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THERAPEUTIC USES OF BROADLY NEUTRALIZING ANTI-HIV-1 ANTIBODIES IN 
HUMANIZED MICE 

 

Ariel Halper-Stromberg, Ph.D.  

The Rockefeller University 2015 

 

Combination anti-retroviral drug therapy (ART) significantly suppresses 

HIV-1 viremia in most infected individuals, but is incapable of curing disease. The 

major barrier to HIV-1 cure is a population of long-lived cells that harbor 

replication-competent provirus and are refractory to current therapies—termed 

the latent reservoir. New therapeutic approaches to clear latent HIV-1-infected 

cells are necessary to achieve cure. In the first part of this thesis, I show that 

HIV-1 mutates and diversifies at the expected rate within humanized mice (hu-

mice) and that hu-mice can sustain HIV-1 viremia for up to 4 months, thus 

allowing hu-mice to be used as a small animal model to study HIV-1 

therapeutics. Using hu-mice, I show that when administered as single agents, 

recently discovered broadly neutralizing monoclonal antibodies (bNAbs) induce 

selective pressure at restricted viral epitopes. This causes a transient drop in 

viremia and the rapid emergence of viral escape mutants. When bNAbs are 

administered in combinations that target at least three independent epitopes, the 

emergence of viral escape variants is prevented. 

In the second part of this thesis, I show that viremia returns in hu-mice 

when antibody concentrations drop beneath their therapeutic thresholds. But the 

rebounding viruses do not carry signature escape mutations and are still 



sensitive to antibody neutralization. This suggests silently infected cells persist in 

hu-mice. I use hu-mice to assess viral eradication regimens that combine 

antibody therapy with latency reversal agents (LRAs). I show that a combination 

of bNAbs plus a combination of LRAs prevent viral rebound in humanized mice. 

To determine if antibodies play a unique role in clearing latently infected cells, I 

compared antibodies to ART for their efficacy in preventing viral rebound. I found 

that antibodies were more effective than ART at preventing viral rebound, and 

that this effect depended on intact Fc-FcR interactions. Within the limitations of 

the model, these studies provide proof of principle that antibodies combined with 

LRAs can be used to clear the latent reservoir in humanized mice and should be 

explored in other models. 
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CHAPTER 1: 

INTRODUCTION 

 

Human Immunodeficiency Virus (HIV) infection is incurable and requires 

lifelong combination antiretroviral therapy (ART) to keep viral replication in check. 

In the absence of therapy, infection leads to high viral loads and gradual loss of 

target CD4+ T cells that culminates in Acquired Immunodeficiency Syndrome 

(AIDS). While ART can significantly suppress viremia and slow the progression 

of disease, ART cessation leads to rapid virological relapse. The major obstacle 

to a cure is a population of infected cells that harbor replication-competent, 

integrated provirus—termed the latent reservoir. The latent reservoir forms very 

early after infection, remains stable in size over time, and is refractory to both 

ART and HIV-1 specific immune responses. Despite its success, ART requires 

daily dosing, has adverse side effects, is susceptible to viral resistance, and is 

not universally accessible, making curative therapies highly desirable. A single 

case of an HIV-1 cure has been reported, but it involved a treatment regimen that 

carries a high risk of mortality and is impossible to implement on a broader scale. 

While the single reported cure case provides proof of concept that reservoir 

eradication is possible, there are still significant gaps in our molecular 

understanding of the viral reservoir and how to target it to achieve prolonged viral 

remission and cure. These problems are exacerbated by the lack of small animal 

models to facilitate latency studies and potential therapeutic interventions. My 

work demonstrates that humanized mice can be used as a model to study HIV-1 
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therapy and I use this model to evaluate the effects of broadly neutralizing 

antibodies (bNAbs) against HIV-1. I extend this analysis to investigate bNAbs’ 

ability to impact the establishment, and maintenance of the latent reservoir within 

humanized mice. 

 

1.1 Course of HIV Infection 

 

HIV can be transmitted through sexual contact at mucosal interfaces, 

blood, or mother-to-child. Regardless of transmission route, the virus infects 

target CD4+ T cells, rapidly expands within lymph nodes, and disseminates into 

the periphery within days. Viremia usually peaks 3-4 weeks following 

transmission, reaching viral loads up to 107 copies per ml. During the early phase 

of infection, individuals typically experience an acute HIV syndrome, 

characterized by flu-like symptoms, fever, and lymphadenopathy(Moir et al., 

2011; Pantaleo et al., 1993). Following peak viremia, viral loads decrease with 

the onset of the cytotoxic CD8+ T lymphocyte (CTL) response. The onset of a 

CTL response induces rapid selection of viral escape mutants—identified by 

amino acid changes clustered within CD8+ T cell recognition 

epitopes(Goonetilleke et al., 2009; Turnbull et al., 2009). Neutralizing antibodies 

against the viral envelope glycoprotein (Env) emerge ~12 weeks after infection 

and impose immune pressure selecting for viral variants with mutations in Env 

that mediate antibody-escape(Gray et al., 2007; Richman et al., 2003; Wei et al., 

2003). The antibody response evolves to bind and neutralize the newly escaped 
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virus, but new escape variants quickly emerge and completely replace the 

antibody-sensitive strains in circulation, leading to successive rounds of antibody 

neutralization and viral escape(Richman et al., 2003; Wei et al., 2003).  

Eventually an equilibrium between immune pressure and viral turnover is 

reached ~3-6 months after infection and viremia settles at a stable level known 

as the viral set point. Set point viral loads are typically between 103 and 105 

copies/ml. However there is wide variation, and higher set points are predictive 

for faster disease progression(Fauci and Lane, 2012; Mellors et al., 1996). By the 

time viral set point is reached, the infection has progressed to the chronic phase, 

where symptoms typically subside in what is called clinical latency. Despite the 

absence of symptoms, viral replication and turnover remain high, causing 

continued depletion of CD4+ T cells and immune dysreglulation(Lane et al., 1983; 

Moir et al., 2011).  

Homeostatic mechanisms to maintain adequate immune cell populations 

cannot keep pace with virally-mediated cell death and chronic infection leads to 

progressive immunological decline. This decline is characterized by increasing 

susceptibility to infection-related cancers and pathogens normally cleared by an 

immune-competent adult. Contraction of these diseases indicates the end of 

clinical latency, and untreated individuals usually die within 1 year of contracting 

an opportunistic infection. Overall, patients left untreated typically develop stage 

3 AIDS within 8-10 years of HIV infection, and the median time to death following 

seroconversion is ~11 years, but it is clade dependent(Markowitz et al., 2003; 

Otten et al., 2000; Todd et al., 2007; UNAIDS, 2007). 
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1.2 Therapy Against HIV-1 

 

Current therapy for HIV-1 is combination antiretroviral therapy (ART), 

which consists of three different drugs that target various stages of the viral life 

cycle. The major stages targeted are viral entry, reverse transcription, integration, 

viral packaging and budding. The necessity for drug cocktails was suggested by 

the rapid emergence of drug-resistant virus in patients who received 

azidothymidine (AZT), the first approved anti-HIV-1 drug(Boucher et al., 1990). 

Even dual therapy with AZT and the second approved anti-HIV-1 drug, 

didanosine (DDI), was shown to be no more effective than AZT alone(Saravolatz 

et al., 1996). However, triple therapy that included a protease inhibitor drug was 

shown to block viral replication and suppress viral loads to undetectable levels 

within weeks of therapy initiation(Hammer et al., 1997; Ho et al., 1995). Blocking 

viral replication dramatically slows the course of disease and restores CD4+ T 

cell levels. Most patients with access to ART can manage HIV as a chronic 

disease and expect a near-normal lifespan. They even have extremely low 

probabilities of transmitting disease as long as their viral load is 

suppressed(Cohen et al., 2011).  

However, despite the success of ART, there are major shortcomings that 

make new therapies highly desirable. Firstly, ART requires daily dosing and has 

adverse side effects, such as impaired lipid metabolism and psychiatric events. 

In addition to being inconvenient, this causes poor adherence, which can lead to 
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drug resistance. Secondly, ART is expensive and not accessible in many 

resource-poor countries despite extensive international efforts to make ART 

more available. This is underscored by the fact that for every 10 individuals 

started on ART in the developing world, 16 are newly infected(Ruelas and 

Greene, 2013). 

While daily dosing and adverse side effects create adherence challenges, 

ART’s biggest shortcoming from a therapeutic perspective is its inability to 

directly clear infected cells—it can only block new rounds of replication. While 

productively infected CD4+ T cells die very quickly in vivo (half-life estimated to 

be ~1.6 days(Perelson et al., 1997)), there also exists a latent reservoir of 

extremely long-lived CD4+ T cells that harbor replication-competent integrated 

provirus(Chun et al., 1997b; Finzi et al., 1997; Wong et al., 1997). Even after 

years of viral suppression with ART, this population of cells is capable of 

producing rebound viremia when ART is stopped(Davey et al., 1999). This 

makes ART a lifelong therapy and necessitates alternative therapies that can 

directly kill infected cells and accelerate the clearance of the latent reservoir. 
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1.3 The Latent Reservoir 

 

The latent reservoir is the largest barrier to HIV cure and the success of 

eradication strategies is likely to hinge on their abilities to sufficiently clear this 

reservoir. 

 

1.3.1 Dynamics and Kinetics of the Latent Reservoir 

While the precise timing of reservoir establishment is unknown in humans, 

studies from non-human primates (NHPs) suggest the reservoir is established as 

early as 24-72 hours after intravenous (i.v.) infection(Tsai et al., 1998; 1995), and 

36-72 hours after vaginal or rectal infection(Otten et al., 2000; Whitney et al.). 

The timing of reservoir establishment has been determined by administering ART 

to macaques at variable times after viral exposure and monitoring for viral 

acquisition upon ART cessation. ART as post-exposure prophylaxis (PEP) is fully 

protective in macaques when administered within 24 hours of i.v. exposure for at 

least 4 weeks, but only partially effective when initiated 48 hours after exposure. 

Even when ART is maintained for 6 months after initiation 72 hours following 

rectal transmission, 4 of 4 monkeys have rebound viremia(Whitney et al., 2014). 

Because the complete viral generation time is estimated to be ~2 days in 

vivo(Markowitz et al., 2003) and ART can block new rounds of replication, these 

experiments suggest HIV latency is established in some of the earliest infected 

cells. 
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While NHP models suggest CD4+ T cells found in Gut Associated 

Lymphoid Tissue (GALT) are critical for early viral spread and latency 

establishment(Haase, 2010), the full cellular composition of the latent reservoir 

during both acute and chronic phases of infection remains an ongoing debate. 

While macrophages and follicular dendritic cells have been implicated as long-

term cellular depots of virus, most cell types tested for longevity following HIV-

infection have half-lives less than 2-6 weeks in vivo—making them unlikely to 

contribute to the clinically relevant reservoir(Ruelas and Greene, 2013)—there . 

Resting memory CD4+ T cells containing integrated, replication-competent 

provirus are the best-established source of a stable reservoir. It is estimated that 

~1/106 resting memory CD4+ T cells are latently infected, yielding a total of ~105-

107 latently infected CD4+ T cells in an individual(Chun et al., 1997a; Finzi et al., 

1997). The estimated half-life of these latently infected cells varies widely from 6 

months to 10+ years depending on the patient, ART regimen, and the 

quantitation assay(Finzi et al., 1999; Ramratnam et al., 2000; 2004; Siliciano et 

al., 2003). Regardless of the precise half-life, it is agreed that cells composing 

the latent reservoir are very stable, and using an estimated half-life of ~44 

months, current models estimate eradication of this reservoir solely with ART will 

require >60 years of continuous therapy(Siliciano et al., 2003). However, there is 

still no rapid, precise assay to measure the size of the latent reservoir—making it 

very difficult to evaluate clinical interventions. Furthermore, the rarity of latent 

cells makes them very difficult to study in vivo and there is no established small 

animal model system to facilitate this. 
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 In addition to the sheer size and longevity of the reservoir, additional 

hurdles to reservoir eradication include: (1) the possibility of viral spread in the 

presence of ART due to cell-cell viral infection that is more efficient than cell-free 

virus(Sigal et al., 2011), (2) drug-free or “immunologically privileged” sanctuaries 

in the body that allow viral spread 

(Fukazawa et al., 2015; Sigal and Baltimore, 2012), (3) homeostatic proliferation 

of CD4+ T cells containing HIV provirus(Chomont et al., 2009) and (4) 

underestimation of the true reservoir size due to inaccurate reservoir 

measurement assays(Ho et al., 2013). 

The dynamic interaction between latently infected cells and ongoing 

immune responses further complicates efforts to clear it. Despite the early 

establishment of the reservoir and predominant belief that resting cells harbor 

provirus, recent studies show the reservoir’s composition is far less static than 

previously recognized. It has been shown that patients who begin ART during 

acute infection (<3 months after transmission) have a reservoir composed of 

wild-type Gag sequences at epitopes targeted by CTLs(Deng et al., 2015). 

Whereas patients that start ART in the chronic phase of infection (>3 months 

after transmission) have a reservoir composed of mutated/escaped sequences 

within CTL-targeted Gag epitopes. The findings show that although the reservoir 

is established within days of infection, the viral sequences archived in the viral 

reservoir reflect the ongoing dynamics between viral replication and immune 

responses. 



 9 

In total, it is clear that existing ART is not enough to eliminate the latent 

reservoir in a clinically meaningful time period. In fact, ART intensification studies 

that include additional ART drugs on top of the conventional triple therapy fail to 

affect reservoir size(Dinoso et al., 2009; Gandhi et al., 2010). From a therapeutic 

perspective, strategies to accelerate the reduction of the latent reservoir are 

required to have a clinical impact and in vivo model systems are needed to 

facilitate their discovery. 

 

1.3.2 The only known cure 

 While the dynamics and kinetics of the latent reservoir make eradication a 

daunting task, a single reported case of HIV cure provides proof of 

concept(Hütter et al., 2009). Timothy Brown, also known as the Berlin Patient, 

was diagnosed with HIV in 1995 and began ART ~6 years later. He received two 

doses of total body irradiation and two stem cell transplants from a human 

leukocyte antigen (HLA)-identical donor who was homozygous for the CCR5Δ32 

mutation that prevents viral entry from R5 tropic HIV strains. ART was stopped 

just prior to the first transplant, and viremia has remained undetectable for over 5 

years. Despite the fear that X4 tropic strains would emerge, it has not occurred.  

While the extent of reservoir reduction attributable to the total body 

irradiation (TBI) alone was initially unknown, subsequent case studies reveal TBI 

alone is insufficient for eradication. Two patients who received stem cell 

transplant from a non-CCR5Δ32 donor experienced viral rebound 12 and 32 

weeks, respectively, after ART treatment interruption(Henrich et al., 2014). In 
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total, the Berlin patient demonstrates that eradication is possible, but both 

irradiation and bone marrow transplant from an HIV-resistant donor is necessary. 

These procedures are risky and non-scalable. Bone marrow transplant alone 

carries a 7-30% mortality risk and only ~1% of the Caucasian population has the 

CCR5Δ32 mutation. A different approach is needed to eradicate the latent 

reservoir for more patients, yet an efficient way to target HIV latency remains 

unknown. A better understanding of latency on the molecular level is necessary 

for improved targeting. 

 

1.3.3 Molecular Understanding of HIV Latency 

Postintegration HIV latency refers to the proviral reservoir formed within 

resting memory CD4+ T cells, as opposed to pre-integration latency that exists in 

the form of cytoplasmic linear viral cDNA or nuclear episomal viral DNA. Pre-

integration latent virus is significantly more labile than the post-integration form 

and usually degrades within days to weeks(Pierson et al., 2002; Sharkey et al., 

2005), making it unlikely to contribute to virological relapse after long-term ART. 

The predominant model for post-integration latency establishment is a three-step 

process: (1) Naïve CD4+ T cells become activated in response to antigen. (2) As 

they revert to a resting, memory state, they become infected by rare chance, and 

(3) due to the reduced permissiveness of HIV-1 gene expression in a resting 

state, integrated provirus persists for a very long time(Eisele and Siliciano, 2012; 

Siliciano and Greene, 2011). This model is supported by the finding that latent 
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HIV is found in memory CD4+ T cells, but to a much lesser extent in naïve CD4+ 

T cells(Brenchley et al., 2004; Eisele and Siliciano, 2012).  

However, the model has never been empirically verified and cannot 

completely account for all experimental observations. For instance, the NHP 

model shows that resting CD4+ T cells are some of the first cells infected and can 

potentially seed the reservoir(Zhang et al., 1999b). There is no evidence for a 

transition from an activated to a resting state in these cells. Furthermore, the 

model implies that cellular activation should reverse latency, yet the vast majority 

of proviruses do not become transcriptionally active in response to cellular 

activation(Cillo et al., 2014; Ho et al., 2013). 

An alternative model of latency has been proposed that attempts to 

reconcile these issues. The alternative model argues that intrinsic properties of 

the virus—namely viral transactivator (Tat) protein—determine latency fates, as 

opposed to cell activation state(Razooky et al., 2015). However, the evidence for 

this model is limited to in vitro systems and computational modeling, making it 

difficult to evaluate its relevance. In short, it is clear that our molecular 

understanding of the reservoir is significantly lacking and we do not know all the 

factors governing viral silencing and viral activation. This significantly hampers 

our ability to manipulate virus expression and access the latent reservoir for 

eradication strategies. 

However, some host-cell factors and pharmacological compounds that 

influence viral expression are known, which provides leads for potential ways to 

reverse latency. The best understood block on viral transcription is epigenetic 
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silencing. Nucleosomes 1 and 2 (nuc-1 and nuc-2) consistently form within the 5’ 

LTR of integrated provirus(Shirakawa et al., 2013) and suppress transcription. 

Additionally, several transcription factors have been shown to recruit histone 

deacetylases (HDACs) to the HIV promoter. The importance of HDAC activity is 

highlighted by the ability of HDAC inhibitors to reverse HIV latency by stimulating 

viral transcription both in vitro and in vivo(Archin et al., 2012; Wei et al., 2014). 

Host-cell factors nuclear factor of activated T cells (NFAT) and nuclear 

factor kappa-light-chain-enhancer of activated B cells (NF-κB) have been shown 

to be positive regulators of viral transcription. At rest, NF-κB exists as a p50/RelA 

heterodimer in the cytoplasm, while p50/p50 homodimers bind to the LTR in the 

nucleus and prevent transcription. The p50/RelA heterodimers are required to 

move to the nucleus to recruit histone acetyl-transferases (HATs) to promote 

transcription. Once in the nucleus, RelA initiates transcription by interacting with 

the Cdk7 kinase subunit of Transcription Factor II Human (TFIIH) and with 

positive transcription elongation factor b (P-TEFb) to phosphorylate RNA Pol II 

and mediate transcriptional elongation.  

