, most studies on MBNL family proteins have investigated the 

mechanism through which they contribute to the pathology of myotonic 

dystrophy, a human genetic disease. Myotonic dystrophy is the most common 

muscular dystrophy that affects adults, with an estimated global incidence of 1 

case per 8,000 people. People affected with this disease exhibit muscle 

weakness and atrophy, cardiac conduction defects, cataracts, diabetes, male 

frontal balding, various behavioral changes and hypersomnia (Udd and Krahe 

2012). Two forms of the disease exist, myotonic dystrophy type 1 (MD1) and 
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myotonic dystrophy type 2 (MD2), which are classified according to the genic 

location of the causative mutation. In both types, the causative mutation is a 

nucleotide repeat expansion in a non-coding region of a gene. In type 1, this is a 

(CTG)n repeat expansion in the 3’UTR of the DMPK (Dystrophia Myotonica 

Protein Kinase) gene (Aslanidis et al. 1992; Brook et al. 1992; Harley et al. 1992; 

Mahadevan et al. 1992). In type 2 disease this is a (CCTG)n repeat expansion in 

the first intron of the CNBP (CCHC-type zinc finger, Nucleic acid Binding Protein) 

gene (Liquori et al. 2001). 

The mechanism through which these repeat expansions lead to the 

pathology associated with the disease has been intensely studied. The prevailing 

model for how these repeat expansions cause the pathologic features of 

myotonic dystrophy is an RNA gain-of-function mechanism (Figure 1.2A). In this 

model, transcripts containing these repeat expansions accumulate in the nucleus, 

where they bind proteins, effectively sequestering these proteins and preventing 

their normal actions in the cell. Several lines of evidence point to this RNA gain-

of-function model being a major contributor to myotonic dystrophy pathogenesis. 

Mice null for DMPK exhibit late onset myopathy, but do not display myotonia and 

cataracts, two phenotypes characteristic of myotonic dystrophy (Reddy et al. 

1996). Also, although SIX5 (Sine oculis-related homeo box 5), the gene located 

immediately downstream of DMPK, has reduced expression levels in MD1 due to 
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Figure 1.2. RNA gain-of-function model for myotonic dystrophy 1 pathogenesis 

Illustration depicting the toxic gain-of function RNA model for the pathogenesis of 

myotonic dystrophy 1. An expansion of the number of CTG trinucleotide repeats 

in the 3’UTR of the DMPK gene, which normally contains 5-37 CTG repeats, 

leads to the accumulation of DMPK transcripts with CUG trinucleotide repeat 

expansions. This RNA then has a gain-of-function by binding and sequestering 

MBNL1, preventing the normal functions of MBNL1 in the cell. 

the expanded (CTG)n repeat in the 3’UTR of DMPK (Klesert et al. 1997), mice 

null or heterozygous for SIX5 develop cataracts but no abnormal muscle 

phenotype (Klesert et al. 2000; Sarkar et al. 2000), again, suggesting that SIX5 

levels are not sufficient to phenocopy the symptoms of myotonic dystrophy. The 

evidence in favor of the RNA gain-of-function model includes a characteristic 

accumulation of nuclear foci in muscle samples from individuals affected with 

myotonic dystrophy, and that these nuclear foci contain the expanded repeat 
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transcripts (Liquori et al. 2001; Mankodi et al. 2001; Taneja et al. 1995). The 

identification of MBNL proteins as (CUG)n repeat binding proteins (Miller et al. 

2000) and the discovery that MBNL proteins colocalize with the (CUG)n 

expanded repeat-containing RNA in nuclear foci further supports this model 

(Fardaei et al. 2001; Mankodi et al. 2001). Another critical finding in support of 

this model was that MBNL1 null mice recapitulate many of the phenotypes 

characteristic of myotonic dystrophy, including myotonia and cataract 

development (Kanadia et al. 2003). 

It is thought that the pathogenesis of myotonic dystrophy is caused by the 

dysregulation of the alternative splicing of a set of transcripts normally regulated 

by MBNL proteins. In favor of this spliceopathy model, a study compared global 

splice forms in MBNL1 null mice with those in a mouse model of MD1, where 

animals were engineered to express a transgene consisting of 250 CUG repeats 

in the human skeletal muscle actin gene 3’UTR (Mankodi et al. 2000). This 

showed a ~80% overlap in splice forms in the two mice (Du et al. 2010). Taken 

together, the evidence supports a model for myotonic dystrophy pathogenesis 

where expanded repeats in non-coding genic regions result in the accumulation 

of “toxic” repeat-containing RNAs that bind MBNL proteins and prevent them 

from carrying out their usual functions. 

Spinocerebellar ataxia 8 

Although their role in myotonic dystrophy is the most heavily studied, there 

is evidence that MBNL1 functions in the pathogenesis of another human genetic 
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disease, spinocerebellar ataxia 8 (SCA8). SCA8 is a slowly progressing 

neurodegenerative disease that affects the cerebellum. The causative SCA8 

mutation is a CAG�CTG repeat expansion in the overlapping genes ATXN8OS 

and ATXN8, which are located on opposite DNA strands (Koob et al. 1999). This 

expansion results in an expanded run of glutamines in the protein product of 

ATXN8, and a CUG trinucleotide repeat expansion in the non-coding ATXN8OS 

transcript (Moseley et al. 2006). In tissue samples from both individuals affected 

with SCA8 and from mice engineered to express the ATXN8OS transcript 

containing expanded CUG repeats, ATXN8OS transcripts with expanded CUG 

repeats were observed in ribonuclear inclusions. Interestingly, MBNL1 was also 

localized in these inclusions in specifically the molecular layer interneurons and 

deep cerebellar nuclei (Daughters et al. 2009). 

Fragile X-associated tremor/ataxia syndrome 

MBNL1 has been found in nuclear inclusions specific to Fragile X-

associated tremor/ataxia syndrome (FXTAS), which is another late onset 

neurodegenerative disease. FXTAS affects the cerebellum and white matter of 

the brain. In males, there is a 1 in 3,000 lifetime risk of developing FXTAS, 

although the incidence of the causative mutation is higher (Jacquemont et al. 

2004). The causative mutation is an expanded CGG repeat in the 5’UTR of the 

FMR1 gene. When this trinucleotide is repeated more than 200 times, it leads to 

loss of FMR1 expression and to fragile X syndrome, a more severe condition 

than FXTAS. However, when the CGG trinucleotide is repeated 55 to 200 times 
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(normal repeat number is 5 to 40), it can lead to FXTAS. This intermediate 

number of CGG repeats leads to an increase in the level of FMR1 mRNA, 

although there are normal to reduced levels of the FMR1 protein (Hagerman et 

al. 2001; Hagerman and Hagerman 2015). A characteristic of FXTAS is the 

presence of ubiquitin positive nuclear inclusions in neurons and astrocytes. In 

samples from FXTAS patients, these inclusions were isolated and mass 

spectrometry analysis found, among other proteins, the presence of MBNL1 and 

the RNA binding protein HNRNPA2/B1 (Iwahashi et al. 2006). In FXTAS patient 

brain samples these repeat expansion containing FMR1 transcripts co-localized 

with the RNA binding proteins SAM68, HNRNPG and MBNL1 in nuclear foci. 

However, in this study MBNL1 retained some ability to regulate the splicing of 

some of its targets (Sellier et al. 2010). Therefore, although the role of MBNL1 in 

myotonic dystrophy has been the most extensively studied, MBNL1 may also 

play a role in other human genetic diseases. 

CHAPTER 2. MBNL1 and Breast Cancer Progression 

1. Identification of MBNL1 as a suppressor of breast cancer progression

The effect of MBNL1 on breast cancer metastasis was originally examined 

because MBNL1 was a candidate miR-335 target transcript. MiR-335 has been 

identified as a suppressor of breast cancer metastasis (Tavazoie et al. 2008). 

The MBNL1 transcript has a miR-335 complementary site in its 3’UTR, however, 

overexpression of miR-335 in breast cancer cells did not modulate the level of 

MBNL1 protein (Figure 2.1A). Therefore, the seed sequence complementarity of 
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miR-335 to the MBNL1 transcript is not sufficient to repress MBNL1 expression in 

these cells. Although MBNL1 levels were unaffected by miR-335 overexpression 

in breast cancer cells, the effect of MBNL1 on breast cancer metastasis was 

tested. To assay the effect of MBNL1, a xenograft mouse model was used. In this 

assay, RNAi-mediated depletion of MBNL1 using two independent short hairpin 

RNAs (shRNAs) robustly increased the metastatic colonization capacity of MDA-

231 human breast cancer cells in tail-vein metastatic colonization assays (Figure 

2.1B). Moreover, depletion of MBNL1 also significantly enhanced (~15-fold) 

metastatic colonization by highly metastatic LM2 cells, which is an in vivo 

selected sub-population of the MDA-231 cell line (Minn et al. 2005) (Figure 2.1C). 

To test if the effect of MBNL1 on metastasis was cell line specific, the effect of 

MBNL1 knockdown on the metastatic capacity of CN34 cells was tested. The 

CN34 cell line is an independent and minimally passaged human breast cancer 

cell line (Tavazoie et al. 2008). Again, MBNL1 knockdown in this independent cell 

line significantly increased (~100-fold) lung colonization by the CN34 breast 

cancer cells (Figure 2.2A). These findings reveal that endogenous MBNL1 can 

act as a suppressor of breast cancer metastatic colonization. 
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Figure 2.1 MBNL1 identification and effect on metastatic lung colonization 

(A) Schematic depicting the miR-355 complementary site in the 3’UTR of the 

MBNL1 transcript. Western blot for MBNL1 in whole cell lysate from LM2 breast 

cancer cells overexpressing miR-335. Tubulin was used as a loading control. (B) 

1 x 105 MDA-231 cells expressing either of two independent shRNAs targeting 

MBNL1 or a control shRNA were intravenously injected into NOD-Scid mice. 

Lung colonization was assessed by bioluminescence imaging and histology at 

indicated timepoints. Representative H&E-stained lungs shown correspond to 

day 83 post-injection. N=10-11. (C) 2 x 104 LM2 cells expressing an shRNA 

targeting MBNL1 or a control shRNA were intravenously injected into NOD-Scid 

mice and lung colonization was monitored by bioluminescence imaging. 

Representative H&E and vimentin stained lungs correspond to day 64 post-

injection. N=5.  
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As injection of cancer cells into venous circulation primarily tests their capacity to 

colonize the lung, the impact of MBNL1 depletion on systemic metastasis to 

multiple organs was tested next. This was accomplished through intra-cardiac 

injection of cancer cells into the arterial systemic circulation of immunodeficient 

mice, which allows the cancer cells to pass through many organs before going 

through the lungs. This assay revealed a significant increase in the colonization 

of multiple distal organs, including brain, lung, and bone, by MBNL1 depleted 

cells relative to control cells (Figure 2.2C). This was interesting as these organs, 

as well as the liver, are the preferred sites of metastatic colonization of human 

breast cancers (Lee 1983). The effect of MBNL1 overexpression on lung 

metastatic colonization was also assayed. Overexpression of MBNL1 in highly 

metastatic LM2 cells significantly decreased their lung colonization capacity 

(Figure 2.2B). Together, these experiments show that MBNL1 is a robust 

suppressor of breast cancer metastasis to multiple distal organs. 
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Figure 2.2 MBNL1 suppresses breast cancer metastatic lung colonization 

(A) 7.5 x 104 CN34 cells expressing either an shRNA targeting MBNL1 or a 

control shRNA were intravenously injected into NOD-Scid mice and lung 

colonization was monitored by bioluminescence imaging. Representative 

vimentin stained lungs shown correspond to day 78 post-injection. N=6. (B)1 x 

105 LM2 cells stably expressing exogenous MBNL1 or a control vector were 

injected intravenously into NOD-Scid mice, lung colonization was monitored by 

bioluminescence imaging. Representative H&E and vimentin stained lungs 

shown correspond to day 37 post-injection N=10. (C) After intracardiac injection 

into athymic nude mice of 5 × 104 MDA-231 cells expressing a control hairpin or

an shRNA targeting MBNL1, systemic metastasis was monitored over time by 

bioluminescence imaging. N=10. Bioluminescence signal quantification and 

gross bone histology corresponding to bone metastasis by 5 × 105 MDA control

cells or MBNL1 knockdown cells 35 days after intracardiac injection of the cells. 

