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Eukaryotic DNA is found packaged with proteins and RNA, which forms 

a substance called chromatin. This packaging is dynamic and regulates 

access to DNA for essential cellular processes such as transcription, 

replication, and repair. In recent years, studies have shown that regulated 

changes in the chemical and physical properties of chromatin often lead to 

dynamic changes in multiple cellular processes by affecting the accessibility 

of the DNA. These changes can be brought about in part through post-

translational modifications of histone proteins, which are involved in 

disrupting chromatin contacts or by recruiting effector proteins to chromatin. 

Acetylation is one of the well-studied post-translational modifications 

that has been associated with chromatin-associated processes, notably gene 

regulation. Many studies have contributed to our knowledge of the 

enzymology underlying acetylation, including efforts to understand the 

molecular mechanism of substrate recognition by several acetyltransferases, 

but traditional experiments to determine intrinsic features of substrate and 

site specificity have proven challenging. In my thesis work, I hypothesize 

that the primary amino acid sequence surrounding an acetylated lysine plays 

a critical role in acetylation site selection, and whether there are sequence 

preferences that enable a lysine acetyltransferase to recognize target 



lysines. A computational method was devised to examine this hypothesis, 

and an experimental approach was taken to test my computationally-derived 

predictions. In Chapter 2, I describe my basic computational methods, using 

a clustering analysis of protein sequences to predict lysine acetylation based 

on the sequence characteristics of acetylated lysines within histones. I define 

a local amino acid sequence composition that represents potential 

acetylation sites by implementing a clustering analysis of histone and non-

histone sequences. I demonstrate that this sequence composition has 

predictive power on two independent experimental datasets of acetylation 

marks. In Chapter 3, I describe the experimental validation approach used 

to detect acetylation in histone and nonhistone proteins using mass 

spectrometry. I also report several novel non-histone acetylated substrates 

in S. cerevisiae. My approach, combined with more traditional experimental 

methods, may be useful for identifying additional proteins in the acetylome.  

Finally, in Chapter 4, I describe two bioinformatics approaches; one to 

predict additional chromatin associated effector proteins, and another to 

further understand the evolutionary history and complexity of the Polycomb 

Group (PcG) proteins in multicellular organisms in order to infer gene 

expansion, co-evolution, and deletion events. 
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         Chapter 1: General Introduction  

The annotated human genome contains approximately 40,000 genes by 

current estimates (Karolchik, Baertsch et al. 2003), a number that seems 

surprisingly low.  However, the estimated number of proteins encoded by 

these genes is two to three orders of magnitude higher (Hsu, Pringle et al. 

2005).  Because each protein is generally encoded by one gene in the 

genome, one might expect a one to one correspondence of genes to 

proteins.  However, this is not the case: the estimated number of proteins 

encoded by the 40,000 human genes is two to three orders of magnitude 

higher.  What is the purpose of this diversity?  Proteome complexity can be 

built by diversification at both the mRNA level (through alternative splicing) 

and the protein level (through post-translational modification (PTM) of the 

protein side chains).  Greater than 5% of the genes in the human genome 

encode enzymes that catalyze such modifications, including hundreds of 

protein kinases, phosphatases, ubiquitiyl ligases, acetylases and 

deacetylases, methyl transferases and glycosyl transferases.  By adding 

chemical moieties onto one or more amino acids, PTMs can determine a 

protein’s localization, interactions with other proteins, and gene expression. 

For example, phosphorylation of a protein substrate can propagate 

downstream signaling events (Burnett and Kennedy 1954; Olsen, Blagoev et 

al. 2006), ubiquitination marks cyclins  and other proteins for degradation at 

cell-cycle specific time points (Xu, Duong et al. 2009), and methylation can 
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epigenetically activate (Beisel, Imhof et al. 2002) or repress gene expression 

(Nakayama, Rice et al. 2001; Grewal and Rice 2004). 

PTMs are particularly abundant and well studied in histone proteins, 

the major protein components of chromatin. Chromatin is the coupling of 

DNA, RNA, and protein that make up chromosomes.  The nucleosome, the 

fundamental repeating unit of chromatin, consists of 146 base pairs of DNA 

wrapped around the four core histones (H2A, H2B, H3, H4)(Luger, Mader et 

al. 1997) (Figures 1.1A, B).  Multiple nucleosomes joined by stretches of 

linker DNA form a structure known as “beads on a string” (Figure 1.1B).  

We are only beginning to understand that the changes in chromatin 

structure that underlie many DNA-templated processes are affected by post-

translational modification of histone proteins, including but not limited to 

methylation, phosphorylation, and acetylation (Figure 1.1C).  These 

modifications may contribute to “epigenetic signatures” that are important 

for diverse processes such as gene regulation, apoptosis, mitosis, and 

responses to DNA damage. These modifications create a dynamic readout, 

referred to as the “histone code” (Strahl and Allis 2000; Turner 2008), 

where PTMs can function as binding sites for specific protein domains while 

other PTMs alter the net charge on the nucleosomes in a way that alters 

chromatin structure. 
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Figure 1.1: Chromatin organization and post-translational modifications 

A. A nucleosome particle is composed of 146 bp of DNA wrapped around an octamer of 2 

copies each of histones H2A, H2B, H3, and H4, with the tails of the histone proteins 

protruding from the core structure.  These particles are then linked together by the DNA to 

form a structure known as “beads on a string”. Image modified from (Marmorstein 2001).  

B. Crystal structure of nucleosome solved at 2.8Å. Nucleosome core particle: ribbon traces 

for the 146-bp DNA (Watson strand and Crick strands in brown and turquoise, respectively) 

and eight histone protein main chains (blue: H3; green: H4; yellow: H2A; red: H2B). Image 

adapted from (Luger, Mader et al. 1997). 

C. Shown are the four core histones: H3, H4, H2A, and H2B, and their post-translational 

modification sites. Acetylation marks are denoted by red filled circles, arginine methylation 

denoted by yellow hexagons, and lysine methylation denoted by green or red hexagons. For 

lysine methylation sites, green hexagons denote active marks (such as H3K4me) while red 

hexagons denote repressive marks, (such as H3K27). Green circles are phosphorylationa nd 

blue ovals are ubiquitylation. Boxes surrounding H3, H4, H2A, and H2B represent histone 

globular domains. Image modified from Epigenetics, 2007.   
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Figure 1.1 
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Histone Acetylation  

More than forty years ago, Allfrey and colleagues reported a strong 

correlation between increased levels of histone acetylation and elevated 

levels of gene expression (Allfrey, Faulkner et al. 1964).  Since then, the 

field of chromatin biology has advanced considerably with remarkable 

progress made into mechanistic insights of histone modifications and their 

biological functions.  Histone acetylation has the capacity to destabilize the 

chromatin polymer through neutralization of the basic charge of the lysine 

residue, potentially with consequences for chromatin nucleosomal stability 

and higher-order structure (“cis” effects) (Tse, Sera et al. 1998; Verreault, 

Kaufman et al. 1998; Taverna, Li et al. 2007).  Furthermore, acetylation can 

potentially affect chromatin dynamics by recruiting specialized “effector” 

proteins (“trans”-effects) (Jenuwein and Allis 2001).  

Lysine acetylation in histones was the first PTM for which the enzymes 

that both catalyze HATs (histone acetyltransferases) and remove HDACs 

(histone deacetylases) was identified.  These enzymes are responsible for 

governing a steady-state balance of acetylation (Brownell, Zhou et al. 1996; 

Taunton, Hassig et al. 1996; Pflum, Tong et al. 2001).  In fact, the first 

transcription-related nuclear histone acetyltransferase (HAT, or KAT 

renamed in (Allis, Berger et al. 2007)), Gcn5, was isolated from the 

Tetrahymena macronucleus through an in-gel assay (a mixture of proteins 
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from cell extracts separated on a SDS gel) (Brownell, Zhou et al. 1996). 

Since then, the discovery of KAT proteins acetylating all four core histones 

has been a hallmark for the chromatin field as researchers have studied the 

individual modifications and their functional relevance in the cell (Kurdistani, 

Tavazoie et al. 2004; Shogren-Knaak, Ishii et al. 2006; Kaplan, Liu et al. 

2008; Li, Zhou et al. 2008; Tjeertes, Miller et al. 2009)(Figure 1.2A; in 

red).  In addition to the discovery of the first transcription-related histone 

KAT, the discovery of the first transcription related histone HDAC, HDAC1, 

(Taunton, Hassig et al. 1996) also led to the formation of a model for gene-

specific histone PTMs: activators that are bound by DNA are involved in 

recruiting KATs to acetylate nucleosomal histones, while repressors recruit 

HDACs to deacetylate histones.  Three years later, the first bromodomain 

was discovered as a protein that interacts specifically with acetylated lysines 

in histones (Dhalluin, Carlson et al. 1999), making it the first known protein 

module to do so. Bromodomains were functionally linked to the HAT activity 

of co-activators in the regulation of gene transcription.  Together, modifying 

enzymes that “write” the PTM, enzymes that “erase” the PTM, and molecules 

that interact specifically with the PTM or “readers”, are linked to enzyme 

activity in gene expression regulation, but how do these molecules recognize 

their epitopes, and what dictates their recognition machinery?  Primary 

sequence context surrounding a target lysine could be one major factor 

dictating these types of recognition (Figure 1.2B), however this factor is 
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still relatively understudied. Limited biochemical and structural studies of 

KATs and bromodomain coupled to histones display some sequence 

preferences (Mujtaba, Zeng et al. 2007; Liu, Wang et al. 2008), however a 

rigorous and thorough analysis is still needed to pinpoint specific sequence 

motifs or patterns on the substrate that help establish appropriate 

acetyllysine-dependent interactions with chromatin.  
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Figure 1.2: Histone Acetylation Function and Primary Sequence Context   

A. Acetylation marks are denoted by red circles. Functions associated with the acetyl marks 

are shown by a rectangular box. Image modified from Epigenetics,2007.  

B. Lysine in center (red) and letters (in black) surrounding lysine represent the primary 

sequence context of a PTM.  Effector (in green) also can bind the modification based on 

contacts it makes with residues surrounding the PTM.  
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Figure 1.2 

 

 

   

 

 

 

 

 

9 
 



Structural analyses of KATs coupled to histone tail peptides have been 

the subject of intense study.  KAT enzymes catalyze the transfer of an acetyl 

group from the co-factor acetyl-Coenzyme A (acetyl-CoA) to the -amine of 

a substrate lysine side chain.  A large number of KATs have now been 

identified and characterized.  Studies on the divergent histone KAT enzymes 

Gcn5/PCAF, Esa1 and Hat1 have provided insights into the underlying 

mechanism of acetylation by KAT proteins (Marmorstein 2001; Marmorstein 

and Roth 2001).  These three histone KAT enzymes contain a conserved core 

domain that plays a role in binding the co-factor acetyl-CoA in catalysis. 

More recently, biochemical and structural studies of the metazoan-specific 

p300/CBP (human homolog of Gcn5) and fungal-specific Rtt109 histone 

KATs have provided a new understanding into the evolutionary and ancestral 

relationship between histone KATs and their divergent catalytic and 

substrate-binding properties (Wang, Tang et al. 2008). 

Co-crystallized histone KATs coupled to peptides also provide insight 

regarding substrate recognition.  Positively charged residues are typically 

present within three to four amino acid residues (about 10 Å) upstream or 

downstream of the acetylated lysine residues of known p300 (a human 

homolog of Gcn5)/CBP substrates (Wang, Tang et al. 2008).  Moreover, the 

X-ray crystal structure of p300, in complex with a bi-substrate inhibitor, Lys-

CoA reveals the preference for nearby basic residues, such as a lysine in the 

+2 and -2 positions (Wang, Tang et al. 2008).  Specificity for a random-coil 
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structure containing a G-K-X-P recognition sequence on the histone 

substrate is revealed the when the Gcn5 crystal structure is coupled to the 

H31-20 peptide (Rojas, Trievel et al. 1999; Liu, Wang et al. 2008) (Figure 

1.3).  Critical contacts between Gcn5 and H3K14 are displayed; the glycines 

(G13), and proline (P15) preceding and following H3 lysine 14 make the 

tightest contacts with Gcn5 and suggest residues that are specific to Gcn5 

recognition.   Other nonhistone Gcn5-mediated substrates also possess a 

similar G-K-X-P pattern and will be described further in Chapter 3.  These 

studies demonstrate that residues in the core domain of the KAT together 

with proximal residues surrounding acetyl-lysines on the histone substrate 

can help achieve substrate specificity (Liu, Wang et al. 2008). 
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Figure 1.3: Gcn5 (a histone KAT) coupled to histone H3 peptide and coenzyme A 

(CoA) 

Solvent accessible surface representation of Tetrahymena GCN5 HAT domain coupled to 

Histone H31-20 peptide (in yellow) and CoA (shown clearer in enlarged box; bottom). Red 

box (bottom) represents an enlarged view of the Gcn5 HAT domain in contact with the 

H3S10-P16 residues of the peptide represented by a stick model. CoA is shown on bottom 

right. Note that G12 and P16 make direct contacts with the catalytic domain. Image 

provided by A. Ruthenburg.  
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Nonhistone protein acetylation and methods in detecting acetylated 

substrates   

To a lesser extent, nonhistone protein acetylation has also been implicated 

in a wide variety of biological processes, such as DNA binding or the 

stabilization of multi-subunit complexes (Glozak, Sengupta et al. 2005) 

(Sterner and Berger 2000; Yang and Seto 2008).  One of the most famous 

nonhistone proteins that was discovered as acetylated was p53, where 

pioneering studies by Roeder and colleagues demonstrated that p53 

acetylation was critical for the regulation of its binding to the DNA (Figure 

1.4A,B) (Gu and Roeder 1997).  Since then, KATs, such as p300, have been 

shown to acetylate multiple other nonhistone transcription-related proteins. 

Additional studies have identified additional acetylated proteins, such as 

HIV1 integrase (Cereseto, Manganaro et al. 2005), an HIV protein whose 

acetylation is required for its viral integration.  Acetylation of alpha tubulin 

was also recently shown to be critical for the formation of cortical neurons in 

the developing mouse brain (Wynshaw-Boris 2009).  Intriguingly, several 

transcription factors, such as E2F1, and MYC implicated in cancer pathways, 

have also been shown to be acetylated (Sterner and Berger 2000; Ozaki, 

Okoshi et al. 2009).  

Conventional experiments, such as mutagenesis of potential acetylated 

lysines, acetylation-specific antibodies, metabolic labeling, mass 
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spectrometry (MS), and in-vitro histone acetyltransferase assays (Figure 

1.4C) have typically been used in order to identify acetylated lysines in 

substrate proteins. More recently, large scale proteomic studies have 

emerged as a result of high- throughput technology.  In one study, the KAT 

NuA4 (the essential nucleosome acetyltransferase of H4) was incubated with 

yeast proteome microarrays in the presence of radioactive acetyl-CoA.  Many 

non-chromatin substrates of complex were identified and validated, including 

acetylation (Lys19 and Lys514) of phosphoenolpyruvate carboxykinase 

(Pck1p).  Acetylation at these sites was then shown to be important for 

yeast glucogenesis (Lin, Lu et al. 2009). Additionally, advanced proteomic 

tools have enabled identification of several hundred acetylation sites in 

approximately two hundred proteins, using samples derived from HeLa cells, 

mouse liver and bacteria (Kim, Sprung et al. 2006). In addition to regulators 

of chromatin-based cellular processes, non-nuclear proteins with diverse 

functions were also identified.  Most strikingly, acetylated lysines were found 

in more than 20% of mitochondrial proteins, including many metabolic 

enzymes (Kim, Sprung et al. 2006). Another high resolution mass 

spectrometry study published recently revealed that lysine acetylation 

preferentially targets large macromolecular complexes involved in diverse 

cellular processes, such as chromatin remodeling, cell cycle, splicing, nuclear 

transport, and actin nucleation.  The study also reveals that acetylation 

substrates had enriched residues flanking the target lysine depending on 
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whether the protein resided in the nuclear, cytoplasm, or mitochondria 

compartment in the cell (Choudhary, Kumar et al. 2009).  
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Figure 1.4: Examples of nonhistone protein acetylation  

A. p53 was one of the first nonhistone acetylated proteins discovered via radioactive 

labeling (Gu and Roeder 1997). The protein (total of 393 amino acids) is heavily acetylated 

protein in the C-terminal tail. Eight lysines have have been identified as acetylated via mass 

spectrometry, immunoblotting, and mutagenesis experiments. p53 acetylation stimulates 

sequence specific DNA binding activity in vivo and in vitro and increases stability of protein.  

B. A histone KAT can also acetylate lysines in nonhistone proteins. p53 is a classic example, 

where p300 ( the histone KAT) acetylates multiple residues of p53 as shown in B, but also 

lysines in the core histones.  

C. Some of the traditional methods used to identify PTMs on histone and nonhistone 

proteins.  Shown are biochemistry methods, metabolic labeling, site-directed mutagenesis 

of potential PTM sites, mass spectrometry, and site specific acetyl antibodies.  
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Figure 1.4 
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Thus, the discovery of acetylation on histone and nonhistone proteins 

has been a key advancement in the chromatin field, and has allowed for a 

better understanding of the roles acetylation plays in human biology and 

disease.  Promising advances have been made in the treatment of certain 

cancers by developing drug therapies that target HDACs (Marks 2007).  

While knowing which amino acids in the proteome are acetylated has clear 

biological and disease applications, currently, only a subset of the total 

acetylated residues in the proteome have been identified.  Methods that 

allow for rapid identification of all acetylated amino acids in the proteome 

would therefore be of great importance to the biological community.  A 

computational tool that is predictive of acetylation events in histone and 

nonhistones could contribute to a more complete understanding of what 

substrates are physiologically relevant, as more insights are gained into 

acetylation-mediated pathways.   

Computational studies  

A limited number of studies suggest that there may be sequence recognition 

target(s) for certain KATs (Kimura and Horikoshi 1998; Kimura and 

Horikoshi 1998).  A putative “rule” for lysine selection in a primary sequence 

by a KAT has been proposed previously by examining the N-terminal tail of 

histones (Kimura and Horikoshi 1998).  For example, TIP60 (a mammalian 

KAT), recognizes specific glycine-lysine G-K patterns in human proteins in 
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vitro and in vivo (Kimura and Horikoshi 1998).  Additionally, the acetylation 

of Rch1 (a nuclear importin factor) is severely inhibited when a glycine 

adjacent to the modified lysine is mutated, supporting the view that G-K is 

part of a recognition motif for acetylation (Bannister, Miska et al. 2000).  