The role of NFAT in viral transcription is driven through the protein kinase 

C (PKC) pathway, in which Ca2+ release stimulates calcineurin to 

dephosphorylate NFAT, leading to NFAT nuclear localization and binding to the 

5’ LTR. Phorbol esters such as prostratin are some of the most potent inducers 

of HIV viral transcription by PKC-mediated activation. Because PKC activation is 

a downstream consequence of T cell activation through the antigen receptor, 

CD3/CD28 cross-linking also stimulates viral transcription through this pathway. 
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However, only a small fraction of full-length provirus is activated from resting 

CD4+ T cells despite uniform cellular activation with PHA and CD3/CD28 cross-

linking(Cillo et al., 2014; Ho et al., 2013), indicating either general stochasticity of 

viral reactivation or other missing factors besides cellular activation. 

 In addition to host-cell factors, the viral protein Tat plays a role in 

regulating viral transcription. In the absence of Tat, most transcripts terminate 

prematurely. Whereas in the presence of Tat, 99% of transcripts reach full-

length(Kao et al., 1987). This is because Tat binds the transactivation-responsive 

element (TAR) within the 5’ end of HIV transcripts and recruits the P-TEFb 

complex to remove the blocking effect of negative elongation factor (NELF). The 

importance of Tat and the P-TEFb complex is highlighted by compounds that 

disrupt their interactions. Bromodomain containing protein 4 (Brd4) can bind P-

TEFb and prevent its interaction with Tat, thus blocking transcription(Zhu et al., 

2012). Brd4 inhibitors such as JQ1 and I-BET that remove this block have been 

shown to stimulate viral transcription from latent cells(Boehm et al., 2013; Li et 

al., 2012; Zhu et al., 2012). 

While the agents that reverse latency mentioned above show promise, our 

understanding of HIV integration and latency maintenance is mostly derived from 

transformed cell lines, so its translation to latency in vivo remains unclear. This is 

highlighted by our inability to come up with a comprehensive paradigm for HIV 

latency. Our limited understanding of reservoir eradication and latency reversal 

strategies in vivo comes from clinical trials that used pharmacologic agents in 

attempts to reduce the size of the latent reservoir. 
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1.4 Shock and Kill Approach 

 

 Considering the stability, size, and rapid establishment of the latent 

reservoir, it is commonly believed a strategy that accelerates reservoir reduction 

is required to achieve a functional cure. Because latently infected cells do not 

express viral antigen, they are invisible to the immune system. And although 

productively infected cells die rapidly, the natural rate of activation of latently 

infected cells is too low to meaningfully reduce reservoir size. The “shock and 

kill” approach aims to solve these problems by stimulating latently infected cells 

to express viral antigen so that they either die by cytopathic effects or are killed 

by the immune system. Infection spread is prevented by maintaining antiretroviral 

therapy(Deeks, 2012). 

 The strategy has been tested clinically a number of ways (Table 1). The 

first trials used IL-2, which has been shown to activate T-cells and stimulate HIV-

1 production in vitro. Although IL-2 stimulated CD4+ T cell proliferation, it did not 

reduce proviral DNA or infectious units per million (IUPM) (Dybul et al., 2002; 

Stellbrink et al., 2002). Patients who received anti-CD3 antibody plus IL-2 

showed activation and proliferation of T cells along with transient increases in 

HIV RNA levels. However, there was no reduction in reservoir size and the 

therapy resulted in long-lasting depletion of CD4+ T cells as well as other toxic 

side effects(C et al., 2000; Van Praag et al., 2001). Together, these results led 
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investigators to shift to latency reversal agents that did not induce global cellular 

activation.  

HDAC inhibitors were the first class of non-global T-cell activator LRAs to 

be tested. In the first test, ART intensification using enfuvirtide plus valproic acid 

was shown to reduce infection units per billion resting CD4+ T cells by a mean of 

63% in four patients and the study claimed that reservoir half-life decreased from 

~44 months to 10 months(Lehrman et al., 2005). However, follow up studies that 

analyzed larger numbers of patients who had been receiving ART plus long-term 

valproic acid for neurologic or psychiatric conditions could not detect differences 

in the sizes of the latent reservoirs compared to controls(Sagot-Lerolle et al., 

2008; Siliciano et al., 2007). 

Another more potent class I HDAC inhibitor suberoylanilide hydroxamic 

acid (SAHA, also known as vorinostat) was also tested in human patients. 

Although short-course treatment was shown to boost viral transcription in 

patients as measured by increases in cell-associated unspliced Gag RNA 

transcripts(Archin et al., 2012; Elliott et al., 2014), prolonged administration did 

not impact the size of the latent reservoir as measured by quantitative viral 

outgrowth assays(Archin et al., 2014).  

Panobinostat, a pan HDAC inhibitor, recently completed phase 1/2 clinical 

testing and demonstrated similar results. There were increases in cell-associated 

unspliced HIV RNA, but no decreases in reservoir sizes as measured by 

integrated HIV DNA and IUPM. Furthermore, the median time to viral rebound 

following ART interruption in 9 patients who had received panobinostat was 17 



 16 

days—no different from historical controls(MD et al., 2014). Romidepsin, an 

HDAC inhibitor estimated to be 2-3 logs more potent than vorinostat(Wei et al., 

2014) is currently completing clinical testing (ClinicalTrials.gov NCT02092116), 

but the results are still pending. Additional candidate LRAs that work by 

alternative mechanisms, such as disulfiram (unknown mechanism) and GS-9620 

(TLR7 agonist), are also being investigated either in humans(Spivak et al., 2014), 

or primary cell models(Sloan et al., 2015). 

 While the use of LRAs that do not induce global T cell activation are 

necessary for toxicity issues, they present fundamental problems for the shock 

and kill approach: Firstly, no reactivation regimen tested in vivo to date has 

shown efficient latency reversal that could significantly affect the latent reservoir. 

Modeling of infection dynamics suggest that a 3 to 4 log reduction in reservoir 

size is required to prevent viral rebound for at least 1 year after ART 

interruption(Hill et al., 2014). Vorinostat was shown to reactivate just 0.079% of 

proviruses from ART-suppressed patient cells following 7 days of culture(Cillo et 

al., 2014). It is clear that more efficient reactivation regimens are required to have 

a clinical impact. 

 The second problem is how to kill reactivated cells. It is generally 

assumed that reactivated cells will die by cytopathic effects because productively 

infected cells have very short half-lives. However, this short half-life is 

determined from infected cells with the assumption of T cell activation. Although 

one school of thought is that reactivated cells will die as long as ART is on board, 

it is not clear if a latent cell reactivated by a non-global T cell activator will induce  
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Table 1. Shock and kill trials in humans 
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cell death with the same kinetics as productively infected cells. To this point, it 

has been shown that CD4+ T cells from ART-suppressed patients did not die 

following vorinostat reactivation alone(Shan et al., 2012). Rather, CD8+ T cells 

had to be stimulated with Gag peptides to induce killing of cells whose latent 

state was reversed with vorinostat. This requirement for robust, functional CTL 

responses to kill reactivated cells is problematic in HIV-infected patients. For one, 

CTL activity declines over time as part of the general immune dysregulation of 

HIV infection, and the latent reservoir often harbors provirus that has already 

escaped a patient’s CTL responses(Deng et al., 2015). Secondly, it has been 

shown that HDAC inhibitors interfere with CTL responses by reducing their 

interferon-γ production, proliferation, and ability to kill HIV-infected primary CD4+ 

T cells(Jones et al., 2014). In all, both the “shock” and “kill” arms of the “shock 

and kill” approach require major advances for clinical impact, highlighting the two 

most important questions for HIV eradication research: (1) how can we improve 

latency reversal efficiency? And (2) how do we kill latent cells? 

This thesis explores the use of broadly neutralizing antibodies as a novel 

anti-HIV-1 therapeutic that can suppress viremia and kill HIV-infected cells. We 

show that combinations of latency reversal agents are significantly more effective 

than single LRAs and when combined with bNAbs in a shock and kill approach in 

vivo, viral rebound from the reservoir in hu-mice is significantly reduced. 
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CHAPTER 2:

RESULTS 

2.1 Humanized Mice 

To test the efficacy of bNAbs in vivo, we utilized a humanized mouse 

system that has been reported previously(Brehm et al., 2010; Henrich et al., 

2014; Traggiai et al., 2004). Briefly, NOD/Rag1-/-IL2rg-/- mice irradiated at birth 

and reconstituted with 2✕105 CD34+ fetal liver hematopoietic stem cells (HSCs) 

were screened for the presence of human CD4+ T cells 8-12 weeks later (Fig. 1) 

Mice with detectable human CD4+ T cells were infected with ~60ng p24 HIV-1YU2

by intraperitoneal (i.p.) injection and allowed 2-3 weeks for viremia to spread and 

diversify. Prior to antibody administration, mice developed stable plasma viral 

loads between 103 and 107 copies/ml (geometric mean 1.06✕105).  
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Figure 1. Generation of humanized mice (A) Schematic of hu-mouse 
generation (B) Human reconstitution of mice. Percentage of human CD45+ cells 
among mouse and human CD45+ cells in the peripheral blood prior to HIV 
infection (Left) and percentage of human CD4+ T cells among the human CD45+ 
cells (Right). 

2.2 Viral diversification 

To determine the rate of viral diversification, I cloned and sequenced 

gp120 within the mice when there was no selection pressure. I found an average 

of 2.9 mutations per 1400 base pairs sequenced attributable to viral mutation at 

28 days following infection (Fig. 2). Assuming the HIV-1 generation time in vivo is 

2 days(Markowitz et al., 2003), I calculate the mutation rate to be 1.5✕10-4 in this 

system, consistent with diversification rates reported previously(Ince et al., 2010; 

Mansky and Temin, 1995).  
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Figure 2. Viral diversification in untreated mice. (A) gp120 clones from 
untreated mice are shown by horizontal gray bars. Red ticks indicate non-
synonymous mutations relative to wild-type HIV-1YU2. Green ticks indicate 
synonymous mutations. Sequences obtained from 9 different mice, indicated on 
the left. Gp120 residue numbering according to HXB2 strain. (B) Number of 
mutations observed in gp120 due to polymerase error during PCR amplification 
compared to number of mutations observed in clones obtained from mouse 
plasma. Two different polymerases were used for testing polymerase error. HIV-
1YU2 plasmid was used as the amplification template. 
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2.3 Antibody escapes in vivo 

It was previously reported that rapid escape to single antibodies quickly 

emerges in humanized mice(Poignard et al., 1999). To see if this held true for 

newly identified bNAbs, viremic hu-mice were administered one of five different 

bNAbs: 45-46G54W, PG16, 3BC176, PGT128, and 10-1074(Diskin et al., 2011; 

Klein et al., 2012; Mouquet et al., 2012; Walker et al., 2011; 2009). The five 

bNAbs were chosen based on their extensive breadth and potency in in vitro 

assays, and because they were reported to target different epitopes based on 

biochemical and structural analyses. However, it was unknown how the virus 

would respond in vivo considering fitness costs and the number of mutations 

required to reach certain amino acids.  

For 4 of the 5 bNAbs, there was a transient decline in viremia followed by 

rebound within 7 days (Fig. 3), suggesting viral escape. To identify the escape 

routes selected by certain bNAbs, I cloned and sequenced gp120 from the 

rebound viremia. I found that the viral quasi-species within each mouse was 

rapidly replaced with clonal escape variants that had amino acid substitutions at 

1-3 residues within gp120 (Fig. 4). Most strikingly, the escape sites detected for 

each effective bNAb were shared across identically treated mice—indicating a 

strong selection pressure for those escape routes, as opposed to a wide range of 

chance mutations and the emergence of founder clones following population 

bottlenecks. I defined recurrent mutation sites as occurring within at least 50% of 

the gp120 clones sequenced within 2 or more mice. In contrast, passenger 
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mutation sites were defined as occurring in multiple clones within a single mouse, 

but not shared  

Figure 3. Transient viremia decline in monotherapy treated mice. (A) Plasma 
viremias for untreated mice and monotherapy treated mice. Lines represent 
individual mice, red arrows indicate antibody injections of 0.5 mg. Gray shading 
indicates the quantitation limit for HIV-1 RNA by qRT-PCR. (B) Quantification of 
drop in viral load seen in first week of antibody injections. 
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Figure 4. Monotherapy selects for recurrent escape variants across 
multiple mice. Gp120 sequences shown as in Figure 2a. Blue shading highlights 
recurrent mutations observed in at least 50% of clones from 2 or more mice. The 
mouse from which the sequence was obtained is indicated on the y-axis. 
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across multiple mice, or as being shared across multiple mice, but occurring in 

fewer than 50% of the gp120 clones. For the four effective bNAbs, 92% of gp120 

clones contained a recurrent mutation. 

For 45-46G54W, escape clones had recurrent mutations at residues 279, 

280, or 458 (HXB2 numbering). For PG16, escape clones had mutations at 

residues 160 or 162, both of which form the potential N-linked glycosylation site 

(PNGS) at site 160. PGT128 and 10-1074 both had mutations at residues 332 or 

334, corresponding to the PNGS at site 332 (Table 2). There was only one 

recurrent mutation for 3BC176-treated mice (G471R), however only 31% of 

gp120 clones from these mice had this mutation and 2 of 6 mice did not exhibit 

this mutation or any other recurrent mutation—indicating significantly less 

selection pressure. 3BC176 also was the lone antibody tested not to produce a 

transient drop in viremia. From this, I conclude that there is a narrow range of 

preferred escape sites for the effective antibodies. 

Table 2. Recurrent mutations in monotherapy treated mice. Gp120 domains 
and residue sites of recurrent mutations observed in vivo for each of the 5 bNAbs 
tested as monotherapy. 

Antibody 
Monotherapy gp120 domain Recurrent Mutations 

45-46G54W CD4bs 276, 278, 279, 280, 281, 458 
PG16 V1/V2 loop 160, 162 
10-1074 glycans in base of V3 loop 332 
PGT128 V3-loop glycans 332, 334 
3BC176 conformational/undetermined 471 
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To verify that the recurrent mutations at a single residue detected in the 

plasma actually conferred resistance as opposed to either passenger 

substitutions or a combination of many mutations, I cloned the putative escape 

mutations into an otherwise wild-type HIV-1YU2 pseudovirus and tested these 

pseuodiviruses for sensitivity to their respective antibodies in TZM.bl assays. As 

predicted, the single residues were sufficient to confer resistance (Table 3). The 

lone exception was G471R, which did not confer resistance to 3BC176, 

consistent with 3BC176’s inability to reduce viremia. In contrast, passenger 

mutations did not confer resistance to any of the antibodies. I conclude that point 

mutations at selected residues are sufficient to confer escape, and I term these 

signature escapes. 

Table 3. Recurrent mutation pseudovirus sensitivities in TZM.bl. IC50 values 
of pseudovirus variants containing recurrent mutations or passenger mutations. 

Observed in (Mouse ID) 3BC176 PG16 45-46G54WPGT128 10-1074 < 0.1  >0.1 - 1 >1-10 >10-50 >50
WT - 0.319 0.612 0.024 0.169 0.312 Recurrent mutations in tri-mix treated mice

T162I-G458D 16 0.275 >50 14.33 0.012 0.047
Recurrent mutation in 3BC176-treated mice T162N-N280Y 25 0.138 >50 >50 0.027 0.079
G471R 44, 55, 64, 74 0.159 0.154 0.008 0.02 0.091

Theoretical penta-mix mutations 
Recurrent mutation in PG16-treated mice N160K-N280Y-N332K - 0.146 >50 >50 >50 >50
N160K 22, 25, 38, 43, 49, 56, 73 0.145 >50 0.007 0.086 0.155 N160K-A281T-N332K - 0.1 >50 >50 >50 >50
T162N 22, 25, 56, 79 0.154 >50 0.013 0.166 0.175 T162I-N280Y-N332K - 0.13 >50 >50 >50 >50

T162I-N279K-N332K - 0.149 >50 >50 >50 >50
Recurrent mutation in 45-46G54W-treated mice
N279H 2 0.209 0.294 >50 0.064 0.177 Passenger mutations
N280Y 25, 49, 76 0.276 0.145 >50 0.031 0.126 Y61H 58 0.243 0.285 0.015 0.098 0.26

E102K 43, 64, 154 0.173 0.341 0.023 0.11 0.207
Recurrent mutation in PGT128 or 10-1074-treated mice N295S 148, 154 0.347 0.5 0.017 0.145 0.159
N332K 135, 147, 148, 153, 154, 162 0.232 0.988 0.017 >50 >50 I311M 3 0.23 2.67 0.013 0.248 0.253
N332Y 135, 145, 162 0.269 0.632 0.01 >50 13.6 S365L 15, 74 0.26 0.273 0.009 0.045 0.153
S334N 135, 145 0.218 0.615 0.02 >50 7.308 G366E 38, 44, 148, 153, 162 0.187 0.167 0.001 0.021 0.074

I371M 28, 38, 74, 148, 161 0.2 0.303 0.013 0.064 0.164
Recurrent mutations in tri-mix treated mice N413K 148, 154, 162 0.188 0.557 0.014 0.032 0.109
T162I-G458D 16 0.275 >50 14.33 0.012 0.047 E429K 16, 33, 65 0.146 0.503 0.017 0.082 0.167
T162N-N280Y 25 0.138 >50 >50 0.027 0.079 N295S-G366E-N413K - 0.222 0.131 0.001 0.012 0.021

Theoretical penta-mix mutations Recurrent mutatuions + passenger mutations
N160K-N280Y-N332K - 0.146 >50 >50 >50 >50 T162I-Y61H 58 0.156 >50 0.014 0.088 0.115
N160K-A281T-N332K - 0.1 >50 >50 >50 >50 T162N-V430E 79 1.67 >50 0.003 0.037 0.106
T162I-N280Y-N332K - 0.13 >50 >50 >50 >50 N280Y-A174T 76 0.064 0.138 >50 0.01 0.021
T162I-N279K-N332K - 0.149 >50 >50 >50 >50 N332S-N413K - 0.181 0.526 0.017 >50 >50

IC50 (µg/ml) in TZM.bl neutralization assay KEY
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Although the residue locations were restricted, I extended the analysis to 

determine how restricted the amino acids at each of these locations were. I 

detected multiple amino acids at each site for 3 of the 4 effective bNAbs. For 

PG16 and PGT128, there was remarkable tolerance of amino acid and 

nucleotide substitutions. Of the 27 possible single nucleotide changes that would 

eliminate the PNGS at the bNAb’s corresponding epitope, I detected 13 of them 

in at least one clone. Overall, there were 7 different amino acids detected at sites 

160 and 162 for PG16, and 5 different amino acids detected at sites 332 and 334 

for PGT128 (Fig. 5). Considering the short time frame for escape in this 

experiment, and the limited number of mice tested, the virus appears to have 

sampled a large part of its mutational space at the escape residues. Thus, there 

appears little restriction for which nucleotide change is selected—as long as it 

eliminates the PNGS.  