N=10. 
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2. Expression and clinical correlation of MBNL in breast cancer

To test if an association exists between MBNL transcript levels and clinical 

outcome in breast cancer patients, clinical data and microarray analysis of 

primary tumors from breast cancer patients were analyzed. This analysis 

revealed that there was a significant correlation between reduced MBNL1 

transcript levels in tumors and elevated metastatic relapse rates (Figure 2.3B). 

Furthermore, breast cancer metastases expressed significantly lower levels of 

MBNL1 transcript relative to primary tumors (Figure 2.3A). However, there was 

no significant correlation between MBNL2 or MBNL3 transcript levels and distant 

metastasis free survival (Figure 2.3 C,D) (Gyorffy et al. 2010). Together, these 

data reveal a clinical association between MBNL1 expression and metastasis-

free survival in breast cancer patients. The two other human MBNL proteins, 

MBNL2 and MBNL3 do have high sequence similarity to MBNL1. However, 

MBNL1 is the most abundant MBNL transcript in breast cancer tumors, as 

assessed by RNA sequencing data from The Cancer Genome Atlas (TCGA) 

collection (Figure 2.3E). Therefore, it is reasonable that MBNL1 might play the 

dominant role in mediating MBNL family protein effects on breast cancer 

progression. Furthermore, in the cell lines used in this study, MBNL1 depletion by 

RNAi did not downregulate MBNL2 transcript levels (Figure 2.3F), therefore 

MBNL1 depletion alone is sufficient for the effects observed on metastasis 

suppression. 
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Figure 2.3 Expression and clinical correlation of MBNL in breast cancer 

(A) Dot-plot representation of MBNL1 expression in a set of 117 primary breast 

cancers and 36 distal metastases from previously published datasets. Cancer 

samples were transcriptomically profiled using a common platform, and 

normalized to allow for intra and inter-cohort comparisons. N=153. (B-D) Kaplan-

Meier survival curves depicting probability of distant metastasis free survival 

(DMFS) for breast cancer patients with tumors expressing high (red) or low 

(black) levels of each indicated MBNL family member transcript. High and low 

expression levels of each transcript were determined by dividing at the median. 

N=1609. P-value is based on the Mantel-Cox log-rank test. (E) MBNL family RNA 

levels (RPKM) in a set of breast tumors from RNA sequencing data (TCGA). 

N=1098. (F) Relative MBNL1 and MBNL2 transcript levels in MDA-231 shCTRL 

and shMBNL1 cells as assessed by qRT-PCR. HPRT1 was used as an 

endogenous control. P-values based on a two-way Student’s t-test. Data are 

shown as mean ±SEM . 
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3. Effect of MBNL1 on metastasis-associated cellular phenotypes

Next, to define the cellular phenotypes altered in cells depleted of MBNL1, 

assays for a variety of metastasis-associated phenotypes were carried out. To 

test if cell proliferation was a major contributor to the enhanced metastatic 

colonization observed upon MBNL1 depletion, cell count assays were carried out. 

The viable number of cells was counted at five days post plating. ShRNA-

mediated knockdown of MBNL1 did not enhance in vitro cell proliferation. 

Instead, MBNL1 depletion reduced the number of cells in vitro (Figure 2.4A). 

Furthermore, MDA-231 cells depleted of MBNL1 did not exhibit enhanced 

primary tumor growth rates in vivo (Figure 2.4B). Therefore, the enhanced in vivo 

metastasis phenotype exhibited by MBNL1 depleted cells is unlikely to be caused 

by increased proliferation or growth rates. 

To identify potential phenotypes exhibited by MBNL1 depleted cells that could 

enhance metastatic activity, the ability of breast cancer cells depleted of MBNL1 

to invade through matrigel was analyzed. This transwell matrigel invasion assay 

is a commonly used model of cancer cell invasion through the basement 

membrane. The major components of matrigel are laminin, entactin and collagen 

IV, all major structural proteins of the basement membrane (Hughes et al. 2010). 

Invasion through matrigel was significantly enhanced in cells depleted of MBNL1 

relative to control cells in both MDA-231 and CN34 breast cancer cell populations 

(Figure 2.4E,G).  Furthermore, this increase in invasiveness was abrogated upon 

stable overexpression of MBNL1 in cells depleted of MBNL1 (Figure 2.4F). 
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Another phenotype required for efficient metastasis to organs such as lung or 

brain, which contain endothelial barriers, is enhanced trans-endothelial migration 

capacity (Reymond et al. 2013). To assay this, a monolayer of human umbilical 

vein endothelial cells (HUVECs) was formed on a transwell insert, and cancer 

cells were seeded on top of the HUVEC monolayer. The number of cancer cells 

migrating through the HUVEC monolayer was then quantified. This assay found 

that cancer cells depleted of MBNL1 displayed enhanced trans-endothelial 

migration capacity relative to control cells (Figure 2.4D).  Importantly, MBNL1 

depletion did not enhance general migratory capacity of cancer cells in the 

absence of matrigel or endothelial cells as a barrier (Figure 2.4C). These results 

reveal that MBNL1 impedes both the invasion and trans-endothelial migration 

capacity of MDA-231 breast cancer cells, and suggests that these processes, 

fundamental to metastatic progression, contribute to the in vivo metastasis 

suppressive role of MBNL1. 
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Figure 2.4 Effect of MBNL1 on cell proliferation, migration, transwell invasion 

and trans-endothelial migration 

(A) Cell proliferation of MDA-231 cells expressing shRNAs targeting MBNL1 or a 

control shRNA was assessed by seeding 2.5 × 104 cells and quantifying the

viable number of cells after five days. N=3. (B) 5x105 MDA-231 cells expressing 

an shRNA targeting MBNL1 or a control shRNA were inject into bilateral 

mammary fat pads of NOD-Scid mice. Once palpable, tumor size was assessed 

by caliper measurements. (C) Cell migration capacity of MDA-231 MBNL1-

knockdown cells compared to control cells was assessed by seeding 5 × 104 cells

in a boyden chamber with 0.8um pores. After 12 hours, the number of cells 

migrated to the basal side of each insert was quantified. N=6-7. (D) Trans-

endothelial migration capacity of MDA-231 cell with MBNL1 knockdown 

compared to control cells was assessed by seeding 5 × 104 cells on a trans-well

insert with 0.3um pores coated with a monolayer of HUVECs. After 12 hours, the 

number of cells migrating through the HUVEC monolayer was quantified by 

counting the number of cells on the bottom side of each insert. N=6. (E) MDA-

231 cells with MBNL1 knockdown or control cells were seeded at 5 × 104 cells

per matrigel-coated insert with 0.8m pores. After 20 hours, the number of cells 

invaded onto the basal side of each insert was quantified. N=12-13. (F) MDA-231 

cells with MBNL1 knockdown and stable overexpression of the MBNL1 open 

reading frame were subjected to transwell invasion assays. N=5. (G) Transwell 

invasion assays were performed using CN34 cells with MBNL1 knockdown or 

control cells. N=5-6. For all, p-values based on a two-way Student’s t-test. Data 

are shown as mean ±SEM .  
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CHAPTER 3: IDENTIFICATION AND ANALYSIS OF DIRECT MBNL1-RNA 

INTERACTIONS 

1. Using HITS-CLIP to identify MBNL1-bound RNAs in breast cancer cells

Given that MBNL1 is an RNA binding protein, and to further investigate the 

molecular mechanism by which MBNL1 mediates metastasis suppression, high 

throughput sequencing-crosslinking immunoprecipitation (HITS-CLIP) was 

performed to identify RNAs that directly interact with MBNL1 in breast cancer 

cells (Figure 3.1A). These MBNL1-interacting RNAs were potential mediators of 

the metastasis suppressive effects of MBNL1, as RNAs bound by MBNL1 may 

also be directly regulated by MBNL1. HITS-CLIP is used to identify endogenous 

RNA targets of RNA binding proteins and uses ultra-violet crosslinking on whole 

cells or tissues to capture in vivo RNA binding protein-RNA interactions 

(Licatalosi et al. 2008). Analysis of the MBNL1 HITS-CLIP sequencing library was 

carried out using the CIMS algorithm, which incorporates information provided by 

the crosslink-induced nucleotide deletions present at the site of RNA-protein 

interaction, a mutation type that is a consequence of the UV radiation used to 

crosslink RNA and proteins in the HITS-CLIP procedure (Zhang et al. 2011). 

Using this program, statistically significant MBNL1-bound regions were identified, 

and FIRE (Elemento et al. 2007), a computational method based on mutual 

information, was used to find any enriched nucleotide motifs in those clusters. 

This analysis found that MBNL1-bound CLIP tag clusters were significantly 

enriched for the GCUU motif (Figure 3.1B), which is in agreement with the YGCY 
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motif previously determined as the optimal MBNL1 binding motif by SELEX 

(Goers et al. 2010). This finding is also in agreement with data from HITS-CLIP 

for MBNL1 in mouse myoblasts, where MBNL1 binding sites were found to be 

enriched for UGC and GCU containing 4mers (Wang et al. 2012). Analysis of the 

relative genic distribution of MBNL1 binding sites revealed that, as expected from 

its known role as a regulator of alternative splicing, the majority of MBNL1 

binding sites occurred in introns. However, MBNL1 interacted with many sites in 

coding and untranslated regions (Figure 3.1C), consistent with recent findings 

from HITS-CLIP studies of MBNL1 in mouse myoblasts (Masuda et al. 2012; 

Wang et al. 2012). 
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Figure 3.1 HITS-CLIP of MBNL1 in breast cancer cells 

(A) 32P-labeled RNA-MBNL1 complexes were visualized by autoradiography after 

treatment with low or high concentrations of RNase, and immunoprecipitation 

with anti-MBNL1 or IgG and separation by SDS-PAGE. Western blot for MBNL1 

in equal volumes of lysate used for MBNL1 HITS-CLIP before (input) and after 

(IP sup) immunoprecipitation with MBNL1 antibody or IgG conjugated beads. (B) 

Nucleotide motifs significantly enriched in the MBNL1 bound HITS-CLIP CIMS 

clusters. (C) Pie chart depicting percent of MBNL1 HITS-CLIP clusters mapping 

to the indicated genic regions. 
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2. Analysis of MBNL1-regulated alternative splicing events in breast cancer

cells 

MBNL1 has been well characterized as a regulator of alternative splicing 

(Pascual et al. 2006; Wang et al. 2012). Therefore, the effect of MBNL1 depletion 

on alternative splicing in breast cancer cells was examined. To do this, high-

throughput transcriptome sequencing was carried out in MDA-231 cells stably 

expressing a control shRNA or expressing two independent MBNL1-targeting 

shRNAs. The computational tool MISO (Katz et al. 2010), a program that infers 

relative levels of transcript isoforms using RNA sequencing data, was then used 

to identify MBNL1-dependent changes in transcript isoforms in breast cancer 

cells. Alternative exons that had MBNL1-dependent changes in abundance were 

identified by MISO analysis of RNA sequencing data. These were then compared 

with the MBNL1 HITS-CLIP data set to obtain a set of transcripts that had 

MBNL1-dependent differences in exon inclusion and were also bound by MBNL1 

in the HITS-CLIP data, and therefore likely to be directly regulated by MBNL1 

binding. The criteria used to arrive at this set of MBNL1-dependent alternative 

exons was that the event had a bayes factor of ≥10 and a change in the percent 

spliced in exon (ΔΨ) of ≥|0.2| in each of the two independent MBNL1-targeting 

shRNA expressing cell lines compared to the control cell line, as assessed by 

MISO (Table 3.1). 
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This analysis revealed 21 MBNL1-dependent alternative exons that were in 

transcripts also bound by MBNL1, with 71% of these exons exhibiting inclusion 

and the remainder exhibiting exclusion upon MBNL1 knockdown. Transcripts that 

had MISO predicted MBNL1-dependent changes in exon inclusion and had 

MBNL1 HITS-CLIP binding sites were validated by RT-PCR. Although many of 

the MISO-predicted transcript variants were validated by RT-PCR, several did not 

validate. In these cases, only one of the predicted transcript variants was 

detected by RT-PCR. However, of the genes that had detectable levels of both 

MISO-predicted transcript variants by RT-PCR analysis, there was good 

correlation between the MISO calculated ΔΨ and the ΔΨ assessed by RT-PCR 

(Figure 3.2B). 
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Figure 3.2 MBNL1-dependent skipped exons 