Moreover, the KAT CLOCK1, acetylates H3 lysine 14, which bears a similar 

sequence environment to the acetylated lysine of the CLOCK-mediated 

substrate BMAL1 (Hirayama, Sahar et al. 2007).  The term “histone mimic” 

was recently put forward to describe short stretches in nonhistone proteins 

that closely resemble histone sequences containing PTMs (Sampath, Marazzi 

et al. 2007).  Observations such as these provide early indications of specific 

“rules” that can potentially define enzyme recognition of target substrates.  

More recently, a prediction program was published illustrating that 

acetylation could be predicted via an analysis of lysine acetylation motifs in a 

large human proteome-wide dataset (Schwartz, Chou et al. 2009).  These 

motifs were scanned against proteomic sequence data using a newly 

developed tool called scan-x to globally predict other potential modification 

sites within multiple organisms.  Ten-fold cross-validation was used to 

determine the sensitivity and minimum specificity for each set of predictions, 

where a specificity (proportion of of actual positives which are correctly 

identified) 94%, and a sensitivity (proportion of negatives which are 

correctly identified) of 17% was achieved.  In Chapter 2, I describe a 

computational model which I have developed to predict human additional 
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histone and nonhistone substrates in the acetylome.  In addition to a 

computational approach, I experimentally validated my target predictions in 

budding yeast in vivo as described in Chapter 3.   

Yeast PTMs and conservation of histones 

Histones are among the most highly conserved proteins across species, 

allowing for their study in multiple organisms. In particular, acetylation in 

budding yeast histones is a well-studied phenomenon. Extensive studies 

mapping acetylation and the responsible enzymatic pathways using the 

yeast core histones have been performed (Grunstein 1990; Clarke, O'Neill et 

al. 1993; Brownell, Zhou et al. 1996; Grant, Duggan et al. 1997; Smith, 

Eisen et al. 1998; Bird, Yu et al. 2002).  These studies were possible through 

traditional biochemical methods (Figure 1.4C) and highly specific antibodies 

against histone acetyl-lysines that have been widely used in yeast chromatin 

studies (Suka, Suka et al. 2001).  Genome wide mapping studies of yeast 

acetylation (via ChIP-Chip) illustrate that H3K9ac peaks at the predicted 

transcriptional start sites of active genes and that this modification 

correlates with transcription rates genome-wide (Figure 1.5A) (Pokholok, 

Harbison et al. 2005).  Similarly, acetylation of histone H3 at lysine 14 peaks 

over the start sites of active genes and correlates with transcription rates 

genome-wide.   Additionally, H3K36 was discovered as acetylated (Figure 

1.5A) and the pattern of H3K36ac localization is similar to that of other sites 
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of H3 acetylation, including H3K9ac and H3K14ac, although the peak of 

H3K36me2, a well described PTM in yeast, is within the active gene coding 

region (Figure 1.5A) (Morris, Rao et al. 2007).  Set2 (KMT3)-dependent 

methylation of histone H3 at lysine 36 (H3K36) was also shown to promote 

deacetylation and repression (Youdell, Kizer et al. 2008).  

Perhaps one of the better described and major acetylation marks in 

budding yeast is H3K56, an acetylation mark in the globular domain of H3, 

which is critical for the recruitment of the nucleosome remodeling factor 

Snf5 and subsequent transcription (Xu, Zhang et al. 2005).  These findings 

indicated to the chromatin field that histone H3 K56 acetylation enables 

recruitment of the SWI/SNF nucleosome remodeling complex to regulate 

gene activity.  Moreover, H3K56ac has been shown as a DNA-damage-

responsive mark, important for genomic stability in mammals (Yuan, Pu et 

al. 2009).  In addition, acetylation of H3K56 is increased in multiple types of 

cancer, correlating with increased levels of ASF1A, a key protein in 

nucleosome assembly (Tjeertes, Miller et al. 2009; Yuan, Pu et al. 2009).  A 

former postdoc in the Allis Lab, Sandra Hake, along with the Don Hunt 

laboratory at UVA (Charlottesville, VA), performed an in-depth analysis of 

methylation and acetylation profiles of multiple organisms ranging from 

Tetrahymena to mammals (Figure 1.5B).  Their work illustrates that higher 

eukaryotes (multicellular) contain a higher number of methylation or 

silencing marks, whereas lower eukaryotes possess more acetylation or 
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activation marks (Garcia, Hake et al. 2007).  Moreover, within the histone 

globular domain, PTMs were far less conserved from unicellular to 

multicellular organisms (ie. K56ac), whereas the H3 tail acetylation marks 

were  more conserved between the two groups (Figure 1.5B) (Garcia, Hake 

et al. 2007). 
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Figure 1.5: H3 acetylation in yeast and conservation between organisms 

A. ChIP study showing that H3K9/K14ac and H3K36ac (black and red curves, respectively) 

both peak at transcriptional start sites, whereas K36me2 (blue curve) peaks within active 

coding regions.  Image modified and chart lines were superimposed due to low figure 

quality from (Morris, Rao et al. 2007). 

B. Histone H3 modifications detected in MS/MS experiments from human, mouse, 

Tetrahymena, and yeast.  Acetyl marks are denoted by red circles, and methyl marks are 

denoted by green hexagons. Note that histone PTMS in tail region are more conserved in 

multicellular species and PTMs in globular region are more conserved in unicellular species. 

Image adapted (Garcia, Hake et al. 2007).   
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Figure 1.5 
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Mutagenesis and crosstalk experiments in yeast 

Since yeast is easy to genetically manipulate, many labs including ours have 

used it for mutagenesis and functional studies of post-translational 

modifications of histones.  Groups such as the Michael Grunstein lab have 

performed tail deletions of H2A and H2B and swapping experiments of the 

H3 and H4 tails in yeast, which resulted in the disrupted regulation of 

specific genes as well as silencing of yeast mating type cassettes (Schuster, 

Han et al. 1986; Ling, Harkness et al. 1996).  More recently, the Shilatifard 

group systematically generated a complete library of the alanine 

substitutions of all of the residues of the four core histones in S. cerevisiae 

(Nakanishi, Sanderson et al. 2008).  Several cases where one mark was 

required for another on the histone H3 N-terminal tail were identified, 

including histone H3K14ac (H3K14ac), a mark which is required for normal 

levels of H3K4 trimethylation (Nakanishi, Sanderson et al. 2008).  Additional 

data on crosstalk, or one mark is required for the presence or absence of 

another mark of covalent modifications of histones in yeast reveal that 

phosphorylation of serine 10 in histone H3 is functionally linked in vitro and 

in vivo to Gcn5-mediated acetylation at H3K14 (Lo, Trievel et al. 2000). 

These types of observations suggest that transcriptional regulation can occur 

through multiple linked covalent modifications in histones (Lo, Trievel et al. 

2000; Strahl and Allis 2000; Latham and Dent 2007) (Figure 1.6A).  
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The Boeke laboratory recently created a versatile library of 486 

systematic histone H3 and H4 substitution and deletion mutants that probes 

the contribution of each residue to nucleosome function.  Their findings 

suggest that there are surprisingly a few residues essential for cell viability 

considering the very well conserved sequences of H3 and H4 among 

different organisms.  This observation implies a possibility that multiple 

residues on histones can function redundantly (Dai, Hyland et al. 2008).  

Typically, in order to detect phenotypes and analyze how PTMs can cross-

regulate one another (as described in the previous section), lysines which 

are positively charged, acetylable residues, are mutated to small (uncharged 

residues such as alanine or glycine), arginines (positively charged, and 

unacetylable), or glutamines (negatively charged, acetyl mimics) (Figure 

1.6B).  Single lysine mutations have demonstrated phenotypic defects in 

yeast, such as H3K36R producing a transcriptional elongation defect 

(Carrozza, Li et al. 2005), H3K56R producing genome stability defects, 

chromosomal breaks, and cell lifespan reduction (Recht, Tsubota et al. 2006; 

Driscoll, Hudson et al. 2007; Dang, Steffen et al. 2009), and H4K16Q 

significantly reducing cell lifespan (Dang, Steffen et al. 2009). Multiple 

mutations on identical or different histones have also demonstrated 

phenotypes, such as  H3K56R combined with H4K5,8,12R for replication (Li, 

Zhou et al. 2008), and H4K5,8,12,16R for cell viability (Megee, Morgan et al. 

1990).  While larger mutagenesis studies and screens have focused on 
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designing experiments to abrogate levels of specific PTM marks, only a few 

studies to my knowledge have been aimed at mutating the surrounding 

residues of the target lysine to detect a different PTM than was previously 

known, or to observe an increase or decrease of the PTM level of the target 

lysine (Bannister, Miska et al. 2000; Nelson, Santos-Rosa et al. 2006).  In 

my own work described in Chapter 3, I have mutagenized the flanking 

residues of H3K14 to in order to determine whether the mutation of its 

flanking residues has any effect on H3K14ac levels, or whether mutagenesis 

can induce an additional PTM such as methylation.    
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Figure 1.6:  Crosstalk between lysine methylation and acetylation on H3 and H4 

histone tails. 

A. Crosstalk between H3K9, H3S10, and H3K14 based on previous literature. The H3 

modifications also have an effect on H4K20 methylation (top). H3ac/H4ac crosstalk with 

H3K4me (bottom). H3ac/H4ac refer to multiple acetylation sites on H3 and H4. Red circles 

represent acetylation marks, green hexagons represent methylation marks, and white 

circles represent phosphorylation marks. Image adapted from (Latham and Dent 2007)   

B. Lysines (positively charged, acetylable residues) typically mutated into small uncharged 

residues (glycine or alanine), charged, unacetylable residues (arginine), and uncharged, 

acetyl mimics (glutamines) for phenotypic analysis, PTM detection, or to detect effects on 

other modifications.  
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Figure 1.6 
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In the previous sections, I discussed protein acetylation, focused largely on 

histone acetylation “writers”.  In the next section, I will next discuss 

“readers,” proteins that interact specifically with a PTM and the historic 

challenges and methods used to uncover additional domains within these 

readers.  I will also briefly introduce the domain structure and functional 

importance of an array of chromatin-associated proteins. 

Domain Prediction Challenges   

Domain prediction from primary amino acid sequence has historically been a 

challenging task.  However, improved domain prediction programs are 

enabling high accuracy structure predictions, more directed mutagenesis and 

binding studies, and a deeper scope to perform evolutionary analyses.  Many 

protein motifs characteristically associated with chromatin have been shown 

to have affinity for modified histone tails, acting as “effectors” or readers for 

histone PTMs, notably lysine acetylation and methylation.  These motifs have 

been discovered through experimental cloning and in-vitro peptide binding 

assays, however since there are multiple modifications on the protein with a 

multitude of interaction partners, a number of these effector molecules have 

yet to be discovered.   Using domain prediction tools and computational 

techniques can thus help us achieve a higher number of chromatin binding 

domains that are still undiscovered.   In Chapter 4, I aim to describe the 

bioinformatic method I used to predict additional effectors in chromatin 
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associated proteins, and present data on the evolutionary domain analysis of 

PcG proteins.  

Domain definitions and statistical methods used to characterize 

domains 

To understand the roots of the domain prediction challenge, one needs to 

delve deeply into the definition of a domain.  Domains are considered to be 

the building units of protein structure.  A protein can contain a single domain 

or multiple domains, each one typically associated with a specific function. 

The architecture of a protein’s domain determines the function of the 

protein, its subcellular localization and the intermolecular interactions it is 

involved in.  However, over the years, domains have been defined in several 

different ways, each definition focusing on a different aspect of the domain 

hypothesis (Ingolfsson and Yona 2008): 

-A domain is a protein unit that can fold independently 

-It forms a specific fold in 3D space  

-It performs a specific task/function 

-It is a movable unit that was formed early on in the course of evolution 

 

Most of these definitions are widely accepted, but some are more 

subjective than others.  For example, the definition of a cluster in 3D space 

is dependent on the algorithm and experimental data used to define the 
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clusters and the parameters of that algorithm.  Furthermore, while the first 

two definitions focus on structural aspects, the other definitions do not 

necessarily contain a structural constraint.  Domain prediction programs 

such as SMART and PFAM (Schultz, Milpetz et al. 1998; Finn, Tate et al. 

2008) have aimed to overcome these challenges by using statistical 

prediction methods.  However because the precise definition of domain is 

subjective, predicted domains can be missed in these programs largely for a 

number of reasons:  (1) The protein of interest might contain new domains 

that have not been characterized or studied yet, and therefore the protein 

might be poorly represented in existing domain databases with limited 

information about its domain.  For most proteins (and especially newly 

sequenced ones) the structure is unknown, thus structure-focused methods 

are excluded. (2) Protein should have homologs in order for the prediction 

method to be effective.  Methods may only work using databases of proteins 

containing homology, but not on individual proteins. (3) Existing domain 

prediction algorithms can be inconsistent in their domain annotations.  

Without accurate structural information, it is difficult to validate the 

performance of prediction algorithms.  When the structure is known, 

determining the constituent domains might not be straightforward 

(Ingolfsson and Yona 2008).  

Statistical prediction methods have tried to solve the multifaceted 

problem of domain prediction by implementing well-constructed multiple 
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sequence alignments (MSAs), which are a positive source of information for 

domain predictions.  These MSAs feed into a statistical model, typically a 

Hidden Markov Model (HMM), which computes the probability of a given 

sequence by using the consensus MSA to predict additional domains of 

interest.  MSA alignments are much easier and faster to generate than 

three-dimensional models and can thus be used in large-scale domain 

predictions.  Moreover, MSAs can also be used to detect remote homologies.  

On the other hand, sequences that are highly similar usually contain little 

information on domain boundaries and bias predictions as they mask other 

equally crucial but less represented sequences.  

Several atypical or cryptic domains, domains which are dissimilar to 

the canonical domain by sequence, yet contain some or all the key residues 

are typically needed for the binding surface are often missed by domain 

prediction programs.  These types of domains are challenging for prediction 

algorithms since domains often function through intermolecular interactions 

that depend on chemical and structural properties of the interacting surface 

that need to be compensated for, and primary amino acid sequence is 

insufficient.  RAG2 (an essential component of the RAG1/2 V(D)J 

recombinase) is an example of a protein that contains a plant homeodomain 

(PHD) finger that specifically recognizes histone H3 trimethylated at lysine 4 

(H3K4me3) (Matthews, Kuo et al. 2007).  Though RAG2 has a conserved 

tryptophan that constitutes a key structural component of the K4me3-
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binding surface and is essential for Rag2's recognition of H3K4me3, the 

overall similarity of RAG2’s PHD finger with the canonical domain is only 

25% similar by amino acid sequence and therefore is missed by domain 

prediction programs.  These examples display that with a better training set, 

and manipulation of key sequence parameters, we can improve reliability 

and the number of predictions generated on single and multidomain 

proteins.  

  While many of the proteins known today contain a single domain, it 

has been noted that the majority of proteins contain multiple domains. 

Consistent with the evolutionary aspect of the domain hypothesis, more 

complex organisms have a higher number of multi-domain proteins (Tordai, 

Nagy et al. 2005).  Multidomain proteins represent a substantial fraction of 

the proteome: about 27% of proteins in bacteria and 39% of proteins in 

metazoa are multi-domain proteins (Tordai, Nagy et al. 2005).  Multidomain 

proteins are structurally (and often functionally) more complex than single-

domain proteins, which lends itself to additional complexity at the protein 

signaling level.   Multidomains proteins can evolve through gene duplication 

and domain shuffling (insertion, deletion, rearrangement, and internal 

duplication of domains), which can be caused by duplication and insertion of 

a domain into a novel genomic context, tandem duplication of domains, 

domain deletion, gene fusion and fission (Song, Sedgewick et al. 2007).  
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Chromatin associated domains and importance 

A great deal of evidence suggests that PTMs function through the 

recruitment of downstream effector proteins, which in turn perform a task  

on chromatin (Shi, Hong et al. 2006) (Wysocka, Swigut et al. 2006) (Figure 

1.7A).  A specific role for post-translational modifications on histones 

(histone marks) is to stabilize the binding of effector proteins, which can 

influence gene expression by modifying chromatin structure, recruiting the 

components of the transcription machinery, or establish additional 

modifications (Figure 1.7A).   
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Figure 1.7: Effector proteins and cryptic domains 

A. Well characterized bromodomain (BD), chromodomain (CD), and PHD finger domains in 

histones H3 and H4. Shown is the Drosophila NURF 301 PHD finger bound to H3K4me3, HP1 

chromodomain bound to H3K9me, Polycomb (Pc) bound to H3K27me, and the bromodomain 

of GCN5 bound to H4K16 in yeast.  

B. Multiple sequence alignment of ING2 PHD fingers. Aromatic cage residues, zinc 

coordination residues, and histone H3 arginine 2-interacting residues are colored in purple, 

red, and orange, respectively. Mouse RAG2 is highlighted (in red box) and displays a cryptic 

PHD finger due to the sequence dissimilarity with coordinated Zn and cage residues. Image 

adapted from (Ruthenburg, Allis et al. 2007).  
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Figure 1.7 
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Wysocka et al. show that a plant homeodomain (PHD) finger of nucleosome 

remodeling factor (NURF), an ISWI-containing ATP-dependent chromatin-

remodeling complex, interacts with H3K4me3.  When the PHD finger is 

deleted in Xenopus, a loss-of-function phenotype is observed, and 

compromises spatial control of Hox gene expression (Wysocka, Swigut et al. 

2006).  Additional PHD finger proteins have more recently been shown to be 

implicated in disease, such as MLL (Wang, Song et al. 2009), RAG2 

(Matthews, Kuo et al. 2007) (Figure 1.7B; red box), and Kap1 (Zeng, Yap 

et al. 2008).  Crystal studies of the numerous PHD finger domains coupled to 

H3 peptides have revealed high conservation within the domain and an 

aromatic cage that is important for histone binding selectivity for H3K4me3. 

Moreover, crystal structures of the BPTF PHD finger coupled to the H3 

peptide display that the residues in the N-2 and N+2 positions respective to 

the H3K4 mark, are often critical determinants of binding specificity 

(Taverna, Li et al. 2007).  

Another domain of interest is the bromodomain which recognizes 

acetylated lysine residues such as those on the N-terminal tails of histones. 