Similarly, despite the limited residue sites conferring escape to 45-46G54W, 

there were 8 different amino acids resulting from single nucleotide changes 

detected, underscoring the flexibility allowed at those residues. In contrast, the 

escapes detected for 10-1074 were impressively narrow. Fifty-one of 53 clones 

across four different mice all had identical N332K substitutions (Table 2 and Fig. 

5). The N332K mutation conferred complete resistance to 10-1074 in TZM.bl 

(IC50 > 50 µg/ml). Meanwhile, HIV-1YU2
N332Y and HIV-1YU2

S334N, both of which 

occurred in just 1 of 53 clones, had IC50’s of 13.6 and 7.3 µg/ml, respectively. 

While the N332Y and S334N escapes are approximately ~30x less sensitive to 

10-1074 than wild-type HIV-1YU2, they are not completely resistant, suggesting 
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the frequency of observed escapes is directly related to the sensitivity to the 

corresponding antibody in this system. 

Figure 5. Amino acids detected at escape sites in monotherapy. Each pie 
chart represents all the escape clones detected within monotherapy treated mice. 
Different colors of the pie represent the proportion of sequences that contain a 
particular amino acid at the escape site. The escape sites and the wild-type 
amino acids are shown on the outside of each pie slice. The numbers inside the 
centers of the pies represent the number of mice that escape clones were 
obtained from, and the total number of escape clones sequenced, respectively. 
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2.4 Antibody combinations 

Because the selected bNAbs target distinct epitopes on the HIV-1 

glycoprotein and have limited escape routes, we investigated whether treatment 

with antibody combinations could prevent the emergence of escape. A tri-mix of 

antibodies that targets two identifiable epitopes (PG16, and 45-46G54W, 3BC176) 

was able to sustainably suppress viremia in 3 of 11 treated mice, but rapid 

escape emerged in 8 of 11 mice (Fig. 6). To determine if there was a synergistic 

or additive effect on allowed escape routes with combination therapy, I cloned 

and sequenced gp120 from the 8 mice that escaped.  All 88 sequences 

simultaneously contained the signature escapes observed for PG16 and 45-

46G54W in monotherapy (Fig. 7). Additionally, nearly all the same amino acid 

substitutions seen in monotherapy were observed during combination therapy 

(Fig. 8). Testing the observed mutations in TZM.bl confirmed two signature 

mutations were sufficient to confer resistance to PG16 and 45-46G54W. In 

contrast, gp120 clones obtained after antibody levels decayed beneath their 

therapeutic thresholds from the 3 mice that did not escape during therapy 

showed mutations at either the PG16 epitope (N162P) or in the vicinity of the 

confirmed 45-46G54W epitope (K282R), but never both simultaneously. From this, 

I conclud that escape from bNAbs is additive. 
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Figure 6. Viremias in tri-mix treated mice. Plasma viremia from 11 mice 
treated with a tri-mix of bNAbs (45-46G54W, PG16, 3BC176). Antibody injections 
indicated with red arrows. Lines indicate individual mice. Black indicates mice 
that escaped during therapy. Blue indicates mice that did not escape. 

Because ~72% of mice treated with an antibody combination that targets 

two independent epitopes still show viral escape, we tested if an antibody 

combination that targets three independent epitopes is sufficient to completely 

prevent escape. We included 10-1074 and PGT128 into the combination 

antibody mix, both of which target the N-linked glycan at position 332 according 

to the monotherapy experiments. All 13 mice treated with this antibody 
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clones, 7 clones, 6 clones obtained from each mouse, respectively) and found 

that all 23 clones sequenced had evidence of APOBEC3G/F mediated G to A 

hypermutation that resulted in premature stop codons (Fig. 10). I found no 

signature escape mutations to any of the antibodies. Although it remains 

unanswered how the cells producing these viral particles persisted such that I 

could repeatedly detect virus, it appears the detectable viremia does not 

represent actively spreading virus, but rather infected cells producing defective 

virus. From this, I conclude that a combination of antibodies that targets three 

independent epitopes prevents emergence of escape variants in humanized 

mice. 

To determine if virus was completely cleared in mice that did not show 

viral escape, we discontinued antibody therapy after 31-60 days and monitored 

the mice for an additional 100 days. In 7 out of 8 mice that survived, viremia 

returned. I obtained 28 gp120 clones from 5 of the rebounding mice. Three 

clones showed signature escape mutations to 10-1074 and PGT128, but not to 

PG16 or 45-46G54W, while the remaining clones did not show signature escape 

mutations to any of the antibodies (Fig. 10). Only 1 of 28 clones showed a stop 

codon likely resulting from G to A hypermutation. From this, I conclud that 

replication-competent, antibody-sensitive virus persisted throughout the 

treatment period and was capable of producing viral rebound. 
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Figure 7. Gp120 sequences from tri-mix treated mice. Gp120 sequences 
shown as in figure 4. (A) Sequences obtained from mice that escaped during tri-
mix therapy, showing simultaneous escape to PG16 and 45-46G54W. (B) 
Sequences obtained from mice that did not escape therapy, after therapy was 
discontinued and mice showed rebound viremia. 
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Figure 8. Amino acids detected at escape sites in tri-mix treated mice. Pie 
charts as in figure 5. All 88 clones obtained from the 8 escaped mice 
simultaneously contained escape to both PG16 and 45-46G54W. 

Figure 9. Plasma viremias from penta-mix treated mice. Viremias shown for 
13 mice treated with penta-mix antibodies. Injections shown with red arrows. 
Black lines indicated individual mice that were suppressed beneath the 
quantitation limit during therapy. Red lines indicate mice that had detectable 
viremia during therapy, from which I obtained gp120 clones.  
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Figure 10. Hypermutation within penta-mix treated mice. Gp120 sequences 
shown as in figure 4. Asterisks indicate in-frame stop codons as a result of G to A 
hypermutation. (A) gp120 clones obtained from mice during penta-mix therapy 
(indicated by red viremia lines in figure 9). (B) gp120 clones obtained from mice 
after therapy discontinuation when mice exhibited rebound viremia. 
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2.5 Humanized mice as a model to study HIV latency 

The emergence of rebound viremia after sustained suppression mimics 

the clinical scenario for patients treated with ART. However, ART can only block 

new rounds of viral replication, whereas bNAbs can bind and clear viral particles 

directly(Chun et al., 2014; Igarashi et al., 1999). Therefore undetectable plasma 

viremia in ART-suppressed patients implies there are no productively infected 

cells releasing virions into the blood, whereas this possibility cannot be excluded 

in bNAb-suppressed mice. To test if there are productively infected cells during 

bNAb-mediated suppression, I measured cell-associated viral RNA from bNAb-

treated-humanized mice with undetectable plasma viral loads. Twenty-nine of 35 

samples measured across different time points from 23 suppressed mice had 

undetectable cell-associated viral RNA, with the 6 detectable samples averaging 

0.03 copies per cell (range 0.007 to 0.2) (Fig. 11). In contrast, untreated mice 

had detectable cell-associated RNA in 12 of 15 samples, with an average of 0.7 

copies per cell (range 0.1 to 5). From this, I conclude that bNAbs are not just 

clearing cell-free virus, but also eliminating productively infected cells or arresting 

viral production from cells. 
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Figure 11. Cell-associated viral RNA mostly undetectable in 
antibody suppressed mice. Cell associated viral RNA isolated 
from PBMCs in antibody-treated mice with undetectable plasma 
viremias (left) and untreated, viremic mice (right). Viral RNA 
expressed per cell equivalent, as determined by CCR5 DNA 
copies. 

For ART-suppressed patients, it is believed that resting memory CD4+ T 
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suppressed with bNAb combinations, I isolated resting CD4+ T cells from 6 HIV-

infected humanized mice that were suppressed with bNAb combinations and 

cultured the cells using a standardized viral outgrowth assay (VOA)(Laird et al., 

2013). Six of 16 culture wells became p24+, an indicator of robust viral 
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consistent with that obtained from ART-suppressed bone-marrow, liver, thymus 

(BLT) humanized mice(Denton et al., 2012) and human patients(Chun et al., 

1997a; Siliciano et al., 2003). From this, I conclude that humanized NRG mice 

harbor replication-competent virus within resting CD4+ T cells in the presence of 

bNAbs. 

Figure 12. Resting CD4+ T cell isolation and VOA from antibody suppressed 
mice. Resting CD4+ T cells were isolated from antibody-treated humanized mice 
with undetectable plasma viral loads. Mouse cells were depleted, and human 
CD4+ T cells were purified by negative isolation, followed by depletion of 
activated cells. Resting CD4+ T cells from identical fetal liver donors were pooled 
together and cultured by VOA protocol. Cells from three different donors were 
obtained and cultured separately, as indicated by vertical black lines. Individual 
culture wells were tested for p24 in the supernatant by ELISA. Number inside 
each well represents number of resting CD4+ T cells started in the culture. 
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Because antibody-sensitive virus capable of producing rebound viremia 

upon therapy cessation persists in the presence of bNAbs and humanized mice 

harbor resting CD4+ T cells containing replication-competent virus, I decided to 

test strategies that could prevent viral rebound by eliminating persistent viral 

reservoirs. 

2.6 Combination Therapy with bNAbs and Inducers 

I employed a “shock and kill” approach, in which viral transcription is 

induced within CD4+ T cells harboring integrated provirus. Since CD4+ T cells 

harboring non-expressed provirus have very long half-lives and are 

unrecognizable to immune surveillance, the goal is to induce viral transcription to 

enable viral cytopathic effects or immune-mediated killing(Deeks, 2012). 

Humanized mice with established HIV-1YU2 infections (viremia ranging from 

4.70✕103-7.96✕105 copies/ml at 2-3 weeks after infection) were treated with a tri-

mix of bNAbs (10-1074, PG16, 3BNC117) that could prevent escape and 

suppress viremia. When plasma viremia and cell-associated HIV RNA dropped 

below detection, mice were co-administered a viral inducer for 5-14 days, and 

monitored for viral rebound for an additional 47-85 days (Fig. 13).  

I tested three inducers: vorinostat, an HDAC inhibitor(Archin et al., 2012; 

2009; Contreras et al., 2009), I-BET151, a BET protein inhibitor(Boehm et al., 

2013), and αCTLA4, a T-cell inhibitor pathway blocker. These inducers were 
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selected based on their differing mechanisms of action, established safety and 

pharmacokinetics in mice, and abilities to induce HIV-1 transcription in vitro. 

Mice receiving antibodies plus vorinostat showed no significant differences 

in viral rebound compared to mice receiving antibody alone (Fig. 13). The same 

result was seen for hu-mice treated with antibodies plus I-BET151 or αCTLA4 

(Fig. 13). All 10 mice that received antibody therapy plus vorinostat showed viral 

rebound when the antibody dropped below therapeutic levels. Of 12 mice that 

received antibody therapy plus I-BET151, 11 had viral rebound, and 10 of 11 

mice that received antibody plus αCTLA4 showed viral rebound. In total, of 33 

mice that received antibody plus a single inducer, 31 showed viral rebound. In 

comparison, of 25 mice that received antibody therapy alone, 22 rebounded after 

the level of passively administered antibody decayed below the therapeutic 

threshold (p = 0.64, Fisher’s Exact Test). 
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Figure 13. No difference in rebound frequency for antibodies plus a single 
inducer. Mice were suppressed with combination antibodies, then administered 
one of three different viral inducers while antibodies were still present, and 
monitored for viral rebound. (A) Experimental schematic (B) Plasma viremias 
from mice treated with antibodies alone, or antibodies plus a single inducer. Each 
line represents an individual mouse. Gray indicates mice that rebound. Black 
indicates mice that do not rebound by the terminal point. Antibody injections 
indicated in red. Geometric mean antibody concentration across all mice in the 
group shown by dashed red line. Green arrows indicate vorinostat 
administrations (1.5 mg oral gavage). Purple shading indicates I-BET151 
administration (30 mg/kg injections daily i.p. for 14 days). Orange arrows indicate 
αCTLA4 injections (100 µg, i.p.). 
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To determine whether a combination of inducers might be more effective 

than a single inducer, I administered all three inducers simultaneously. In the 

absence of antibody therapy, the combination of all three inducers did not abort 

or noticeably alter active infection (Fig. 14A). Additionally, the human graft did not 

differ between untreated mice and mice that received combination of inducers 

(Fig. 14B).  Twenty-three mice that initially suppressed viremia on antibody 

therapy were treated with the inducers combination and followed for 62-105 days 

after the last antibody injection (Fig. 15). Only 10 of the 23 mice (43%) showed 

viral rebound, while the remaining 57% of mice failed to rebound, a significant 

decrease in rebound frequency compared to antibody alone (p = 0.0018, Fisher’s 

Exact Test), or antibody plus a single inducer (p = 0.0001, Fisher’s Exact Test). 

Figure 14. Graft and viremia unaltered by combination inducers alone. (A) 
Plasma viremia in mice receiving combination inducers alone. Blue line shows 
geometric mean viremia across the three mice. Arrows and shading as in figure 
13. (B) Human graft as determined by flow cytometry from PBMCs.
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Figure 15. Antibody plus combination inducers reduce frequency of viral 
rebound. (A) Plasma viremia from mice administered combination inducers in 
the presence of antibodies. Graph coloring and shading as in figure 14. (B) 
Comparison of proportion of mice showing viral rebound by the terminal point in 
mice receiving antibody alone, antibody plus any one of the three inducers, and 
antibody plus the combination of all three inducers. *, p < 0.05, Fisher’s exact 
test. 

Importantly, when compared to antibody alone, neither single inducers nor 

combination inducers measurably altered the frequency of CD4+ T cells 

remaining at the end of the experiment, which correlated with absolute CD4+ T 

cell levels (Fig. 16). Additionally, cell-associated viral RNA measured in splenic 

T-cells at the terminal point supported the results from the plasma viremia levels, 

with mice that failed to show viral rebound in the plasma also having 

undetectable cell-associated viral RNA (Fig. 17).  
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Figure 16. No difference in CD4+ T cell levels between rebounding and non-
rebounding mice. (A) The % of human CD4+ T cells among all human CD45+ 
cells in the spleen of mice at the terminal sac, shown by treatment group and 
rebound status, N.R. = non-rebounder (solid circles), Reb. = rebounder (open 
circles). There was no statistically significant difference between any of the 
groups, Kruskal-Wallis test. (B) correlation between the % human CD4+ T cells 
among human CD45+ cells and the total number of CD4+ T cells in the spleen by 
absolute count.  

I measured cell-associated viral DNA as an imperfect surrogate of the 

HIV-1 reservoir. HIV-1 DNA is thought to overestimate the reservoir because it 

fails to exclude damaged or incomplete viral sequences that cannot be 

reactivated(Ho et al., 2013). In addition, the overall number of cells assayed in 

mice is limited and therefore the assay is not very sensitive. Nevertheless, I could 

not detect viral DNA at the terminal point in the majority of mice that did not 

rebound, whereas the majority of mice that did rebound had detectable HIV-1 

DNA, with an average of 0.09 copies per T cell (Fig. 17). 
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Figure 17. Cell-associated HIV-1 RNA and DNA from splenic T cells reflects 
rebound status. (A) Cell-associated HIV-1 RNA measured in splenocytes at 
terminal sac, expressed per cell equivalent as determined by CCR5 DNA copies. 
Closed circles indicate non-rebounding mice, open circles indicate rebounding 
mice. Gray shading indicates beneath detection limit. Samples above dotted line 
indicate detectable HIV-1 RNA, but unreliable detection of CCR5 DNA (B) Cell-
associated HIV-1 DNA. Shading and markings as in A. 

When compared to controls, mice that failed to rebound after combination 

antibody and inducer therapy showed similar initial plasma viremias to mice that 

rebounded across all experimental groups (Fig. 18). Therefore, neither initial 
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Figure 18. Pre-treatment viremia does not determine rebound 
status. Pre-treatment viremias shown for all mice, grouped by 
treatment group and rebound status. There was no statistical 
difference between any of the groups, Kruskal-Wallis test. 

To determine if antibody persistence accounted for differing viral rebound 
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mice, the average antibody concentration at the terminal point was 0.44 µg/ml, 

with 15 out of 18 mice having antibody concentrations less than 2.97 µg/ml. From 

this, I conclude that non-rebounding mice did not have residual antibody levels 

that would prevent rebound. 
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average, I calculated the number of days that elapsed from when each individual 

mouse’s antibody levels reached the rebound threshold to when the mouse 

actually showed rebound viremia. Fifty of 59 mice rebounded within 10 days, 

indicating consistent timing of rebound kinetics (Fig. 19). In non-rebounding mice, 

an average of 20.2 days elapsed from the time antibody concentrations reached 

2.97 µg/ml to termination (Fig. 19). Thus, failure to rebound cannot be attributed 

to premature termination. In total, I conclude that combining vorinostat, I-BET151 

and αCTLA4 with combination antibodies decreases the frequency of viral 

rebound in humanized mice.  

Figure 19. Persistent antibody levels at terminal point cannot explain lack 
of viral rebound. (A) Antibody level at the time of rebound are shown for all 
rebounding mice, divided by treatment group. Geometric mean of 2.97 µg/ml is 
termed the rebound threshold (B) For rebounding mice, number of days that 
elapsed from when each mouse’s antibody levels dropped beneath 2.97 µg/m to 
when the mouse had rebound viremia (C) For non-rebounders, number of days 
that elapsed from when each mouse’s antibody levels dropped beneath 2.97 
µg/ml to when the mouse was sacrificed. 
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2.7 ART and inducers 

While the importance of combination inducers is evident from the 53 of 58 

mice that rebound when not administered combination inducers, I sought to 

determine if combination inducers in the presence of ART was equally efficacious 

at preventing rebound, or if bNAbs played a unique role. I repeated the 

experiments testing for viral rebound, except that viremia was suppressed using 

ART (raltegravir, emtricitabine, tenofovir) rather than bNAbs. Of 9 mice that 

survived the entire experiment, 6 showed viral rebound, a 67% rebound 

frequency (Fig. 20). Although this is a higher rebound frequency than the 43% 

observed for bNAbs plus combination inducers, it is statistically indistinguishable 

due to limited numbers of mice (p = 0.43, Fisher’s Exact Test). To determine the 

relative importance of bNAbs compared to ART, I adopted a different 

experimental approach. 
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Figure 20. ART plus combination inducers. Plasma viremias from mice 
receiving ART plus combination inducers. ART administration shown in blue 
shading, otherwise, coloring and shading as in figure 15. 