(A) MBNL1 interacts with sites near MBNL1-skipped exons. For the indicated 

transcripts, the skipped exon and its upstream and downstream intron and exon 

are shown, with mapped reads from experimental replicates of MBNL1 HITS-

CLIP. (B) Correlation plots of ΔΨ values calculated by MISO compared to ΔΨ 

values calculated by semi-quantitative RT-PCR for MBNL1-dependent alternative 

exons for genes that had both transcript forms expressed as assessed by RT-

PCR. Shown are separate plots for each independent MBNL1-targeting shRNA 

compared to shCTRL. Pearson correlation coefficient is shown for each plot. 
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This analysis found four genes, FGFR1 (fibroblast growth factor receptor 1), 

SEC31A (SEC31 homolog A), MYL6 (myosin light chain 6), and PICALM 

(phosphatidylinositol binding clathrin assembly protein) that had large (> 30%) 

changes in exon exclusion in MBNL1-knockdown cells compared to control cells 

by both MISO and by RT-PCR analysis, and were bound by MBNL1 (Table 3.1, 

Figure 3.2A, Figure 3.3A). Two of these transcripts, FGFR1 and SEC31A, 

exhibited increased inclusion of a specific exon when MBNL1 was depleted. Two 

others, MYL6 and PICALM, displayed increased exclusion of an exon upon 

MBNL1 depletion. Furthermore, in MDA-231 cells expressing a MBNL1-targeting 

shRNA, overexpression of MBNL1 resulted in the reversion of these splice forms 

(Figure 3.3 A). MBNL1-dependent changes in relative transcript isoform 

abundance were then tested to see if they could affect the transwell invasion 

phenotype observed in MBNL1 depleted cells. In this set of experiments, the 

transcript variant that had an increase in exon inclusion was specifically depleted 

using siRNA. For the transcripts that had an increase in exon inclusion upon 

MBNL1 knockdown (FGFR1, SEC31A), these longer isoforms were 

experimentally depleted using siRNA in MBNL1 knockdown cells. Conversely, 

MYL6 and PICALM had decreased exon inclusion in MBNL1 knockdown cells, 

and therefore their longer isoforms were depleted using siRNA in shCTRL cells. 

The modulation of these transcript isoforms in these cells lines did not have 

significant effect on the transwell invasion capacity of the cells (Figure 3.3B). 
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Figure 3.3 Semi-quantitative RT-PCR analysis of MISO-predicted MBNL1-

dependent alternative splicing events and effect on in vitro invasion 

(A) Semi-quantitative RT-PCR analysis of MBNL1-dependent transcript isoforms 

predicted by MISO in RNA-seq data. Shown are RT-PCR products visualized by 

agarose gel analysis. Percent exon inclusion relative to shCTRL or to MBNL1 

overexpressing cells was calculated using Image J. Cartoons represent the exon 

included (contains the red exon) and the skipped exon forms of each indicated 

transcript, with the DNA length in basepairs indicated for each transcript variant. 

(B) MDA-231 cells expressing shCTRL or sh1MBNL1 were transiently transfected 

with siRNAs targeting the MBNL1-dependent exon of the indicated transcript. 

Transwell invasion assays were then carried out. N=6. Data are shown as mean 

±S.E.M. 
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This result does not exclude the possibility that regulation of alternative splicing 

by MBNL1 contributes to invasion and metastasis. However, in the analysis of 

the group of transcripts identified here, of those that had both direct MBNL1-

dependent differences in transcript isoform expression and the greatest changes 

in isoform expression, none individually affected the invasion capacity of MDA-

231 breast cancer cells. 

CHAPTER 4. MBNL1 REGULATION OF TRANSCRIPT STABILITY AND 

IDENTIFICATION OF MBNL1-STABILIZED METASTASIS SUPPRESSOR 

TRANSCRIPTS  

1. Analysis of MBNL1 effect on global transcript stability

A major type of regulatory activity for RNA binding proteins is control of 

transcript stability. There is some evidence that MBNL1 levels can modulate the 

stability of transcripts in mouse myoblasts (Masuda et al. 2012), but the effect of 

MBNL1 on transcript stability in breast cancer cells has not been reported. 

Therefore, to determine if MBNL1 depletion alters the stability of transcripts to 

which it binds, a transcriptome-wide analysis of RNA stability was conducted. In 

this experiment, breast cancer cells with MBNL1 depleted or control cells, were 

treated with alpha-amanitin to inhibit polymerase II-dependent transcription, and 

RNA was isolated. Relative transcript levels were determined by transcriptomic 

profiling. Relative distribution of MBNL1-bound transcripts in the stability dataset 

was assessed using TEISER (Goodarzi et al. 2014). This analysis showed that 

MBNL1-bound transcripts were enriched among transcripts that had decreased 
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stability upon MBNL1 knockdown (Figure 4.1A). This is consistent with a model 

where MBNL1-bound transcripts are stabilized by MBNL1 binding. 



56 

Figure 4.1 Identification of MBNL1-stabilized transcripts 

(A) Differential stability of transcripts in MDA-231 MBNL1-depleted compared to 

control cells as assessed by alpha-amanitin treatment and microarray profiling. 

Transcripts were ordered by their log2 fold-change in MBNL1-knockdown cells 

compared to control cells at nine hours after alpha-amanitin treatment normalized 

to pre-alpha-amanitin treated transcript levels. MBNL1-bound transcripts, as 

assessed by HITS-CLIP, were significantly enriched among transcripts 

destabilized by MBNL1-knockdown. (B) Venn diagram of transcripts stabilized 

and bound by MBNL1. (C) qRT-PCR of candidate MBNL1 target transcripts in 

MDA-231 shMBNL1 and shCTRL cells at steady-state. HPRT1 was used as an 

endogenous control. N=3. (D) qRT-PCR of putative MBNL1 target transcripts in 

CN34 shMBNL1 and shCTRL cells at steady-state. HPRT1 was used as an 

endogenous control. 
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Next, the identification of genes directly bound and regulated by MBNL1 

that also mediate MBNL1’s effects on metastasis was carried out. To do this, 

transcripts that were directly bound by MBNL1 in the HITS-CLIP dataset, were 

stabilized by MBNL1 based on the alpha-amanitin analysis, and had reduced 

steady-state abundance upon MBLN1 knockdown, were identified. This analysis 

identified a group of seven transcripts as potential regulators of breast cancer 

metastasis downstream of MBNL1 (Figure 4.1B). The steady-state levels of 

these transcripts were assessed by qRT-PCR in MBNL1-knockdown compared 

to control cells in the MDA-231 and CN34 cancer cell lines. Three of these 

transcripts exhibited reduced steady-state levels upon MBNL1 knockdown in both 

cell lines and using two independent MBNL1-targeting shRNAs: DBNL, TACC1 

and TK1 (Figure 4.1C,D). The reduced stability of these transcripts after alpha-

amanitin treatment and upon MBNL1-depletion in MDA-231 and CN34 cells was 

verified by qRT-PCR (Figure 4.2A,B). The stabilization of these transcripts by 

MBNL1 was also tested using an independent method of transcription inhibition. 

In this assay, dichlorobenzimidazole 1-β-D-ribofuranoside (DRB), an inhibitor of 

CDK9, was used to inhibit transcription. Breast cancer cells were treated with 

DRB and RNA was isolated at various time-points for qRT-PCR analysis. DBNL, 

TACC1, and TK1 transcripts exhibited shorter half-lives in MBNL1-depleted cells 

relative to control cells, while COL6A1, IGFBP4 and VIPR1 transcripts did not 

exhibit significant changes in decay rates in MBNL1-depleted cells relative to 

control cells in this assay (Figure 4.2C). These findings demonstrate that, in 
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breast cancer cells, MBNL1 depletion reduces the stability of a subset of 

transcripts to which it binds. 

Figure 4.2 Validation of MBNL1-dependent transcript stability 

qRT-PCR of putative MBNL1 target transcripts in (A) MDA-231 and (B) CN34 

shMBNL1 and shCTRL cells after nine hours of alpha-amanitin treatment. 18S 

was used as an endogenous control. N=3. (C) qRT-PCR of putative MBNL1 

target transcripts in MDA-231 shMBNL1 and shCTRL cells at times indicated 

after treatment with DRB.  N=3. For all, P-values are from a one-way Student’s t-

test. Data are shown as mean ±S.E.M. 
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2. Effects of DBNL and TACC1 on metastatic invasion in breast cancer 
cells 

MBNL1 depletion leads to the reduced stability and subsequently the 

reduced abundance of DBNL, TACC1 and TK1 transcripts. To test if rescuing the 

expression of these genes in cells depleted of MBNL1 could reverse the 

enhanced metastatic phenotype observed, each of these genes was stably 

overexpressed in MBNL1-depleted cells, using overexpression of mCherry as a 

control gene. These cells were then subjected to in vitro transwell invasion 

assays, and a significant decrease was observed in the invasion capacity of the 

cell lines overexpressing DBNL and TACC1 relative to cells expressing mCherry 

control (Figure 4.3A). However, TK1 over-expression in this context did not 

significantly reduce the invasiveness of MBNL1-depleted cells. As DBNL and 

TACC1 overexpression could both compensate for MBNL1-knockdown in 

transwell invasion assays, elucidating the roles of DBNL and TACC1 in 

repressing invasion and metastasis downstream of MBNL1 was the next step. 

Also, and consistent with these findings, overexpressing DBNL and TACC1 in the 

CN34-Lm1a line, an independent highly metastatic breast cancer cell population, 

also suppressed cell invasiveness (Figure 4.3B).  
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Figure 4.3 Effect of DBNL and TACC1 on invasion and metastatic lung 

colonization 

(A) Candidate MBNL1-regulated genes were stably overexpressed in shMBNL1 

MDA-231 cells. mCherry was overexpressed as a control. 5x104 cells were 

seeded in transwell matrigel invasion chambers and the number of cells invading 

to the basal side of the insert was quantified after 20 hours. N=6. (B) CN34-LM1a 

cells stably overexpressing DBNL, TACC1 or mCherry were assessed for 

transwell invasion capacity. N=6. (C) 2x104 MDA-231 cells stably overexpressing 

DBNL, TACC1 or mCherry were injected into the venous circulation of NSG mice. 

Lung colonization was monitored by bioluminescence imaging. N=6. Western blot 

showing levels of DBNL and TACC1 in whole cell lysate from MDA-231 

sh1MBNL1 cells stably overexpressing the indicated factors. Data are shown as 

mean ±SEM. 



61 

To determine if these genes impacted metastatic lung colonization in vivo, 

breast cancer cell with shRNA-mediated stable MBNL1 knockdown were 

engineered to stably overexpress DBNL, TACC1 or mCherry. These cells were 

injected into the venous circulation of immunodeficient mice. Overexpressing 

DBNL and TACC1 in MBNL1-depleted cells significantly abrogated the enhanced 

metastatic phenotype conferred by MBNL1 depletion (Figure 4.3C). These 

findings demonstrate that overexpression of either DBNL or TACC1 is sufficient 

to repress the metastatic lung colonization of MBNL1-depleted breast cancer 

cells in vivo, as well as to suppress transwell invasion in vitro. 

One commonly used mechanism of regulating mRNA stability is 

alternative poly(A) site choice (APA), which leads to 3’UTR length alterations. 