Bromodomain binding perpetrates a pivotal mechanism for regulating 

protein-protein interactions in histone-directed chromatin remodeling and 

gene transcription (Figure 1.7A) (Mujtaba, Zeng et al. 2007).  Several 

reports indicate that the overall fold of bromodomains is highly conserved, 

but the subtle structure of the non-conserved loop region is crucial to their 
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function (Mujtaba, Zeng et al. 2007).  The chromodomain which recognizes 

methyl-lysines (the most famous being HP1 which binds to H3K9me (Figure 

1.7A) is part of the Royal Superfamily of protein folds, which also includes 

the Tudor, Chromo barrel, and MBT domains (Taverna, Li et al. 2007).  The 

HP1 and Polycomb chromodomains, which are similar to the chromodomains 

of CDY family proteins, distinguish two methylated lysine residues within 

ARKS motifs in the H3 tail (H3K9me and H3K27me) (Figure 1.8A; boxed in 

red).   

While the Polycomb “readers” and “writers” are fairly well understood 

in Drosophila (Figure 1.8A), in higher organisms, the specificity of effector 

interaction, such as chromodomain recognition becomes murky and less 

understood.  In particular, the Chromobox (Cbx) chromodomain-containing 

proteins underwent a massive expansion in mammals, with a total of five 

Cbx paralogs compared to one protein in Drosophila, known as Pc.  It has 

been shown that not all chromodomains (CDs) within the Cbx family of 

highly conserved chromodomains within the Polycomb family display affinity 

towards both histone H3 trimethylated at K9 and H3K27 (Bernstein, Duncan 

et al. 2006).  Some display preferential affinity towards histone H3K9me3 

and some towards H3K27me3.  While H3K9 and H3K27 are identical in 

surrounding sequence profile, the distinct functions of these marks is 

intriguing.  It has been suggested that residues immediately preceding the 

ARK(S/T) motif impact on the specificity of chromodomain interactions 
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(Fischle, Wang et al. 2003).  Amino acids proximal to the substrates, or 

motifs on the effectors outside of key conserved domains could be 

contributing to the specificity of these interactions (Fischle, Wang et al. 

2003).  Thus, in order to detect additional unannotated domains, and motifs 

in these complex proteins, a bioinformatics sequence based method and 

phylogenetics approach is useful to gain insight about these set of highly 

conserved, yet functionally divergent proteins.  In Chapter 4, I discuss the 

domain finding method I performed to detect additional unannotated 

domains within the PcG family of proteins in multiple organisms in order to 

infer gene expansion and diversification.  In the remainder of this chapter, I 

briefly introduce PcG complexes and their core functions.  

PcG complexes and their evolutionary history  

The PcG proteins are structurally and functionally diverse and form large 

multimeric complexes of two general types: Polycomb repressive complex 1 

(PRC1) and PRC2 (Ringrose and Paro 2004) (Figure 1.8B).  These 

complexes post-translationally modify histone tails and are believed to 

cooperate in transcriptional repression of target genes by altering local, 

higher-order chromatin structure (Francis, Kingston et al. 2004; Sparmann 

and van Lohuizen 2006).  

Polycomb group complexes, which are known to regulate homeotic 

genes, have now been found to control hundreds of other genes in mammals 
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and insects.  Polycomb complexes function as global enforcers of 

epigenetically repressed states, balanced by an antagonistic state that is 

mediated by Trithorax.  These epigenetic states must be reprogrammed 

when cells become committed to differentiation.  PcG proteins were 

originally identified in Drosophila melanogaster as factors necessary to 

maintain cell-fate decisions throughout embryogenesis by repressing Hox 

genes in a body-segment-specific manner (Kennison 1995).  Now recognized 

as a large family of chromatin-associated proteins conserved from plants to 

humans, the PcG is involved in many cellular memory processes including 

body patterning X inactivation in female mammals (Heard 2004) and 

vernalization in plants (Sung and Amasino 2004). 
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Core PRC1 is composed of Polycomb (Pc), dRing, Posterior sex combs 

(Psc) and Polyhomeotic (Ph) (Figure 1.8B) (Ringrose and Paro 2004). 

Already annotated, Pc has an N-terminal chromodomain (CD) and a C-

terminal Pc box CDs, which are found in many chromatin-associated proteins 

and are well-characterized methyllysine-binding modules (Eissenberg 2001). 

Specifically, the CD of Drosophila Pc binds most strongly to H3K27me3, the 

modification generated by PRC2 (Fischle, Wang et al. 2003).  The Pc box is a 

15-amino acid motif necessary for transcriptional repression of target 

genes and for interaction with dRing, the catalytically active subunit of PRC1 

(Muller 1995).  dRing, named for its RING-type zinc finger (Figure 1.8B), is 

an E3 ubiquitin ligase that monoubiquitylates histone H2A at lysine 119 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCY-4PKX5HX-2&_user=492137&_coverDate=10%2F31%2F2007&_rdoc=1&_fmt=full&_orig=search&_cdi=5183&_sort=d&_docanchor=&view=c&_acct=C000022719&_version=1&_urlVersion=0&_userid=492137&md5=9607d4c44acb0f4ac039e111c0d90f0e#fig1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCY-4PKX5HX-2&_user=492137&_coverDate=10%2F31%2F2007&_rdoc=1&_fmt=full&_orig=search&_cdi=5183&_sort=d&_docanchor=&view=c&_acct=C000022719&_version=1&_urlVersion=0&_userid=492137&md5=9607d4c44acb0f4ac039e111c0d90f0e#fig3


(H2AK119ub) (Wang, Wang et al. 2004).  This modification, along with 

H3K27me3, is important for PcG-mediated gene repression (de Napoles, 

Mermoud et al. 2004; Wang, Wang et al. 2004). The precise function of Ph 

in PRC1 complexes remains to be characterized, but it has been speculated 

that Ph might influence the spreading of PcG complexes (Kim, Gingery et al. 

2002). Additional new plant studies display significant evidence of sequence 

similarity between the C-terminal region of the PRC1 Ring finger proteins 

and the ubiquitin (Ubq)-like family of proteins, thus defining a new Ubq-like 

domain, the RAWUL domain.  Analysis of the conserved domain architecture 

among PRC1 Ring finger proteins revealed the existence of long sought PRC1 

protein orthologs in these organisms, suggesting the functional conservation 

of PRC1 throughout higher eukaryotes  (Sanchez-Pulido, Devos et al. 2008). 

Additionally, these proteins have multiple domains and not all have been 

annotated in the protein databases. Thus, being able to detect these 

domains through bioinformatic methods can potentially help us identify the 

distinct roles of PcG proteins and their cooperative mechanisms.  The Cavalli 

lab bioinformatically performed a phylogenetics analysis of PcG proteins on a 

broad spectrum of eukaryotes, and Hox gene clusters were mapped onto the 

species.  Phenotypes of PcG mutants and the strong binding of PRC1 to Hox 

gene clusters in flies and vertebrates suggested that these clusters are 

important PRC1 targets.  Thus, one hypothesis might be that PRC1 genes 

can be lost as a consequence of the disintegration of the Hox gene cluster, 
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which occurred repeatedly during evolution (Schuettengruber, Chourrout et 

al. 2007).  In Chapter 4, I will describe my aim to address the evolutionary 

expansion and diversification of the PcG family of proteins.  
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Figure 1.8: Polycomb schematic representations.  

A. Schematic representation of the H3 N-terminal tail. Shown are Drosophila proteins with 

rectangles representing the “writer” enzymes, and half moons representing effector “reader” 

molecules. The “ARKS” motif is boxed in red. Note although the ARKS sequence motif is 

identical in the two H3 positions (9 and 27), a different set of readers and writers exist for 

these two lysines. Note the gene “ON” and “OFF” mechanisms associated with the specific 

methylation marks.  

B. Schematic representation of known core members of PRC1 and PRC2 complexes. 

Drosophila proteins are shown as colored ovals; mouse homologs of these proteins are 

listed adjacently. Gray boxes denote the mammalian homologs discussed in detail 

throughout the text.  
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Figure 1.8 

 

 

 

 

45 
 



Chapter 2: Computational Prediction of Acetylation Substrates 

Summary 

Acetylation is a well-studied post-translational modification that has been 

associated with a broad spectrum of biological processes, notably gene 

regulation. Many studies have contributed to  knowledge of the enzymology 

underlying acetylation, including efforts to understand the molecular 

mechanism of substrate recognition by several acetyltransferases, but 

traditional experiments to determine intrinsic features of substrate site 

specificity have proven challenging.  In this project, in collaboration with Dr. 

Eran Segal at The Weizmann Institute of Science (Rehovot, Israel), I 

performed a clustering analysis of protein sequences to predict protein 

acetylation based on the sequence characteristics of acetylated lysines 

within histones.  I utilized the local amino acid sequence composition that 

represents potential acetylation sites by implementing a clustering analysis 

of histone and nonhistone sequences.  I demonstrated that this sequence 

composition has predictive power on two independent experimental datasets 

of acetylation marks.  Finally, I detected acetylation for selected putative 

substrates using mass spectrometry as described Chapter 3, and report 

several novel nonhistone acetylated substrates in budding yeast.  My 

approach, combined with more traditional experimental methods, may be 

useful for identifying acetylated substrates proteome-wide.  In this chapter,  
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I adapted text from the publication (Basu, Rose et al. 2009). 

Results 

Training, key assumptions, and method 

I used histones as a training set because of the wealth of information known 

about their PTM patterns and well-developed purification and analytical 

detection methods and focused on the major human core histones bearing a 

total of 56 lysines (H2A: 13, H2B: 19, H3: 13, H4: 11) (Figure 2.1A). To 

date, MS and antibody data suggest that there are 23 “validated” acetylated 

lysines and 33 lysines that have “not yet been observed as acetylated” in 

human histones based on literature (see Appendix for table).  I sought to 

uncover additional acetylation sites within the “not observed” class of lysines 

in a systematic, rigorous manner via my computational method.  I selected 

parameters that could influence my ability to predict acetylation sites on 

histones by making a series of assumptions.  First, I focused my attention on 

short stretches of amino acids N- and C-terminal of all 56 lysines.  Since 

structural studies of published KAT domains coupled with peptide substrates 

typically do not exceed 14-20 amino acids in length (Marmorstein 2001), a 

sliding window of a maximum number of 12 residues flanking each lysine 

was chosen (Figure 2.1B).  Residues most proximal to the lysine were 

given the highest weight (Figure 2.1B), assuming that these residues are 

most important for enzyme recognition, as several studies have shown 

47 
 



(Marmorstein 2001; Marmorstein and Roth 2001). The weight function and 

additional details on how I weighted residues is described in the Appendix. 

Second, I varied standard Blast sequence alignment parameters including 

gap penalty, extension, insertion, and deletion scores (Figure 2.1C). For 

lysines in the extreme N- and C-terminal region, such as H3K4 or H2AK129, 

I normalized the raw alignment score based on the length of the sequence.  

Additionally, both orientations of the protein sequence (N-terminal to C-

terminal or vice versa) were weighted equally.  For sequences with lysines 

located in close proximity to each other, such as H3K36 and H3K37, I 

restricted the alignment matrix so that these sequences did not receive an 

alignment score.  This restriction prevented my training set to be 

overrepresented with sequences from overlapping fragments of the same 

protein. Finally, I compensated for structural accessibility by penalizing 

buried lysines, while improving the score of accessible lysines (Luger, Mader 

et al. 1997). This, however, did not influence my ability to predict 

acetylation sites on histones, and therefore was not included in my further 

computations. 
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Figure 2.1: Schematic of computational approach 

A. Human core histone proteins (H2A: orange, H2B: red, H3: blue, H4: green) containing 

56 lysines (black) were taken as input data for computational training.  

B. A sliding window of amino acids (black bars) flanking the input lysine (at position 0) is 

used to train the model. Not all window lengths are shown. Weights (calculated as inversely 

proportional to distance [d]) are applied to amino acids based on the distance from the 

input lysine to the amino acid in positions -12 to +12.  

C. BLAST sequence alignments are performed between all 56 lysines and surrounding 

sequences and the highest scoring alignment is selected to begin the clustering analysis. 

Shown are sequences H4K5 and H3K36 (boxed in red) spanning positions -6 to +6 and their 

highest scoring match (denoted by a checkmark). Note that H4K5 and H2AK5 do not have 

six residues flanking the lysine N-terminally; scores are normalized based on length in these 

cases.  

D. Lysines clustered together based on sequence alignment scores creating a fully predictive 

hierarchical tree (four sequences are shown here; all 56 sequences are shown in Fig. 2.2). 

 E. Sequences are color coded according to published data on their modification state. Red: 

“validated” evidence of the lysine being acetylated, green: this lysine was “not observed” as 

being acetylated in literature.  

F. After establishing PredMod, predictions were made on lysines in human core histones. 

The algorithm was then validated using a set of human acetylated proteins reported in 

literature, substrates detected using a pan-acetyl IP approach, and a yeast proteome-wide 

dataset. Finally, predictions were made on yeast nonhistone sites and validated in vivo. 
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Figure 2.1 
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I performed a hierarchical clustering of core histone lysines based on 

the sequences surrounding each of these given lysines.  All 56 histone core 

sequences were aligned to each other creating a matrix of pairwise 

alignment scores; generating a hierarchical tree of histone sequences 

(Figure 2.1D).  I next classified each lysine into one of two categories 

based on its acetylation status reported in literature: “validated” (23 

lysines), or “not observed” (33 lysines) (see Appendix).  Finally, I visually 

categorized each of the 56 lysines by color-coding my tree based on the 

acetylation status of each lysine (Figure 2.1E).  

To assess how robust the clustering was and how well it could actually 

predict lysine acetylation (Figure 2.1F1), I took all 56 lysines and 

performed a Leave One out cross-Validation (LOV) (Cooper, Aliferis et al. 

1997) by iteratively excluding one lysine from my training set.  Next, I 

reconstructed the hierarchical tree with the remaining 55 lysines, and 

incorporated the excluded single lysine observation as test data.  For each 

set and combination of predefined parameters (stated above) and in a single 

run, I performed a LOV analysis to examine the predictive power on all 56 

lysines to discover which set of parameters best optimized classification 

power.  If two lysines were in overlapping fragments of the same protein, I 

excluded both of these lysines from my training set when either lysine was a 

test case.  I took each test lysine (56) and traversed through my training 
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tree to find which subgroup of sequences my target sequence formed the 

tightest cluster with. 

A Receiving Operating Curve (ROC) analysis was performed on my test 

dataset (Figure 2.2), where the statistics measure used was the Area Under 

Curve (AUC).  An AUC of 1 represents a perfect prediction and an AUC of 0.5 

random predictions.  Each point on a single curve of the ROC plot was 

calculated by measuring the false positive versus true positive rate of the 

performance on all 56 lysines for a given parameter(s) under a cutoff 

alignment score.  If the “test lysine” clustered within a group of “validated” 

acetylated lysines (Figure 2.3; red color) above the cutoff score, the lysine 

was predicted to be acetylated.  Conversely, if the test lysine clustered 

within a group of “not observed” lysines (Figure 2.3; green color) above the 

alignment score, the lysine was predicted as not acetylated.  The default 

status of the lysine when it did not fall into the above criteria was “not 

acetylated.”  The best ROC plot achieved an AUC of 0.80, and the 

parameters in this case included six weighted residues to both the left and 

right of the tested lysine (Figure 2.2).  A threshold for prediction was also 

determined based on this plot. To test the significance of this score, I 

applied the above procedure to 1000 random permutations of the labels of 

the observed and not observed lysines.  The median AUC in these 

permutations was 0.64 and the maximum score was 0.79, and thus, my AUC 

was statistically significant (p<0.001).   

52 
 



Computational prediction of novel human histone acetylation marks 

and in vivo validation by mass spectrometry  

After hierarchical clustering of all the lysine-embedded histone 

sequences, I next sought to predict novel acetylation sites in the human core 

histones.  As the tree illustrates in Fig. 2.3, “not observed” lysines that 

clustered tightly with “validated” acetylated lysines (black arrows) were 

potential acetylation targets because of their similar sequence constitution. 

Based on the threshold, as determined by the ROC plot, I selected these as 

candidate sites. The method described above predicted seven novel 

acetylation sites in the human core histones; four in H2A (K9, K13, K125, 

K127), one in H2B (K116), one in H4 (K44), and one in H3 (K37) (Figure 

2.3; black arrows, for enlarged view of tree, please see Appendix). This 

large number of predictive sites was unexpected, since histones have been 

intensely investigated for PTMs in recent years.  I describe all details of my 

in vivo validation in Chapter 3.  In summary, I correctly predicted four of 

these seven acetyl-lysine sites suggesting that the algorithm is capable to 

identify acetylation sites in human histone proteins.  I also selected a small 

number of lysines that I predicted with high confidence as “not acetylated”.  

These lysines were H3K64 and H3K115, and preliminary results display that 

these lysines to my knowledge have not been observed as acetylated 

(personal communication, K. Rose). 
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Figure 2.2:  Computational prediction of human histone acetylation sites 

ROC curve using LOV on the 56 human histone lysines for selected parameters. True 

positive rate (y axis) versus false positive rate (x axis). Win=(x,y) denotes the length of 

residues spanning the lysine; x represents the number of residues N-terminal to the lysine 

and y represents the number of residues C-terminal to the lysine. Win=4,3, AUC=0.74; 

Win=6,6, AUC=0.79; Win=8,8, AUC=0.53. Diagonal line represents a random prediction. 
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Figure 2.3: Predictive hierarchical tree of all 56 lysines in human core histones  

Predictive tree of all 56 lysines from human core histone sequences using hierarchical 

clustering. Histone lysines (in red or green) are color coded according to published data on 

their modification state as described in Fig. 2.1E. For each pair of sequences under a single 

node, amino acids are colored in light purple (identical residues) or dark blue (in accordance 

with the BLOSUM matrix). Underlined red lysines represent the residue that was used for 

training the algorithm. Dashed red vertical line represents the selected threshold used to 

make predictions. Grey boxes represent lysines that cluster together. Black arrows 

represent those lysines predicted as acetylated. For an enlarged view of tree, please see 

Appendix. An “R” next to the lysine indicates that a C- to N-terminal arrangement was 

used in the alignment. 
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Figure 2.3 
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Nonhistone sequence based dataset prediction and validation  

Since my computational analysis revealed a high level of sequence 

homogeneity among acetylated lysines within histone proteins, leading to 

the successful prediction of novel modified residues, I next wondered if my 

approach might also enable us to predict nonhistone acetylation sites as well  

(Figure 2.1F2).  In my first approach, I included a dataset that contained 

both nuclear and cytosolic proteins from HeLa cells, which were 

immunoprecipitated with a pan-acetyl antibody (Figure 2.4A) and identified 

by MS (Kim, Sprung et al. 2006) (see Appendix for full list).  The 

precipitate contained peptides with a total of 1413 lysines, and 51 previously 

validated acetylation sites. With PredMod, I was able to predict 34 (67%) of 

these sites correctly (Figure 2.4C) when they were surrounded by six 

residues to the left and right (AUC= 0.75, sensitivity (Sn)=0.60, specificity 

(Sp)=0.91) (Figure 2.4C; orange curve).  In total, 6% (85) of the total 

number of lysines were predicted that were not validated as acetylated (Fp 

< 6%).  Fp is a maximum false positive rate since a true negative count 

cannot be accurately determined because many of these lysines could 

potentially be acetylated, but not detected under the experimental 

procedures used.  