2.8 bNAbs as post-exposure prophylaxis 

Mice were exposed to HIV-1YU2 and treated with either ART or a tri-mix of 
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human CD3+CD8-p24+ cells within each spleen was determined by flow 

cytometry (Fig. 21). 

In the experimental groups of mice receiving treatment, ART was 

administered in the food for up to 40 days. Antibodies were administered 

subcutaneously with an initial dose of 3 mg per mouse, and 3-5 subsequent 

doses of 1.5 mg each, spaced 3-4 days apart, so that antibody levels were 

maintained above 10 µg/ml for approximately 40 days (Fig. 21). Although plasma 

viremia was suppressed beneath the detection limit in all 22 ART-treated mice 

and cell-associated RNA was undetectable in 15 of 16 mice measured during 

therapy, 18 mice showed rebound viremia after ART termination (Fig. 21). The 

rebounding mice even included 5 mice that did not have detectable plasma 

viremia before ART was initiated (measured ~90 hours following viral exposure). 

Among the 18 viremic mice, viremia was first detected 28 to 84 days after ART 

termination (Fig. 22). From this, I conclud that a pool of infected cells capable of 

producing rebound viremia forms very early after exposure and persists 

throughout therapy, indicating that ART is relatively ineffective at preventing 

reservoir establishment in humanized mice when administered 4 days after 

infection, consistent with human and macaque studies(Landovitz and Curry, 

2009; Whitney et al., 2014). 
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Figure 21. bNAbs and ART as PEP in humanized mice. (A) Experimental 
schematic for post-exposure prophylaxis experiments (B) Absolute numbers of 
human CD3+CD8-p24+ cells purified from the spleens of infected mice 4 days 
after viral exposure (C) Clearance of cell-free plasma viremia in non-humanized 
NRG mice. Red tick indicates copy number of virus stock injected i.p. (D) plasma 
viremia in untreated mice. Geometric mean viremia shown in blue. (E) Plasma 
viremia for mice treated with ART food. Gray lines indicate mice that become 
viremic. Black lines indicate mice that do not become viremic by terminal point. 
(F) Plasma viremia for bNAb-treated mice. Coloring as in figure 13. 
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In contrast, only 10 of 21 (48%) mice treated with antibodies 4 days after 

infection showed viremia by the terminal point, a statistically significant decrease 

compared to ART (p = 0.027). For 9 of these 10 viremic mice, the first detectable 

viremia occurred 74 or more days after the last antibody injection. The delay in 

viral rebound observed for mice treated with antibody at day 4 was statistically 

significant compared to ART-treated mice (Fig. 22). The mice that rebounded 

showed a geometric mean antibody concentration at rebound of 0.46 µg/ml. 

However, sustained inhibitory antibody levels did not account for the 11 mice that 

did not rebound, all of which had antibody levels ≤0.50 µg/ml by termination (Fig. 

23). 

Figure 22. Delay in viral rebound for bNAb-treated mice relative to ART-
treated mice. Survival curve showing the proportion of mice that are aviremic 
over time following discontinuation of therapy. Blue arrow indicates 
discontinuation of ART food. 
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Figure 23. Antibody concentration at time of rebound or 
terminal point in PEP mice. Antibody concentration at the terminal 
point is shown for non-rebounding mice (left, black as shown in 
21E), and antibody concentration at the time of rebound viremia for 
rebounding mice (right, gray as shown in 21E) 
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Mice in the early treatment group that failed to show detectable plasma 

viremia were further examined for the presence of human CD4+ T cells and cell-

associated HIV-1 RNA and DNA in the spleen. I found that mice that failed to 

develop sustained plasma viremia had similar percentages of CD4+ T cells 

relative to infected controls (Fig. 24). Therefore, differences in CD4+ T cell levels 

are unlikely to account for the observed differences between viremic and 

aviremic mice. Moreover, T cell-associated HIV-1 RNA levels were consistent 

with plasma viral loads, with mice that remained aviremic having either 

undetectable or lower cell-associated HIV-1 RNA than mice that developed 

sustained viremia (Fig. 25A). HIV-1 DNA measurements were also consistent 

with each mouse’s rebound status (Fig. 25B). I conclude that bNAbs can interfere 

with the establishment of the HIV-1 reservoir in humanized mice as determined 

by the significant delay in viral rebound. 

Figure 24. CD4+ T cell levels in the spleen do not differ across treatment 
groups or viremia status. % human CD4+ T cells among human CD45+ cells as 
measured by flow cytometry of splenocytes at the terminal point, grouped by 
treatment and viremia status. Mice that never became viremic (A), closed circles. 
Mice that became viremic (V), open circles. There is no statistical difference 
across the groups (Kruskal-Wallis test). 
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Figure 25. Cell-associated HIV-1 RNA and DNA in spleen of PEP mice. Cell-
associated RNA (left) and DNA (right), expressed per cell equivalent, as 
determined by CCR5 DNA copies. Gray shading shows beneath detection limit. 
Circles and abbreviations as in figure 24. 
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show that bNAbs can interfere with the establishment of the viral reservoir, but 

the efficacy is very time sensitive. 

Figure 26. Antibody PEP initiated at 72 hours following viral exposure. (A) 
Plasma viremias for mice given a single injection of tri-mix bNAbs 72 hours after 
viral exposure. Lines and coloring as in figure 21E. (B) HIV-1 copies per cell, 
taken from the spleen at the terminal point. Open circles indicate mice that 
became viremic, closed circles indicate mice that never became viremic. Of note, 
one mouse that became viremic died before spleen could be harvested and so is 
excluded in (B). 

Figure 27. Antibody PEP initiated at day 8. Plasma viremias for mice initiated 
with tri-mix bNAbs 8 days following viral exposure. Coloring and lines as in figure 
21E 
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Because of the time sensitivity of therapy initiation and the different routes 

of administration for bNAbs (subcutaneous injection) and ART (orally in food) in 

these experiments, it was possible that the observed difference in the ART-

treated and bNAb-treated mice was due to different pharmacokinetics of the two 

treatments. Specifically, the bNAbs were administered as a high-dose bolus 

injection, whereas ART might have taken additional time to reach therapeutic 

levels. However, measuring concentrations of anti-retroviral drugs in humanized 

mice is difficult, so I used post-exposure prophylaxis treatments to indirectly 

address this issue.  

ART has been shown to be completely protective when administered 

subcutaneously 24 hours after intravenous viral exposure and maintained for 28 

days in macaques, but incompletely protective when initiated 48 hours after 

exposure(Tsai et al., 1995; 1998). Thus any lack of protection when ART is 

administered 24 hours after exposure via food suggests slower time to reach 

therapeutic levels. Of 10 mice that were exposed to HIV-1 and given ART food 

24 hours later for 30 days, all 10 remained aviremic for 92-131 days following 

ART cessation (Fig. 28). There was no detectable cell-associated viral RNA in 

the spleens of all mice tested (Fig. 28). From this, I conclude that ART 

administered in the food within 24 hours of exposure can protect against viral 

acquisition. By extension, the difference in efficacy of bNAbs and ART started at 

4 days following exposure is not solely due to pharmacokinetics. 
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Figure 28. ART as PEP within 24 hours. (A) Plasma viremias from mice 
initiated on ART food 24 hours after viral exposure. (B) Cell-associated 
HIV-1 RNA taken from splenocytes at the terminal point, expressed per 
cell equivalent, as determined by CCR5 DNA copies. (C) absolute count of 
total CD4+ T cells within the spleen at the terminal point. 
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2.9 Importance of Fc Receptor Binding for bNAb Activity 

Because pharmacokinetics could not entirely explain the observed 

differences in preventing viremia between ART and bNAbs, I asked if bNAbs’ 

unique ability to engage components of the immune system through their Fc 

domains played a role. I repeated the day 4 post-exposure prophylaxis 

experiments using the same tri-mix of bNAbs, except the Fc region in each of the 

component bNAbs carried mutations that abrogate both human and mouse Fc-

receptor binding (G236R/L328R; GRLR, herein referred to as FcRnull(Horton et 

al., 2010). Despite equivalent neutralizing activity in TZM-bl assays(Pietzsch et 

al., 2012), FcRnull antibodies were far less potent than controls in vivo (Fig. 29). 

Mice treated with FcRnull tri-mix initially suppressed viremia at the same rate as 

the wild type antibody-treated mice. However 9 of 15 mice receiving post 

exposure prophylaxis with the FcRnull tri-mix showed viral rebound by 44 days 

after the last antibody injection. In contrast, 44 days after the last injection of 

control antibodies, only 1 of 21 mice showed rebound viremia (p = 0.0004). Not 

only was the delay in viral rebound significantly reduced for FcRnull antibodies, 

but the antibody levels at the time of viral rebound were ~50-fold higher for mice 

receiving FcRnull tri-mix compared to wild-type tri-mix (p = 0.0014, Fig. 29). This 

suggests FcRnull antibodies have reduced activity in vivo, and thus Fc function 

enhances antibody activity but is not an absolute requirement. 
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Figure 29. FcRnull antibodies less effective than wild-type antibodies at day 
4. (A) plasma viremias shown for mice treated with tri-mix of FcRnull antibodies
beginning 4 days after viral exposure. Coloring as in figure 21E. (B) Antibody 
concentration at the time of viral rebound, shown by treatment group. *, p < 0.05, 
**, p < 0.01, Mann-Whitney U Test (C) Proportion of mice that become viremic, 
by treatment group. *, p < 0.05, Fisher’s exact test. 
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Because mice receiving FcRnull tri-mix showed viral rebound in the 

presence of antibody concentrations far higher than the therapeutic threshold for 

wild-type antibodies, we cloned and sequenced gp120 from the 9 mice that 

rebounded by day 44 to examine the mechanism for viral breakthrough in the 

presence of FcRnull tri-mix (Fig. 30). As a control, gp120 clones from mice treated 

with wild-type antibodies at day 8 were also sequenced. Among all 40 clones 

sequenced from FcRnull tri-mix treated mice, not a single clone had the triple 

combination of signature mutations that confer escape to the antibody-tri-mix. I 

conclude that viral rebound in FcRnull tri-mix treated mice is not attributable to 

antibody escape, but rather reduced antibody potency. Thus, FcRnull mutant 

antibodies, which cannot engage Fc receptors, are less active in suppressing 

infection than their wild type counterparts, and optimal post-exposure prophylaxis 

by bNAbs requires engagement of Fc-receptors. 

Figure 30. Gp120 sequences of viral breakthrough clones show no 
signature escapes. Gp120 sequences shown as in Figure 7. 
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CHAPTER 3: 

DISCUSSION 

3.1 bNAb discovery 

Prior to 2009, there were no known naturally occurring, potent, broadly 

neutralizing antibodies against HIV-1. Advances in single cell cloning techniques 

that allowed comprehensive probing of HIV-1-specific B-cells uncovered a “next-

generation” of bNAbs with remarkable breadth and potency(Mouquet et al., 2012; 

Scheid et al., 2011; Walker et al., 2009; 2011; Wilson and Andrews, 2012; Wu et 

al., 2010). Although the best bNAbs come from rare patients that are carefully 

selected, their discovery revealed the capacity of the human B-cell response to 

target HIV-1 is far more impressive in some cases than previously recognized. 

Additionally, structural, biochemical, and genetic characterization of bNAbs and 

the viruses they neutralize revealed new sites of vulnerability on the virus. Most 

importantly, these bNAbs provide a blueprint for a vaccine since passive transfer 

of bNAbs prior to HIV-1 challenge can prevent viral acquisition(Hessell et al., 

2009; Mascola et al., 1999; Moldt et al., 2012; Shingai et al., 2013a).  

However, within the patients whom these bNAbs come from, there has 

been no definitive evidence showing bNAb-mediated viral control. In fact, these 

patients appear to have circulating virus that is resistant to their own bNAbs(Wu 

et al., 2012), likely owing to the kinetics of HIV-1 diversification and the B-cell 

response. By the time the B-cell response can potently target HIV-1, the virus 
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has already generated sufficient diversity to produce escape variants, giving rise 

to a chase in which the virus is always a step ahead(Liao et al., 2013; Wei et al., 

2003). Because of the immense viral diversity and previous failed attempts to use 

antibodies as therapeutic agents(Poignard et al., 1999; Trkola et al., 2005), the 

therapeutic value of next-generation bNAbs was not immediately considered 

following their discovery. 

3.2 First demonstration of bNAb therapy 

While the monoclonal antibodies ibalizumab and PRO140, which target 

the human host receptors CD4 and CCR5, respectively, have been shown to 

reduce viral loads in patients and may prove to be useful therapeutics, these 

antibodies are not directly antiviral(Jacobson et al., 2009; 2010a; 2008; 2010b; 

Kuritzkes et al., 2004). Our experiments demonstrated the efficacy of viral-

binding bNAbs as therapy in vivo for the first time. Our data suggest that rapid 

escape can occur to both single and double bNAbs, but combinations of three or 

more bNAbs can fully suppress viremia. The most striking aspect of these 

experiments was the restricted escape routes observed in the virus for single or 

double bNAb-therapy. While previous analyses of antibody-mediated escape 

found a wide-range of viral escape options, often involving addition and removal 

of N-linked glycosylation sites across many residues in gp120(Frost et al., 2005; 

Wei et al., 2003), I found that escapes to the bNAbs tested were limited to just 1-

3 sites shared across multiple mice. For 10-1074, the restriction was particularly 



 63 

impressive, with only a single amino acid substitution at a single residue 

dominating the viral quasi-species. An important caveat is that humanized mice 

in our experiments were infected with monoclonal HIV-1YU2, a clade B primary 

isolate, and viral escape routes with other virus strains should be tested to be 

more comprehensive.  

Our data suggest that the in vivo success of the next-generation bNAbs 

we tested compared to the failures of previous antibodies tested is attributable to 

the exceptional potencies and restricted escapes. The geometric mean inhibitory 

concentration to block 50% infection (IC50) as tested by in vitro TZM.bl assays of 

the four efficacious bNAbs is 0.07 µg/ml, whereas it is ~1.5 logs lower at 2.63 

µg/ml for 2G12, 2F5 and b12—the 3 antibodies tested in a humanized mouse 

system previously. The lone “next-generation” antibody we tested that did not 

have any therapeutic effect in vivo, 3BC176, has an IC50 resembling the 

ineffective antibodies at 1.87 µg/ml. Additionally, 10-1074, the antibody that 

produced the largest transient drop in viremia of 1.5 logs had the most restricted 

in vivo escapes detected. 

Despite the transient drops in viral load and emergence of limited escape 

mutations, there was no evidence of a fitness cost imposed by these mutations. 

The viral loads quickly returned to pre-therapy levels, and the virus maintained 

the mutations even when therapy was stopped. Additionally, the escape 

mutations to the various antibodies did not appear incompatible in any way when 

they were all present in the same virus. Rather, the escape mutations we saw in 

single-bNAb treated mice were the same as those seen in mice that escaped 
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from a combination of two efficacious bNAbs. Additionally, a virus engineered to 

contain escapes to all four of the efficacious bNAbs we tested was shown to be 

highly infectious in humanized mice. Together, this shows that escape to bNAbs 

is additive. Furthermore, it is possible that pre-existing viral clones within a 

patient’s quasi-species contain escapes to all bNAbs in a cocktail, in which case 

the cocktail will be ineffective. This issue can likely be overcome by choosing 

bNAb cocktails that have rare, restricted escapes unlikely to be present within the 

same virus simultaneously by pre-screening patients and databases of viruses 

within the population. In all, these studies demonstrated sufficiently broad and 

potent bNAbs could lead to sustained viral suppression in vivo for the first time. 

3.3 Antibodies as PEP 

Because antibodies have the potential for Fc-mediated cell killing while 

ART can only block new rounds of replication, I employed a post-exposure 

prophylaxis model to test the role of cell killing. By comparing the PEP efficacy of 

antibodies versus ART, I can infer therapeutic roles that extend beyond blocking 

new rounds of replication. I found that cell-free virus injected intraperitoneally into 

non-humanized NRG mice is undetectable in plasma by 48 hours. Thus plasma 

viremia detectable after 48 hours in humanized mice must come from 

productively infected cells. If therapy is initiated 48-96 hours after exposure, and 

assuming therapy completely blocks viral spread, it can be inferred that viral 

rebound occurring after therapy cessation comes from the earliest infected cells. 
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Conversely, if there is no viral rebound upon therapy cessation, then either the 

early-infected cells were cleared, or they remained in a silent state without virus 

production. While this experimental setup requires many assumptions to 

indirectly conclude that antibodies kill infected cells, there is no alternative model 

to prove this in vivo. This is complicated by the fact that productively infected 

cells die very quickly, so any role for antibody-mediated killing is likely to be 

supplemental. 

Nevertheless, my experiments show that bNAbs were significantly more 

effective than ART at preventing viral rebound in the PEP model. However, the 

enhanced efficacy of bNAbs is abrogated when their ability to bind Fc receptors 

is removed. Identifying which Fc-expressing cells are most important for Fc-

mediated effects of bNAbs remains an open question. It is particularly difficult to 

address in the humanized mouse model because of the incomplete human 

reconstitution. While bNAbs were administered by subcutaneous injection and 

ART was administered orally in the food, the difference in efficacy between 

antibodies and drugs is unlikely to be solely due to pharmacokinetics. When 

orally administered ART was initiated at 24 hours following viral exposure, no 

mice showed viremia by the terminal point, in agreement with results in 

NHPs(Tsai et al., 1995). In NHPs, low-potency neutralizing IgG was tested for 

PEP and shown to be effective only when initiated within 6 hours(Nishimura et 

al., 2003). The extended window of opportunity for next-generation bNAbs needs 

to be tested in the NHP model, but the results suggest a role for enhanced killing 

or viral containment with bNAbs. If bNAbs as PEP show similar beneficial effects 
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in NHPs, there is a strong case to include them in early treatment regimens. 

Additionally, they can be added to ART as a superior PEP for occupational 

exposures. 