Both DBNL and TACC1 have extensive binding of MBNL1 in their 3’UTRs, a 

location which could control poly(A) site selection (Figure 4.4A). The length of the 

3’UTRs of DBNL and TACC1 were assessed by qRT-PCR, using primers specific 

to different part of these 3’UTRs. In this analysis, both DBNL and TACC1 3’UTR 

lengths were unchanged upon MBNL1 depletion (Figure 4.4B,C). 
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Figure 4.4 MBNL1 binding on 3’UTRs of DBNL and TACC1 and 3’UTR length 

(A) MBNL1 interacts with the 3’UTRs DBNL and TACC1. The last exon of the 

indicated transcripts are shown with mapped reads from experimental replicates 

of MBNL1 HITS-CLIP. (B) qRT-PCR analysis of DBNL  and (C) TACC1 3’UTR 

length in MDA-231 cells with stable knockdown of MBNL1 or cells expressing a 

control shRNA. 3’UTR primers are numbered as increasingly distal from the stop 

codon. N=3. Data are shown as mean ±S.E.M. 
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As poly(A) tail length is a major determinant of mRNA stability, the relative 

poly(A) tail lengths of DBNL and TACC1 were assessed. To do this, a method 

employing 3’ tagging of adenylated transcripts and subsequent PCR amplification 

of the poly(A) tail using transcript specific primers, was carried out (Janicke et al. 

2012). This assay revealed no difference in the poly(A) tail length of DBNL and 

TACC1 transcripts upon MBNL1 depletion (Figure 4.5A-D). This result suggested 

that MBNL1 does not regulate the stability of these transcripts through controlling 

their adenylation or deadenylation. These data are consistent with MBNL1 

binding to the 3’UTRs of DBNL and TACC1 and regulating their stability in a 

poly(A) tail length- and APA- independent manner. 
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Figure 4.5 Poly(A) tail length of DBNL and TACC1 transcripts  

The poly(A) tail length of DBNL and TACC1 transcripts was assessed in MDA-

231 shCTRL and MBNL1 knockdown cells as described in methods. The PCR 

products were run on a 2% agarose-TAE gel and stained with ethidium bromide. 

(A,B) DBNL poly(A) tail length using two independent gene-specific primers 

(DBNL-1, DBNL-2). (C,D) TACC1 poly(A) tail length using two independent gene-

specific primers (TACC1-1, TACC1-2).  
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3. Clinical correlation of DBNL and TACC1 in breast cancer outcome

TACC1 expression can be inferred from affymetrix microarray datasets as 

this transcript is represented by an informative probe. Analysis of a large dataset 

comprising 3455 tumor samples representing multiple cohorts revealed a 

significant correlation between TACC1 expression and relapse-free survival in 

breast cancer patients (Figure 4.6A), a finding consistent with TACC1 acting as a 

suppressor of breast cancer metastasis. However, DBNL is not represented by a 

probe on the microarray platform used to analyze these large breast cancer 

datasets. Therefore, to determine whether there exists an association between 

DBNL and breast cancer progression, qRT-PCR was performed on a panel of 

publicly available cDNAs (Origene) generated from breast tumor-derived RNA. 

Consistent with it having a metastasis suppressor role, metastatic stage IV 

tumors expressed significantly lower levels of DBNL relative to stage I and stage 

II tumors (Figure 4.6B). 
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Figure 4.6 Clinical correlation of DBNL and TACC1 expression in breast cancer 

(A) Kaplan-Meier curve showing relapse free survival of breast cancer patients 

with tumors expressing high (red) or low (black) levels of the TACC1 transcript. 

N=3455. (B) Levels of DBNL were assessed by qRT-PCR from RNA obtained 

from a panel of staged breast cancer tumors. Beta-actin was used as an 

endogenous control. N=48. (C) qRT-PCR for MBNL1 and TACC1 in MDA-231 

cells stably expressing two independent TACC1-targeting shRNAs, HPRT1 was 

used as an endogenous control. P-values are based on Student’s t-test unless 

otherwise noted. Data are shown as mean ±SEM.  
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Interestingly, data suggests that MBNL1 is upstream of TACC1 in this regulatory 

relationship, as shRNA-mediated depletion of TACC1 did not affect MBNL1 

transcript levels in MDA-231 cells (Figure 4.6C). However, MBNL1 could 

conceivably be regulated at the transcriptional level by TACC1, as TACC1 has 

been shown to have effects on the transcriptional activity of the retinoic acid 

receptor alpha and thyroid receptor, and also interacts with YEATS4/GAS41, 

which is part of a complex that acetylates histones (Guyot et al. 2010; Lauffart et 

al. 2002). Together, this data is consistent with MBNL1 interacting with TACC1 

and DBNL transcripts to stabilize them, thereby suppressing invasion and 

metastasis of MDA-231 breast cancer cells. DBNL expression is reduced in stage 

IV breast cancer compared to stage I and stage II tumors. TACC1 transcript 

levels are positively correlated with significantly longer relapse-free survival of 

breast cancer patients, suggesting that TACC1 acts as a breast cancer 

metastasis suppressor in human breast cancers. 

4. Effect of secreted proteins on MBNL1-mediated phenotypes

Cancer cells secrete factors that are known to regulate their spread from a 

primary tumor and to promote colonization of distant organs. As MBNL1 

depletion enhanced in vitro invasion and trans-endothelial migration, and both of 

these processes can be modulated by cancer cell-mediated secretion of 

molecules into the extracellular environment, it seemed an intriguing possibility 

that MBNL1 might regulate the expression levels of secreted pro-metastatic 

molecules. A study in mouse myoblasts has also found a role for MBNL protein 
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localization of transcripts that contain a signal peptide sequence (Wang et al. 

2012). To test the possibility that MBNL1 depletion impedes the invasion capacity 

of breast cancer cells through regulation of secreted factors, the invasion 

capacity of cells treated either with media that had been conditioned by MBNL1-

depleted cells or with media that had been conditioned by cells expressing a 

control shRNA was assessed. In this assay, breast cancer cells seeded in 

conditioned media from MBNL1-depleted cells displayed significantly greater 

invasion capacity relative to cells seeded in conditioned media from control cells 

(Figure 4.7A). This finding suggested that factors specifically secreted by 

MBNL1-depleted cells could contribute to the increased cell invasiveness. 

To identify any molecule(s) regulated by MBNL1 that also mediated this 

pro-invasive effect, stable isotope labeling by amino acids in cell culture (SILAC) 

and mass spectrometry (MS) was conducted to identify proteins with different 

levels in media conditioned by control or MBNL1-depleted cells. This experiment 

revealed five proteins with higher abundance in MBNL1-depleted cell conditioned 

media relative to control cell conditioned media. These proteins are CTGF, 

LOXL2, QSOX1, APLP2 and NPC2 (Table 4.1). Three of these factors, CTGF 

(connective tissue growth factor), LOXL2 (lysyl oxidase-like 2), and QSOX1 

(quiescin Q6 sulfhydryl oxidase 1), have been previously implicated in cell 

migration and invasion. LOXL2 and QSOX1 have also been associated with 

breast cancer progression (Ahn et al. 2013; Barker et al. 2011; Chen et al. 2007; 

Katchman et al. 2013). 
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Figure 4.7 Identification of secreted proteins upregulated by MBNL1 depletion 

(A) Conditioned media from MDA-231 cell with MBNL1 knockdown or shCTRL 

cells was used to treat MDA-231 shCTRL cells that were subjected to transwell 

invasion assays. N=5-6. (B) Western blot of conditioned media from MDA-231 

and CN34 cells with MBNL1 knockdown or control cells, all in biological triplicate. 

Bar graphs are quantitation of LOXL2 and QSOX1 signal from the Western blots. 

(C) ELISA for CTGF in conditioned media from MDA-231 cells with MBNL1 

knockdown or control cells. N=3. Data are shown as mean ±S.E.M. 
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To validate the up-regulation of these proteins in conditioned media from MBNL1-

knockdown cells compared to control cell conditioned media, Western blotting for 

LOXL2 and QSOX1 was carried out, while an ELISA was used to assay CTGF 

levels (Figure 4.7B,C). 

To assess if these factors could affect the invasion capacity of cells, 

siRNA-mediated knockdown was used to deplete CTGF, LOXL2, and QSOX1 

alone, as well as each of these transcripts in combination with the others. 

Depletion of any one of these factors alone did not affect the invasive capacity of 

breast cancer cells (Figure 4.8A). However, depletion of LOXL2 or QSOX1 in 

combination with depletion of CTGF led to a decrease in the invasion capacity of 

MDA-231 cells (Figure 4.8B). This data is consistent with a role for the secreted 

factors LOXL2, QSOX1 and CTGF in mediating the effect of MBNL1 on breast 

cancer cell invasion. 
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Figure 4.8 Effect of secreted proteins on in vitro invasion  

(A) MDA-231 cells depleted of MBNL1 in combination with CTGF, LOXL2 or 

QSOX1 were subjected to transwell invasion assays. N=5-6. (B) MDA-231 cells 

depleted of MBNL1 in combination with the indicated factors were subjected to 

transwell invasion assays. N=6. Data are shown as mean ±S.E.M. 
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CHAPTER 5. DISCUSSION 

1. MBNL1 regulation of messenger RNA expression

This study identified MBNL1 as a suppressor of breast cancer 

progression, and discovered that part of this effect is mediated by MBNL1 

regulation of DBNL and TACC1 transcript stability. Interestingly, factors secreted 

by MBNL1-depleted cells were found to moderately enhance cancer cell 

invasion. The mechanism through which these secreted factors are upregulated 

in MBNL1 depleted cells is presently unclear. MBNL1 was also found to directly 

bind and regulate a set of alternatively spliced transcripts in breast cancer cells. 

However, RNAi-mediated modulation of the levels of these transcript variants had 

no significant effect on the in vitro invasion capacity of breast cancer cells. It is 

possible that some of these MBNL1-dependant alternative transcript variants 

contribute to the regulation of metastasis, but may work in concert with each 

other so that modulation of a single splicing event does not have an effect on 

invasion. Therefore, the primary mediator of MBNL1-mediated breast cancer 

metastasis suppression identified in this study is the stabilization of a subset of 

transcripts by MBNL1 binding (Figure 5.1) 
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Figure 5.1 Model of MBNL1 regulation of transcript stability that contributes to 

breast cancer metastasis 

Depiction of MBNL1 binding to the 3’UTRs of DBNL and TACC1 to increase their 

stability and thereby contribute the suppression of breast cancer cell invasion and 

metastasis. 

An open question is the mechanism by which MBNL1 affects the stability 

of mRNAs in breast cancer cells. MBNL1 is known to affect pre-mRNA 

processing by contributing to both alternative exon and alternative poly(A) site 

selection. A recent study reported a regulatory role for MBNL proteins in 

polyadenylation site choice on 3’UTRs in mouse embryonic fibroblasts, thereby 

controlling 3’UTR length (Batra et al. 2014). However, in the current study, there 
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was no observed difference in the 3’UTR length of DBNL and TACC1 transcripts 

upon MBNL1 depletion, as assessed by qRT-PCR. There was also no observed 

change in the length of the poly(A) tails of DBNL and TACC1 transcripts when 

MBNL1 was depleted. These results suggest that APA and poly(A) tail 

lengthening are not mechanisms through which MBNL1 regulates the stability of 

these transcripts, although these regulatory mechanisms may be relevant to the 

control of the stability of other MBNL1-stabilized transcripts. 

One possibility for the mode of MBNL1 regulation of mRNA stability that is 

consistent with this data is MBNL1-dependent localization of mRNAs to stress 

granules and/or P-bodies. MBNL1 has been observed to localize to arsenite-

induced stress granules in HeLa and COS-7 cells (Onishi et al. 2008). Cancer 

cells undergoing the steps necessary for metastatic progression encounter 

stresses that are known to induce stress granule formation, including hypoxia 

and nutrient deprivation. It is possible that a function of MBNL1 in breast cancer 

cells is to localize transcripts to stress granules, where they would be protected 

from decay and then could rapidly resume translation upon removal of the stress. 

Therefore, when MBNL1 is depleted these transcripts would be subjected to 

increased degradation. Similarly, MBNL1 could bind transcripts in P-bodies to 

protect them from decay. This would be a mechanism similar to one observed to 

regulate the poly(A) tail length-independent stability of the HIF1A transcript via 

binding by PAN2 (Bett et al. 2013). In this model for MBNL1 stabilization of 

transcripts, MBNL1 would stabilize a subset of its mRNA targets by localizing 
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them to cytoplasmic RNA granules where they would be protected from decay 

factors. 