In my second dataset, I compiled a list of 32 proteins containing 1378 

lysines with 73 of these reported in literature to be acetylated in vivo and/or 
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in vitro (Figure 2.4B, see Appendix).  With PredMod, I predicted 39 out of 

73 (53%) lysine marks accurately with Fp < 6.5% (AUC= 0.74, Sn=0.58, 

Sp=0.91) when these were surrounded by six residues to the left and right 

(Figure 2.4D; orange).  

Both test datasets exhibited a decrease in performance when larger 

numbers of residues N- and C-terminal to the target lysine were used (blue 

line), suggesting that KATs may recognize a smaller and defined set of 

residues.  Overall, my results from both approaches revealed that my 

selected parameters for histones were also valid for the prediction of 

acetylated nonhistone substrates using a ROC analysis approach. 
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Figure 2.4: Prediction performance on test set of human acetylated substrates.   

A. Pan-acetyl immunoprecipitated substrates. Black line represents the full-length protein. 

Red filled circles indicate lysines that are predicted and correctly validated in their positions 

relative to the full-length of the protein. Red empty circles indicate lysines predicted, but 

not validated under the experimental conditions tested in their positions relative to the full-

length of the protein.  

B. Literature validated human acetylated proteins. Symbols are the same as in A.  

C. ROC curve for human pan-acetyl IP substrate test set. Y axis represents the true positive 

rate and X axis the false positive rate. Win=(x,y) denotes the length of residues spanning 

the lysine; x: number of residues N-terminal to the lysine; y: number of residues C-terminal 

to the lysine. Diagonal line represents a random prediction.  

D. ROC curve for human literature-validated test set. Symbols are the same as in C.  
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Figure 2.4 
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Analysis of acetylation motifs 

I next sought to understand which amino acids play a critical role in 

acetylation site selection and asked whether there were preferences for 

certain amino acids near the target acetylated lysines in my datasets. 

Notably, when I examined the surrounding residues (six residues to the left 

and right) of a “validated” acetylated lysine versus a “not observed” one in 

human histone and nonhistone proteins I discovered an enrichment for small 

residues (G/A in pink), lysines (K in green), and phosphorylatable residues 

(S/T in blue) (Figure 2.5).  To test whether the observed enrichment of G, 

K, and S was statistically significant, I determined the frequency of these 

residues flanking a lysine in the entire human proteome.  I noticed that on 

average, these residues were of significantly higher frequency in my 

datasets than in the human proteome.  I employed the hypergeometric test 

to measure the statistical relevance of this observation. For a table with all 

the p-values of these statistical observations (see Appendix for full list of 

values).  

My results display that the most significant p-values were found in the 

category of small residues (p<0.01 in multiple flanking positions, Figure 

2.5, tick marks), suggesting that small amino acids, perhaps due to their 

sterically undemanding side chains, could accommodate the flexibility of the 

substrate thus allowing protein docking and catalysis.  This observation was 
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in agreement with a previous study (Schwartz, Chou et al. 2009), which 

revealed that glycine preceding lysine was common among acetylated 

lysines.  In conclusion, I was able to identify a significant enrichment of 

mainly small amino acids and lysines surrounding “validated” acetylated 

lysines in comparison to “not observed” ones, suggesting that KAT enzymes 

have a general need for specific residues for recognition and/or activity.  

These observations are in agreement with studies of several KATs with test 

substrates (Marmorstein 2001).  
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Figure 2.5: Frequency distribution of amino acids surrounding lysines in human 

histone and nonhistone proteins. 

A. Frequency of amino acids (Y-axis) spanning positions –6 to +6 (X-axis) in validated 

acetylated lysines in histone proteins (23 lysines). Residues in green: basic, red: 

hydrophobic, pink: small, blue: S/T, black: all other residues. Underlined red K: lysine that 

has been validated experimentally as acetylated, and an underlined green K: lysine that has 

not been experimentally observed as acetylated. “X” denotes that no amino was present in 

that position.  

B. Frequency of amino acids (Y-axis) spanning positions –6 to +6 (X-axis) in validated 

acetylated lysines within proteins in literature (73 lysines). Colors represented same as in A. 

C. Frequency of amino acids (Y-axis) spanning positions –6 to +6 (X-axis) in validated 

lysines in the pan-acetyl IP substrates (51 lysines). Colors represented same as in A.  

D. Frequency of amino acids (Y-axis) spanning positions –6 to +6 (X-axis) in “not observed 

as acetylated” lysines in histones (33 lysines). Colors represented same as in A.  

E. Frequency of amino acids (Y-axis) spanning positions –6 to +6 (X-axis)  not observed as 

acetylated lysines in proteins as reported in literature and not observed as acetylated 

lysines in pan-acetyl IP substrates (3493 lysines). Colors represented same as in A.  
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Figure 2.5 
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S.cerevisiae proteome-wide prediction  

The previous predictions were performed with human proteins, and I 

therefore wondered whether my algorithm would also be able to predict 

acetylation sites in proteins from other organisms (Figure 2.1F3). Since 

histone acetylation has been studied extensively in budding yeast, I 

assessed the performance of my model on a proteome-wide dataset that 

included acetylated peptides in S. cerevisiae (Craig, Cortens et al. 2006) 

(see Appendix for details). In addition, I experimentally validated my 

predicted acetylation sites in candidate yeast nonhistone proteins in vivo.  

In my first approach, I examined an in vitro proteome-wide dataset of 

acetylated peptides of S. cerevisiae that contains 356 peptides including also 

acetylated histone peptides.  This dataset allowed me to approximate the 

number of yeast acetylation events on a global level (0.6%; 356 acetylated 

peptides out of approx. 50,000 total non-redundant peptides), and the 

substrates themselves allowed me to further validate my prediction 

algorithm.  I filtered these protein-derived peptides according to their 

cellular compartment (nuclear vs. cytoplasmic) (Huh, Falvo et al. 2003), and 

correctly predicted 48% of acetylation events on nuclear proteins (79 lysines 

total, AUC= 0.71, Sn=0.63, Sp=0.92, Fp < 4%), and 31% on the 

cytoplasmic proteins (248 lysines total, AUC= 0.70, Sn=0.61, Sp=0.90, Fp < 

5%) (Figure 2.6A, B).  I also noted that nuclear yeast proteins showed a 
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similar enrichment for small residues surrounding the target lysine, as found 

in the human substrates (Figure 2.7; tick marks).  Given the mass 

resolution of many of the spectra used to create the yeast library, it was not 

possible to distinguish a priori between acetyl-lysine and trimethyl-lysine on 

the basis of the tandem spectra alone.  Thus my yeast proteome-wide 

dataset could potentially contain tri-methylated peptides.  Since there are 

few reported trimethyl marks across the yeast proteome, and my dataset 

does not contain the previously validated yeast histone trimethylated sites 

H3K36, H3K79, and H3K4 (Garcia, Hake et al. 2007), I believe that the 

number of trimethyl sites in the dataset could be small. In accordance, my 

dataset contains the following peptides: H3K9 (Suka, Suka et al. 2001), 

H3K14 (Suka, Suka et al. 2001), H3K18 (Suka, Suka et al. 2001), H3K27 

(Suka, Suka et al. 2001), H3K56 (Xu, Zhang et al. 2005), H2BK11 (Suka, 

Suka et al. 2001), H2BK16 (Suka, Suka et al. 2001), H4K5 (Suka, Suka et 

al. 2001), H4K8 (Suka, Suka et al. 2001), H4K12 (Suka, Suka et al. 2001), 

and H4K16 (Suka, Suka et al. 2001); all yeast acetyl marks validated in 

literature. Of note, my current prediction accuracy could be limited by an 

underrepresentation of acetyl-lysines, and it would be interesting to see how 

my accuracy improves with datasets obtained using more sensitive MS 

techniques. 
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Figure 2.6: Performance on Yeast Proteome-wide Dataset 

A. Pie chart reflecting correctly predicted lysines on nuclear versus cytosolic peptides in S. 

cerevisiae. Peptides were generated from Global Proteome Machine database. Nuclear 

peptides (108 peptides) and cytosolic peptides (248 peptides) shown.  

B. Performance accuracy (#correctly predicted as acetylated/total number of positives) and 

false positive rate on nuclear peptides versus cytosolic peptides. Individual training sets 

(histones, nuclear, and cytosolic proteins) used to perform accuracy. The first number in 

table cell reflects accuracy, and second number after the | reflects the percentage of lysines 

predicted as acetylated in the test dataset (Fp).  
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Figure 2.7: Frequency distribution of amino acids surrounding yeast lysines 

A. Frequency of amino acids (Y-axis) spanning positions –6 to +6 (X-axis) in validated 

acetylated lysines in yeast nuclear histone and nonhistone proteins (108 lysines). Residues 

in green: basic, red: hydrophobic, pink: small, blue: S/T, black: all other residues. 

Underlined red K: lysine that has been validated experimentally as acetylated, and an 

underlined green K: lysine that has not been experimentally observed as acetylated. Tick 

marks represent residues described in text.   

B. Frequency of amino acids in validated acetylated lysines in yeast nuclear proteins 

excluding histones (79 lysines). Colors are as in A.  

C. Frequency of amino acids in validated acetylated lysines in yeast cytosolic proteins (248 

lysines). Colors are as in A.  

D.  Frequency of amino acids in not observed as acetylated lysines in yeast nuclear and 

cytosolic nonhistones (13814 lysines). Colors are as in A. 
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In my second approach, I validated my predictions on three yeast 

candidate proteins that had previously not been published to contain 

acetylated sites (Spt6 (Clark-Adams and Winston 1987), Sir3 (Gasser and 

Cockell 2001), and Eaf7 (Krogan, Baetz et al. 2004).  With PredMod, I 

predicted 15 sites to be acetylated out of 416 total lysines in my three 

candidate proteins combined.  Four of these, within my top six ranked 

predicted sites were validated as acetylated by MS and therefore predicted 

correctly (more detail in Chapter 3).  Since the total number of acetylated 

lysines in the yeast proteome is approximately 0.6% my in vivo hit rate of 

approximately 25% is of reasonable accuracy.  

Finally, in order to allow users to view predictions of their favorite 

protein, I developed a software tool, PredMod, which allows a user to enter a 

protein of choice and view all lysines, with their respective confidence scores 

with which they are predicted (Figure 2.8)(described further in Appendix). 

Users can also view lysine predictions of substrates that were contained in 

both independent validation sets as well as histone proteins including 

variants in multiple organisms.  In the future, PredMod will potentially be 

powerful for identifying bonafide acetylation sites in nonhistone proteins, and 

further display the strength of using histone sequences as a useful guide for 

nonhistone acetylation prediction.  

 

69 
 



 

 

 

 
Figure 2.8: PredMod, an acetylation prediction tool 

PredMod, an acetylation prediction tool was developed for a user to enter a protein of choice 

and obtain a list of predicted acetyl lysines with a confidence score for the lysine. 
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Chapter 2 Discussion 

My results suggest that the “sequence environment” in both histone and 

nonhistone proteins contributes to the likelihood of acetylation.  Consistent 

across both human and yeast acetyl datasets, I noticed an enrichment of 

small residues, particularly glycine, and charged amino acids flanking 

validated acetylated lysines (Figure 2.5, Figure 2.7; tick marks).  It is 

possible that I am perhaps achieving a higher accuracy for nuclear proteins, 

since the KAT substrates (histones) I used for training PredMod, mostly 

reside in the nucleus.  My results also suggest that nuclear versus 

cytoplasmic KATs in yeast could possess unique substrate recognition 

profiles as illustrated by the differences in preferred flanking residues C-

terminal to the lysine (Figure 2.7).  In order to address whether histones 

were the best training set for nonhistone prediction, I retrained my 

algorithm with nonhistone lysines exclusively.  I compiled lysines in both the 

literature scanned and pan-acetyl datasets together, and observed whether I 

would perform better using the nonhistone set for training purposes.  I used 

five-fold cross validation on the datasets, thereby training on 4/5 of the 

dataset, and retesting on 1/5 of the dataset.  I obtained an accuracy of 65% 

when training on histones, and 60% when training on nonhistones.  When I 

trained on nonhistones to predict histones sites also using cross validation, I 

obtained 54%. Interestingly, I achieved a higher accuracy when training on 

histone versus nonhistone proteins. This could be due to the fact that in my 
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nonhistone dataset, I have a heterogeneous distribution of enzymes, due to 

the fact that this set contains both nuclear and cytosolic proteins. A 

compartmentalization between nuclear and cytoplasmic proteins could help 

achieve better results.  

In my computational analysis, as shown in Figure 2.5, I observed that 

15 out of the 51 pan-acetyl lysine substrates contained a histidine adjacent 

to the lysine (C-terminal) (Figure 2.5C).  It is possible that this pan-acetyl 

antibody has a specific preference for histidine immediately adjacent to the 

acetylated lysine (Figure 2.5C).  Whether the observed enrichment of 

histidines is due to a bias of the antibody or whether it could be part of a 

KAT recognition motif needs to be further explored.  In contrast to the 

enrichment of small residues flanking validated acetylated lysines, I did not 

observe an enrichment of small amino acids surrounding “not observed” 

lysines in human histones and nonhistones therefore strengthen my 

confidence in the pronounced signal among acetylated lysines (Figure 

2.5D,E). 

An area that was unexplored  that would be interesting to delve into is 

whether structural information could add to the predictive power of the 

algorithm.  Thus, if a given lysine is located within a loop, beta-strand or 

alpha-helix, I can add this information onto the algorithm, where a lysine 

within the loop region would be more exposed than a lysine within a beta-

strand.  Current structural prediction programs such as Psi-Pred and other 
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prediction programs can aid in predicting these regions, and as a result the 

misclassified data may become true positives.  

The prediction program, PredMod that I developed is a promising step 

in detecting additional novel acetylation sites.  A study that has been 

recently published involves a quantitative proteomics approach to detect 

acetylation substrates (Choudhary, Kumar et al. 2009). One of the major 

findings of the study is that lysine characteristics of sequences in 

mitochondria, nuclear, and the cytoplasm are divergent from each other 

(Choudhary, Kumar et al. 2009). They observed the following results: all 

acetylated substrates have high frequency of tyrosines in the +1 position.  I 

suspect that this could be due to the bias of pan-acetyl antibody that was 

used in their study, which resembles the high frequency of histidine in the 

+1 position on my pan-acetyl antibody dataset.  In agreement with my 

analysis, they find an enrichment for glycine in the -1 position within their 

nuclear acetyl sites, unlike the cytosolic sites that do not show this type of 

preference.  They also discover a high frequency of lysines surrounding 

acetylated lysines, which is also in agreement with my studies.  Conclusions 

such as this from these types of large scale studies makes me curious as to 

whether incorporating other modifications that are potentially on the same 

peptide could be included into the algorithm.  Since it is known that there is 

cross-regulation occurring between modifications on histone tails, and even 

nonhistones, a parameter that I could add to the algorithm would be to 
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include other modifications that are present within the flanking residues of a 

target lysine. Information on additional peptide modifications from the 

Global Proteome Machine Database (GPMDB) would be useful to incorporate 

on a proteome-wide scale.  In the early stages when I was developing the 

algorithm, I utilized this same approach on histone modifications in order to 

derive whether multiple modifications within the same region of the histone 

would influence my histone predictions overall.  For example, if the target 

lysine was H3K9ac, instead of representing the +1 residue relative to H3K9 

as H3S10, this residue was represented as phosphorylated H3S10. Using this 

method, I achieved an accuracy of 70%, which is lower than my current 

prediction accuracy.  One possibility of why I may have been achieving a 

lower prediction accuracy could be that I was overspecifying the training set, 

resulting in some of the true positives being missed.  More complete 

quantitative data such as the abundance levels of additional PTMs, could be 

crucial for my algorithm performance.   

Overall, my results suggest that KATs target specific sequence 

patterns, and that the predictive knowledge about histone acetylation 

provides a platform for studying both histone and nonhistone lysine 

acetylation.  My model and results represent a step towards gaining a 

framework for predicting lysine acetylation sites in both human and yeast 

proteomes.  It will be of interest in future studies to see whether my 

algorithm is capable of predicting lysine acetylation sites in many other 
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organisms.  As more substrates in the acetyl-proteome are discovered (Yang 

and Seto 2008), it is likely that the predictive power of my approach will be 

strengthened, leading to more accurate confidence in the predicted site. 

Though my training dataset is 10-100 times in magnitude lower than other 

PTM datasets including acetylation (9, 21, 22), my approximate sensitivity 

measure of 60% is comparable and often higher than other prediction 

algorithms that achieve as low as 16-18% sensitivity (Blom, Sicheritz-

Ponten et al. 2004; Saunders, Brinkworth et al. 2008; Schwartz, Chou et al. 