3.4 Model for Latency Purging Regimens 

The possibility of antibody-mediated killing stimulated me to test the 

effects of bNAbs in clearing latent cells. However, there is no established small 

animal model to test this. From our experiments testing bNAbs as therapy, I 

noticed the majority of mice that were suppressed showed viral rebound when 

antibody levels dropped beneath the therapeutic threshold. There were no 

signature escape mutations contained within the rebounding virus, and it 

remained sensitive to antibody neutralization, implying the persistence of a silent 

pool of infected cells capable of producing viral rebound. By purifying resting 

CD4+ T cells from suppressed mice and detecting HIV p24+ in the supernatant 

following culture in T-cell stimulatory conditions, I was able to confirm the 

existence of replication-competent virus within this cell subset. Although I have 

not proven that this cell subset is responsible for the rebounding virus observed 

in humanized mice, I demonstrated that it exists, in agreement with findings from 

bone marrow-liver-thymus (BLT) humanized mice(Denton et al., 2012; Marsden 

et al., 2012). Given that resting memory CD4+ T cells with replication-competent 

provirus are regarded as the biggest barriers to reservoir eradication, the model 

gave me the opportunity to study viral purging strategies in vivo. 
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I carefully designed our viral purging experiments to work within the 

constraints of the humanized mouse model. Because the duration of the human 

graft is variable and limiting, I planned the entire course of treatment to fit within 4 

months, a time frame well within the empirically determined graft duration of the 

model. I suppressed viremia in mice, administered the experimental therapies, 

then stopped therapy and assayed for viral rebound in the plasma. I used viral 

rebound since it is considered the gold standard for evaluating viral eradication 

strategies. Additionally, it has an easy to interpret binary outcome, represents the 

most important clinical parameter, and avoids the problems associated with 

reservoir size measurements. 

3.4.1 Limitations of the model 

Despite the unique experimental opportunities provided by the humanized 

mouse model, using it for viral purging strategies comes with many caveats. The 

main caveats related to the experiments discussed are: (1) incomplete 

reconstitution of human cells, (2) lack of proper lymph node architecture (3) 

limited duration of the human graft, (4) significantly reduced absolute cell 

numbers, and (5) non-physiological environment of mixed human and mouse 

cells. 

The incomplete human reconstitution manifests as a very narrow range of 

human immune cells populating each mouse. Although, mice that have clear 

populations of human CD4+ T cells are selectively chosen for the experiments, it 

has never been verified that these CD4+ T cells are capable of differentiating into 
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the full range of CD4+ T cell subtypes. Additionally, there are very few innate 

immune human cells in these mice, such as macrophages, and natural killer 

cells(Brehm et al., 2010). Considering some of these innate cells have been 

implicated as being susceptible to HIV infection, and may contribute to the HIV 

reservoir in some cases, humanized mice have a significantly reduced pool of 

cells capable of forming the reservoir. Therefore it must be tested whether 

targeting strategies that eliminate reservoirs in humanized mice translate to the 

more diverse, complex reservoirs in humans. 

The humanized mice used in these experiments also lack proper lymph 

node architecture, as well as lymphoid tissues that are relevant for HIV infection, 

such as gut associated lymphoid tissue (GALT) and mucosa associated 

lymhphoid tissue (MALT) (Li et al., 2005; Moir et al., 2011). Given the high levels 

of viral replication and relatively high frequencies of HIV-infected cells in these 

tissues, the absence of these tissues from hu-mice may make the bar to purging 

virus far lower than in animal models that have these features. 

The limited duration of the human graft poses one of the greatest caveats 

to the model. Following infection, plasma viremia is stable for ~3-6 months in 

humanized mice, with gradual depletion of CD4+ T cells(Baenziger et al., 2006). 

Eventually, the human graft’s proliferative capacity cannot keep pace with cell 

loss, and both human immune cells and plasma virus become undetectable—

limiting the study duration of HIV therapeutics. In clinical trials of latency purging 

strategies, patients who receive the experimental intervention have usually been 

chronically infected with HIV for many years then suppressed on ART drugs for 6 
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months or longer. The purpose of this minimal suppression time is usually 

attributed to the presence of labile, unintegrated forms of HIV that are able to 

persist in the presence of ART for up to 6 months(Blankson et al., 2000). 

However, these more labile forms of HIV are not believed to represent the stable 

reservoir and so they are excluded from tests of purging efficacy. It is not 

possible to use the same stringent time constraints in tests with humanized mice. 

Rather, mice are suppressed following just weeks of infection—a time frame 

considered acute for humans—and the experimental intervention is initiated after 

just weeks of suppression. As a result, it is unknown if clearance of latent 

reservoirs in mice will translate to clearance of human latent reservoirs. 

Additionally, many latency purging pharmacologic regimens tested in 

clinical trials use multiple weekly drug cycles extending over many months(Archin 

et al., 2014; MD et al., 2014). It is believed that a single short-course 

administration of latency reversal agents is not sufficient to reactivate enough of 

the silent reservoir to make a difference. However, it is not possible to test 

multiple cycles of treatment in mice because the total experimental window is too 

short. 

The total number of human CD4+ T cells within each humanized mouse is 

orders of magnitude less than in a human. While I demonstrated that the 

frequency of latently infected resting CD4+ T cells is comparable to that seen in 

humans, the total number of latently infected cells is likely orders of magnitude 

less. Given the total number of ~1 to 10 million human CD4+ T cells in each 

mouse—and on the order of 104 p24+ cells during active infection—there are 
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likely only 1-10 latently infected resting CD4+ T cells within each mouse. This is 

in contrast to the 104-107 estimated latently infected resting CD4+ T cells that 

exist in an infected human(Chun et al., 1997a; Zhang et al., 1999a). While the 

precise number of latently infected cells that can remain without causing 

virological relapse is unknown, it is generally appreciated that even very few 

numbers of latently infected cells can lead to virological relapse(Henrich et al., 

2014). As a result, the very few numbers of latently infected cells within a 

humanized mouse make the possibility of viral eradication significantly easier. 

The environment of mixed mouse and human cells that are free to interact 

within the humanized mouse model is another potential shortcoming for studying 

latency in the humanized mouse model. The main concern is that mouse cells 

provide continual allogeneic stimulation to the human immune cells, which 

precludes a true resting state. Considering that HIV latency is most stable within 

resting CD4+ T cells that do not express activation markers such as CD25, CD69, 

or HLA-DR, the mixing of mouse and human cells may make the environment 

significantly different from that which latent cells in a human are exposed to. 

However, this concern remains speculative and there has been no clear 

evidence suggesting that human cells cannot exist within a resting state within an 

NRG mouse. To the contrary, I was able to identify resting CD4+ T cells that were 

CD25-CD69-HLA-DR-. However, additional comparisons between silent, 

persistently infected cells from humanized mice and latently infected human 

CD4+ T cells, such as integration site analyses and gene expression analyses 

will have to be done to address this issue directly. 
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3.5 Importance of combinations for latency reversal 

Although combination antibody therapy appeared to work similarly to ART 

in that triple combinations were required, the unique potential for Fc-mediated 

effects that can directly kill infected cells led me to test the “shock and kill” 

approach. I tested three candidate inducers of viral transcription (aka LRAs) 

based on their abilities to reverse latency in vitro, target different mechanisms of 

transcriptional silencing, and toxicities. I found that combining a bNAb cocktail 

that could suppress viremia with a single inducer had no impact on the frequency 

of viral rebound in humanized mice. However, a combination of all three inducers 

significantly reduced the frequency of viral rebound. This is the first 

demonstration of a therapy regimen other than irradiation and stem cell 

transplant with HIV-resistant donor cells that reduced viral rebound in vivo.  

This study demonstrates that current LRAs are unlikely to have a 

significant impact on the latent reservoir when administered as single agents. 

This is supported by studies investigating vorinostat and panobinostat as single 

agents(Archin et al., 2014; Elliott et al., 2014; MD et al., 2014). It suggests that 

future studies should focus on optimizing the best inducer combinations, rather 

than relying on single agents. Of note, I did not optimize my inducer regimen, and 

~40% of treated mice still showed viral rebound, underscoring room for 

improvement. However, I attribute the improved success of the LRA combination 

to synergy in targeting different mechanisms of reactivation. This is likely related 
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to the multiple mechanisms regulating HIV transcriptional silencing. No single 

agent is likely to target all these mechanisms, so there is probably a population of 

unperturbed latent cells capable of producing rebound viremia when single 

agents are used. This is supported by in vitro findings that show a very small 

fraction of proviruses are activated by single LRAs(Cillo et al., 2014). 

Additionally, single agents may induce viral transcription, but there is no evidence 

that single agents robustly reverse latency to induce viral protein expression, 

which is likely required for immune-mediated killing. 

3.6 Testing for latency reversal 

Rather than testing for cell-associated viral RNA, the more relevant test is 

for viral protein expression, including cell surface-HIV Env, in reactivated cells. 

Not only do broad, potent bNAbs exhibit clinical promise, but they can be used in 

the laboratory as agents to identify infected cells expressing surface Env. This 

has the potential to offer a more relevant assay for detecting cells that were 

reactivated sufficiently for bNAb-mediated killing. 

Although I tested for changes in cell-associated viral RNA during the 

inducers treatment, I was unable to detect any in both the single inducers treated 

mice and combination-inducers treated mice. While this differs from the ~3-5 fold 

increases observed in vorinostat and panobinostat trials(Archin et al., 2012; 

Elliott et al., 2014; MD et al., 2014), it could simply be due to a lower sensitivity in 

this model due to fewer cells assayed. But more importantly, the lack of cell-
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associated RNA detection did not predict lack of viral rebound, which suggests 

an updated readout should be used for clinical trials that test latency reversal. In 

total, my experiments make clear that current LRA strategies are likely limited by 

incomplete reactivation and major effort should go toward improving this, as well 

as assays to detect reactivated cells that can be killed. 

Given the challenges in improving latency reversal and infected-cell killing, 

it is critical to have an in vivo model amenable to testing many strategies. Prior to 

this work, only in vitro models consisting of transformed cell lines or PBMCs 

isolated from ART-suppressed patients existed for testing “shock and kill” 

strategies pre-clinically. While these models allow high-throughput screening, 

they lose physiologic relevance. Prior to this work, LRAs could not even be 

tested in NHPs because there were no fully-suppressive ART regimens 

available. This issue has now been resolved, but there are still significant 

advantages of using humanized mice. 

For one, humanized mice involve HIV infection of human cells. In contrast, 

restriction factors limit the tropism of HIV, so NHPs have to be infected with 

either simian immunodeficiency virus (SIV) or an SIV/HIV hybrid virus termed 

SHIV. It is unclear how SIV or SHIV viruses differ from HIV for latency and 

eradication strategies and it is unclear how LRAs will interact with simian cells 

since LRAs are generally discovered based on activity in human cells. 

Additionally, humanized mice are less costly and more high-throughput than 

NHPs.  
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However, humanized mice also have some disadvantages. For one, they 

are immune-compromised so it is difficult to study the role of the immune system 

in viral clearance and eradication. NHPs offer the advantage of a fully competent 

immune system. Also, studies of latency in humanized mice are limited by human 

graft duration and composition. Most studies of candidate LRAs in humans 

involve patients who are suppressed on ART for >6 months to avoid effects from 

labile forms of unintegrated HIV. This is not possible in humanized mice unless 

an alternative approach is adopted. To further the model for latency testing, it will 

be important to characterize the forms of integrated and unintegrated forms of 

HIV in humanized mice and compare them to ART-suppressed patients. The 

limited graft duration also limits the duration of reactivation treatment that can be 

tested, making it impossible to optimize dosing schedules. 

Nevertheless, I established an in vivo system to test LRAs in conjunction 

with both ART and antibodies. I was also able to test Fc-mediated effects by 

manipulating the Fc region of the antibody. However, my studies come with the 

caveat that innate human immune cells expressing Fc receptors, such as 

monocytes and Natural Killer cells, are rare in my model so it is impossible to 

assess the full extent of Fc-FcR interactions. I believe that improved humanized 

mouse systems that partially restore innate immune function will further our 

understanding of Fc-FcR mediated effects on infected cells in vivo(Rongvaux et 

al., 2014).  

However, the duration of the human graft is reported to be much shorter 

than 4 months in these improved humanized mouse systems, so they seem more 
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amenable to studying short-term cell-killing. Alternatively, an adapted model for 

studying LRAs and antibodies could be used in these mice by adoptively 

transferring resting memory CD4+ T cells known to harbor integrated provirus, 

either from patients or other mice. This eliminates the first two months where the 

mouse is infected then suppressed, allowing the experimental regimen to be 

administered and viral rebound to be monitored within the duration of the human 

graft. Additionally, this approach could be adopted in our current humanized 

NRG mouse model to allow time for multiple rounds of LRA administration. In my 

recent studies, multiple rounds were not permitted within the experimental time 

frame.  

3.7 Translation to humans 

Ultimately though, the concepts and most promising treatment regimens 

need to be tested in humans. Traditionally, the pipeline to reach human clinical 

trials involves testing in the NHP model. During the course of this work, passive 

antibody therapy was shown to be effective at sustainably suppressing viral loads 

in NHPs(Barouch et al., 2013; Shingai et al., 2013b).  

While rapid escape to single bNAbs may occur, it remains unclear what 

combinations of bNAbs will be required to suppress viremia in an immune 

competent individual that can mount both B-cell and T-cell responses. The viral 

diversity within patients, as well as the immune responses mounted by patients 

are both likely to be important variables. Evidence from NHPs suggest that a 
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single bNAb is sufficient in some cases, and work in humanized mice suggests 

this is because of endogenously produced V3-loop antibodies that complement 

the passively administered bNAb to prevent escape(Klein et al., 2014).  

Alternatively, we showed that reducing viral loads in humanized mice with 

ART prior to bNAb administration—presumably reducing viral diversity as well—

enabled a single bNAb to sustainably suppress viremia without escape(Horwitz 

et al., 2013). In light of our results in mice, and the extension to NHPs, bNAb 

therapy has progressed to clinical trials (clinicaltrials.gov NCT02018510, 

NCT02165267, and NCT02256631). While these first studies are testing safety, 

pharmacokinetics, and therapeutic efficacy of monocloncal antibodies in humans, 

I expect my data demonstrating the ability of bNAbs to interfere with reservoir 

establishment and maintenance in humanized mice will inspire additional human 

studies examining the impact on the latent reservoir. 

Human studies of LRAs combined with antibodies are also likely to 

advance to clinical trials in light of my work. However, the “shock and kill” 

approach requires many more advances until it carries the same promise that 

bNAb-therapy possesses. For one, LRA combinations and a dosing schedule 

should be optimized. Both of these remain major questions in the field. LRAs 

have predominantly focused on HDAC inhibitors, and it is likely that other 

candidate LRAs will be needed to reverse latency more robustly. 

Regardless of the findings from the initial clinical trials, it is important to 

note that there are many potential improvements for bNAbs. One, half-life can be 

significantly increased with select mutations in the Fc region that impact binding 
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to Fc neonatal receptor (FcRn) and endosomal recycling(Ko et al., 2014). Two, 

bNAbs can be engineered to have different Fc-mediated properties depending on 

the relative affinities for various Fc receptors. And three, bNAbs can be rationally 

designed to enhance breadth and/or potency(Diskin et al., 2011). Ultimately, the 

studies conducted and reported here offer promise for the future of bNAbs in 

treating HIV-1, but many important advances are required to achieve the very 

difficult goal of viral eradication. 
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CHAPTER 4: 

METHODS 

4.1 Humanized Mice 

4.1.1 Mice.  

NOD Rag1-/-Il2rgNULL (NOD.Cg-Rag1tm1Mom Il2rgtm1Wjl/SzJ, NRG) mice were 

purchased from The Jackson Laboratory. All mice were and bred and maintained 

at the Comparative Bioscience Center of The Rockefeller University according to 

guidelines established by the Institutional Animal Committee. All experiments 

were performed with authorization from the Institutional Review Board and the 

IACUC at The Rockefeller University. 

4.1.2 Hematopoietic Stem Cell Purifications.  

Human fetal livers (gestational age 16-22 weeks) were obtained from Advanced 

Bioscience Resources (ABR). Fetal livers were homogenized and incubated in 

Hank’s Balanced Salt Solution (HBSS) media with 0.1% collagenase IV (Sigma-

Aldrich), 40 mM HEPES, 2 mM CaCl2 and 2 U ml-1 DNAase I (Roche) for 30 

minutes at 37° C. Human CD34+ HSCs were isolated from digested liver using 

CD34+ HSC isolation kit (Stem Cell Technologies) according to manufacturere’s 

protocol. Neonatal NRG mice (1-5 days old) were sublethally irradiated with 100-

400 cGy and injected intrahepatically with 2✕105 human CD34+ HSCs 6 hours 

after irradiation. 
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4.1.3 Humanized Mouse screening.  

Eight or more weeks after HSC injection, mice were screened for the presence of 

human lymphocytes in peripheral blood by flow cytometry. 200 µl whole blood 

was collected by facial vein bleed and peripheral blood mononuclear cells 

(PBMCs) were isolated by density gradient centrifugation using Ficoll-Paque Plus 

(GE Healthcare Life Sciences). PBMCs were stained with antibodies to mouse 

CD45-PECy7, human CD45-Pacific Orange, human CD3-Pacific Blue, human 

CD19-APC, human CD4-PE, human CD8-FITC, and human CD16-Alexa700 for 

25 min at 4°C. Cells were washed and fixed using Cytofix/Cytoperm (BD 

Biosciences). Flow cytometry analysis was performed with a LSRFortessa (BD) 

and FlowJo software (Tree Star). For each mouse, the percentage of human 

lymphocytes [(100 x human CD45+) / (human CD45+ + mouse CD45+)], termed 

huCD45+ %, and the percentage of human CD4+ T cells (100 x human 

CD45+CD3+CD4+ / human CD45+), termed huCD4+ %, was calculated. Mice with 

at least 10% huCD45+ and 10% huCD4+ were selected for post-exposure 

prophylaxis experiments, and infected with two doses of HIV-1YU2 (150 ng p24) 

by i.p. injections, 24 hours apart. Pre-treatment viremia was measured at 72-96 

hours following the first HIV-1YU2 injection, and treatment was initiated 4 days 

following the first injection. For experiments assessing the effects of bNAbs and 

inducers on established infections, mice with measurable human CD4+ cells by 

FACS were injected with two doses of HIV-1YU2 (150 ng p24), and pre-treatment 

viremia was measured 14-18 days after the first injection. Mice with plasma viral 

loads >3000 RNA copies/ml were selected to receive antibody therapy. After five 
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subcutaneous antibody injections (see below), post-treatment viremias were 

measured. Only mice with completely suppressed plasma viremias were selected 

for further analysis and to receive viral inducers.  