2. Regulation of MBNL1 expression and activity

Little is known about the regulation of MBNL1 expression. The most direct 

data addressing this question comes from studies in Drosophila, where it was 

shown that MEF2 (myocyte enhancer factor 2) drives transcription of 

muscleblind, and tissue-specific enhancer elements of muscleblind expression 

were also identified, although these sequences are not conserved in humans 

(Artero et al. 1998; Bargiela et al. 2014). Regulation of MBNL1 levels and activity 

in cancer is a clinically relevant question because of MBNL1’s role in suppressing 

breast cancer metastasis identified in this study. In breast cancer, there are many 

possibilities for regulation of MBNL1 transcript levels. These include decreased 

transcription of the gene through copy number loss at the MBNL1 genetic locus, 

mutation or epigenetic silencing of promoter elements required for transcription of 

MBNL1, or through the loss-of-function of transcription factors that transcribe the 

MBNL1 gene. MBNL1 could also be down-regulated at the mRNA level through 

the alteration of an as yet to be defined cis-regulatory element that controls 

MBNL1 transcript stability, or through levels of a trans-acting factor that controls 

MBNL1 transcript stability. 

The clinical data available for examination in this study only contained 

data for MBNL1 transcript levels, and levels of MBNL1 mRNA do correlate with 

metastasis-free survival of breast cancer patients (Figure 2.3D). However, 
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MBNL1 protein loss-of-function is another formal possibility for down-regulation of 

MBNL1 activity. One mechanism for this would be the mutation of amino acids in 

the MBNL1 protein that affected either its RNA binding ability or its interactions 

with other proteins. Another interesting possibility is regulation of MBNL1 protein 

activity by a toxic RNA gain-of-function mechanism. In this model, cancer cells 

would have unchanged MBNL1 transcript and protein levels, but inhibition of 

MBNL1 activity would occur through sequestration of the MBNL1 protein by an 

RNA containing expanded CUG repeats, in a mechanism similar to that observed 

in myotonic dystrophy. It is plausible that a subset of cancer cells could acquire 

just such a trinucleotide repeat expansion, which would then lead to the 

accumulation of a transcript with a large number of CUG repeats, which could 

then bind MBNL1. Acquisition of expanded CAG trinucleotide repeats at multiple 

loci in breast cancer has been observed (Pizzi et al. 2007). Therefore, it is 

conceivable that such a mechanism could also generate CUG repeat expansions 

in breast cancers. This could lead to the suppression of MBNL1 activity in cancer 

cells and induce acquisition of enhanced metastatic capacity. Interestingly, a 

higher incidence of primary tumor development in individuals affected with 

myotonic dystrophy has been observed, and this increase seems to be specific to 

the disease itself, as unaffected family members do not have an increased 

cancer incidence (Gadalla et al. 2011; Lund et al. 2014; Win et al. 2012). There 

are no reports on the relative incidence of metastatic disease in individuals with 

myotonic dystrophy, but this would be an interesting area for future study. There 



78 

have also been multiple case reports that have examined samples from 

individuals with myotonic dystrophy who also had cancer of various types, and 

found an expansion of the CUG repeat in the DMPK gene in tumor cells 

compared to normal tissue (Akiyama et al. 2008; Banuls et al. 2004; Jinnai et al. 

1999; Kinoshita et al. 1997; Kinoshita et al. 2002; Ogata et al. 1998; Osanai et al. 

2000). This illustrates the fact that cancers that develop from a wide variety of 

tissues have the ability to generate additional expansions in CUG repeats, which 

could contribute to the down-regulation of MBNL1 and possibly increase the 

metastatic capacity of the cancer cells. 

3. Roles of DBNL and TACC1 in cancer progression

In this study, expression of DBNL and TACC1 counteracted the MBNL1-

depedent effects on cancer cell invasion and metastatic lung colonization. The 

cell biological processes affected by DBNL and TACC1 could conceivably 

mediate these phenotypes. A role for DBNL in suppressing breast cancer 

metastasis has not been previously reported. DBNL (drebrin-like protein) is an F-

actin binding protein and has roles in mammalian development, endocytosis and 

the immune response (Connert et al. 2006; Haag et al. 2012; Hepper et al. 2012; 

Kessels et al. 2000; Larbolette et al. 1999; Schymeinsky et al. 2009). DBNL has 

an N-terminal F-actin binding domain and C-terminal proline rich and SH3 

domains. The DBNL SH3 domain has been reported to interact with factors 

involved in endocytosis, cell motility, and neuronal morphology development 

(Fenster et al. 2003; Hou et al. 2003; Kessels et al. 2001; Pinyol et al. 2007). In a 
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mouse genetic knockout of DBNL, animals have adult onset organ abnormalities, 

including enlarged spleens, dilation and fibrosis of heart chambers, and lung 

emphysema. In adulthood, these animals also develop impaired motor skills, 

which may be due to the observation that they have impaired synaptic vesicle 

recycling of hippocampal boutons (Connert et al. 2006). 

Although there is no reported role for DBNL in cancer progression, a 

recent study showed that DBNL depletion in Src-transformed fibroblasts 

regulates podosome rosette formation and, interestingly, increases cell 

invasiveness (Boateng et al. 2012). Although this effect was observed in 

transformed fibroblasts, this finding is consistent with decreased DBNL levels in 

breast cancer cells enhancing their invasive capacity. Another process relevant 

to metastasis, adhesion to blood vessel walls, has been shown to be affected by 

DBNL in neutrophils. Intriguingly, DBNL has been shown to promote firm 

neutrophil adhesion in vitro under physiologic shear stress conditions and to also 

promote adhesion and extravasation in vivo. Depletion of DBNL resulted in a 

reduced number of integrin-beta-2 clusters in high-affinity conformation. 

Furthermore, DBNL was necessary for neutrophil crawling under flow conditions 

(Hepper et al. 2012; Schymeinsky et al. 2009). Cancer cells go through a process 

similar to this during extravasation. Reduction in the level of DBNL in breast 

cancer cells, if consistent with the function of this protein in neutrophils, would 

decrease adhesion and intraluminal crawling of a cancer cell. This could allow a 

cancer cell to travel farther in the bloodstream and then only adhere to 
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endothelial cells when physically forced to, such as arrest in small capillaries. 

This decrease in adhesion might allow for a cancer cell to spread farther in the 

body. 

TACC1 (transforming acidic coiled-coil containing protein 1) is a member 

of the TACC family, which also contains TACC2 and TACC3. All three of these 

proteins are characterized by the presence of a highly conserved, highly acidic 

200 amino acid long coiled-coil domain at their C-termini (Still et al. 2004). 

Although the down-regulation of TACC1 has been previously reported in breast 

cancer (Conte et al. 2003), the role of this molecule in mediating this process 

remains undefined. TACC1 has been reported to associate with proteins involved 

in diverse cellular processes, including those involved in cell division, specifically 

mitotic spindle dynamics (chTOG/CKAP5, Aurora A, B and C), transcription 

(GAS41/YEATS4, thyroid hormone receptor, retinoid acid receptor alpha, FHL3), 

and RNA processing (LSM7, SNRPG, TDRD7) (Conte et al. 2003; Gabillard et al. 

2011; Guyot et al. 2010; Lauffart et al. 2002; Lauffart et al. 2007). In adult 

humans, transcript levels of TACC1 are highest in the brain, placenta, skeletal 

muscle, spleen, testes, and uterus, and TACC1 levels are higher in the 

developing mouse embryo than in adult mouse tissue (Lauffart et al. 2006). No 

mouse genetic knockout model of TACC1 has been reported. Experiments to 

assess the localization of TACC1 in HeLa cells found that during mitosis, TACC1 

is present at the spindle midzone during anaphase, is localized at the midbody 



81 

during cytokinesis, while during interphase TACC1 relocalizes to the nucleolus 

(Delaval et al. 2004). 

TACC1 was originally identified as a molecule involved in breast cancer 

because the TACC1 gene is located on 8p11, a chromosomal region commonly 

amplified in breast cancers. Furthermore, it was found that overexpression of 

TACC1 in mouse fibroblasts resulted in cellular transformation and anchorage 

independent growth, suggesting that TACC1 has a role in oncogenesis (Still et al. 

1999). Additionally, ectopic overexpression of TACC1 in a mouse pten 

heterozygous background increased the number of mammary tumors formed 

(Cully et al. 2005). However, in contrast to this, TACC1 mRNA has been shown 

to be down-regulated in breast tumors compared to normal breast tissue, which 

supports a suppressive role for this molecule in breast cancer progression (Conte 

et al. 2003). In agreement with this, analysis of patient data in this current study 

revealed that TACC1 transcript levels are significantly correlated with relapse-

free survival in breast cancer patients (Figure 4.2A). These data can be 

explained if TACC1 acts as both a promoter of tumorigenesis but a suppressor of 

cancer progression. Recently, rare but recurrent fusions of FGFR and TACC 

genes have been reported in glioblastoma multiforme. Fusions of FGFR1-TACC1 

and FGFR3-TACC3 were observed in a small subset of glioblastomas, with the 

tyrosine kinase domain of the FGFR gene fused to the acidic coiled-coil domains 

of the TACC gene. The resulting fusion proteins were found to promote tumor 

growth (Singh et al. 2012). 
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Taken together, the literature on TACC1 is not in agreement on a single 

function for this protein. TACC1 may be involved in MAPK signaling pathways by 

regulating the subcellular localization of phospho-ERK. Through its interactions 

with YEATS4/GAS41, a member of the NuA4 acetyltransferase complex, TACC1 

may also modulate histone acetylation and transcription. It has been implicated 

as a regulator of mitotic exit through its interactions with Aurora B at the midbody 

during cytokinesis, and as a regulator of RNA processing through its interactions 

with LSM7 and SNRPG. The interaction of TACC1 with these RNA processing 

factors is especially intriguing given the role of MBNL1 in RNA processing. LSM7 

is a component of both the LSM1-7 complex and the LSM2-8 complex, which 

mediate cytoplasmic mRNA decapping, and nuclear pre-mRNA splicing and 

decay, respectively (Tharun 2009). SNRPG (small nuclear ribonucleoprotein G) is 

a protein component of the snRNPs that make up the core spliceosome 

machinery. It is therefore possible that downregulation of TACC1 by MBNL1 

results in the dysregulation of splicing and stability of transcripts not directly 

bound by MBNL1. It would also be interesting to test the effect of DBNL and 

TACC1 on modulating the levels of the secreted factors that are upregulated in 

MBNL1-knockdown cells. This might reveal a mechanistic link between MBNL1 

and these downstream secreted factors. 

4. MBNL1-dependent phenotypes and cancer progression

In this study, MBNL1 was found to suppress the invasion and trans-

endothelial migration capacity of breast cancer cells. Both of these processes 
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occur during metastatic progression, and programmed cell invasion is also critical 

during normal development. In fact, MBNL1 has been reported to negatively 

regulate endocardial cell invasion during chick heart development (Vajda et al. 

2009). This illustrates that MBNL1 suppresses cell invasion during specific 

normal developmental processes, and suggests breast cancer cells may be 

commandeering this developmental function of MBNL1 to enhance their invasive 

capacity. Another intriguing finding from the current study is that MBNL1 

depletion results in a significant reduction in cell growth, both in culture and in 

primary tumor growth assays (Figure 2.4A,B). This is consistent with MBNL1 

acting as a promoter of primary tumor growth but a suppressor of metastasis. 

MBNL1 levels are significantly correlated with distant metastasis-free survival in 

breast cancer. Therefore, even if MBNL1 acts to promote primary tumor growth, it 

could be associated with better clinical outcomes in breast cancer because it 

suppresses cancer metastasis to distant organs. This finding is consistent with a 

study that analyzed the outcomes of breast cancer patients that had node 

positive disease and had very small or large primary breast tumors. Patients with 

very small primary tumors had significantly increased breast cancer specific 

mortality compared to those with large tumors (Wo et al. 2011). Therefore, 

MBNL1 may act to suppress cancer cell invasion while simultaneously acting to 

increase growth of the primary tumor. Given this, it is possible that down-

regulation of MBNL1 in small tumors might be an indicator of cancer 

aggressiveness. It is also interesting to note that generally, MBNL1 acts as a 
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promoter of tissue differentiation. Depletion of MBNL1 and MBNL2 leads to a 

reversion to embryonic cell-like splicing patterns, and MBNL1 depletion leads to 

an increased efficiency of induced pluripotent stem cell reprograming (Han et al. 