2009). It would be interesting to see whether similar approaches could be 

applied to the prediction of other widespread histone modifications such as 

lysine methylation.  
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Chapter 3: Experimental validation of predicted acetylation targets  

Summary 

In this chapter, I describe the validation of my computationally predicted 

targets through wet-bench experiments that I performed in the Allis 

laboratory.  In collaboration with the Don Hunt laboratory at the University 

of Virginia (Charlottesville, VA), and the Yingming Zhao laboratory at the 

University of Texas Southwestern Medical Center (Dallas, TX), I describe 

several novel acetylation marks in human histones and yeast nonhistone 

proteins that were correctly validated through my computationally oriented 

algorithm (as described in Chapter 2) via mass spectrometry.  These marks 

further validate my computational algorithm and illustrate that primary 

sequence context of histone and nonhistone lysines are a driving factor in 

acetylation target and recognition.  In addition, in order to determine 

acetyltransferase rules and pinpoint residues that could be critical for 

enzymatic recognition, I present data on yeast mutagenesis experiments 

that I performed in histone H3 in collaboration with the Ben Garcia 

laboratory at Princeton University (Princeton, NJ).  These results have led to 

testable models and hypotheses that may be further explored.  
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Results 

In vivo validation by mass spectrometry  

In Chapter 2, I described the computational method that I used in 

order to predict acetylation marks in histone and nonhistone proteins. As 

described in Chapter 2, I predicted seven novel acetylation sites in the 

human core histones; four in H2A (K9, K13, K125, K127), one in H2B 

(K116), one in H4 (K44), and one in H3 (K37) (Figure 2.3).  This large 

number of predicted sites was unexpected, since histones have been 

intensely investigated for PTMs in recent years.  To test whether these 

predicted lysines are acetylated in vivo, the Don Hunt lab employed an MS-

based approach to examine histone peptides from human cell lines (Hela and 

HL60) that were asynchronously growing and treated without any HDAC 

inhibitors.  HDAC inhibitors were excluded so that I could capture the non-

hyper levels of acetylation in the asynchronously growing cells.   All peptides 

containing the predicted lysines were identified, and importantly four of the 

seven predicted acetyl-lysines were experimentally validated: H2AK9, 

H2AK13, H2AK125, H2AK127 (Figure 3.1). In collaboration with the Ben 

Garcia lab, I also looked at histone acetylation marks under sodium butyrate 

treatment (an HDAC inhibitor), to assess whether this condition would result 

in an altogether different set of acetylation marks which could potentially 

alter my training set composition or prediction accuracy on the algorithm.  
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Under sodium-butyrate treatment, Hela cells displayed H3K37 and H2BK116 

acetylation, two of my predicted acetylation sites, (personal communication, 

Ben Garcia), however since these marks were only observed under these 

special conditions, I did not count them as bonafide “validated” sites. 

Additional acetyl marks observed under sodium butyrate treatment were: 

K95, K119 in H2A; K34, K46, K108, K116 in H2B; K77, K79, K91 in H4, and 

K37 in H3.  Incorporating these sites into my training set of “validated” 

lysines did not alter the prediction performance of my algorithm significantly.  

In summary, I correctly predicted four of these seven acetyl-lysine 

sites suggesting that the algorithm is capable to identify acetylation sites in 

human histone proteins. 
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Figure 3.1: Validation on histone predicted lysines  

Human H2A and H2B, H3, and H4 sequences are shown. Literature-validated acetylated 

lysines are red, and lysines which have not been observed as acetylated are green. Lysines 

in blue under filled green circle were not predicted as acetylated, but validated under 

experimental conditions tested using LC/MS/MS. Lysines in blue under filled red circle were 

predicted as acetylated, and validated under experimental conditions tested using 

LC/MS/MS. Lysines in green under open red circle were predicted as acetylated, but have 

not yet been validated under experimental conditions tested.   
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Yeast in vivo validation  

The previous predictions were made on human histone and nonhistone 

datasets, and I therefore wondered whether my algorithm would also be 

able to predict acetylation sites in proteins from other organisms. Since 

histone acetylation has been studied extensively in budding yeast, I 

assessed the performance of my model on a proteome-wide dataset that 

included acetylated peptides in S. cerevisiae (Craig, Cortens et al. 2006) 

(Chapter 2). In addition, I experimentally validated predicted acetylation 

sites in candidate yeast nonhistone proteins in vivo. 

An outline of my overall approach and method is as follows: I) I  ran 

the algorithm against the 30 chromatin-associated proteins (of interest to 

the Allis Lab) in the S. cerevisiae proteome by taking a sequence stretch of 

six residues N- and C-terminal to the target lysine because of the promising 

human ROC results. I used the nonhistone lysine traversal method described 

in Chapter 2 and applied to the human histone-trained tree to find which 

subgroup of sequences the nonhistone yeast sequence formed the tightest 

cluster with. Based on the threshold score that was determined by the 

human ROC analysis, I then selected candidate proteins that had the highest 

scoring alignments with acetylated histone sequences.  The highest ranked 

predicted lysine acetylation sites were in the proteins Cac2 (component of 

the chromatin assembly complex) (Enomoto and Berman 1998), Spt6 (a 

transcriptional elongation factor and nucleosome disassembly factor) (Clark-
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Adams and Winston 1987), Sir3 (a silencing factor that establishes a 

transcriptionally silent chromatin state) (Gasser and Cockell 2001), and Eaf7 

(an Esa1 associated factor) (Krogan, Baetz et al. 2004).  Additionally, for 

each of these proteins, I ranked in order of confidence lysines that would be 

predicted as likely KAT targets. III) I then purified my candidate proteins by 

performing a TAP purification (Figure 3.2A) and subsequently analyzed 

these via mass spectrometry according to previously published rules (Chen, 

Kwon et al. 2005). 

In conclusion, I validated my predictions on three yeast candidate 

proteins that had previously not been published to contain acetylated sites 

(Spt6 (Clark-Adams and Winston 1987), Sir3 (Gasser and Cockell 2001), 

and Eaf7 (Krogan, Baetz et al. 2004).  I expressed and purified the TAP-

tagged candidate proteins in S. cerevisiae (Figure 3.2A) and subsequently 

subjected them to LC/MS/MS.  With PredMod, I predicted 15 sites to be 

acetylated out of 416 total lysines in three candidate proteins combined. 

Four of these, within the top six ranked predicted sites (Figure 3.2B,C,D), 

were validated as acetylated by MS and therefore predicted correctly 

(Figure 3.2B,C,D). Since the total number of acetylated lysines in the yeast 

proteome is approximately 0.6% (discussed in Chapter 2), my in vivo hit 

rate of approximately 25% is of reasonable accuracy.  
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These results demonstrate the power of PredMod for identifying bona 

fide acetylation sites in nonhistone proteins, and further display the strength 

of using histone sequences as a useful guide for nonhistone acetylation 

prediction. 
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Figure 3.2: Novel predictions and in-vivo validations in S. cerevisiae 

A.  Coomassie-stained gel of TAP pulldown purification of yeast proteins Eaf7, Sir3, and 

Spt6. Asterisks denote bands that were isolated and inspected for acetylation by MS.  

B-D. Shown are regions of the sequence alignment where there is sequence identity or 

similarity.  A purple pair of amino acids represents identical residues and a blue pair of 

amino acids represents residues that can be evolutionarily substitutable in accordance with 

the BLOSUM matrix. A black bar below the alignment represents the length of nonhistone 

protein. The numbers to the right represent the total number of amino acids (aa) and the 

number of lysines (K) in the protein. Red filled circles depict lysines that were predicted 

correctly on the yeast nonhistone substrate at the specific location relative to the full length 

of the protein. Red empty circles represent lysines that were predicted, but not confirmed 

by mass spectrometry under the conditions tested. Green filled circles represent lysines that 

were not predicted, but validated experimentally by MS.  A blue lysine with a red filled circle 

on top represents those lysines that were correctly predicted. Boxed R represents the rank 

of prediction among all predicted acetylated sites on the protein. B. Eaf7K343 (R=2) 

sequence alignment with H4K5. C. Sir3K3 (R=4) sequence alignment with H3K56. Symbols 

denoted as in B. D. Spt6K958 (R=1) and Spt6K319 (R=6) sequence alignments with H4K5 

and H3K56, respectively. Symbols denoted as in B.  
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Figure 3.2 
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In vivo mutagenesis in budding yeast 

My computational analysis in Chapter 2 led me to conduct experiments that 

could help identify rules, or specific patterns that could potentially be 

important for acetyltransferase recognition in order to address the question: 

is immediate sequence context of lysine important in HAT recognition? From 

my statistical and quantitative analysis methods, I came to the conclusion 

that sequence context surrounding a target acetylated lysine can dictate KAT 

substrate preferences.  However, to fully test the effectiveness of my 

approach, I wanted to perform specific wet-bench experiments to formalize 

the rules necessary for enzyme recognition.  Since my computational 

analysis led to a frequency enrichment analysis of flanking residues 

surrounding an acetylated lysine, I wanted to mutate these residues in vivo 

to determine what effects these mutations might have on known PTMs.  I 

chose S. cerevisiae as the organism to perform site-directed mutagenesis in 

because of its robust genetic manipulation techniques and easily available 

reagents.  Additionally, yeast H3 and H4 are highly conserved with human 

H3 and H4 which were a part of the training set the algorithm was based on.  

My first step was to examine the hierarchical tree in Chapter 2 (Figure 2.3), 

in order to determine whether there were lysine embedded sequences under 

the same cluster with similar flanking sequence profiles.  
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Via the clustering analysis, I singled out a cluster containing two 

sequences that were tightly paired (ranked as the tightest pair of sequences 

in the tree).  As shown in Fig 3.3A, these sequences were H3K14 and 

H3K36. Close examination of the sequence alignment of these two 

sequences reveals phosphorylatable residues in the -4 position, glycine in 

the –1 position (small), a proline in the +2 position, and a basic residue in 

the +3 position (Figure 3.3A).  Also, H3K14 and H3K36 are both Gcn5-

mediated acetyl sites (Howe, Auston et al. 2001; Morris, Rao et al. 2007).  

Furthermore, H3K36 is a bonafide trimethyl site, where the methylation of 

this site occurs via the methyltransferase, Set2 (Strahl, Grant et al. 2002).  

Additionally, both of these acetyl sites are associated with transcriptional 

activation (Pokholok, Harbison et al. 2005), and H3K36me2 and H3K36me3 

are associated with transcriptional elongation, and are needed to prevent 

cryptic initiation (Kizer, Phatnani et al. 2005; Morris, Shibata et al. 2005).  

The distinct functional roles of H3K36 acetylation and methylation made me 

curious as to whether H3K14, a bonafide acetyl site, could also be 

methylated if its sequence was mutated to resemble H3K36’s.  I next 

checked whether there was an existing literature of H3K14 methylation in 

yeast.  To my knowledge, there is no published literature of H3K14 

methylation in organisms ranging from mammals to yeast to date (Garcia, 

Hake et al. 2007).  
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In order to address the question of whether H3K14 is methylated after 

mutagenesis within the flanking residues, I mutagenized the flanking 

residues of H3K14 to resemble H3K36.  A key question that I could also 

attempt to answer in parallel through these experiments was: how do H3K14 

acetylation levels fluctuate as a result of specific mutations?  The table below 

(Table 3.1) displays the mutations that I chose to make, the rationale 

behind why selecting these mutations would enable me to learn something 

about acetylation based on my computationally derived frequency analysis 

(Figures 2.5, 2.7), and a prediction of how acetylation levels would 

increase or decrease upon making the selected mutations, which were 

designed to resemble the flanking H3K36 sequence profile (Figure 3.3B):       

Table 3.1: Mutations, Rationale, and Acetylation Prediction           

Mutation Rationale  Acetylation Prediction  

G13->V       Valine is beta branched and more 

conformationally rigid as opposed to 

glycine with a flexible side chain. 

Acetylation will be decreased, as 

glycines are enriched on the N-terminal 

side of an acetylated lysine. 

A15->V Control. Since I mutated G13 to V 

on the left, a parallel mutation on 

the right is a good control.  

No change. Valines are present in the 

+1 position of acetylated substrates 

A15->K Lysine is a charged amino acid. Do 

two adjacent charged residues have 

an effect on lysine acetylation or 

methylation?  

Acetylation could increase or decrease. 

There are lysines in the +1 positions of  

acetylated substrates, and in the “not 

observed as acetylated” substrates.  

G13->V, 

A15->K 

Double mutation, identical  residues 

surrounding H3K36 

Decrease in acetylation mainly caused 

by the G13V mutation. 

87 
 



             

 

 

 

 

 

 

 

 

Figure 3.3: Mutagenized yeast histones  

 A. Blast sequence alignment between H3K14 and H3K36. Both sites are acetylated by Gcn5 

and H3K36me can be mono, di, or tri-methylated. Colored residues either identical or 

similar according to BLOSUM matrix(Eddy 2004).  

B. Mutations that were made in H3 of budding yeast in vivo. Effect of methylation and 

acetylation levels as a result of mutagenesis was the question I tried to answer in study. 

C. Acid extracted histones (1 microgram) were electrophoresed in a 15% SDS-PAGE and 

analyzed by Western blot. Shown is the marker (left) and the three strains that histones 

were extracted from (right 3 lanes). These strains are WT, H3G13V, H3A15K, and H3A15V. 

Untagged H3 (shown in second lane), and Myc-tagged H3 is shown with arrow (all other 

lanes).  

D. Western Blot using a general H3 antibody (Abcam) with same fractions as in C, 

electrophoresed in a 15% SDS-PAGE gel.    

E. Western Blot using H3K9ac (Abcam) and H3K23ac antibodies (Abcam) to display that 

Myc-tag on the mutant strains did not affect acetylation levels of H3. Strains are H3A15K 

(left) and H3G13V (right).  
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Figure 3.3 

 

 

 

 

 

89 
 



I used a budding yeast plasmid shuffle strain (detail described in 

Methods) to perform yeast mutagenesis by making the following H3 shuffle 

plasmid mutations: H3A15K, H3G13V, and H3A15V.  In the strain that I 

wanted to make these mutations in, I shuffled out the WT plasmid and 

inserted my mutant plasmid containing my desired mutation.  To check 

whether my strains had the correct mutations, I performed a plasmid 

recovery followed by DNA sequencing.  Once I confirmed that I had the 

correct mutations in my yeast strains, I extracted yeast nuclei through 

douncing and spheroplasting, and used an acid extraction procedure of 

histone proteins (Figure 3.3C, D).  Since the mutant strains were tagged 

with a N-terminal Myc tag, I was concerned that the Myc-tagging could alter 

the acetylation status of histone H3.  Thus, I checked acetylation levels of 

my WT versus mutant strains against the general H3, H3K9ac, and H3K23ac 

antibodies (Figure 3.3D, E).  In the mutants, acetylation was at a 

comparable level to WT acetylation levels, suggesting that the Myc tag did 

not grossly affect levels of acetylation.  In collaboration with the Ben Garcia 

laboratory at Princeton University, mass spectrometry analysis of WT and 

mutant H3 was performed using LC/MS/MS, and the following results were 

revealed:  there was no methylation visible on H3K14 in either the WT or 

any of the mutant strains.  The double mutant strain (G13V, A15K) 

displayed a lethality phenotype.  While this could be interesting and worth 

investigating, I chose not to follow up on it further at the moment.  In all my 
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mutant strains excluding my designated control (A15V), H3K14 acetylation 

was decreased (Figure 3.4A); the most significant decrease was under the 

alanine to lysine mutation in the +1 position as H3K14 decreased by four- 

fold (Figure 3.4A).  Under this same mutation, H3K9ac increased by 

approximately two fold.  To my surprise, methylation levels of H3K36 were 

also affected under the A15K mutation.  I did not expect that distorting the 

sequence immediately surrounding H3K14 would have such a pronounced 

effect on H3K36 methylation levels, such that the unmodified form of H3K36 

increased twenty fold, H3K36 monomethyl increased ten-fold (H3K36me1), 

while H3K36 dimethyl (H3K36me2) and trimethyl (H3K36me3) levels 

decreased by 1.5 fold (Figure 3.4 illustrates the exact values). Errors not 

shown in figures as the experiments were performed only once. All mass 

spectrometry figures can be found in the Appendix.   
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Figure 3.4: PTMs as result of flanking residue mutations surrounding H3K14  

A. Table displaying H3K9ac, H3K14ac,H3K36ac, H3K36me0, H3K36me1, H3K36me2, and 

H3K36me3 levels as a result of making mutations H3A15K, H3G13V, and H3A15V. Numbers 

represent percentage of the total that is modified. Yellow highlighted numbers represent 

mutations where there were dramatic increases or decreases.  

B. Bar graphs displaying values as denoted in (A) for both H3K14 and H3K36 peptides. Note 

the fold percentage differences between H3K36me0, and H3K36me1. 
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Figure 3.4 
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Chapter 3 Discussion 

Here I show that I can predict novel acetylation sites in proteins of interest 

in both human and yeast cells.  Furthermore, I have shown that there are 

residues that may be critical for lysine acetyltransferase recognition and 

demonstrated that there could be a “crosstalk” occurring between three 

marks on the histone H3 tail H3K9, H3K14, and H3K36.  Together my data 

can lead to a predictive understanding of acetylation by examining the 

sequence of the targets themselves.  

Using a combined experimental/computational approach, I identified 

several sites in human histone and nonhistone proteins that were correctly 

predicted.  There were, however, a class of lysines that were predicted by 

my algorithm, yet have not yet been detected experimentally.  Several 

possibilities can be envisioned for this case: first, the MS approach has 

limited detection and sensitivity capabilities and cannot recover peptides that 

are acetylated at only low levels.  Second, lysines could be modified only in 

distinct environmental conditions, cell cycle stages, cell types, and are 

therefore undetectable in the cell extracts I used.  Here it should be noted 

that additional novel histones acetylation sites were detected by MS/MS 

when Hela cells were pretreated with HDAC inhibitors (personal 

communication, B. Garcia), and I retrained the algorithm with this data. 

Preliminary results from this analysis display that the predictive power of my 
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overall approach is not altered significantly, thereby increasing further 

confidence in the power of my approach.  Third, acetylation might be 

inhibited by adjacent PTMs (negative crosstalk), and therefore the 

responsible KAT might be prevented from binding to or accessing its target 

site.  Finally, acetylation is a dynamic, transient modification, and thus MS 

results may depend on a time-specific acetylation state whose kinetic 

properties have not been adequately captured by the experimental 

parameters.  Of interest is the class of lysines in histones that were not 

predicted by the algorithm, yet were detected by MS, and which might 

indicate a different class of KATs that need special sequence surroundings.  I 

observed that one of these lysines, H2AK129, did not contain a full set of 

flanking residues C-terminal to the lysine, which put this lysine at a 

“disadvantage” compared to other lysines with a full set of flanking residues. 

H2AK15 failed to overall strongly resemble the other acetylated histone 

lysines in my training set by sequence, and therefore was not predicted. This 

could be due to the training set containing an underrepresented number of 

HATs, assuming that clusters of sequences under a single node represent 

similar enzyme recognition.  