4.2 HIV-1YU2 virus production 

HIV-1YU2 used for mouse infections was produced in 293T cells. 25 µg plasmid 

was mixed into 1.3 ml Opti-MEM (Life Technologies) and 75 µl Xtreme Gene 9 

(Roche) was added to form DNA mixture. DNA mixture was then added dropwise 

to 293T cells in reduced serum media (RPMI plus 3% Fetal calf serum). Media 

was replaced 6 hours later with reduced serum media. Viral supernatant was 

harvested at 24 hours and 48 hours after transfection. Supernatant was passed 

through 0.22 µm filter and viral concentration was measured by p24 AlphaLISA 

(PerkinElmer) according to manufacturer’s instructions. 

4.3 Generation of HIV-1YU2 envelope mutants 

Single, double and triple mutations were introduced into wild-type HIV-1YU2 

envelope by site-directed mutagenesis using the QuikChange site-directed 

mutagenesis kit (Agilent Technologies) according to the manufacturer’s 

specifications. 
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4.4 Plasma viral load measurements 

300-500 µl of whole blood was collected from mice at each time point by facial 

vein bleed. Whole blood was spun at 300g for 10 minutes to separate plasma 

from the cellular fraction. Total RNA was extracted from 100 µl plasma using 

QIAmp MinElute Virus Spin Kit (Qiagen) in combination with RNase-free DNase 

(Qiagen), eluted in a 50 µl volume. HIV-1 RNA was quantified by qRT-PCR. The 

reaction mixture was prepared using TaqMan RNA-to-Ct 1-Step kit (Applied 

Biosystems), with 20 µl of eluted RNA, and a sequence specific probe targeting a 

conserved region of the HIV-1 pol gene (/HEX/5’-

CCCACCAACARGCRGCCTTAACTG-3’/ZenDQ, HXB2 nt 4603 to 4626) 

(Integrated DNA Technologies). Forward and reverse primer sequences were 5’-

TAATGGCAGCAATTTCACCA-3’ (HXB2 nt 4577-4596) and 5’-

GAATGCCAAATTCCTGCTTGA-3’ (HXB2 nt 4633 to 4653), respectively. 

Reaction mixtures included 450 nM forward and reverse primers and 125 nM 

probe. Cycle threshold (Ct) values were calibrated using standard samples with 

known amounts of absolute viral RNA copies. The quantitation limit was 

determined to be 800 copies/ml. 

4.5 Cell-associated HIV-1 RNA 

The cellular fraction of whole blood was resuspended in 400 µl PBS and PBMCs 

were isolated by density gradient centrifugation as described above. 
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Lymphocytes were split into two samples, one for cell-associated HIV-1 RNA 

measurements, and one for cell-associated HIV-1 DNA measurements. Cell-

associated RNA was extracted and quantified by the same procedures as 

described above for plasma viral RNA. The lower limit of detection was 

determined to be 10 copies viral RNA per qRT-PCR reaction. Cell-associated 

HIV-1 RNA is reported as the ratio of HIV-1 RNA copies per sample to CCR5 

genomic DNA copies per equivalent sample measured in DNA extract. For 

terminal point measurements, spleen tissue was isolated, homogenized, and 

filtered through 40 µm mesh. Splenocytes were used to isolate HIV-1 RNA as 

described above. 

4.6 Cell-associated HIV-1 DNA 

PBMCs were isolated from whole blood as described above. Splenocytes were 

isolated from spleen as described above. Total DNA was extracted using QIAmp 

DNA Blood Mini Kit (Qiagen) and eluted in 80 µl volume. Purified DNA was 

quantified for HIV-1 DNA by qPCR using the primers and probe for HIV-1 RNA 

quantification mentioned above. Genomic human CCR5 DNA was quantified with 

primers 5’-GTTGGACCAAGCTATGCAGGT-3’ (forward) and 5’- 

AGAAGCGTTTGGCAATGTGC-3’ (reverse), and the sequence-specific probe 

/HEX/5’-TTGGGATGACGCACTGCTGCATCAACCCCA-3’/ZenDQ. All qPCR 

reactions contained 25 µl AmpliTaq Gold PCR master mix (Applied Biosystems), 

in 50 µl reaction volume. Reaction mixtures were 150 nM forward and reverse 
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primers with 41.5 nM CCR5 probe. HIV-1 DNA is reported as copies per sample 

to CCR5 genomic copies per equivalent sample. 

4.7 Gp120 Sequencing 

4.7.1 Gp120 cloning 

All PCR amplifications were performed in ThermoGrid 96-well plates (Denville 

Scientific). cDNA was synthesized from viral RNA using SuperScript III reverse 

transcriptase (Invitrogen Life Technologies). cDNA was amplified with either 

Expand High Fidelity PCR System (Roche) or Clontech Advantage 2 PCR 

System (BD). Primers for the first round of PCR were 5’-

GGCTTAGGCATCTCCTATGGCAGGAAGAA-3’ and 5’-

GGTGTGTAGTTCTGCCAATCAGGGAAGWAGCCTTGTG-3’. Primers for the 

second round of PCR were 5’-TAGAAAGAGCAGAAGACAGTGGCAATGA-3’ 

and 5’-TCATCAATGGTGGTGATGATGATGTTTTTCTCTCTGCACCACTCTTCT-

3’.  

Cycling parameters for first round PCR were 94° C for 2 min followed by 

40 cycles of 94° C for 30 s, annealing temperature of 55–65° C for 45 s, 68° C for 

4 min, and a final extension at 68° C for 10 min, where the annealing 

temperature was 65° C for the first 3 cycles, 60° C for the next 11 cycles, and 55° 

C for the final 26 cycles. 3 ml of product from the first round was used as the 

template for the second round of PCR. Cycling conditions for the second round 

PCR were 94° C for 2 min followed by 40 cycles of 94° C for 30 s, annealing 
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temperature of 53–55° C for 45 s, 68° C for 2 min and 30 s, and a final extension 

at 68° C for 10 min, where annealing temperature was 53° C for the first 9 cycles 

and 55° C for the next 31 cycles. After the second-round PCR amplification, 0.5 

µl Taq polymerase was added to each 50 µl reaction and an additional 72° C 

extension for 15 min was performed to add 3’ A overhangs for use in cloning. 

Gel-purified PCR amplicons were ligated into pCR4-TOPO (Invitrogen) and 

transformed into One Shot TOP10 cells. Individual colonies were sequenced 

using M13F and M13R primers.  

4.7.2 Sequence alignments and mutation analysis 

Forward and reverse sequence reads from individual samples were assembled 

using Geneious Pro software version 5.5.6 (Biomatters Ltd) and aligned to gp120

YU2 (accession number M93258). Env sequences containing frameshift mutations 

or large deletions were excluded from further analysis. All sequences were 

analyzed for mutations relative to gp120 YU2
 using the Los Alamos Highlighter 

tool (http://www.hiv.lanl.gov/con- 

tent/sequence/HIGHLIGHT/HIGHLIGHT_XYPLOT/highlighter.html), and 

mutations were numbered using HXBc2 numbering as determined by the Los 

Alamos Sequence Locator tool (http://www.hiv.lanl.gov/content/sequence/ 

LOCATE/locate.html) 
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4.8 Terminal Graft 

The presence of human lymphocytes at the terminal point was quantified from 

the spleen and PBMCs by flow cytometry. Isolation of PBMCs and splenocytes 

were as described above. Staining procedures were the same as described for 

humanized mice screening. 

4.9 Measuring Antibody Levels 

Plasma levels of passively administered antibodies were quantified by two 

independent methods. The first method was gp120 specific ELISA. Costar 96-

Well EIA/RIA Stripwell plates were coated overnight with gp120YU2 protein at 50 

µg/ml, in 50 µl volume per well. Plates were washed 3✕ with distilled water plus 

0.05% Tween and blocked for 2 h with PBS containing 0.1% Tween-20, 2% 

Bovine Serum Albumin and 1 mM EDTA. After washing the plate, mouse plasma 

was applied in 1:3 serial dilutions with a 1:20 starting dilution. 3BNC117 and 10-

1074 of known concentration were used as standard antibodies for each plate to 

quantify gp120-specific IgGs. Starting concentration of 3BNC117 and 10-1074 

standards were 12 µg/ml, and diluted in 1:3 serial dilutions identical to the serum 

samples. The plate was then incubated for 1 h at 37° C, followed by washing the 

plate and 1 h incubation with peroxidase-conjugated goat anti-human IgG 

(Jackson ImmunoResearch), 1:1000 dilution, 50 µl per well. Plates were washed 

and developed using ABTS single solution (Invitrogen). Optical density was 
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measured at 405 nm and IgG concentration determined by correlation to the 

standard curve of the reference antibodies. The detection limit was 0.05 µg/ml. 

Because PG16 does not bind gp120, and endogenously produced gp120-

reactive antibodies could confound the ELISA measurement, plasma antibody 

levels were also quantified by TZM-bl neutralization using the Tier 2 envelopes 

3301.v1.c24 and YU2. Because we have never observed Tier 2 neutralizing 

activity endogenously produced from a humanized mouse, this measurement is 

more stringent for detecting the passively administered antibodies. Mouse 

plasma samples were serially diluted 1:5 down to a final dilution of 1:~4✕106, 

starting at 1:50 dilution. Each dilution was tested on TZM.bl assay for 

neutralization of the pseudoviruses mentioned above to give an IC50 neutralizing 

titer. A mixture with known amounts of 3BNC117, 10-1074, and PG16 was used 

as standard. The IC50 neutralizing titer of the serum samples was compared to 

the IC50 concentrations of the antibody standard mix to determine antibody 

concentrations from the serum samples. 

4.10 Day of viral rebound and antibody level at rebound 

Plasma viremias immediately preceding and following viral rebound were plotted 

on a semi-log-y-axis versus days post initial antibody injection (x-axis) for each 

individual mouse. The linear portion of viremia was fit to a line by least-squares 

linear regression. The day that viremia crossed the 800 copies/ml quantitation 

limit, termed rebound day, was calculated from the viremia fit. The antibody 
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concentrations (as determined by TZM-bl neutralization) spanning before and 

after viral rebound were plotted on a semi-log-y-axis versus days post initial 

antibody injection. The linear portion of antibody concentrations was fit to a line 

by least-squares linear regression, and the antibody concentration on the 

rebound day was calculated from the fit. 

4.11 Anti-retroviral therapy 

Individual tablets of tenofovir disproxil-fumarate (TDF; Gilead Sciences), 

emtricitabine (FTC; Gilead Sciences), and raltegravir (RAL; Merck) were crushed 

into fine powder and manufactured with TestDiet 5B1Q feed (Modified LabDiet 

5058 with 0.12% amoxicillin) into ½” irradiated pellets. Final concentrations of 

ART drugs in the food were 720 mg/kg TFV, 520 mg/kg FTC, and 4800 mg/kg 

RAL. Doses were chosen based on suppression of viremia in humanized mice as 

previously published(Denton et al., 2012; Nischang et al., 2012), and by 

pharmacokinetic analysis of these drugs in humanized mice (unpublished, Speck 

Laboratory). To test potential toxicity, or reduced preference for drug-

supplemented food, mice were weighed daily on normal diet, then switched to 

ART feed and weighed daily. There were no visible signs of toxicity and mice 

maintained their weights. On average, each mouse consumed 4.7 g of food per 

day, consistent with reports for typical mouse consumption. 
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4.12 Antibody therapy 

Plasmids encoding 10-1074 or PG16 heavy- and light- chain Ig genes were 

transfected into HEK 293E cells. Antibodies were isolated from tissue-culture 

supernatant using Protein G Sepharose 4 Fast-Flow (GE Healthcare). Antibodies 

were then buffer-exchanged into PBS and sterile-filtered using Ultrafree-CL 

centrifugal filters (0.22µm; Millipore). Endotoxin was removed from antibody 

preparations using Triton X-114 (Sigma-Aldrich). Antibody suspensions were 

mixed with 10% Triton-X114 in a 15 ml falcon tube, vortexed, placed on ice for 15 

min, vortexed again, placed in 42° C water bath for 15 min, then centrifuged at 

3000 rpm for 5 minutes without brake. The top phase containing the endotoxin-

removed antibody was kept and concentrated to 10 mg/ml. Sterile, endotoxin-

free 3BNC117 (20 mg/ml) was obtained from CellDex Therapeutics. All 

antibodies were injected subcutaneously as described. 

4.13 Inducers 

Vorinostat (Selleckchem) was suspended in sterile water or sterile water plus 

0.5% methylcellulose, 0.1% Tween (v/v) and administered by oral gavage at 

doses of 60 mg/kg. For each mouse, three total doses were administered, 

spaced 48 hours apart. 100 µg doses of αCTLA4 were injected intraperitoneally 

(i.p.). Three total doses were administered, spaced 48 hours apart. I-BET151 
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was obtained from GlaxoSmithKline and dissolved in 10% beta-cyclodextrin, 5% 

DMSO in 0.9% saline and injected daily for 14 days at doses of 30 mg/kg. 

4.14 Viral outgrowth assay 

Mice were sacrificed and spleen and lymph nodes were homogenized into single 

cell suspension through 40 µm filter. To isolate resting human CD4+ T cells for 

culture, a three-step process was used. First, mouse cells were depleted using 

the Mouse Cell Depletion Kit (Miltenyi) according to manufacturer’s instructions. 

Second, human CD4+ T cells were enriched by negative selection using human 

CD4+ T cell isolation kit (Miltenyi). Third, activated CD4+ T cells were depleted 

using CD69, HLA-DR, and CD25 microbeads, leaving untouched, human resting 

CD4+ T cells of >90% purity. In total, 1.6×107 cells were isolated from 16 mice. 

Based on treatment, suppression status, and fetal liver donor used for human 

reconstitution, the samples were combined into 10 independent groups for 

culturing. The isolated resting CD4+ T cells were plated with MOLT4/CCR5 target 

cells as previously described(Laird et al., 2013) and kept in culture for 28 days. 

P24 from culture supernatant was measured by ELISA at days 14, 21, and 28. 

4.15 p24 stain and viral cell quantification 

To determine the number of productively infected cells, mice were sacrificed and 

the spleen was homogenized into a single cell suspension. Human CD45+ cells 
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were positively selected by staining with human CD45-PE (20 µl per spleen), 

then incubating with anti-PE microbeads, and binding to a magnetic column. 

Immediately following collection of cells from the magnetic column, cells were 

counted using AccuCheck Counting Beads (Invitrogen). Cells were stained with 

anti-human CD45-PE, anti-mouse CD45-A780, anti-human CD3-Pacific Blue, 

anti-human CD4-APC, anti-human CD8-A700, anti-human CD69-PE/Cy7, anti-

human HLA-DR-BV605, followed by fixation/permeabilization, and stain with anti-

p24-FITC (1:100). Flow cytometry analysis was performed with a LSRFortessa 

(BD) and FlowJo software (Tree Star). 



 91 

CHAPTER 5: 

REFERENCES 

Archin, N.M., Bateson, R., Tripathy, M.K., Crooks, A.M., Yang, K.H., Dahl, N.P., 
Kearney, M.F., Anderson, E.M., Coffin, J.M., Strain, M.C., et al. (2014). HIV-1 
Expression within Resting CD4 T-Cells Following Multiple Doses of Vorinostat. J. 
Infect. Dis. 210, 728–735. 

Archin, N.M., Liberty, A.L., Kashuba, A.D., Choudhary, S.K., Kuruc, J.D., Crooks, 
A.M., Parker, D.C., Anderson, E.M., Kearney, M.F., Strain, M.C., et al. (2012). 
Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral 
therapy. Nature 487, 482–485. 

Archin, N.M., Keedy, K.S., Espeseth, A., Dang, H., Hazuda, D.J., and Margolis, 
D.M. (2009). Expression of latent human immunodeficiency type 1 is induced by 
novel and selective histone deacetylase inhibitors. Aids 23, 1799–1806. 

Baenziger, S., Tussiwand, R., Schlaepfer, E., Mazzucchelli, L., Heikenwalder, M., 
Kurrer, M.O., Behnke, S., Frey, J., Oxenius, A., Joller, H., et al. (2006). 
Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted 
Rag2-/-gamma c-/- mice. Proc. Natl. Acad. Sci. U.S.a. 103, 15951–15956. 

Barouch, D.H., Whitney, J.B., Moldt, B., Klein, F., Oliveira, T.Y., Liu, J., 
Stephenson, K.E., Chang, H.-W., Shekhar, K., Gupta, S., et al. (2013). 
Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies 
in SHIV-infected rhesus monkeys. Nature 503, 224–228. 

Blankson, J.N., Finzi, D., Pierson, T.C., Sabundayo, B.P., Chadwick, K., 
Margolick, J.B., Quinn, T.C., and Siliciano, R.F. (2000). Biphasic decay of latently 
infected CD4+ T cells in acute human immunodeficiency virus type 1 infection. J. 
Infect. Dis. 182, 1636–1642. 

Boehm, D., Calvanese, V., Dar, R.D., Xing, S., Schroeder, S., Martins, L., Aull, 
K., Li, P.-C., Planelles, V., Bradner, J.E., et al. (2013). BET bromodomain-
targeting compounds reactivate HIV from latency via a Tat-independent 
mechanism. Cc 12, 452–462. 

Boucher, C.A., Tersmette, M., Lange, J.M., Kellam, P., de Goede, R.E., Mulder, 
J.W., Darby, G., Goudsmit, J., and Larder, B.A. (1990). Zidovudine sensitivity of 
human immunodeficiency viruses from high-risk, symptom-free individuals during 
therapy. Lancet 336, 585–590. 

Brehm, M.A., Cuthbert, A., Yang, C., Miller, D.M., DiIorio, P., Laning, J., 



 92 

Burzenski, L., Gott, B., Foreman, O., Kavirayani, A., et al. (2010). Parameters for 
establishing humanized mouse models to study human immunity: analysis of 
human hematopoietic stem cell engraftment in three immunodeficient strains of 
mice bearing the IL2rgamma(null) mutation. Clin. Immunol. 135, 84–98. 

Brenchley, J.M., Hill, B.J., Ambrozak, D.R., Price, D.A., Guenaga, F.J., Casazza, 
J.P., Kuruppu, J., Yazdani, J., Migueles, S.A., Connors, M., et al. (2004). T-Cell 
Subsets That Harbor Human Immunodeficiency Virus (HIV) In Vivo: Implications 
for HIV Pathogenesis. Journal of Virology 78, 1160–1168. 

C, F., Ferguson, N.M., Ghani, A.C., MM, P.J., Lange, J.M., Goudsmit, J., 
Anderson, R.M., and de Wolf, F. (2000). Reduction of the HIV-1-infected T-cell 
reservoir by immune activation treatment is dose-dependent and restricted by the 
potency of antiretroviral drugs. Aids 14, 659–669. 