2013; Lin et al. 2006). MBNL1 is also required for terminal differentiation of red 

blood cells (Cheng et al. 2014). Together, these data are consistent with MBNL1 

acting as a promoter of tissue differentiation. Therefore, it is interesting that in 

breast cancer cells, depletion of MBNL1 leads to an increase in metastatic 

capacity, as plasticity of gene expression can be advantageous during metastatic 

progression. 
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CHAPTER 6. METHODS AND MATERIALS 

Animal Experiments 

All mouse studies were conducted according to a protocol approved by the 

Institutional Animal Care and Use Committee (IACUC) at the Rockefeller 

University. For tail-vein colonization assays, 6-8 week old age matched female 

NOD-scid mice were used. Cancer cells were engineered to stably overexpress 

luciferase (Ponomarev et al. 2004), and these cells were injected into the tail vein 

of each mouse. For systemic metastasis assays, 8 week old female athymic 

mice were used, and cancer cells were injected into arterial circulation. The 

location and number of cancer cells was monitored by bioluminescence in living 

animals over times. Statistical significance was based on a one-tailed Mann-

Whitney test. In vivo tumor growth assays were performed by injecting 5x105 

cells mixed with 100ul of matrigel into bilateral mammary fat pats of 7 week old 

female NOD-Scid mice. Tumor volume was assessed by caliper measurements. 

Cell Culture 

All cell lines were maintained at 37°C, 5% CO2. The 293LTV and MDA-

MB-231 and derivative cell lines were cultured in Dulbecco’s modified eagle 

medium supplemented with 10% fetal bovine serum, 2mM L-glutamine, 1mM 

sodium pyruvate, 100 units/mL penicillin, 100 ug/mL streptomycin, and 

amphotericin B (base media and supplements all Life Technologies). HUVECs 

were obtained from ATCC and maintained in EGM-2 media (CC-3162 Lonza) 

supplemented with 2% fetal bovine serum. 
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RNAi-Mediated Gene Knockdown 

Lentivirus was produced by transfecting 293LTV cells that had been 

seeded in 6-well plates and allowed to become 60% confluent with 2ug pLKO.1 

shRNA containing vector, 2 ug vector psPAX2 and 1 ug vector pMD2.G.  

TransIT-293T (Mirus Bio) was used for transfection according to the 

manufacturer’s protocol.  Virus was harvested at 48 hours post-transfection and 

passed through a 0.45um syringe filter to remove 293T cells. 

Cancer cells were transduced by incubation with the lentivirus for 6 hours in the 

presence of 8ug/mL polybrene. After transduction, media was changed to normal 

growth media.  Selection was started 48 hours after transduction by adding 

puromycin to a final concentration of 1.5ug/ml.  Cell were kept under selection for 

48 hours. 

For siRNA mediated gene knockdown, cells were seeded at 1.5x105 per 

well in 6-well plates. 20 hours after seeding, cells were transfected with 90 pmol 

of siRNA using lipofectamine 2000 (Life Technologies) according to the 

manufacturer’s instructions. 

Sequences targeted by shRNAs: 

sh1MBNL1: 5’-GCCAACCAGAUACCCAUAAUA 

sh2MBNL1: 5’-GCCUGCUUUGAUUCAUUGAAA 

sh1TACC1: 5’-CCACGUCAUGUGGUCAGAAAU 

sh2TACC1: 5’-GAAGGCAAAGUCGCGUUUAAU 

shCTRL: 5’-CAACAAGAUGAAGAGCACCAA 
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Sequences targeted by siRNAs: 

siCTGF: 5’-UACCAGCAGAAAGGUUAGUAUCAUCAG 

siFGFR1: 5’-ACACACCACCUACUUCUCCGUCAAUGU 

si1LOXL2: 5’-CUGGAGCAGCACCAAGAGCCAGUCUUG 

si2LOXL2: 5’-UUGGAGGACACAGAAUGUGAAGGAGAC 

siMYL6-SE: 5’-AAGCGUUUGUGAGGCAUAUCCUGUCGG 

siPICALM-SE: 5’-AACAAUGAAUGGCAUGCAUUUUCCACA 

si1QSOX1: 5’-AAGCAACAUCAUCCUGGACUUCCCUGC 

si2QSOX1: 5’-CUGGAGGAGAUUGAUGGAUUCUUUGCG 

siSEC31A-SE: 5’-CAGCCGUAUCCCUUCGGAACAGGGG 

siCTRL: 5’-CGUUAAUCGCGUAUAAUACGCGUAU 

Retroviral and Lentiviral Mediated Protein Overexpression 

Retrovirus was produced by transfecting 293T cells seeded in 6-well 

plates with 2 ug of pBabe containing the ORF of interest, 2 ug Gag/Pol and 1 ug 

VSV-G. Transfection was carried out using transIT-293T (Mirus Bio) according to 

the manufacturer’s protocol.  Virus was harvested 48 hours post-transfection and 

passed through a 0.45um syringe filter to remove cells. For carboxy terminal flag-

tagged MBNL1 overexpression, target cells were transduced by incubation with 

the retrovirus for 6 hours in the presence of 8 ug/mL polybrene. At this time, 

media was changed to normal growth media.  Selection was started 48 hours 

after transduction by adding puromycin to a final concentration of 1.5 ug/mL or 

hygromycin to a final concentration of 350 ug/mL. Puromycin selection was 
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maintained for 48 hours, while hygromycin selection was carried out for 11-14 

days. 

Lentivirus was produced by transfecting 293LTV cells seeded in 6-well 

plates with 2 ug pLX304 containing the ORF of interest with a carboxy-terminal 

V5 tag, 2 ug vector psPAX2 and 1 ug vector pMD2.G. TransIT-293T (Mirus Bio) 

was used to transfect the DNA per the manufacturer’s protocol. Virus was 

harvested at 48 hours post-transfection and passed through a 0.45um syringe 

filter to remove 293T cells.  For c-terminal V5-tagged DBNL and TACC1 

overexpression, target cancer cells were transduced by incubation with the 

lentivirus for 6 hours in the presence of 8 ug/mL polybrene.  After transduction, 

media was changed to normal growth media. Selection was started 48 hours 

after transduction by adding puromycin to a final concentration of 1.5 ug/ml. Cells 

were typically kept under selection for 48 hours, or until cells that had not been 

transduced as a control were all dead. 

Transcriptomic Sequencing and Alternative Splicing Analysis 

Whole transcriptome sequencing libraries were constructed using the ScriptSeq 

v2 kit (Epicentre) per the manufacturer’s instructions. The input RNA was isolated 

with a spin column based kit, including an on-column DNase treatment per the 

manufacturer’s instructions (Norgen), and then depleted of rRNA using the Ribo-

Zero kit (Epicentre). The libraries were sequenced at the Rockefeller University 

Genomics Resource center on a HiSeq2000 (Illumina). Reads were first trimmed 

to remove linker sequences and low-quality bases, using cutadapt (v1.2.1). 
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Tophat2 (v2.0.8) was then used to map the reads to the human transcriptome 

(RefSeq transcriptome index, hg19). Cufflinks (v2.0.2) was then used to estimate 

RPKM values and compare shControl and shMBNL1 samples. 

For alternative splicing analysis, mapped reads from each of the two 

MBNL1-targeting shRNA expressing MDA-231 cell lines were compared to the 

shCTRL expressing cell line using MISO (v0.4.9) (Katz et al. 2010), in 

conjunction with the provided annotations for skipped exons, to quantitate 

modulations in alternative splicing events. 

RT-PCR analysis of MISO-predicted transcript variants 

Semi-quantitative real-time PCR was carried out by first isolating RNA and 

synthesizing cDNA. This cDNA was used as the template for PCR to assess the 

relative abundance of transcript isoforms. The PCR products were resolved on 

1.5% or 2% agarose-TAE gels, as determined by the product sizes to be 

separated. The PCR products were then visualized by ethidium bromide staining. 

Quantitation of the bands was done using Image J software (NIH). 
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Table 6.1 Primers used for RT-PCR analysis of MISO-predicted skipped exons 

AKAP8L_SE_F! TGG AAC TTG GAA CTC TGG GA!

AKAP8L_SE_R! ACT CGG GGA TGA TGT TCT GG!

AMOTL1_SE_F! GTG AAT GGG GTT GAT TGT CCG !

AMOTL1_SE_R! AGG AAG TTT GGG GAG TGG AA!

CNOT10_SE_F! GCG AAA GCA GTG AAA CTT GC!

CNOT10_SE_R! GTC TGA TCC TTG GTC CTG CT!

DBNL_SE_F! AGT GAA GGA CCC CAA CTC TG!

DBNL_SE_R! ACG GCA TTG GTC TTC TGG TA!

DCTN1_SE_F! CTG CAA GAA GAT CCG AAG GC!

DCTN1_SE_R! CTT CGA GCT TCA AAC CCA GG!

FGFR1_SE_F! AAG GAG GAT CGA GCT CAC TG!

FGFR1_SE_R! CCA ATA TGG AGC TAC GGG GT!

HDLBP_SE_F! GCT GTG GAG AGG CTA GAA GT!

HDLBP_SE_R! TCT GCC CTT TCT TGC CAA TG!

HEATR2_SE_F! AGG ATT CGA AGA TGA CGC GA!

HEATR2_SE_R! CAC AAA CTC TGG CTC AGG TG!

INCENP_SE_F! CAG TGC AGA GGA ACC AGA TG!

INCENP_SE_R! GAT TCT CCA GGC GCT GC!

MTMR12_SE_F! AAA AGG AGT GGG TCA TGG GT!

MTMR12_SE_R! TCG TTG ATG TTT GAA GCG CA!
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MTX2_SE_F! CTC GTT AAC TGC CGA GAG C!

MTX2_SE_R! GCA TTT TCA GGC CAA GGT TC!

MYL6_SE_F! AGA CAG TGG CCA AGA ACA AG!

MYL6_SE_R! ATT CAC ACA GGG AAA GGC AC!

PICALM_SE_F! ACC AAC AAC CGC TTG GAA TG!

PICALM_SE_R! AAA GGG GTT TGG AGG TCT CA!

PTPRF_SE_F! CGA AGA CCA ACA GCA CAA GG!

PTPRF_SE_R! GCA CGT AGG TGA CCT GGT AG!

RELA_SE_F! AGC ACA GAT ACC ACC AAG AC!

RELA_SE_R! CTT GGA AGG GGT TGT TGT TG!

SEC31A_SE_F! TCC GGG TTT CAT AAT GCA TGG !

SEC31A_SE_R! TGT TCA AAG CTG GAG GGT CA!

TCF3_SE_F! GAC GGG GGT CTC CAC G!

TCF3_SE_R! CAC TGT AGG AGT CGG GAG G!

ZNF512_SE_F! GAT GTC TTC CAG ACT CGG TG!

ZNF512_SE_R! TCG ACA TGA GAA GTA GCA GC!
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Quantitative Real-Time PCR 

To carry out quantitative real time PCR (qRT-PCR), RNA was isolated using a 

total RNA isolation kit, including an on-column DNase treatment (Norgen). 

Synthesis of complementary DNA (cDNA) was carried out using the superscript 

III reverse transcriptase kit (Life Technologies) using an oligodT for priming 

unless otherwise specified. For each cDNA synthesis reaction, an equal mass of 

total RNA reverse transcribed for all samples to be compared. Typically 1-2ug 

per 20ul reaction was used. Synthesis was carried out per the manufactuer’s 

instructions, including an RNase H digestion step. qRT-PCR was carried out in 

technical quadruplicates, using fast syber green master mix (Applied Biosystems) 

and fluorescence was monitored using a 7900HT Fast Real Time instrument 

(Applied Biosystems). Data were analyzed using the delta delta Ct method. 

Endogenous control transcript used for normalization are indicated in each figure. 