In this chapter, I also addressed whether sequence surrounding an 

acetylated lysine can drives HAT recognition by performing site directed 

mutagenesis in vivo.  My results display that in the H3A15K background, 

H3K14ac decreases 3.5 fold, while H3K9ac increases almost two fold.  
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H3K36me levels are dramatically affected with a twenty fold increase of the 

unmodified form of H3K36.  Thus, H3K14 disruption could be promoting 

H3K9ac due to the steric binding of the H3K14 acetylation effector, Rsc4 

(VanDemark, Kasten et al. 2007) (Figure 3.5).  Similarly, H3K14 disruption 

could be acting in an inhibitory manner to H3K36 di and tri methylation, 

suggesting that H3K14ac is required for normal levels H3K36 methylation 

(Figure 3.5).  To my knowledge so far, acetylation of H3K14 by the NuA3 

KAT requires prior methylation of H3K36, although the mechanism remains 

to be determined (Latham and Dent 2007).  My model suggests that perhaps 

H3K14ac promotes H3K36 methylation by inhibition of demethylase activity, 

or by post-translational modifications in the vicinity of these two marks that 

are also involved in crosstalk (Figure 3.5).  Further mutagenesis 

experiments would have to be performed in order to fully explore this 

hypothesis.  Some preliminary experiments that I suggest are: (1) In 

budding yeast, design a strain with the H3K14R mutation, and observe 

whether H3K9ac levels decrease, and H3K36me0 and H3K36me1 levels 

increase using H3K9ac and H3K36me1 antibodies via western blotting. The 

result would reveal the distinct nature of the H3A15K mutation against the 

H3K14R effects. (2) Make Rsc4 bromodomain mutations in WT cells, so that 

H3K14 binding to Rsc4 is abolished.  Observe H3K9ac and H3K36me levels 

as a result; my above stated hypothesis suggests that H3K9ac would 

increase as a result.  These preliminary experiments could help us learn 
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more about the crosstalk biology and can guide us to better understand the 

orchestration of specific H3 acetylation, deacetylation, methylation, and 

demethylation events.  

 

Figure 3.5: Crosstalk Model  

A. In the wildtype background, Gcn5 acetylates H3K9ac. The Rsc4 ( bromodomain ) binds 

H3K14ac causing a steric occlusion of Gcn5 to acetylate H3K9.  

B. In the mutant background, Gcn5 does not recognize its preferred site, and acetylates 

H3K9. An inhibitory mechanism causes disruption of H3K36 di and trimethyl. Dashed lines 

indicate possible crosstalk.   
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One outstanding question that remains is what the algorithm presents 

regarding enzyme specificity within the hierarchical tree.  Does the 

alignment of acetyl sites actually predict the HAT for those sites, and do 

KATs have characteristic lysine containing motifs that they will target?  

Through my method, I suggest that there may be an intrinsic substrate 

specificity for acetyltransferases in general.  Whether computational rules 

can then be subgrouped into rules specific for each enzyme is a question 

that I would like to address.  In order to achieve this, I revisited my tight 

cluster (H3K14 and H3K36), both Gcn5 dependent marks.  I then ran my 

algorithm against validated nonhistone acetylated proteins and traversed 

these lysines through the histone-trained tree.  I observed that there were 

nonhistone proteins, particularly those that were Gcn5-mediated, that 

clustered very tightly within a specific region of the histone trained tree 

(Figure 3.6).  Recently, an essential chromatin remodeling factor Rsc4 was 

uncovered as acetylated at K25 in S. cerevisiae (VanDemark, Kasten et al. 

2007).  When I ran the Rsc4 protein against my algorithm, I noticed that 

K25 clustered tightly with cluster, and thus were able to predict this 

correctly (Figure 3.6) ((Howe, Auston et al. 2001), (Morris, Rao et al. 2007; 

VanDemark, Kasten et al. 2007)).  Interestingly, a recent study of the ISWI 

protein in Drosophila reveals that it’s acetylated at K753, dependent on 

Gcn5, and also has a G and P in its sequence (Ferreira, Eberharter et al. 

2007)(Figure 3.6).  Close analysis of the sequences under this cluster 
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revealed that there was sequence identity and similarity in the flanking 

residues of the lysine, and thus I was interested in whether acetylation of a 

lysine is programmed by its surrounding residues and whether there were 

particular residues that were critical for KAT recognition.  

 

 

 

Figure 3.6: Sequence alignment of Gcn5 mediated substrates 

Sequence alignment displaying H3K14, H3K36, ISWIK753, Cpr1K25, and Rsc4K25.  I 

predict that Cpr1K25 is acetylated by Gcn5, the primary enzyme for all the other substrates 

in the purple box. Similar or identical residues are colored.  
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Alignment of the flanking residues of the surrounding lysines within 

the cluster (Figure 3.6; grey box) revealed that all four substrates have 

either a S/T/Y residue and a glycine flanking the left side of the lysine nearly 

at the same position.  I also noticed that all four substrates have a proline in 

the +2 position and a basic residue H/R/K in the +3 position (Figure 3.6). 

Next, I ran all yeast proteins through my algorithm, and detected proteins 

that contained a G-K-X-P sequence. One such protein was Cpr1, a peptidyl 

prolyl isomerase (Arevalo-Rodriguez, Wu et al. 2004) that clustered with this 

particular group of G-K-X-P sequences.  Whether or not this substrate is 

Gcn5 mediated will be an interesting question to answer and is something I 

hope to follow up on in the future.   
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Chapter 4: Domain prediction of chromatin-associated proteins 

Summary   

Protein domain prediction is important for protein structure determination, 

functional annotation, and mutagenesis among other things.  Most 

eukaryotic proteins receive and process signals which are constructed in a 

modular fashion from a combination of interaction and catalytic domains 

(Zarrinpar, Bhattacharyya et al. 2003).  These interaction domains mediate 

the formation of multiprotein complexes that restrict signaling proteins to 

appropriate subcellular locations and help determine the specificity of 

enzyme-substrate interactions.  Thus, being able to identify these domains 

using computational and structure based approaches is an important 

precursor for a range of methods.  While Chapters 2 and 3 were focused on 

“writer” recognition, in this chapter I discuss “readers” or effector domains 

that specifically bind PTMs, and describe computational approaches used to 

predict additional unannotated or cryptic domains.  I focus on the chromatin-

associated Polycomb Group (PcG) proteins, since these proteins contain 

highly conserved key domains throughout evolution, yet their substrate 

specificities are highly dissimilar contributing in part to their protein 

complexity.  Being able to predict additional domains and motifs outside of 

the key domains could help gain insight into their functional versatility.  

Since PcG proteins have diverged significantly from their Drosophila 
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counterparts and from their paralogs, I use my domain detection approach 

to infer co-evolution and expansion of these proteins in closely related and 

distant organisms.  In the first part of the chapter, I present the 

diversification of PcG homolog genes in the context of development and 

cellular differentiation in species ranging from plant to human, as part of a 

collaboration with two of my Allis lab colleagues, Sarah Whitcomb and Emily 

Bernstein (former member of Allis Lab).  In the second part of this chapter, I 

use existing bioinformatic methods to discover additional chromatin-

associated effector proteins that bind PTMs.  These effectors can potentially 

be important for downstream signaling and recruitment events.  

Results 

Conservation and diversification of PcG homologs  

I developed a bioinformatics method to discover key domains of PcG 

homologs.  Key domains of PcG homologs are highly conserved between 

evolutionarily distant organisms (orthologs) and among paralogs in a given 

organism (typically >75% amino acid similarity).  However, outside of key 

domains, PcG proteins have diverged significantly from their Drosophila 

counterparts and from their paralogs.  An important challenge is to 

understand the functional significance of developmentally regulated 

expression of orthologs and how this impacts PRC composition, genomic 

targeting and/or mechanism of transcriptional repression. To illustrate the 
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functional diversification of PcG paralogs, I focused on homologs of 

Drosophila Pc, Psc, dRing and E(z). 

The  bioinformatics algorithm that I developed consisted of the 

following steps:  (1) Selection of E(z), Pc, dRing and Psc as the PcG 

reference set: the “writer” (E(z)) and the “reader” (Pc) of the H3K27me 

mark, the only other known catalytic member of the PcG (dRing), and 

dRing’s associated factor (Psc).  Sequence and domain information was 

retrieved for Drosophila, mouse, and human PcG proteins from the 

Swissprot, Uniprot, Ensembl, and SMART (Ponting, Schultz et al. 1999)  

databases. (2) In order to identify putative homologs of these proteins in 

other organisms, I performed BLAST searches using the Drosophila, mouse 

and human proteins as queries (Altschul, Gish et al. 1990; Altschul, Madden 

et al. 1997).  The Blastp searches, using the NCBI web server 

(http://www.ncbi.nlm.nih.gov/BLAST) were performed at low, medium, and 

high stringencies to obtain all possible proteins in the following organisms: 

Arabidopsis thaliana, Caenorhabditis elegans (worm),Strongylocentrotus 

purpuratus (sea urchin), Danio rerio (zebrafish), Xenopus laevis (frog), 

Gallus Gallus (chicken), Canis familiaris (dog), Mus musculus (mouse), and 

Homo sapiens (human).  Since homologous domains between species were 

very well conserved, variation of BLAST parameters such as gap costs and 

substitution matrices did not significantly alter my results. (3) I developed a 

custom made algorithm to query motifs less than 15 amino acids in length 
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such as the Pc box.  Sequence similarity between homologous domains and 

full-length sequences was used to compute a weighted score by multiplying 

a fixed weight to the BLAST score and computing an overall weighted sum.  

Key domains for PcG proteins were identified including: the chromodomain 

and Pc-box for Pc homologs, the RING domain for Psc and dRing homologs, 

and the SET and SANT domains for E(z) homologs (Figure 4.1).  A list of 

putative homologs containing the highest scores was compiled for each class 

of PcG proteins, and homologs in different species were selected by manual 

inspection. (4) Finally, the ClustalW (Thompson, Higgins et al. 1994)  

program was used to cluster putative homologs to ensure that proteins with 

similar key domains with minor amino acid differences such as Ring1A and 

Ring1B were categorized correctly.  In addition, a reverse BLAST of all the 

putative homologs was also performed against the Drosophila genome to 

ensure that the forward BLAST hit was accurate. Many databases of 

translated cDNA libraries are inherently incomplete, and so gene sequences 

of those PcG homologs that were found to be absent in a given organism 

were also queried against the predicted ORFs from that organism’s genome.  

Finally, putative PcG homologs were mapped onto a phylogenetic tree of 

organisms (Figure 4.2). Additional potential paralogs of dPsc were found in 

Drosophila through the algorithm. These proteins are Su(z)2 and l(3)-73Ah; 

however as they are not well characterized as functional Psc homologs, they 

have been excluded these proteins from the phylogenetic tree.  Sequence 
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alignments in Figure 4.3 were constructed using the Emboss program and 

CEC-1 was predicted as a putative Polycomb homolog because of its high 

sequence similarity with Drosophila and mouse Cbx8 chromodomains.  Two 

stretches of amino acids within the N-terminus and C-terminus of CEC-1 also 

shared a strong sequence similarity with the Drosophila and mouse Cbx8 Pc 

boxes. In Figure 4.2, the ClustalW program was used to create a multiple 

sequence alignment of Cbx proteins and subsequently fed into the PHYLIP 

software program (Felsenstein 2008).  The protdist and neighbor joining 

programs within PHYLIP were used to construct the Cbx paralog tree 

(Figure 4.3) and the Emboss local alignment program was used to 

determine sequence similarity and identity percentages. 
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Figure 4.1: Domain and motif structure of selected PRC1 proteins 

Comparison of domain and motif structure of selected PRC1 proteins in Drosophila (boxed), 

human, mouse, dog, chicken, zebrafish, frog, nematode and sea urchin. Protein lengths are 

scaled exclusively within homolog groups, not among paralog groups, and are represented 

by a black line. Numbers shown above domains are percentage similarity to the domain in 

the Drosophila homolog. Numbers to the right of proteins represent percentage similarity to 

the full-length Drosophila sequence and the number of amino acids in the protein. Note the 

high percentage similarity between domains, but low percentage similarity of full-length 

sequence, between the Drosophila protein and its homologs in other organisms. Also note 

different amino acid lengths of paralog groups (e.g. Cbx4 versus Cbx7) and different domain 

structure (e.g. Cbx2 versus Cbx4). See text for details. Pc homologs are grouped based on 

their sequence similarity to mouse Cbx2, Cbx4, Cbx6, Cbx7 and Cbx8. Putative C. elegans 

Pc protein is shown at bottom (CEC-1). Psc homologs are grouped based on their sequence 

similarity to mouse Bmi1 and Mel-18. Homologs of dRing are grouped based on their 

sequence similarity to mouse Ring1A and Ring1B. Sea urchin Ring is equally similar to 

mouse Ring1A and Ring1B, and is listed separately at the bottom. Abbreviations: c, chicken; 

d, dog; h, human; m, mouse; n, nematode; s, sea urchin; xl, frog; z, zebrafish. Image 

directly  from (Whitcomb, Basu et al. 2007). 
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Figure 4.1 
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Figure 4.2: Domain and motif structure of selected PRC2 proteins.  

Comparison of domain and motif structure of selected PRC2 proteins; see 4.1 for details. 

E(z) homologs are grouped based on their sequence similarity to mouse Ezh1 and Ezh2. 

Arabidopsis E(z) homologs are listed separately on the right. Abbreviations: a, plant; c, 

chicken; d, dog; h, human; m, mouse; s, sea urchin; xl, frog; z, zebrafish. Image directly 

from (Whitcomb, Basu et al. 2007). 
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Pc homologs 

Results indicate that: vertebrate model organisms have between three and 

five Pc homologs [known as Chromobox (Cbx)], which all have highly 

conserved CDs and Pc boxes (Figures 4.1, 4.2).  However, paralogs differ 

greatly in length, such as Cbx7 with a protein length of approximately 200 

amino acids; these factors might contribute to differential function (Figures 

4.1, 4.2).  Cbx proteins also specifically interact with non-PcG proteins. 

Cbx4 is the only member of the family that binds the transcriptional co-

repressor C-terminal binding protein (CtBP) (Sewalt, Gunster et al. 1999). 

Cbx4 is also unique among Pc homologs as an E3 SUMO ligase (Kagey, 

Melhuish et al. 2003).  The full range of Cbx4 SUMO targets is unknown, but 

the sumoylation of several transcriptional regulators, including CtBP, is 

enhanced by Cbx4 (Kagey, Melhuish et al. 2003), (Roscic, Moller et al. 

2006).  Additionally, recent biochemical data suggest that the five 

mammalian Cbx proteins have different histone-binding preferences: the 

Cbx CDs bind differentially to H3K27me3 and H3K9me3, unlike Drosophila Pc 

CD, which prefers H3K27me3 (Bernstein, Duncan et al. 2006). 

Psc homologs 

Mel-18 and Bmi1 (two of six Psc homologs in mammals; Figure 4.2) are 

also likely to be non-redundant paralogs, despite their 63% amino acid 

sequence identity. These proteins overall have a low sequence similarity to 
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their Drosophila Psc homolog (12%).  Bmi1- and Mel-18-deficient mice 

display similar but distinct phenotypes (Akasaka, Kanno et al. 1996) and 

(van der Lugt, Domen et al. 1994), and only 30% of Bmi1-regulated genes 

were found to be co-regulated by Mel-18 and vice-versa (Wiederschain, 

Chen et al. 2007).  Interestingly, sea urchin does not have a serine-proline 

rich domain.  

dRing homologs 

Vertebrate homologs of dRing, Ring1A and Ring1B, also exhibit some 

functional divergence (Figure 4.2).  Although they share long stretches of 

high conservation (approximately 100%), Ring1A- and Ring1B-deficient mice 

have drastically different phenotypes (Madireddi, Coyne et al. 1996).  

E(z) homologs 

The mammalian organisms that I focused on have two E(z) homologs: Ezh1 

and Ezh2 (Figures 4.1, 4.2).  Little is known about the functional 

differences between these paralogs in mammals, but the ancestral E(z) gene 

also expanded in plant lineages (Figure 4.1). Arabidopsis has three E(z) 

homologs: MEDEA (MEA), CURLY LEAF (CLF), and SWINGER (SWN) with 

largely non-overlapping patterns of expression (Goodrich, Puangsomlee et 

al. 1997).  CLF is the only protein among Arabidopsis that does not contain 

an E(z) domain. 
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Vertebrates vs. Invertebrate Evolution 

A common mechanism of evolution is gene duplication and subsequent 

divergence of coding sequences or regulatory elements.  Based on the 

bioinformatics analysis, PcG genes are likely to have undergone multiple 

duplication events in their evolutionary history (Figure 4.2).  Perhaps the 

most dynamic period was during the evolution of vertebrates from 

invertebrate ancestors.  The extant invertebrates, Drosophila and sea urchin 

have single copies of the PcG proteins in the reference set, with the 

exception of Psc (Figures 4.1, 4.2).  By contrast, vertebrate species have 

multiple paralogs of most PcG members (Figure 4.2). One striking example 

of PcG expansion is the Pc family.  Represented by a single gene in 

invertebrates, there are up to five Pc homologs in vertebrates with 

differences in domain structure and biochemical properties (see below; 

Figures 4.1, 4.2).  This could be due to massive gene duplication and exon 

shuffling. 
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Figure 4.3: Phylogenetic representation of selected organisms and their PcG 

homologs.  

A phylogenetic tree of selected model organisms from plants to humans is shown (adapted 

from http://www.tolweb.org/tree/). This tree illustrates that PcG-encoding genes have 

undergone multiple duplication events through evolution; the most dynamic period appears 

to be during the evolution of vertebrates from invertebrates. PRC1 components seem to 

have been lost in C. elegans. However, CEC-1 might be a functional PRC1 homolog (see text 

for details). Drosophila proteins, used (here and in the text) as the PcG reference set, are 

highlighted in the red box. Shaded boxes next to each organism display homologs of E(z) 

(red), Pc (orange), Psc (blue) and dRing (green) proteins in each organism. Red slash 

marks represent probable gene expansion events. The black and grey nodes represent the 

common ancestor of all selected model organisms and extant bilateral animals, respectively. 

The light blue and dark blue nodes denote the common ancestor of extant vertebrate and 

mammalian species, respectively. Parentheses denote proteins with biochemically or 

genetically defined PcG activity but lacking sufficient sequence conservation with the 

Drosophila, mouse or human proteins to be predicted as homologs by methods used. 

Brackets indicate putative PcG proteins that were identified by sequence similarity but that 

need to be confirmed functionally. Asterisks represent proteins that might have multiple 

(putative) paralogs within a given organism. Note that branch lengths do not represent 

evolutionary distance between organisms. 
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Figure 4.3 
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Prediction of a putative Pc gene in C. elegans 

My analysis uncovered a putative Pc homolog in C. elegans, previously 

identified as C. elegans chromobox 1 (CEC-1) (Agostoni, Albertson et al. 