Chomont, N., El-Far, M., Ancuta, P., Trautmann, L., Procopio, F.A., Yassine-
Diab, B., Boucher, G., Boulassel, M.-R., Ghattas, G., Brenchley, J.M., et al. 
(2009). HIV reservoir size and persistence are driven by T cell survival and 
homeostatic proliferation. Nature Publishing Group 1–9. 

Chun, T.W., Carruth, L., Finzi, D., Shen, X., DiGiuseppe, J.A., Taylor, H., 
Hermankova, M., Chadwick, K., Margolick, J., Quinn, T.C., et al. (1997a). 
Quantification of latent tissue reservoirs and total body viral load in HIV-1 
infection. Nature 387, 183–188. 

Chun, T.W., Murray, D., Justement, J.S., Blazkova, J., Hallahan, C.W., 
Fankuchen, O., Gittens, K., Benko, E., Kovacs, C., Moir, S., et al. (2014). Broadly 
neutralizing antibodies suppress HIV in the persistent viral reservoir. Proceedings 
of the National Academy of Sciences 111, 13151–13156. 

Chun, T.-W., Stuyver, L., Mizell, S.B., Ehler, L.A., Mican, J.A.M., Baseler, M., 
Lloyd, A.L., Nowak, M.A., and Fauci, A.S. (1997b). Presence of an inducible HIV-
1 latent reservoir during highly active antiretroviral therapy. Proc. Natl. Acad. Sci. 
U.S.a. 94, 13193–13197. 

Cillo, A.R., Sobolewski, M.D., Bosch, R.J., Fyne, E., Piatak, M., Coffin, J.M., and 
Mellors, J.W. (2014). Quantification of HIV-1 latency reversal in resting CD4+ T 
cells from patients on suppressive antiretroviral therapy. Proceedings of the 
National Academy of Sciences 111, 7078–7083. 

Cohen, M.S., Chen, Y.Q., McCauley, M., Gamble, T., Hosseinipour, M.C., 
Kumarasamy, N., Hakim, J.G., Kumwenda, J., Grinsztejn, B., Pilotto, J.H.S., et 
al. (2011). Prevention of HIV-1 Infection with Early Antiretroviral Therapy. N Engl 
J Med 365, 493–505. 

Contreras, X., Schweneker, M., Chen, C.-S., McCune, J.M., Deeks, S.G., Martin, 
J., and Peterlin, B.M. (2009). Suberoylanilide hydroxamic acid reactivates HIV 
from latently infected cells. J. Biol. Chem. 284, 6782–6789. 



 93 

Davey, R.T., Bhat, N., Yoder, C., Chun, T.W., Metcalf, J.A., Dewar, R., 
Natarajan, V., Lempicki, R.A., Adelsberger, J.W., Miller, K.D., et al. (1999). HIV-1 
and T cell dynamics after interruption of highly active antiretroviral therapy 
(HAART) in patients with a history of sustained viral suppression. Proc. Natl. 
Acad. Sci. U.S.a. 96, 15109–15114. 

Day, C.L., Kaufmann, D.E., Kiepiela, P., Brown, J.A., Moodley, E.S., Reddy, S., 
Mackey, E.W., Miller, J.D., Leslie, A.J., DePierres, C., et al. (2006). PD-1 
expression on HIV-specific T cells is associated with T-cell exhaustion and 
disease progression. Nature 443, 350–354. 

Deeks, S.G. (2012). HIV: Shock and kill. Nature 487, 439–440. 

Deng, K., Pertea, M., Rongvaux, A., Wang, L., Durand, C.M., Ghiaur, G., Lai, J., 
McHugh, H.L., Hao, H., Zhang, H., et al. (2015). Broad CTL response is required 
to clear latent HIV-1 due to dominance of escape mutations. Nature 1–16. 

Denton, P.W., Olesen, R., Choudhary, S.K., Archin, N.M., Wahl, A., Swanson, 
M.D., Chateau, M., Nochi, T., Krisko, J.F., Spagnuolo, R.A., et al. (2012). 
Generation of HIV latency in humanized BLT mice. Journal of Virology 86, 630–
634. 

Dinoso, J.B., Kim, S.Y., Wiegand, A.M., Palmer, S.E., Gange, S.J., Cranmer, L., 
O'Shea, A., Callender, M., Spivak, A., Brennan, T., et al. (2009). Treatment 
intensification does not reduce residual HIV-1 viremia in patients on highly active 
antiretroviral therapy. Proceedings of the National Academy of Sciences 106, 
9403–9408. 

Diskin, R., Scheid, J.F., Marcovecchio, P.M., West, A.P., Klein, F., Gao, H., 
Gnanapragasam, P.N.P., Abadir, A., Seaman, M.S., Nussenzweig, M.C., et al. 
(2011). Increasing the potency and breadth of an HIV antibody by using 
structure-based rational design. Science 334, 1289–1293. 

Dybul, M., Hidalgo, B., Chun, T.-W., Belson, M., Migueles, S.A., Justement, J.S., 
Herpin, B., Perry, C., Hallahan, C.W., Davey, R.T., et al. (2002). Pilot study of the 
effects of intermittent interleukin-2 on human immunodeficiency virus (HIV)-
specific immune responses in patients treated during recently acquired HIV 
infection. J. Infect. Dis. 185, 61–68. 

Eisele, E., and Siliciano, R.F. (2012). Redefining the Viral Reservoirs that 
Prevent HIV-1 Eradication. Immunity 37, 377–388. 

Elliott, J.H., Wightman, F., Solomon, A., Ghneim, K., Ahlers, J., Cameron, M.J., 
Smith, M.Z., Spelman, T., McMahon, J., Velayudham, P., et al. (2014). Activation 
of HIV Transcription with Short-Course Vorinostat in HIV-Infected Patients on 
Suppressive Antiretroviral Therapy. PLoS Pathog 10, e1004473. 

Fauci, A.S., and Lane, H.C. (2012). Chapter 189. Human Immunodeficiency 



 94 

Virus Disease: AIDS and Related Disorders. In Harrison's Principles of Internal 
Medicine, 18e, D.L. Longo, A.S. Fauci, D.L. Kasper, S.L. Hauser, J.L. Jameson, 
and J. Loscalzo, eds. (New York, NY: The McGraw-Hill Companies). 

Finzi, D., Hermankova, M., Pierson, T., Carruth, L.M., Buck, C., Chaisson, R.E., 
Quinn, T.C., Chadwick, K., Margolick, J., Brookmeyer, R., et al. (1997). 
Identification of a reservoir for HIV-1 in patients on highly active antiretroviral 
therapy. Science 278, 1295–1300. 

Finzi, D., Blankson, J., Siliciano, J.D., Margolick, J.B., Chadwick, K., Pierson, T., 
Smith, K., Lisziewicz, J., Lori, F., Flexner, C., et al. (1999). Latent infection of 
CD4+ T cells provides a mechanism of lifelong persistence of HIV-1, even in 
patients on effective combination therapy. Nature Medicine 5, 1–6. 

Frost, S.D.W., Wrin, T., Smith, D.M., Kosakovsky Pond, S.L., Liu, Y., Paxinos, E., 
Chappey, C., Galovich, J., Beauchaine, J., Petropoulos, C.J., et al. (2005). 
Neutralizing antibody responses drive the evolution of human immunodeficiency 
virus type 1 envelope during recent HIV infection. Proc. Natl. Acad. Sci. U.S.a. 
102, 18514–18519. 

Fukazawa, Y., Lum, R., Okoye, A.A., Park, H., Matsuda, K., Bae, J.Y., Hagen, 
S.I., Shoemaker, R., Deleage, C., Lucero, C., et al. (2015). B cell follicle 
sanctuary permits persistent productive simian immunodeficiency virus infection 
in elite controllers. Nature Publishing Group 21, 132–139. 

Gandhi, R.T., Zheng, L., Bosch, R.J., Chan, E.S., Margolis, D.M., Read, S., 
Kallungal, B., Palmer, S., Medvik, K., Lederman, M.M., et al. (2010). The effect of 
raltegravir intensification on low-level residual viremia in HIV-infected patients on 
antiretroviral therapy: a randomized controlled trial. PLoS Med. 7. 

Goonetilleke, N., Liu, M.K.P., Salazar-Gonzalez, J.F., Ferrari, G., Giorgi, E., 
Ganusov, V.V., Keele, B.F., Learn, G.H., Turnbull, E.L., Salazar, M.G., et al. 
(2009). The first T cell response to transmitted/founder virus contributes to the 
control of acute viremia in HIV-1 infection. J. Exp. Med. 206, 1253–1272. 

Gray, E.S., Moore, P.L., Choge, I.A., Decker, J.M., Bibollet-Ruche, F., Li, H., 
Leseka, N., Treurnicht, F., Mlisana, K., Shaw, G.M., et al. (2007). Neutralizing 
antibody responses in acute human immunodeficiency virus type 1 subtype C 
infection. Journal of Virology 81, 6187–6196. 

Haase, A.T. (2010). Targeting early infection to prevent HIV-1 mucosal 
transmission. Nature 464, 217–223. 

Hammer, S.M., Squires, K.E., Hughes, M.D., Grimes, J.M., Demeter, L.M., 
Currier, J.S., Eron, J.J., Feinberg, J.E., Balfour, H.H., Deyton, L.R., et al. (1997). 
A controlled trial of two nucleoside analogues plus indinavir in persons with 
human immunodeficiency virus infection and CD4 cell counts of 200 per cubic 
millimeter or less. AIDS Clinical Trials Group 320 Study Team. N Engl J Med 



 95 

337, 725–733. 

Henrich, T.J., Hanhauser, E., Marty, F.M., Sirignano, M.N., Keating, S., Lee, T.-
H., Robles, Y.P., Davis, B.T., Li, J.Z., Heisey, A., et al. (2014). Antiretroviral-Free 
HIV-1 Remission and Viral Rebound After Allogeneic Stem Cell Transplantation. 
Ann Intern Med 161, 319. 

Hessell, A.J., Poignard, P., Hunter, M., Hangartner, L., Tehrani, D.M., Bleeker, 
W.K., Parren, P.W.H.I., Marx, P.A., and Burton, D.R. (2009). Effective, low-titer 
antibody protection against low-dose repeated mucosal SHIV challenge in 
macaques. Nature Publishing Group 1–5. 

Hill, A.L., Rosenbloom, D.I.S., Fu, F., Nowak, M.A., and Siliciano, R.F. (2014). 
Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1. 
Proceedings of the National Academy of Sciences. 

Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M., and 
Markowitz, M. (1995). Rapid turnover of plasma virions and CD4 lymphocytes in 
HIV-1 infection. Nature 373, 123–126. 

Ho, Y.-C., Shan, L., Hosmane, N.N., Wang, J., Laskey, S.B., Rosenbloom, D.I.S., 
Lai, J., Blankson, J.N., Siliciano, J.D., and Siliciano, R.F. (2013). Replication-
competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 
cure. Cell 155, 540–551. 

Horton, H.M., Bernett, M.J., Peipp, M., Pong, E., Karki, S., Chu, S.Y., Richards, 
J.O., Chen, H., Repp, R., Desjarlais, J.R., et al. (2010). Fc-engineered anti-CD40 
antibody enhances multiple effector functions and exhibits potent in vitro and in 
vivo antitumor activity against hematologic malignancies. Blood 116, 3004–3012. 

Horwitz, J.A., Halper-Stromberg, A., Mouquet, H., Gitlin, A.D., Tretiakova, A., 
Eisenreich, T.R., Malbec, M., Gravemann, S., Billerbeck, E., Dorner, M., et al. 
(2013). HIV-1 suppression and durable control by combining single broadly 
neutralizing antibodies and antiretroviral drugs in humanized mice. Proceedings 
of the National Academy of Sciences 110, 16538–16543. 

Hütter, G., Nowak, D., Mossner, M., Ganepola, S., Müssig, A., Allers, K., 
Schneider, T., Hofmann, J., Kücherer, C., Blau, O., et al. (2009). Long-term 
control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 
360, 692–698. 

Igarashi, T., Brown, C., Azadegan, A., Haigwood, N., Dimitrov, D., Martin, M.A., 
and Shibata, R. (1999). Human immunodeficiency virus type 1 neutralizing 
antibodies accelerate clearance of cell-free virions from blood plasma. Nature 
Medicine 5, 211–216. 

Ince, W.L., Zhang, L., Jiang, Q., Arrildt, K., Su, L., and Swanstrom, R. (2010). 
Evolution of the HIV-1 env gene in the Rag2-/- gammaC-/- humanized mouse 



 96 

model. Journal of Virology 84, 2740–2752. 

Jacobson, J.M., Kuritzkes, D.R., Godofsky, E., DeJesus, E., Larson, J.A., 
Weinheimer, S.P., and Lewis, S.T. (2009). Safety, pharmacokinetics, and 
antiretroviral activity of multiple doses of ibalizumab (formerly TNX-355), an anti-
CD4 monoclonal antibody, in human immunodeficiency virus type 1-infected 
adults. Antimicrob. Agents Chemother. 53, 450–457. 

Jacobson, J.M., Lalezari, J.P., Thompson, M.A., Fichtenbaum, C.J., Saag, M.S., 
Zingman, B.S., D'Ambrosio, P., Stambler, N., Rotshteyn, Y., Marozsan, A.J., et 
al. (2010a). Phase 2a study of the CCR5 monoclonal antibody PRO 140 
administered intravenously to HIV-infected adults. Antimicrob. Agents 
Chemother. 54, 4137–4142. 

Jacobson, J.M., Saag, M.S., Thompson, M.A., Fischl, M.A., Liporace, R., 
Reichman, R.C., Redfield, R.R., Fichtenbaum, C.J., Zingman, B.S., Patel, M.C., 
et al. (2008). Antiviral activity of single-dose PRO 140, a CCR5 monoclonal 
antibody, in HIV-infected adults. J. Infect. Dis. 198, 1345–1352. 

Jacobson, J.M., Thompson, M.A., Lalezari, J.P., Saag, M.S., Zingman, B.S., 
D'Ambrosio, P., Stambler, N., Rotshteyn, Y., Marozsan, A.J., Maddon, P.J., et al. 
(2010b). Anti-HIV-1 activity of weekly or biweekly treatment with subcutaneous 
PRO 140, a CCR5 monoclonal antibody. Journal of Infectious Diseases 201, 
1481–1487. 

Jones, R.B., O'Connor, R., Mueller, S., Foley, M., Szeto, G.L., Karel, D., 
Lichterfeld, M., Kovacs, C., Ostrowski, M.A., Trocha, A., et al. (2014). Histone 
Deacetylase Inhibitors Impair the Elimination of HIV-Infected Cells by Cytotoxic 
T-Lymphocytes. PLoS Pathog 10, e1004287. 

Kao, S.Y., Calman, A.F., Luciw, P.A., and Peterlin, B.M. (1987). Anti-termination 
of transcription within the long terminal repeat of HIV-1 by tat gene product. 
Nature 330, 489–493. 

Klein, F., Gaebler, C., Mouquet, H., Sather, D.N., Lehmann, C., Scheid, J.F., 
Kraft, Z., Liu, Y., Pietzsch, J., Hurley, A., et al. (2012). Broad neutralization by a 
combination of antibodies recognizing the CD4 binding site and a new 
conformational epitope on the HIV-1 envelope protein. J. Exp. Med. 209, 1469–
1479. 

Klein, F., Nogueira, L., Nishimura, Y., Phad, G., West, A.P., Halper-Stromberg, 
A., Horwitz, J.A., Gazumyan, A., Liu, C., Eisenreich, T.R., et al. (2014). 
Enhanced HIV-1 immunotherapy by commonly arising antibodies that target virus 
escape variants. J. Exp. Med. 211, 2361–2372. 

Ko, S.-Y., Pegu, A., Rudicell, R.S., Yang, Z.-Y., Joyce, M.G., Chen, X., Wang, K., 
Bao, S., Kraemer, T.D., Rath, T., et al. (2014). Enhanced neonatal Fc receptor 
function improves protection against primate SHIV infection. Nature 514, 642–



 97 

645. 

Kuritzkes, D.R., Jacobson, J., Powderly, W.G., Godofsky, E., DeJesus, E., Haas, 
F., Reimann, K.A., Larson, J.L., Yarbough, P.O., Curt, V., et al. (2004). 
Antiretroviral activity of the anti-CD4 monoclonal antibody TNX-355 in patients 
infected with HIV type 1. J. Infect. Dis. 189, 286–291. 

Laird, G.M., Eisele, E.E., Rabi, S.A., Lai, J., Chioma, S., Blankson, J.N., 
Siliciano, J.D., and Siliciano, R.F. (2013). Rapid Quantification of the Latent 
Reservoir for HIV-1 Using a Viral Outgrowth Assay. PLoS Pathog 9, e1003398. 

Laird, G.M., Rosenbloom, D.I.S., Siliciano, R.F., and Siliciano, J.D. Measuring 
the frequency of latent HIV-1 in resting CD4+ T cells using a limiting dilution co-
culture assay. In HIV Protocols. 

Landovitz, R., and Curry, J. (2009). Postexposure Prophylaxis for HIV Infection. 
N Engl J Med 1–8. 

Lane, H.C., Masur, H., Edgar, L.C., Whalen, G., Rook, A.H., and Fauci, A.S. 
(1983). Abnormalities of B-cell activation and immunoregulation in patients with 
the acquired immunodeficiency syndrome. N Engl J Med 309, 453–458. 

Lehrman, G., Hogue, I.B., Palmer, S., Jennings, C., Spina, C.A., Wiegand, A., 
Landay, A.L., Coombs, R.W., Richman, D.D., Mellors, J.W., et al. (2005). 
Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet 366, 
549–555. 

Li, Q., Duan, L., Estes, J.D., Ma, Z.-M., Rourke, T., Wang, Y., Reilly, C., Carlis, 
J., Miller, C.J., and Haase, A.T. (2005). Peak SIV replication in resting memory 
CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 434, 1148–1152. 

Li, Z., Guo, J., Wu, Y., and Zhou, Q. (2012). The BET bromodomain inhibitor JQ1 
activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation. 
Nucleic Acids Res. 41, 277–287. 

Liao, H.-X., Lynch, R., Zhou, T., Gao, F., MunirAlam, S., Boyd, S.D., Fire, A.Z., 
Roskin, K.M., Schramm, C.A., Zhang, Z., et al. (2013). Co-evolution of a broadly 
neutralizing HIV-1 antibody and founder virus. Nature 496, 469–476. 

Mansky, L.M., and Temin, H.M. (1995). Lower in vivo mutation rate of human 
immunodeficiency virus type 1 than that predicted from the fidelity of purified 
reverse transcriptase. Journal of Virology 69, 5087–5094. 