Primers used for qRT-PCR 

MBNL1: 5’-CTGCCCAATACCAGGTCAAC/5’-GGGGAAGTACAGCTTGAGGA 

MBNL2: 5’-TGCCCAGCAGATGCAATTTA/5’-GGACCTACAGGGAAAGTGGG 

DBNL: 5’-AAGGCTTCAGGTGCCAACTA/5’-GACACGGCATTGGTCTTCTG 

TACC1: 5’-GCCTCAGCGAATCAGACAAG/5’-TGCCGGGTCTCTTCGTATTT 

mCherry: 5’-CCTGTCCCCTCAGTTCATGT/5’-GTCCTCGAAGTTCATCACGC 

TACC1-3UTR-1: 5’-GCCCTGGAAGAAACCCTAGA/ 

5’-AACCCAAACTCAGCAGCCTA 

TACC1-3UTR-2: 5’-GGCCATTAACCCCAACATGG/ 
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5’-TGCATGGATTTGGGTTTGCC 

TACC1-3UTR-3: 5’-CCCTTAAGAACCTGACCCCA/ 

5’-TCCTCATAACGGTCATGGCT 

TACC1-3UTR-4: 5’-TCCAGCCAGTTACCCTTTCA/ 

5’-GGGCAGTTTACACTCCCTGT 

TACC1-3UTR-5: 5’-GAAGACCCATCCCCTAGTGC/ 

5’-GCATGCTAAGAGGCACAGAA 

DBNL-3UTR-1: 5’-CCCCTCTCAGACATGGCTTC/ 

5’-CACTGGGGGTCCTATTCCTG 

DBNL-3UTR-2: 5’-TTGGCAGCAGGGAATTTGTC/ 

5’-TGCATCCCCACTTCCCATAG 

HPRT1: 5’-ATGACCAGTCAACAGGGGAC/5’-CTGCATTGTTTTGCCAGTGTC 

18S: 5’-AGCGAAAGCATTTGCCAAGA/5’-TATGGTCGGAACTACGACGG 

Matrigel Invasion Assay 

First, to induce invasiveness, cancer cells were serum-starved in media 

containing 0.2% FBS for 20 hours. Cancer cells with siRNA-induced gene 

knockdown were starved starting at 48 hours post siRNA transfection. The 

starved cancer cells were seeded at 5 x 104 cells per well in matrigel coated 

invasion chambers with 0.8um pore size (BD Biosciences) that had been pre-

equilibrated in 0.2% FBS containing media. The cells were incubated for 20 

hours at 37°C. After the cells had been allowed to invade for 20 hours, the 

matrigel-coated inserts were washed with PBS. Using a q-tip the cells on the top 
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side of each insert were scraped off. The inserts were fixed in 4% 

paraformaldehyde for 15 minutes at 37°C, then cut out and mounted onto slides 

using vectashield with DAPI (Vector Laboratories). The number of cells invaded 

through the matrigel was quantified by imaging each insert using an inverted 

fluorescence microscope (Zeiss Axiovert 40 CFL). Five images were taken per 

insert at 10x magnification. ImageJ (NIH) was used to quantify the number of 

invaded cells. 

Trans-Endothelial Migration Assay 

First, monolayers of HUVECs were prepared by seeding 5x104 HUVECs in EGM-

2 media on collagen coated HTS Fluoroblok with 0.3um pores transwell inserts 

(Corning). After monolayer formation, cancer cells that had been serum-starved 

in media containing 0.2% FBS for 20 hours and pulse labeled with cell tracker 

green CMFDA dye (Life Technologies) were seeded on top of the HUVEC 

monolayers at 5 × 104 cancer cells per well, in EGM2 media containing 0.2%

FBS. After 12 hours, the number of cancer cells migrating through the HUVEC 

monolayer was quantified by imaging each insert using an inverted fluorescence 

microscope (Zeiss Axiovert 40 CFL). Four images were taken per insert and 

ImageJ (NIH) was used to quantify the number of cell migrated through the 

HUVEC monolayer. 
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Cell Proliferation Assay 

To assay the effect of MBNL1 knockdown on cell proliferation, 2.5x104 cells were 

seeded in 6-well plates in triplicate. After 5 days, the number of viable cells was 

assessed using trypan blue, which is excluded from living cells. 

Western Blotting 

Whole cell lysate was prepared by washing trypsinized cells 2x with cold PBS, 

resuspending the cell pellet in ice-cold RIPA buffer (25mM Tris-HCl pH 7.6, 

150mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS) with 1x complete 

protease inhibitor cocktail (Roche) and incubating on ice for 20 minutes. The 

lysate was sonicated to shear DNA and then cleared by spinning at 4°C in a 

microcentrifuge at maximum speed for 15 minutes. The total protein 

concentration of the resulting cleared lysate was determined using the BCA 

assay method (Thermo Scientific). Equal amounts of total protein were run on 4-

12% bis-tris NuPAGE gels in MOPS buffer (Life Technologies) under reducing 

conditions. Proteins were transferred to 0.2um PVDF (Millipore) and blocked with 

5% nonfat milk in PBS. Antibodies used in this study include custom made 

polyclonal rabbit anti-MBNL1 (Yenzyme, raised to aa 363-378 of NP_066368), 

anti-flag (Sigma F1804), anti-DBNL (Abcam ab86708) anti-TACC1 (Abcam 

ab187358), anti-QSOX1 (Sigma SAB2700031), anti-LOXL2 (Abcam ab113201)  . 

The blots were incubated with horseradish peroxidase conjugated secondary 

antibodies and developed using the ECL method (Thermo Scientific). 
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High-Throughput Sequencing and Crosslinking Immunoprecipitation 

(HITS-CLIP) 

HITS-CLIP for endogenous MBNL1 was carried out as previously described 

(Jensen and Darnell, 2008), with some modifications, as described in detail 

below. 

Crosslinking of cells 

For each immunoprecipitation, ~5x106 cells were used. MDA-231 cells were 

grown to sub-confluence before crosslinking and harvesting. Cells were rinsed 1x 

with 5 mL cold PBS, the wash aspirated, then an additional 2 mL cold PBS was 

added to just cover the cells. A Biorad genelinker was used to irradiate each 

plate with 400mJ/cm2 UV (254nm) to crosslink RNA to proteins. Plates were 

placed on ice and collected into a falcon tube by scraping. Cells were pelleted at 

2000 rpm for 5 minutes at 4°C, and the PBS aspirated. Cells were resuspended 

in 1mL cold PBS and transferred to a microcentrifuge tube. Cells were pelleted at 

14,000 x g for 30 seconds at 4°C, and the PBS aspirated. The washed, 

crosslinked cell pellets were immediately placed at -80°C. 

Immunoprecipitation 

For each immunoprecipitation,100ul of beads were used. Antibody-conjugated 

beads were prepared by washing protein A dynabeads (Life Technologies) 1x 

with PBS plus 0.02% tween-20, then resuspending beads in PBS plus 0.02% 

tween-20 to 2x the original bead volume. To each 100ul of washed beads, either 

15ug of rabbit IgG (Cell Signaling Technology) or 25ul of anti-MBNL1 antibody 
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(0.6mg/mL)(Yenzyme) was added. The beads and antibodies were rotated at 

room temperature for 30 minutes, then washed 3x with PBS plus 0.02% tween. 

The crosslinked and frozen cell pellets were resuspend in 800uL cold low 

salt wash buffer (1x phosphate buffered saline (PBS), 0.1% Sodium Dodecyl 

Sulfate (SDS), 0.5% sodium deoxycholate, 0.5% IGEPAL CA-630) + 15ul RNasin 

RNase inhibitor (40 units/ul, Promega) + 1x protease inhibitor cocktail (Roche 

EDTA-free protease inhibitor tablets). To digest DNA and reduce viscosity of the 

lysate, 30ul DNaseI RQ1(1 unit/ul, Promega) was added to the lysate and 

incubated at 37°C for 5 minutes at 1000 rpm in a thermomixer. Lysate was 

treated with high and low concentrations of RNase A. For the low RNase 

treatment, RNase A (USB) was added to a final concentration of 30 pg/ul, while 

for the high RNase treatment, RNAse A was added to a final concentration of 

1500 pg/ul. After RNase addition, tubes were incubated at 37°C for 5 minutes, 

then immediately placed on ice. Cell debris was then cleared from the lysate by 

spinning at 16,000xg at 4°C for 20 minutes. The cleared supernatant was then 

pipetted into clean tubes. The antibody-conjugated dynabeads were then added 

to the cleared lysate, and the mixture rotated end-over-end at 4°C for 2 hours. 

After the immunoprecipitation, the beads were collected on a magnet and the 

supernatant removed. The beads were then washed in the following order (all 

washes were ice cold): 2x low salt wash buffer, 2x high salt wash buffer (5X PBS, 

0.1% SDS, 0.5% sodium deoxycholate, 0.5% IGEPAL CA-630), and finally 2x 

PNK buffer (50mM Tris-HCl pH 7.4, 10mM MgCl2, 0.5% IGEPAL CA-630). 
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Labeling and gel resolution of MBNL1-RNA complexes 

In order to visualize the MBNL1 protein-RNA complexes, a radioactively labeled 

RNA oligo was ligated to the immunoprecipitated protein-RNA complexes. To 

prepare the labeled oligo the 3’ RNA linker oligo 5’-GUG UCA GUC ACU UCC 

AGC GG-puromycin was 5’ 32P labeled using T4 PNK (NEB) and γ- 32P ATP 

(Perkin Elmer). The 3’ puromycin is added to the oligo to block unwanted ligation 

products at later steps in the protocol. After end labeling, excess nucleotides 

were removed from the reaction by running it through a G-25 sephadex spin 

column (GE life sciences). To prepare the RNA in the immunoprecipitated 

protein-RNA complexes for ligation, the immunoprecipitation was treated with calf 

alkaline intestinal phosphatase (CIP) (Roche) to dephosphorylate the RNA ends. 

After CIP treatment, the immunoprecipitations were washed in the following 

order, (all washes were ice cold): 1x with PNK buffer, 1x with PNK + EGTA buffer 

(50mM Tris-HCl pH 7.4, 20mM EGTA, 0.5% IGEPAL CA-630), 2x with PNK 

buffer. The 32P-labled RNA oligo was then ligated to the protein complexes by 

adding the following to the beads after removing all of the last wash from the 

previous step: 5ul 10x T4 RNA ligase buffer, 5ul BSA (1mg/mL), 5ul 10mM ATP, 

1.25ul T4 RNA ligase (5 units/ul) (Fermentas), 1.25ul RNasin, 6.25ul 32P-labeled 

3’ linker oligo (7.5 pmol total), H2O to 50ul. Reactions were incubated at 16°C for 

1 hour in a thermomixer with shaking at 1000 rpm for 30 seconds every 15 

minutes. After 1 hour, 48 pmol of the 3’ linker oligo (5’ phosphorylated with cold 
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ATP) was added to the ligation mixture and the mixture was incubated at 16°C 

for 16 hours. 

After ligation of the 3’ linker oligo, the immunoprecipitations were washed 

in the following order (all washes were ice cold): 1x with low salt wash buffer, 1x 

with high salt wash buffer, 3x with PNK buffer. The 5’ ends of the protein-RNA 

complexes were then phosphorylated using T4 PNK, and then washed 3X with 

ice cold PNK buffer. These labeled protein-RNA complexes were then eluted 

from the beads by resuspending the beads in 40ul of 1x NuPAGE loading buffer 

(Life Technologies) and heating at 70 deg C in a thermomixer at 1000 rpm for 10 

minutes. The beads were immediately collected on a magnet, and the eluted 

complexes were run on a 4-12% bis-tris NuPAGE gel (Life Technologies) in 1x 

MOPS running buffer (Life Technologies) at 150 volts in the cold room. The 

complexes were then transferred onto BA-85 nitrocellulose (Whatman) in cold 1x 

NuPAGE transfer buffer with 10% methanol at 100 volts in the cold room. To 

visualize the RNA-protein complexes, the membrane was then exposed to film 

and the film was developed. 

In order to size select the RNA to make the HITS-CLIP library, the bands 

migrating at ~55-70 kDa in the low RNase treated lanes were cut from the 

nitrocellulose. This is because MBNL1 alone migrates at ~40 kDa, and the 

average molecular weight of 50 nucleotide long RNA, the minimum size for 

informative sequencing analysis, is ~15 kDa. The nitrocellulose was cut into 

smaller pieces and treated with proteinase K and then phenol chloroform 
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extracted to digest the protein and isolate the RNA. The aqueous layer was 

precipitated by adding ethanol:isopropanol (1:1), glycoblue, and sodium acetate, 

then incubating overnight at -20°C. The RNA pellet was washed 2x with 75% 

ethanol then air dried, then resuspended in 5.9ul H2O. 