1996).  Little is known about CEC-1 except that it localizes exclusively to 

somatic nuclei and dissociates from chromosomes at mitosis (Agostoni, 

Albertson et al. 1996).  The domain structure of CEC-1 supports its 

classification as a Pc homolog: an N-terminal CD and a C-terminal Pc box (as 

well as a second putative Pc box after the CD) (Figures 4.1,4.3).  Although 

the sequence similarity between full-length CEC-1 and dPc or dHP1 are equal 

(27%), CEC-1 lacks two important sequence characteristics of HP1 proteins: 

a chromo-shadow domain and a stretch of glutamic acid residues N-terminal 

of the CD (Figure 4.3).  The possibility that CEC-1 might regulate 

H3K27me-dependent gene repression in the worm soma is intriguing but 

requires further investigation. 
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Figure 4.4: CEC-1 sequence alignment and phylogeny of mouse Cbx proteins.  

A. Sequence alignment is shown between the chromodomains (CD) and Pc boxes of dPc, 

mouse Cbx8 and CEC-1 proteins. An asterisk represents aromatic residues within the 

chromodomains that are required for histone methyllysine binding. Pc-box-like features are 

found in both the N-terminal and C-terminal regions of CEC-1 and are aligned individually to 

the Pc boxes of dPc and mouse Cbx8. (N) and (C) represent the N-terminal and C-terminal 

Pc-box-like features of CEC-1, respectively. Amino acids highlighted in red represent 

residues that are identical to each other, and those highlighted in blue represent residues 

that are evolutionarily similar. Overall, the bioinformatics analysis suggests that CEC-1 

might represent a Pc homolog, rather than a HP1 homolog. However, this remains to be 

rigorously tested.  

B. Pairwise sequence similarities were calculated between all mouse Pc proteins (Cbx 2, 

Cbx4 and Cbx6–Cbx8) and an unrooted neighbor-joining tree was constructed using the 

PHYLIP software program (http://evolution.genetics.washington.edu/phylip.html). 

Evolutionary distance between paralogs is represented by the tree branches, which are 

drawn to scale. The table below shows percentage sequence identity and percentage 

sequence similarity between the chromodomains, Pc boxes and the full length sequences of 

Cbx2 and Cbx8 proteins. These proteins were selected for comparison because of their 

comparable length and evolutionary distance. Note the high similarity and identity between 

key domains, but significantly less similarity and identity in the full length sequences. 
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Figure 4.4 
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Predicting chromatin–associated effector proteins 

Chapter 2 illustrates how acetylation has shown to be important for cellular 

function, and why being able to predict and map these marks is an essential 

first step in the discovery process of higher level regulatory pathways.  Of 

paramount importance is the ability to uncover effector proteins that bind 

PTMs, as they serve as another layer of regulation in many cellular 

processes.  Examples of additional effector proteins that bind to post-

translationally modified amino acids are Plant Homeo Domain (PHD) finger,  

bromodomains (BD) (acetyl-lysine binding), chromodomains (CD) (methyl-

lysine binding), and Src-homology 2 (SH2) domains (phospho-tyrosine 

binding), all which have been studied thoroughly.  However, there likely 

exist a number of unidentified proteins containing cryptic versions of these 

domains or similar domains that have eluded detection by conventional 

bioinformatic analysis, thus additional studies of effector domains are 

required to identify these proteins and their functional relevance.  

My interest in this project developed as a result of Allis lab colleagues 

and I extensively using the SMART/PFAM (Bateman, Coin et al. 2004) 

domain prediction programs and recognizing that certain domains that we 

considered as putative effectors by sequence/structure-gazing were not 

contained in either the SMART/PFAM databases, for example p300, a lysine 

acetyltransferase (personal communication, A. Ruthenburg) containing a 
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putative PHD finger domain.  Manual screening of effector proteins that were 

not predicted by PFAM/Smart, together with domain querying of PcG 

proteins with limited results, led us to invest in a project aimed at 

discovering additional effector proteins. 

I hypothesized that software programs such as SMART and PFAM were 

often limited in their domain predictive ability due to default parameters 

usage in within all features of the protein.  For example, loop structure, 

although more flexible than other regions a protein fold, such as the α-helix, 

or β-strand, obtains an identical gap penalty score as the other structured 

elements of the protein.  A tight conservation between loops within an 

alignment is less essential than conservation between the structured regions 

of the protein, since the binding pocket frequently resides on the surface of 

the protein ensconced within well-ordered secondary structural motifs.  

Moreover, gap penalties contribute to the overall score of alignments, and 

therefore, the size of the gap penalty relative to the entries affects the 

alignment that is finally selected.  Though previous bionformatic/structural 

studies have used a similar loop adjustment method in protein finding 

analyses (Qiu and Elber 2006), I wanted to focus on applying this method to 

PTM effector proteins for the benefit of our lab and the chromatin community 

at large.   
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Training set, key assumptions, and method   

In order to begin my computational analysis, I collected all sequences of 

known effector proteins BD, CD, SH2, and PHD finger containing sequences 

found in the SMART database. The SMART database contains more than 500 

domain families found in signaling, extracellular and chromatin-associated 

proteins.  These domains are extensively annotated with respect to phyletic 

distributions, functional class, tertiary structures and functionally important 

residues. The number of human training sequences in each of these 

respective domains was: BD (99), CD (70), SH2 (192), and PHD (256). I 

next performed a multiple sequence alignment (ClustalW) on all training 

sequences through three step process (Figure 4.5):  1) I used JPred, a 

secondary structure prediction program (built from a consensus of multiple 

prediction methods) (Cuff, Clamp et al. 1998) in order to label the loop 

element(s) in my sequences. 2) Applied a less rigid gap penalty exclusively 

in the loop region of protein, while applying a  harsher penalty ( default 

PFAM parameters ) on the more rigid areas 3) Apply the same gap penalty 

to the entire length of the proteins in the alignment.  Next, I fed the loop-

adjusted and unadjusted version of the sequence alignment into the Hidden 

Markov Model 2.0 (HMM), a statistical model in which the system being 

modeled is assumed to be a Markov process with unobserved state.  

Running the HMM against MSA resulted in an output of additional effector 

proteins with an accompanying E-value.  The resulting alignment is the 
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alignment between the consensus sequence which is derived from highest 

residue frequency at each position in the MSA and the predicted effector 

domain.   Based on PFAM’s threshold of selection, the E-value is the number 

of hits that would be expected to have a score equal or better than this by 

chance alone.  A good E-value is much lower than 1, and measures 

statistical significance. In my analysis, I used an E-value <= .01 to threshold 

my boundary. After running my model against the human proteome, I 

manually scanned the list of proteins that were not annotated in literature 

with the desired domain, but which contained a maximum number of 

residues that were critical annotated for PTM binding. As a final step of 

verification, and work which is in progress, I analyze the known structures of 

the predicted effectors in order to ensure sure that the predicted effectors 

are homologous to the canonical structure.   
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Figure 4.5: Schematic of domain prediction method  

Proteins with known effector domains (chromodomain, bromodomain, etc.) are separated 

by their secondary structure elements such as helix, loop, and beta strand. Loops within the 

proteins are given a less stringent gap penalty than the highly conserved regions in the 

protein such as the helix within the multiple sequence alignment. The alignment is fed into a 

Hidden Markov model (HMM) and then subsequently, the HMM produces an output of 

additional effector proteins.   
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Via my method, I was able to predict additional effector proteins 

containing all the domains I have specified above.  I compiled a list of 7 

putative candidates in the human and S. cerevisiae proteomes that contain 

previously unannotated BDs, CDs, PHD fingers, or SH2 domains, respectively 

(shown in figures below).  Capital letters in the alignment represent 

residues that are aligned to the consensus.  Small letters represent residues 

that HMM arbitrarily assigns based on a probabilistic function of residues in 

the alignment.  For validation purposes, I used the few literature validated 

effector proteins that were excluded from my training set to assess whether 

my method was promising, particularly for PHD predictions. 

PHD finger predictions  

At the time of my analysis, several of my predicted PHD finger proteins were 

not annotated in literature as PHD finger containing proteins, but have now 

been experimentally validated, and published. These include DNMT3 (Ooi, 

Qiu et al. 2007), RAG2 (Matthews, Kuo et al. 2007), ATRX (Baker, Allis et al. 

2008) and others.  In some cases the PHD finger domains appeared atypical 

by amino acid sequence, particularly for RAG2, which has an atypical 

aromatic cage, and an extremely divergent loop region (Figure 1.7B).  In 

the case of RAG2, I achieved an E value of 0.5 before loop adjustment, and 

an E value of 10e-12 after loop adjustment, which is much lower and of 

higher statistical significance.  My finding is consistent with the finding that 
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RAG2 PHD finger behaves like a canonical H3K4me3 effector (Matthews, Kuo 

et al. 2007). Figure 4.6 displays the alignment between the consensus HMM 

sequence (see Methods for determination) and the novel predicted PHD 

finger sequences (EP300, SNF2), those that are currently not in the 

database.  Aromatic cage residues are highlighted as these are H3K4me3 

recognition residues, as well zinc- coordinating residues. Interestingly, many 

of the predicted PHD finger proteins also contained bromodomains (shown 

below the alignment of the proteins in Figure 4.6).  

Bromodomains 

In humans, I predicted two BD containing proteins, MLL2 and SP110 and in 

yeast I predicted Arp8, an actin related protein involved in chromatin 

remodeling (Figure 4.6).  Among all of these, a promising bromodomain 

candidate protein was Arp8 (E-value=0.01) (Figure 4.6).  This was also a 

compelling candidate because it was a yeast protein, where experiments 

could be facilitated by commercially available strains.  Intriguingly, it also 

contained an important asparigine residue in a conserved histone binding 

acetyl-lysine position (in red).  To determine whether the predicted BD in 

Arp8 could bind to acetylated lysine, I performed a yeast peptide-pulldown 

experiment using a commercially available tap-tagged strain of Arp8.  The 

preliminary experiment shown in Figure 4.7B suggests that Arp8 binds 

selectively to acetyl peptides H3K4me3K14ac and H3K4me3K9ac, but not to 
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H3K56ac.  Next, I cloned and recombinantly expressed full length Arp8 to 

determine whether Arp8 itself, or a possible complex member was 

responsible for peptide binding (data not shown).  I was successfully able to 

achieve cloning of full length Arp8, however further experiments would be 

required to complete the experiment by cloning the bromodomain itself, and 

then subsequently repeating the peptide binding assay using additional 

unmodified and acetyl peptides.    

Chromodomains 

The next group of proteins that I predicted are CD-containing proteins, a 

family containing different subgroups classes of proteins.  The first class 

includes proteins having an N-terminal chromo domain followed by a region 

termed the chromo shadow domain, eg. Drosophila and human 

heterochromatin protein Su(var)205 (HP1).  The second class includes 

proteins with a single chromo domain, eg. Drosophila protein Polycomb (Pc); 

mammalian modifier 3; human Mi-2 autoantigen and several yeast and 

C.elegans hypothetical proteins.  In the third class, paired tandem chromo 

domains are found, eg. in mammalian DNA-binding/helicase proteins CHD-1 

to CHD-4 and yeast protein CHD1.  The training set included a conflation of 

all the CDs found in PFAM, and were not separated individually by family. I 

found two candidates (SMRC1 and MRG1), with the most promising 

predicted candidate, SMRC1, which appears most similar to the 
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chromodomain protein Cbx2 (E =5.3e-7) among all other CD containing 

proteins in the training set.  Also, SMRC1’s sequence similarity to is HP1 (E= 

5e-6), which is also statistically significant.      

SH2 

SH2 domains are modules of ~100 amino acids that bind to specific 

phospho-tyrosine (pY)-containing peptide motifs.  In yeast, the only known 

protein with a SH2 domain is SPT6, a transcriptional elongation protein. 

However, there is no known function associated with the SH2 domain.  My 

analysis led me to discover a SH2 domain containing protein, Ste6, a mating 

pathway protein in yeast (E=5.2e-7).  
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Figure 4.6: Effector Protein Predictions 

An alignment is shown between the consensus domain sequence and the predicted effector 

protein. Domain predictions displayed are the following: PHD, CD, BD, and SH2.  Residues 

that are identical between sequences are shown. Underlined residues are those that are 

critical for histone binding.  E value is shown for the predicted proteins as well as the 

residue positions in the predicted protein. Capital letters in the consensus sequence show 

that this residue is highly conserved, whereas the small letters represent residues that have 

been inserted via probabilistic method. Sequence similarity and identity (%) between the 

consensus and predicted protein is shown in the red box. Shown below alignment are the 

other domains in the protein as annotated in the SMART database. 
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Figure 4.6 
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Figure 4.6 (continued) 
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Figure 4.7: Peptide binding assay using Arp8 whole cell extract.  

A. Schematic of a peptide pulldown assay. The peptide is shown with either an acetylated 

mark or as unmodified. When incubated with Arp8, the question is whether binding occurs.  

B. Shown are peptides H31-20 unmodified, H31-20 with H3K4Me3, H31-20 with 

K4Me3K9ac, H31-20 with H3K4Me3K14ac, H348-63 with K56 unmodified, and H348-63 with 

K56ac. Pulldown assay was performed with a DALK protein-A antibody and bands represent 

binding between the whole Arp8-TAP tagged and the respective peptides.  
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Chapter 4 Discussion  

The phylogenetic tree (Figure 4.2) argues that PcG genes underwent 

multiple duplication events in the evolution of plants and animals.  One 

possibility for this is that these extra genomic copies diverged in sequence 

resulting in differential functions conferring fitness advantages. Here, the 

focus was on PcG gene expansion events, but I suspect that PcG proteins 

were also lost from genomes.  A thorough comparative genomic analysis of 

loss and expansion from genomes can help us delve further into which genes 

were deleted through mechanisms of translocation or chromosomal 

inversion. 

An outstanding question in the Polycomb/trithorax field is how these 

transcriptional regulator complexes are localized to specific genes in a tissue 

specific manner.  In Drosophila, DNA elements known as PRE/TREs 

(Polycomb/trithorax response elements) have been mapped near the TSS of 

a handful of PcG/trxG target genes, and have been shown to be essential for 

proper PcG/trxG localization and expression of these genes.  Attempts have 

been made to discover and map functional PRE/TREs in Drosophila using 

genomic, microarray, ChIP, and bioinformatic techniques.  These studies 

identified a total of 167 novel PRE/TREs, some of which mapped to genes 

involved in development and cell proliferation (Ringrose, Rehmsmeier et al. 

2003).  
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Unfortunately, the sequence characteristics of putative PRE/TREs in 

mammals have remained elusive.  However, new technology such as ChIP 

coupled to Solexa sequencing has produced large, genome wide data sets 

relating to PcG occupancy and target gene expression.  I present an 

extension of the Ringrose study that I propose in order to predict PREs in the 

human genome (Ringrose, Rehmsmeier et al. 2003).  A brief outline of this 

is as follows: (1) use the current Drosophila annotated PRE data (167 

sequences) to create a computational model for training purposes. Utilize 

empirical methods (supervised or unsupervised clustering) to learn about 

sequence constitution of known PRE elements.  There could be multiple 

methods, but training and testing on the 167 elements themselves (using 

cross validation) could be an initial pilot to assess baseline accuracy. (2) Run 

the algorithm against the mammalian genome and make high quality 

predictions that can be tested in-vivo. (3) Perform ChIP experiments with 

PcG antibodies, and/or mine datasets already published to validate target 

DNA elements.  It would be interesting to observe if validated mammalian 

PRE/TRE map to promoter regions as Ringrose and others observed in 

Drosophila.  Identifying mammalian DNA elements necessary for PcG/trxG 

localization, if they indeed exist, would be an important step towards 

understanding tissue-specific epigenetic maintenance of both activated and 

silenced states. 
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Unmodified H3K4me0 vs. H3K4me Effectors  

Several papers have recently shown PHD finger-containing proteins binding 

H3K4me0.  Recent studies display that DNMT3L, BHC80, TAF3, and AIRE 

among others bind H3K4me0 (Lan, Collins et al. 2007; Ooi, Qiu et al. 2007; 

Koh, Kuo et al. 2008; van Ingen, van Schaik et al. 2008).  Co-crystal 

structures of these proteins with the H3 tail reveal crucial residues mediating 

this recognition.  For example, the basis for binding of H3me0 to DNMT3L is 

the steric occlusion of the aspartic acid 90 in DNMT3L and H3K4me2/3 

(Figure 4.8A).  Other studies have revealed that the salt bridge between 

the unmodified lysine on H3 and acidic residues on the effector are crucial 

for favorable enthalpic contributions to binding free energy.  Recently, the 

Yang Shi and Xiodong Cheng’s groups showed that substrate specificity of 

the BHC80 PHD finger is determined primarily through the recognition of the 

H3 amino terminus, H3K4 and H3R8, and the three main chain carbonyl 

oxygen atoms (residues 523, 524 and 525) on BHC80 that form a hydrogen 

bond ‘cage’ that recognizes the N terminus of H3 (Lan, Collins et al. 2007).  

Molecular recognition of the unmodified lysine is primarily through bonds to 

the unmodified epsilon amino group and steric exclusion of appended methyl 

groups, where a second or third methyl group would engender steric clashes 

with the D489 carboxylate, the amide carbonyl of E488, and the β-carbon of 

the H487 side chain (van Ingen, van Schaik et al. 2008).  Additional motifs 

include a Proline-(x)-Glycine -x - Tryptophan motif before the last pair of 
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Cysteines (Figure 4.8B in blue, c-terminal). Figure 4.8 is an alignment of 

the current list of H3K4me0 binders.  

In order to predict additional effectors using my method, I use the 

training method described above to predict new unmodified H3K4 binders, 

and use the known H3K4me0 as my training set of sequences (Figure 

4.8B).  Even though the training set is small (only five sequences), there 

are a number of conserved residues in these proteins, and for further 

screening of H3K4me0 binders, I manually scanned for proteins with these 

residues in the conserved positions.  In my list (Figure 4.8C), many of the 

predicted proteins are either published or are being worked on by other 

groups, such as DNMT3, JARID1A, and AIRE (Ooi, Qiu et al. 2007; Koh, Kuo 

et al. 2008; Wang, Song et al. 2009).  The published list of proteins gives 

me confidence that using more sophisticated methods, additional effectors 

can be discovered which could be regulatory in nature.    