Markowitz, M., Louie, M., Hurley, A., Sun, E., Di Mascio, M., Perelson, A.S., and 
Ho, D.D. (2003). A Novel Antiviral Intervention Results in More Accurate 
Assessment of Human Immunodeficiency Virus Type 1 Replication Dynamics 
and T-Cell Decay In Vivo. Journal of Virology 77, 5037–5038. 



 98 

Marsden, M.D., Kovochich, M., Suree, N., Shimizu, S., Mehta, R., Cortado, R., 
Bristol, G., An, D.S., and Zack, J.A. (2012). HIV latency in the humanized BLT 
mouse. Journal of Virology 86, 339–347. 

Mascola, J.R., Lewis, M.G., Stiegler, G., Harris, D., VanCott, T.C., Hayes, D., 
Louder, M.K., Brown, C.R., Sapan, C.V., Frankel, S.S., et al. (1999). Protection 
of Macaques against pathogenic simian/human immunodeficiency virus 89.6PD 
by passive transfer of neutralizing antibodies. Journal of Virology 73, 4009–4018. 

McMichael, A.J., Borrow, P., Tomaras, G.D., Goonetilleke, N., and Haynes, B.F. 
(2009). The immune response during acute HIV-1 infection: clues for vaccine 
development. Nat. Rev. Immunol. 10, 11–23. 

MD, D.T.A.R., PhD, M.T., PhD, C.R.B., PhD, R.O., MD, C.E., Solomon, A., 
Winckelmann, A., PhD, S.P., MD, P.C.D., PhD, M.B., et al. (2014). 
ArticlesPanobinostat, a histone deacetylase inhibitor, for latent- virus reactivation 
in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single 
group, clinical trial. The Lancet HIV 1, e13–e21. 

Mellors, J.W., Rinaldo, C.R., Gupta, P., White, R.M., Todd, J.A., and Kingsley, 
L.A. (1996). Prognosis in HIV-1 infection predicted by the quantity of virus in 
plasma. Science 272, 1167–1170. 

Moir, S., Chun, T.-W., and Fauci, A.S. (2011). Pathogenic Mechanisms of HIV 
Disease *. Annu. Rev. Pathol. Mech. Dis. 6, 223–248. 

Moldt, B., Rakasz, E.G., Schultz, N., Chan-Hui, P.Y., Swiderek, K., Weisgrau, 
K.L., Piaskowski, S.M., Bergman, Z., Watkins, D.I., Poignard, P., et al. (2012). 
Highly potent HIV-specific antibody neutralization in vitro translates into effective 
protection against mucosal SHIV challenge in vivo. Proceedings of the National 
Academy of Sciences 109, 18921–18925. 

Mouquet, H., Scharf, L., Euler, Z., Liu, Y., Eden, C., Scheid, J.F., Halper-
Stromberg, A., Gnanapragasam, P.N.P., Spencer, D.I.R., Seaman, M.S., et al. 
(2012). Complex-type N-glycan recognition by potent broadly neutralizing HIV 
antibodies. Proceedings of the National Academy of Sciences. 

Nishimura, Y., Igarashi, T., Haigwood, N.L., Sadjadpour, R., Donau, O.K., 
Buckler, C., Plishka, R.J., Buckler-White, A., and Martin, M.A. (2003). Transfer of 
neutralizing IgG to macaques 6 h but not 24 h after SHIV infection confers 
sterilizing protection: implications for HIV-1 vaccine development. Proc. Natl. 
Acad. Sci. U.S.a. 100, 15131–15136. 

Otten, R.A., Smith, D.K., Adams, D.R., Pullium, J.K., Jackson, E., Kim, C.N., 
Jaffe, H., Janssen, R., Butera, S., and Folks, T.M. (2000). Efficacy of 
postexposure prophylaxis after intravaginal exposure of pig-tailed macaques to a 
human-derived retrovirus (human immunodeficiency virus type 2). Journal of 
Virology 74, 9771–9775. 



 99 

Pantaleo, G., Graziosi, C., and Fauci, A.S. (1993). New concepts in the 
immunopathogenesis of human immunodeficiency virus infection. N Engl J Med 
328, 327–335. 

Perelson, A.S., Essunger, P., Cao, Y., Vesanen, M., Hurley, A., Saksela, K., 
Markowitz, M., and Ho, D.D. (1997). Decay characteristics of HIV-1-infected 
compartments during combination therapy. Nature 387, 188–191. 

Pierson, T.C., Zhou, Y., Kieffer, T.L., Ruff, C.T., Buck, C., and Siliciano, R.F. 
(2002). Molecular characterization of preintegration latency in human 
immunodeficiency virus type 1 infection. Journal of Virology 76, 8518–8531. 

Pietzsch, J., Gruell, H., Bournazos, S., Donovan, B.M., Klein, F., Diskin, R., 
Seaman, M.S., Bjorkman, P.J., Ravetch, J.V., Ploss, A., et al. (2012). A mouse 
model for HIV-1 entry. Proceedings of the National Academy of Sciences 109, 
15859–15864. 

Poignard, P., Sabbe, R., Picchio, G.R., Wang, M., Gulizia, R.J., Katinger, H., 
Parren, P.W., Mosier, D.E., and Burton, D.R. (1999). Neutralizing antibodies 
have limited effects on the control of established HIV-1 infection in vivo. Immunity 
10, 431–438. 

Ramratnam, B., Mittler, J.E., Zhang, L., Boden, D., Hurley, A., Fang, F., Macken, 
C.A., Perelson, A.S., Markowitz, M., and Ho, D.D. (2000). The decay of the latent 
reservoir of replication-competent HIV-1 is inversely correlated with the extent of 
residual viral replication during prolonged anti-retroviral therapy. Nature Medicine 
6, 82–85. 

Ramratnam, B., Ribeiro, R., He, T., Chung, C., Simon, V., Vanderhoeven, J., 
Hurley, A., Zhang, L., Perelson, A.S., Ho, D.D., et al. (2004). Intensification of 
antiretroviral therapy accelerates the decay of the HIV-1 latent reservoir and 
decreases, but does not eliminate, ongoing virus replication. J. Acquir. Immune 
Defic. Syndr. 35, 33–37. 

Razooky, B.S., Pai, A., Aull, K., Rouzine, I.M., and Weinberger, L.S. (2015). A 
Hardwired HIV Latency Program. Cell 160, 990–1001. 

Richman, D.D., Wrin, T., Little, S.J., and Petropoulos, C.J. (2003). Rapid 
evolution of the neutralizing antibody response to HIV type 1 infection. 
Proceedings of the National Academy of Sciences 100, 4144–4149. 

Rongvaux, A., Willinger, T., Martinek, J., Strowig, T., Gearty, S.V., Teichmann, 
L.L., Saito, Y., Marches, F., Halene, S., Palucka, A.K., et al. (2014). Development 
and function of human innate immune cells in a humanized mouse model. Nat 
Biotechnol. 

Ruelas, D.S., and Greene, W.C. (2013). An integrated overview of HIV-1 latency. 
Cell 155, 519–529. 



 100 

Sagot-Lerolle, N., Lamine, A., Chaix, M.-L., Boufassa, F., Aboulker, J.-P., 
Costagliola, D., Goujard, C., Pallier, C., Paller, C., Delfraissy, J.-F., et al. (2008). 
Prolonged valproic acid treatment does not reduce the size of latent HIV 
reservoir. Aids 22, 1125–1129. 

Saravolatz, L.D., Winslow, D.L., Collins, G., Hodges, J.S., Pettinelli, C., Stein, 
D.S., Markowitz, N., Reves, R., Loveless, M.O., Crane, L., et al. (1996). 
Zidovudine alone or in combination with didanosine or zalcitabine in HIV-infected 
patients with the acquired immunodeficiency syndrome or fewer than 200 CD4 
cells per cubic millimeter. Investigators for the Terry Beirn Community Programs 
for Clinical Research on AIDS. N Engl J Med 335, 1099–1106. 

Scheid, J.F., Mouquet, H., Ueberheide, B., Diskin, R., Klein, F., Oliveira, T.Y.K., 
Pietzsch, J., Fenyo, D., Abadir, A., Velinzon, K., et al. (2011). Sequence and 
structural convergence of broad and potent HIV antibodies that mimic CD4 
binding. Science 333, 1633–1637. 

Shan, L., Deng, K., Shroff, N.S., Durand, C.M., Rabi, S.A., Yang, H.-C., Zhang, 
H., Margolick, J.B., Blankson, J.N., and Siliciano, R.F. (2012). Stimulation of HIV-
1-Specific Cytolytic T Lymphocytes Facilitates Elimination of Latent Viral 
Reservoir after Virus Reactivation. Immunity 36, 491–501. 

Sharkey, M., Triques, K., Kuritzkes, D.R., and Stevenson, M. (2005). In vivo 
evidence for instability of episomal human immunodeficiency virus type 1 cDNA. 
Journal of Virology 79, 5203–5210. 

Shingai, M., Donau, O.K., Plishka, R.J., Buckler-White, A., Mascola, J.R., Nabel, 
G.J., Nason, M.C., Montefiori, D., Moldt, B., Poignard, P., et al. (2013a). Passive 
transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal 
antibodies block SHIV infection in macaques. J. Exp. Med. 210, 1235–1249. 

Shingai, M., Nishimura, Y., Klein, F., Mouquet, H., Donau, O.K., Plishka, R., 
Buckler-White, A., Seaman, M., Piatak, M., Lifson, J.D., et al. (2013b). Antibody-
mediated immunotherapy of macaques chronically infected with SHIV 
suppresses viraemia. Nature 503, 277–280. 

Shirakawa, K., Chavez, L., Hakre, S., Calvanese, V., and Verdin, E. (2013). 
Reactivation of latent HIV by histone deacetylase inhibitors. Trends in 
Microbiology 21, 277–285. 

Sigal, A., and Baltimore, D. (2012). As Good As It Gets? The Problem of HIV 
Persistence despite Antiretroviral Drugs. Cell Host and Microbe 12, 132–138. 

Sigal, A., Kim, J.T., Balazs, A.B., Dekel, E., Mayo, A., Milo, R., and Baltimore, D. 
(2011). Cell-to-cell spread of HIV permits ongoing replication despite 
antiretroviral therapy. Nature 477, 95–98. 

Siliciano, J.D., Kajdas, J., Finzi, D., Quinn, T.C., Chadwick, K., Margolick, J.B., 



 101 

Kovacs, C., Gange, S.J., and Siliciano, R.F. (2003). Long-term follow-up studies 
confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. 
Nature Medicine 9, 727–728. 

Siliciano, J.D., Lai, J., Callender, M., Pitt, E., Zhang, H., Margolick, J.B., Gallant, 
J.E., Cofrancesco, J., Jr, Moore, R.D., Gange, S.J., et al. (2007). Stability of the 
latent reservoir for HIV-1 in patients receiving valproic acid. J. Infect. Dis. 195, 
833–836. 

Siliciano, R.F., and Greene, W.C. (2011). HIV Latency. Cold Spring Harbor 
Perspectives in Medicine 1, a007096–a007096. 

Sloan, D., Irrinki, A., Kaur, J., Murry, J., Cihlar, T., Lalezari, J. “TLR7 Agonist GS-
9620 Activates HIV-1 in PBMCs From HIV-Infected Patients on cART”. 2015 
CROI. 
 
Spivak, A.M., Andrade, A., Eisele, E., Hoh, R., Bacchetti, P., Bumpus, N.N., 
Emad, F., Buckheit, R., McCance-Katz, E.F., Lai, J., et al. (2014). A Pilot Study 
Assessing the Safety and Latency-Reversing Activity of Disulfiram in HIV-1-
Infected Adults on Antiretroviral Therapy. Clinical Infectious Diseases 58, 883–
890. 

Stellbrink, H.-J., Lunzen, J.V., Westby, M., O'Sullivan, E., Schneider, C., Adam, 
A., Weitner, L., Kuhlmann, B., Hoffman, C., Fenske, S., et al. (2002). Effects of 
interleukin-2 plus highly active antiretroviral therapy on HIV-1 replication and 
proviral DNA (COSMIC trial). Aids 1479–1487. 

Todd, J., Glynn, J.R., Marston, M., Lutalo, T., Biraro, S., Mwita, W., Suriyanon, 
V., Rangsin, R., Nelson, K.E., Sonnenberg, P., et al. (2007). Time from HIV 
seroconversion to death: a collaborative analysis of eight studies in six low and 
middle-income countries before highly active antiretroviral therapy. Aids 21 Suppl 
6, S55–S63. 

Traggiai, E., Chicha, L., Mazzucchelli, L., Bronz, L., Piffaretti, J.-C., 
Lanzavecchia, A., and Manz, M.G. (2004). Development of a human adaptive 
immune system in cord blood cell-transplanted mice. Science 304, 104–107. 

Trkola, A., Kuster, H., Rusert, P., Joos, B., Fischer, M., Leemann, C., Manrique, 
A., Huber, M., Rehr, M., Oxenius, A., et al. (2005). Delay of HIV-1 rebound after 
cessation of antiretroviral therapy through passive transfer of human neutralizing 
antibodies. Nature Medicine 11, 615–622. 

Tsai, C.-C., Emau, P., Follis, K., Beck, T., Benveniste, R., Bischofberger, N., 
Lifson, J., and Morton, W. (1998). Effectiveness of Postinoculation (R)-9-(2-
Phosphonylmethoxypropyl)Adenine Treatment for Prevention of Persistent 
Simian Immunodeficiency Virus SIV Infection Depends Critically on Timing of 
Initiation and Duration of Treatment. Journal of Virology 4265. 



 102 

Tsai, C.-C., Follis, K., Sabo, A., Beck, T., Grant, R., Bischofberger, N., 
Benveniste, R., and Black, R. (1995). Prevention of SIV Infection in Macaques by 
(R)-9-(2-Phosphonylmethoxypropyl)adenine. Science 1–3. 

Turnbull, E.L., Wong, M., Wang, S., Wei, X., Jones, N.A., Conrod, K.E., Aldam, 
D., Turner, J., Pellegrino, P., Keele, B.F., et al. (2009). Kinetics of Expansion of 
Epitope-Specific T Cell Responses during Primary HIV-1 Infection. The Journal 
of Immunology 182, 7131–7145. 

UNAIDS (2007). 2007_epiupdate_en. 1–60. 

Van Praag, R., MM, P.J., Roos, M.T., and Schellekens, P. (2001). OKT3 and IL-2 
Treatment for Purging of the Latent HIV-1 Reservoir in vivo results in selective 
long-lasting CD4+ T cell depletion. 1–9. 

Walker, L.M., Huber, M., Doores, K.J., Falkowska, E., Pejchal, R., Julien, J.-P., 
Wang, S.-K., Ramos, A., Chan-Hui, P.-Y., Moyle, M., et al. (2011). Broad 
neutralization coverage of HIV by multiple highly potent antibodies. Nature 477, 
466–470. 

Walker, L.M., Phogat, S.K., Chan-Hui, P.-Y., Wagner, D., Phung, P., Goss, J.L., 
Wrin, T., Simek, M.D., Fling, S., Mitcham, J.L., et al. (2009). Broad and potent 
neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. 
Science 326, 285–289. 

Wei, D.G., Chiang, V., Fyne, E., Balakrishnan, M., Barnes, T., Graupe, M., 
Hesselgesser, J., Irrinki, A., Murry, J.P., Stepan, G., et al. (2014). Histone 
Deacetylase Inhibitor Romidepsin Induces HIV Expression in CD4 T Cells from 
Patients on Suppressive Antiretroviral Therapy at Concentrations Achieved by 
Clinical Dosing. PLoS Pathog 10, e1004071. 

Wei, X., Decker, J.M., Wang, S., Hui, H., Kappes, J.C., Wu, X., Salazar-
Gonzalez, J.F., Salazar, M.G., Kilby, J.M., Saag, M.S., et al. (2003). Antibody 
neutralization and escape by HIV-1. Nature 422, 307–312. 

Whitney, J.B., Hill, A.L., Sanisetty, S., Penaloza-MacMaster, P., Liu, J., Shetty, 
M., Parenteau, L., Cabral, C., Shields, J., Blackmore, S., et al. (2014). Rapid 
seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 1–
15. 

Wilson, P.C., and Andrews, S.F. (2012). Tools to therapeutically harness the 
human antibody response. Nat. Rev. Immunol. 12, 709–719. 

Wong, J.K., Hezareh, M., Günthard, H.F., Havlir, D.V., Ignacio, C.C., Spina, C.A., 
and Richman, D.D. (1997). Recovery of replication-competent HIV despite 
prolonged suppression of plasma viremia. Science 278, 1291–1295. 

Wu, X., Wang, C., O'Dell, S., Li, Y., Keele, B.F., Yang, Z., Imamichi, H., Doria-



 103 

Rose, N., Hoxie, J.A., Connors, M., et al. (2012). Selection Pressure on HIV-1 
Envelope by Broadly Neutralizing Antibodies to the Conserved CD4-Binding Site. 
Journal of Virology 86, 5844–5856. 

Wu, X., Yang, Z.-Y., Li, Y., Hogerkorp, C.-M., Schief, W.R., Seaman, M.S., Zhou, 
T., Schmidt, S.D., Wu, L., Xu, L., et al. (2010). Rational design of envelope 
identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 
329, 856–861. 

Zhang, L., Ramratnam, B., Tenner-Racz, K., He, Y., Vesanen, M., Lewin, S., 
Talal, A., Racz, P., Perelson, A.S., Korber, B.T., et al. (1999a). Quantifying 
residual HIV-1 replication in patients receiving combination antiretroviral therapy. 
N Engl J Med 340, 1605–1613. 

Zhang, Z., Schuler, T., Zupancic, M., Wietgrefe, S., Staskus, K.A., Reimann, 
K.A., Reinhart, T.A., Rogan, M., Cavert, W., Miller, C.J., et al. (1999b). Sexual 
transmission and propagation of SIV and HIV in resting and activated CD4+ T 
cells. Science 286, 1353–1357. 

Zhu, J., Gaiha, G.D., John, S.P., Pertel, T., Chin, C.R., Gao, G., Qu, H., Walker, 
B.D., Elledge, S.J., and Brass, A.L. (2012). Reactivation of Latent HIV-1 by 
Inhibition of BRD4. Cell Rep 2, 807–816. 

TLR7 Agonist GS-9620 Activates HIV-1 in PBMCs From HIV-Infected Patients on 
cART (CROI). 


	Rockefeller University
	Digital Commons @ RU
	2015

	Therapeutic Uses of Broadly Neutralizing Anti-HIV-1 Antibodies in Humanized Mice
	Ariel Halper-Stromberg
	Recommended Citation


	Microsoft Word - title page Abstract 043015.docx