5’ linker ligation, cDNA synthesis and PCR amplification MBNL1 bound RNA 

A 5’ linker RNA oligo was then ligated to the isolated RNA by adding the 

following components to the RNA: 1ul 10x T4 RNA ligase buffer, 1ul BSA 

(0.2mg/mL), 1ul 10mM ATP, 0.1ul T4 RNA ligase, 1ul of the 5’ linker RNA oligo at 

20 pmol/ul (5’-AGGGAGGACGAUGCGG). The ligation mixture was incubated at 

16°C overnight in a PCR tube in a thermocycler. The ligation reaction was then 

treated with DNase to remove any residual DNA. This mixture was then phenol 

chloroform extracted and the RNA recovered from the aqueous layer by 

ethanol:isopropanol precipitation as above. The RNA pellet was washed 2x with 

75% ethanol and then air dried. The RNA pellet was resuspended in 10ul H2O. 

From this RNA, cDNA was synthesized by adding the following to 8ul of 

the resuspended RNA: 2ul DP3 primer at 5pmol/ul (5’-

CCGCTGGAAGTGACTGACAC), 3ul 3mM dNTPs. As a control for DNA 

contamination, a parallel cDNA synthesis without the reverse transcriptase was 

done with the 2ul remaining of the resuspended RNA. The mixtures were 

incubated at 65°C for 5 minutes, then at 4°C for 1 minute. To this, the following 

was added: 1ul 0.1 M DTT, 4ul 5x superscript reverse transcriptase buffer, 1ul 

RNasin, 1ul superscript III (Life Technologies) or 1ul H2O (for the no reverse 



101 

transcriptase control reactions). The reactions were then incubated at 50°C for 45 

minutes, then 55°C for 15 minutes, then 90°C for 5 minutes, then placed on ice. 

This cDNA was then amplified by PCR using accuprime Pfx supermix (Life 

Technologies and the primer pair: DP5: 5’-AGGGAGGACGATGCGG/ 

DP3: 5’-CCGCTGGAAGTGACTGACAC. The optimal number of cycles was 

determined by running 22-30 cycles of the follow program: 1. 95°C 2 min 2. 95°C 

20 sec 3. 58°C 30 sec 4. 68°C 20 sec. repeat 2-4 for 22-20 cycles 5. 68°C 5 min. 

Formamide loading dye (2x solution: 95% deionized formamide, 5% 100mM 

EDTA pH 7.5, bromophenol blue for tracking) was added to the resulting PCR 

products were run on a 10% TBE-polyacrylamide urea gel and visualized by 

post-staining with SYBR gold (Life Technologies). Amplisize molecular ruler 

(Biorad) was run alongside the PCR products as a size standard. PCR products 

running at ~90-140 basepairs were cut from the gel and the DNA isolated from 

the gel slice using the Qiagen gel extraction kit per instructions for extracting 

DNA fragments from polyacrylamide gels. DNA was eluted from the spin column 

with 30ul EB. 

Next, this eluted DNA was further PCR amplified and Illumina sequencing 

compatible sequences added. To each PCR tube, the following was added: 27ul 

Accuprime Pfx supermix (Life Technologies), 0.5ul 20uM DSFP5 (5'-

AATGATACGGCGACCACCGACTATGGATACTTAGTCAGGGAGGACGATGCG

G), 0.5ul 20uM DSFP3(5'-

CAAGCAGAAGACGGCATACGACCGCTGGAAGTGACTGACAC), 3ul of DNA 
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isolated in previous step. The reactions were then cycled according to the 

following program: 1. 95°C 2 min 2. 95°C 20 sec 3. 58°C 30 sec 4. 68°C 40 sec. 

repeat 2-4 for 6-10 cycles 5. 68°C 5 min. The products were run on a 2% 

metaphor agarose-TBE gel and visualized by ethidium bromide staining. PCR 

products running between 150-170 basepairs were gel extracted using the 

Qiagen gel extraction kit. DNA was eluted from the spin column with 30ul EB. 

Library sequencing and computational analysis 

The biological duplicate MBNL1 HITS-CLIP libraries were sequenced at 

the Rockefeller University Genomics Resource Center on an Illumina HiSeq 2000 

instrument with 50 bp single-end run length. The sequencing reads were first 

trimmed to remove linker sequences and low-quality bases, using cutadapt 

(v1.2.1) with parameters -q 15 and -m 25. The Resulting reads were then aligned 

to the human genome (build hg19) using bowtie2 (v2.1.0). The analytical 

package CIMS (Zhang et al. 2011) was then used to identify CLIP peaks in each 

of the biological replicates (FDR<10%). The peaks from the two replicates were 

then overlapped (intersectBed) to generate a high-confidence list of MBNL1 

binding sites. Sequences were extracted and analyzed for motif discovery using 

ChIPseeqer (Giannopoulou and Elemento 2011). Briefly, a randomized 

background set was generated using a 1st-order Markov Model to control for 

length and dinucleotide frequency in the real binding sites. The resulting 'real' 

and 'scrambled' sequences were then analyzed using FIRE (Elemento et al. 

2007) to identify the best representation of the MBNL1 binding site. 
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Transcript Stability Assays 

For the alpha-amanitin microarray data, MDA-231 MBNL1 knockdown or 

control cells were treated with 10ug/mL alpha-amanitin (Sigma). Nine hours after 

alpha-amanitin addition, RNA was isolated from the cells using a total RNA 

isolation kit with on-column DNase treatment (Norgen). RNA was labeled using 

the TargetAmp nano labeling kit according to the manufactuer’s protocol 

(Epicentre), and hybridized to Illumina beadchip arrays. Lumi package (R) was 

used to normalize and compare Illumina HT12 Beadchip raw signals for 

shControl and sh1MBNL1 samples at 0 and 9 hours post alpha-amanitin 

treatment. The difference between the sh1MBNBL1/shControl logFCs were used 

as a measure of stability. To discretize the input values, transcripts with logFC 

difference of less than -0.1 were labeled as "destabilized". The computational tool 

TEISER, in non-discovery mode, was then used to assess the stability of 

MBNL1-bound transcripts in this dataset (as described in Goodarzi et al. 2014). 

Cells were seeded at 2x105 per well in 6-well plates. 18 hours after 

seeding, 5,6- Dichlorobenzimidazole 1-beta-D-ribofuranoside (DRB)(Sigma) was 

added to the cells to a final concentration of 100μM. RNA was isolated at 0, 2, 4, 

6 and 8 hours after DRB addition using a total RNA isolation kit with on-column 

DNase treatment (Norgen). Relative levels of the transcripts of interest were 

assessed by qRT-PCR, using 18S as the endogenous control. Half-life 

calculations were done using the formula t1/2=ln2/kdecay, where the decay constant 
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was determined by plotting the data on a semilog scale and using non-linear 

regression to find the best fit line (Graphpad Prism). 

Poly(A) Tail Length Assay 

Length of the poly(A) tails was measured as described in (Janicke et al. 2012). 

Total RNA was isolated using a spin-column based total RNA extraction kit, 

including an on-column DNase-treatment step (Norgen). An anchor primer (5’-

GCGAGCTCCGCGGCCGCGTTTTTTTTTTTT ) was annealed to poly(A) 

sequences by mixing the following in a PCR tube: 1ul 100uM ePAT anchor 

primer, 1ug total RNA, H2O to a final volume of 8ul. This was incubated at 80°C 

for 5min, cooled to 25°C, and then Klenow polymerase was used to fill in the 

overhang by adding the following to the mix: 1ul Klenow polyermerase (-exo) 

(5U/ul, NEB), 4ul 5X superscript III buffer, 1ul 0.1M DTT, 1ul 10mM dNTPs, 4ul 

H2O, 1ul RNase out. The mixture was then incubated at 25°C for 1 hour, then the 

Klenow inactivated by incubating at 80°C for 10 min, then cooled to 55°C. While 

holding at 55°C, 1ul superscript III reverse transcriptase (200U/ul, Life 

Technologies) was added and then the mixture incubated at 55°C for another 

hour and the enzyme heat inactivated by incubating at 80°C for 10 min. 

The poly(A) tail length of each transcript of interest was then assessed by using 

this 3’ tagged cDNA as the template from which to PCR amplify the region 

between the anchor primer specific sequence and a sequence 100-300 

nucleotides upstream from the 3’ end of, and specific to, the transcript of interest. 

Oligonucleotides used for poly(A) tail length assay: 
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Universal reverse primer: 5’-GCGCCGGCGCCTCGA 

DBNL-1 forward: 5’-TGTGTGCCTCAACTGATTCTGACTTCAGG 

DBNL-2 forward: 5’-CGGCTCACTCGATGCCTGCAGG 

TACC1-1 forward: 5’-GCGTTGACTACTGCTATCAGGATTGTGTTGTG 

TACC1-2 forward: 5’-GGGTGCCATGAAGTGTGTGAGGAGC 

PCR was carried out by mixing the following: 2.5ul 10x reaction buffer, 0.5ul 

10mM dNTPs, 1ul MgSO4, 1ul 5uM gene specific forward primer (see above), 

1ul 5uM universal reverse primer, 1ul 3’ tagged cDNA (as synthesized in the first 

step), 0.1ul hi fidelity platinum taq (Life Technologies), 17.9ul H2O. The reactions 

were cycled using the following protocol: 1. 94°C 2 min 2. 94°C 15 sec 3. 58°C 

30 sec 4. 68°C 35 sec. repeat 2-4 x 30. 5. 68°C 5 min. The resulting PCR 

products were resolved by running on a 2% agarose-TAE gel and visualized by 

ethidium bromide staining. 

MBNL1, DBNL and TACC1 Expression Correlation with Clinical Outcome 

To test the correlation of MBNL1, MBNL2, MBNL3 and TACC1 expression levels 

with clinical outcome in breast cancer, the kmplot meta data set was used 

(Gyorffy et al. 2010). Expression levels of the genes were divided into high and 

low based on the median expression level, and a censoring threshold of 10 years 

was set. P-values were based on the Mantel-Cox log-rank test. DBNL expression 

correlation with clinical outcome in breast cancer was assessed by qRT-PCR in a 

set of 48 staged breast tumor samples, using beta-actin as an endogenous 

control (Origene, breast cancer panel 3). 
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Conditioned Media Preparation 

Conditioned media for assessment by Western blotting was prepared by seeding 

5x104 cancer cells per well in 24 well plates. After 18 hours, the cells were 

washed twice with PBS, and 0.2mL of serum free DMEM complete media was 

added (DMEM media supplemented with 2mM L-glutamine, 1mM sodium 

pyruvate, 100 units/mL penicillin, 100 ug/mL streptomycin, and amphotericin B). 

After 24 hours, the media was harvested and spun at 5x103 rpm for 10 minutes to 

pellet any cells. The supernatant was removed and equal volumes were assayed 

by Western blotting or ELISA. Extracellular CTGF levels in conditioned media 

from MDA-231 cells with MBNL1 knockdown or control cells were quantified 

using a CTGF ELISA kit (PeproTech). Conditioned media for treatment of cancer 

cells in transwell invasion assays was prepared  in the same manner. 

SILAC-Mass Spectrometry 

Proteins from MDA-231 MBNL1 knockdown cells were isotopically labeled by 

growing in media supplemented with isotopically labeled [13C6]-L-lysine and 

[13C6,15N4]-L-Arginine by passaging cells for ten days in DMEM-flex media 

supplemented with the labeled amino acids along with 10% dialyzed FBS, L-

glutamine, penicillin, streptomycin and amphotericin (Life Technologies).  In 

parallel, MDA-231 cells expressing a control shRNA were passaged identically, 

but in media containing normal lysine and arginine.  To harvest secreted proteins, 

plates were washed twice in PBS, and media containing all of the above 

components except FBS was added.  After 20 hours, the media from the plates 
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was harvested and equal volumes were mixed. The proteins were separated by 

SDS-PAGE, and bands were excised and subjected to mass spectrometry. 
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