 

 

 

 

 

 

 

 

 

 

 

 

133 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: H3K4Me0 Known and Putative Effectors  

A. (Left) Interaction between the H3 N terminus (amino acids in magenta) and DNMT3L (in 

black). Dashed lines indicate potential interactions between amino-acid side chains. H3K4 

makes contacts with DNMT3L. D90 and D88 and methylation of K4 will occlude these 

interactions. (Right) Mutagenesis of residues (tick marks on left) of DNMT3L abolished 

binding. Image adapted from (Ooi, Qiu et al. 2007). 

B. Alignment of all known H3K4Me0 binding proteins. Yellow represents identical residues; 

blue represents similar patches of residues. Alignment constructed using ClustalW.  

C. Predicted H3K4me0 binders (gi annotation to the left) with E-value resulting from Hidden 

Markov Model output are shown the right of the predicted protein.  
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Figure 4.8 
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Taken together, the studies I performed in this chapter reveal that 

there are still a number of undiscovered protein domains.  Improved 

algorithms, more accurate prediction modeling, and higher throughput 

evolutionary analysis can benefit multi-domain classification problems, and 

potentially mitigate the gap between the various domain definitions.    
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Chapter 5: General Discussion  

A rapidly growing literature suggests that acetylation in histone and 

nonhistone proteins is important for a number of biological processes, 

including cellular differentiation, DNA binding, and other chromatin-

templated processes.  In the previous chapters, I have discussed my work 

developing a computational model that will enable the scientific community 

to characterize and map putative acetylation sites in any protein of interest. 

I have also shown using my model that we can predict acetylation sites in 

both histone and nonhistone proteins.  Furthermore, I have shown that there 

are potentially key residues that are essential for acetyltransferase 

recognition, and that acetyltransferase activity might be regulated via 

crosstalk between modifications on the H3 tail.  My computational model and 

results represent a step towards gaining a framework for predicting lysine 

acetylation sites in both human and yeast proteomes.  It will be of interest in 

future studies to see whether our algorithm is capable of predicting lysine 

acetylation sites in other organisms. Below I will discuss some of the 

implications of my work.  
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Enzyme prediction and discovery 

Elegant structural studies by the Marmorstein group have shown that 

specific residues within KATs (Gcn5, Esa1) that form contacts between the 

enzyme and substrate are conserved among organisms (Marmorstein and 

Roth 2001).  My algorithm agrees with the importance of these conserved 

residues, yet I was limited by the quantity of structural information 

available.  Further structural analysis of various KAT-substrate relationships 

would allow us to determine whether the rules that we have observed are 

general acetyltransferase rules or enzyme specific principles. However, 

structural studies remain experimentally challenging and low-throughput by 

nature. 

Alternatively, my prediction algorithm might be improved through 

additional experimental determination of KAT-substrate specificity, this in 

turn leading to an improved training dataset.  To achieve a deeper 

understanding of KAT enzymes and their substrate specificity proteome-

wide, I could perform the following experiments: first, on a small scale to 

establish the assay, and then-genome wide, I would design two identical 

proteome arrays containing histones H3, H4, and bovine serum albumin 

(BSA) as a negative control.  Each array would then be incubated with 

radiolabeled acetyl-CoA and either of the histone acetyltransferases Gcn5 or 

Esa1, respectively.  The array would then be subjected to fluorography, and 
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a positive result would entail Gcn5 labeling H3, and Esa1 labeling H4 

(Figure 5.1A).  I would not expect to see a signal in the BSA lane. If my 

pilot arrays confirm the expected results, I could carry out this experiment 

on a proteome-wide scale.   

Further testing on magnified scale would involve protein microarrays 

containing 5800 yeast proteins incubated individually with all known yeast 

HATs (currently there are seven). Detection of incorporated radiolabeled 

acetyl-CoA would result in a number of possible KAT substrates.  These 

substrates would then be validated from individually TAP-tagged lines. First, 

all acetylated proteins would be immunoprecipitated (IP) using a monoclonal 

pan-acetyl-lysine antibody (there are several commercially available).  The 

presence of the potential HAT substrate would then be probed by 

immunoblotting with an anti-TAP antibody.  Mass spectrometry would then 

be used to map the position of the acetylated lysine on the protein.  A 

similar study was published recently by the Shelley Berger lab revealing 

NuA4’s substrate specificity (Krishnamoorthy, Chen et al. 2006) (Figure 

5.1B).  A follow-up gene ontology (GO) analysis could indicate pathways or 

subset of pathways that the candidate acetyl proteins are enriched for. 
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Figure 5.1: Proposed discovery of novel KAT substrates 

A. Proteome-wide microarray of enzymatic discovery of substrates. In step 1, develop pilot 

protein array with H3 and H4 on the array.  Incubate array with Gcn5 and Esa1. Once 

controls have been tested, include all 5800 proteins per array, and incubate array with each 

enzyme separately. Black boxes represent putative acetylated proteins as result of this 

assay, which become candidate substrates.  An immunoprecipitation of substrates with pan-

acetyl antibody followed by a TAP tag purification and subsequent MS/MS analysis could be 

performed to map the acetyl site.   

B. Example of an array which includes 5800 proteins on an array. Acetylated substrates that 

were detected were Pck and Cdc34 among others (Lin, Lu et al. 2009).  

C. Proposed computational model. Substrates with identical enzyme could potentially cluster 

together, and a separate tree could be built for all 8 KATs in yeast.  
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Figure 5.1 
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The results of these experiments could allow me to add enzymatic 

information onto the hierarchical tree (Figure 2.2), which could add 

predictive power to my algorithm. Potentially, these results would help 

uncover enzyme specificity for nonhistone acetyl substrates. I would expect 

substrates of the same KAT to cluster in my analysis, therefore if a substrate 

of an unknown HAT clusters tightly with a substrate of known HAT activity, I 

would expect these two to be substrates of the same HAT.  This procedure 

could help narrow down whether there are specific clusters designated by 

enzyme, or whether there are acetylation rules in general, so that we can 

gain a further predictive understanding of our targets (Figure 5.1C).  

Furthermore, this experiment would allow me to gain insight into residues 

that are critical for specific enzyme recognition, which could ultimately feed 

back into the algorithm by changing the weight function of flanking residues.   

142 
 

In Chapter 3, I discussed my aim to induce methylation on H3K14 by 

mutagenizing residues in vivo to emulate the flanking residue profile of 

H3K36, a famous di and tri-methyl site.  However, little is known about 

methyltransferase specificity and enzyme recognition.  My initial 

computational analysis of methylation substrates displayed that a strong 

consensus sequence or signal was not present among the flanking residues 

of methyl-lysines, possibly due to limited experimental data.  This could be 

due to the fact that methyltransferases have different selectivity 

mechanisms and that we may be underfitting the data by studying a 



conflation of these substrates.  Using the same protein microarray as for 

acetylation, methylation could also be studied by incubating the microarrays 

with radiolabeled S-adenosylmethionine (SAM) and various 

methyltransferases. Further computational analysis and more defined 

datasets could allow us to explore methylation rules as well.   

Crosstalk of modifications on the same histone tail domain  

 To my knowledge thus far, there have been few studies that have rigorously 

computationally or experimentally tested the necessity of specific flanking 

residues in maintenance of an acetyl mark.  My results in Chapter 3 

demonstrate that the flanking residue mutations of H3K14 can initiate   

crosstalk that can potentially occur between modifications on the same tail. 

It has been previously shown that acetylation of a particular lysine can be 

inhibited by adjacent PTMs (negative crosstalk), with the implication that the 

responsible KAT might be prevented from binding to or accessing its target 

site (Yang and Seto 2008).  My mutagenesis studies on the flanking residues 

of H3K14 suggested that there could be a longer range crosstalk occurring 

between H3K14, H3K9, and H3K36, and perhaps these modifications are 

inhibitory to each other in some manner. Briefly, I observed that upon 

mutation of H3A15 to a lysine, H3K14ac levels decreased approximately 4 

fold, while H3K9ac levels increased by two fold. H3K36me0 and H3K36me1 
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levels soared, while H3K36me2 and H3K36me3 decreased by approximately 

1.5-2 fold.   

To further study whether the lysine A15 is an enzyme specific residue, 

I could perform the experiment in reverse: select a lysine that is low in 

abundance and then mutate the “next door” residue to an alanine to 

determine whether the target residue acetylation levels are stimulated.   An 

ideal lysine for this experiment would be H3K36, since it is of low abundance 

in yeast (Morris, Rao et al. 2007), and has a lysine (K37) adjacently 

positioned.  Thereafter, I would extract histones as I previously did, and 

analyze their PTM levels by mass spectrometry.  First, I could address 

whether the acetylation of K36 increases in intensity as a result of this 

mutation, and whether H3K37 is also modified (Figure 5.2B,C).  Perhaps an 

altered acetylation state of H3K36 would recruit an enzymatic complex which 

could stimulate H3K37 acetylation or methylation states.  Second,  it would 

be interesting to see whether H3K9ac, H3K14ac, or any of the H3K36me0, 

me1, me2, and me3 marks are affected by the K37A mutation, since 

crosstalk has been shown to occur previously on histone tails (Latham and 

Dent 2007).   Perhaps a rise in H3K36ac levels would prevent methylation to 

occur on H3K36 (Figure 5.2C), and H3K37A would carry a similar profile to 

H3A15K (Figure 5.2C) (Latham and Dent 2007).  Another related question 

that could be asked is whether mutations in the flanking residues of H3K14 

and H3K36 would alter transcriptional profiles genome-wide since all three 
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marks, H3K9ac, K14ac, and K36me have a link to transcriptional activation 

(Kurdistani, Tavazoie et al. 2004).  My finding suggests that there might be 

a distinctive role for each acetylation, and it is now possible to examine the 

cross-talk of adjacent acetylation and methylation marks in vivo.  
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Figure 5.2: Proposed future mutagenesis of H3K36 

A. Sequence alignment of H3K14 and H3K36. Colors as in Figure 3.3. 

B. Proposed mutation of H3K37 to an alanine.  

C. Proposed cross-talk effect of H3K37A mutation. H3K36 acetylation levels could increase, 

which could cause H3K36 methylation to decrease. H3K36 effects could regulate H3K14ac, 

by inhibiting its acetylation, which could allow for Gcn5 (H3K9 KAT) to acetylate H3K9.   
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Figure 5.2 
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Histone variants and PTMs   

Changes in the chromatin template can occur through various interrelated 

mechanisms: post-translational modifications of histones, ATP-dependent 

chromatin remodeling, and the incorporation (or replacement) of specialized 

histone variants into chromatin (Bernstein and Hake 2006). These variants 

have specialized functions and in some cases are synthesized through the 

cell cycle (Bernstein and Hake 2006).  While the two major human histone 

variants of H3, CENP-A and H3.3, have been extensively studied, the larger 

number of human H2A variants, including H2A.Z, H2A.X, and others, has 

been studied relatively less.  There are at present three testis-specific H2B 

variants, and to date, no variants from the H4 family have been uncovered 

(Bernstein and Hake 2006) (Figure 5.3, courtesy Sandra B. Hake). 

Since many variants have specialized functions and unique sequences, 

PTM profiles of these variants would potentially help gain a mechanistic 

insight into variant function.  For example, phosphorylation on the serine in 

the H2A.X motif “SQ(E/D)” upon DNA damage is a phenomenon which is 

conserved across species (Rogakou, Pilch et al. 1998; Downs, Lowndes et al. 

2000; Stiff, O'Driscoll et al. 2004; Xiao, Li et al. 2009).  Predicting additional 

modifications on these proteins might help unravel further distinct regulatory 

functions or pathways.  I attempted to predict modification patterns on H3 

variants, however, as H3 variants are dissimilar to the canonical H3 by only 
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four or five amino acids, as shown in the alignment, the algorithm did not 

predict any additional modifications on this variant.   

Human histone variants have been studied relatively in depth, 

however yeast histone variants are still an area that has not been as 

intensely explored.  When I ran the yeast variant Cse4 (homolog of human 

CENP-A) against my algorithm, to my surprise, a protein which seems 

dissimilar by “eye” to the canonical H3, had a strong similarity (80%) to 

H3K56 in yeast (Figure 5.4A,B(red arrow)).  Since the enzyme responsible 

for yeast H3K56ac has been discovered (Rtt109/p300) (Tang, Holbert et al. 

2008) and functionally deciphered, Cse4 might also acetylated by similar 

HATs, which would point to a sequence conservation of K56-type substrates.  

If Cse4 is indeed acetylated, one could then perform knockouts of the HATs 

themselves to determine whether Rtt109/p300 is responsible for Cse4 

acetylation. This would also allow one to pinpoint residues that may be 

critical for Rtt109/p300 recognition.  
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Figure 5.3: Schematic of mammalian histone variant proteins  

Schematic representation of the mammalian histone variant proteins containing the N-

terminal tails and the globular core with the C-terminal tails: (A) H2A variants (yellow), (B) 

H2B variants (red), (C) H3 variants (blue), (D) H4 variants (green). Protein sequences that 

are highly divergent between the conventional histone and its variants, histones are 

depicted in different color shades without highlighting sequence differences. Specific amino 

acids are depicted when only a few key differences are found among variants, or when 

these amino acids are post-translationally modified. Residues that have been found to be 

post-translationally modified are marked in the following manner: circle, phosphorylation; 

square, methylation; triangle, acetylation; trapezoid, ubiquitination. The macrodomains of 

macroH2A histones are not drawn to scale and are shown as triangles to highlight that 

these domains are not histone-like sequences. Image adapted from (Bernstein and Hake 

2006).  
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Figure 5.4: H3K56 and Cse4  

A. Alignment of H3K56 and Cse4 in budding yeast. Yellow highlighted residues represent 

patch of similar residues in a different order in H3K56 vs. Cse4. Purple residue represents 

similar amino acids, whereas red denotes identical residues.   

B. Alignment of all H3 variants, hCENP-A, and yCse4. Arrows indicate H3K56 which is 

conserved across variants, and Cse4K52.   
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In addition to the four core histones, there is a fifth histone, linker 

histone H1, involved in nucleosome structure (Figure 5.5A). These proteins 

are crucial to nucleosome-nucleosome contact and higher order chromatin 

structure.  It is possible that post-translational modifications could regulate 

their contact, causing dramatic chromatin structure changes, including 

decreased global nucleosome spacing, reduced local chromatin compaction, 

and decreases in certain core histone modifications.  A multiple sequence 

alignment of the H1 variants is shown Figure 5.5B, and as displayed these 

variants are conserved in the core region, but divergent within the tail 

region.  To predict additional modifications as well as experimentally 

validated modifications, I ran the yeast and human histone variants 

including H1 against my algorithm.  Interestingly, out of 5 known H1 

validated acetyl sites, I was able to predict 3 with my algorithm (these 

included K90, K146, and K22) (Figure 5.5B; red arrows) (Wisniewski, 

Zougman et al. 2007).  Notably, these acetylation sites all contained a 

flanking glycine and basic residues in the vicinity as well.  Further validation 

of the predicted unknown modifications might lead to an important 

understanding of the role of acetylation in H1 function. Finally, genomic and 

proteomic studies, evolutionary analysis using bioinformatics, and 

experimental approaches in model organisms will provide new insights into 

the biological roles of these variant proteins.  
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Figure 5.5: H1 Schematic and Predictions  

A. Nucleosome made up of DNA (red), Histone octamer (black) and Histone H1 (green). 

B. Alignment of all H1 variants, CENP-A, and yCse4. Arrows indicate acetylated lysines 

that I predicted correctly in histone H1.    
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Many questions remain as to whether acetylation, like phosphorylation, is 

a key signaling mechanism for multiple cellular pathways. Mann’s study 

reveals that a striking feature of acetylation is that it tends to occur in large 

macromolecular complexes involved in diverse cellular processes 

(Choudhary, Kumar et al. 2009).  With higher throughput proteomic 

datasets becoming available, we can begin to dissect the role of distinct 

acetylation marks across multiple cell lines and analyze their importance in 

cellular pathways, signaling, and gene regulation.  Answering these 

questions can help us achieve state of the art epigenetic drug therapy 

targeted towards specific acetylation marks, however mapping these marks 

is a critical first step.  Understanding the crosstalk between acetylation and 

other PTMs such as methylation and phosphorylation remains to be 

answered will potentially be the subject of future research endeavors.  
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Chapter 6: Materials and Methods  

Acetylation (computational)   

Datasets 

Training set: 56 human and S. cerevisiae core histone lysine sequences 

were collected from the Swissprot database http://ca.expasy.org/sprot/. 

Test set: Source of nuclear protein and pan-acetyl antibody datasets are 

described in Chapter 2. The budding yeast proteome-wide dataset of 

observed peptides with acetyl modifications was derived from the publicly 

available GPM Annotated Spectrum Library (Craig, Cortens et al. 2006) for 

S. cerevisiae (v. 2008.10.1). Peptide sequences from the library 

corresponding to lysine modifications (nominal modification mass = 42 Da.) 

were curated and mapped onto the appropriate set of protein sequences. 

Given the mass resolution of many of the spectra used to create the library, 

it was not possible to distinguish a priori between acetyl-lysine versus 

trimethyl-lysine on the basis of the tandem spectra alone.  

Hierarchical Clustering Analysis 

 I performed hierarchical clustering on the sequences surrounding each of 

the 56 histone lysines. All 56 sequences were aligned to each other creating 

a matrix of pairwise alignment scores; the metric was based on these 

pairwise scores. Sequence alignment scores were computed by performing 
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BLAST local alignments using the NCBI BLAST 2.0 server.  A standard 

BLOSOM62 evolutionary substitution matrix was applied (Eddy 2004). The 

hierarchical clustering works in an iterative process with the sequence 

alignment score representing the metric value: it begins with each protein 

sequence as a singleton cluster; during each iteration, it finds two clusters 

with the lowest metric value, then joins these two clusters into a new 

cluster, and updates the metric value between this new cluster and all 

others (see text for details). An average alignment score is calculated when 

there are multiple leaves under a node, thereby assigning a single metric 

value to each node. As an example, H2AK127, a lysine not observed as 

acetylated, and H4K12, an acetylated lysine, clustered tightly via sequence 

alignment. This is illustrated by their shared node placing them to right of 

the threshold line (Figure 2.2A; blue box). As a result, H2AK127 was 

predicted to be acetylated via my approach. In contrast, H2BK27 clustered 

with H2BK11 more weakly, and thus their shared node was positioned on 

the left side of the threshold line. Hence, this lysine H2BK27 was not 

predicted as acetylated. 

Statistical Analysis 

ROC calculations are described in main text. Hypergeometric probability 

calculation: Pr= ; (N = all lysines in human proteome; K = 

number of times the particular residue is seen flanking in each position in 
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human proteome; n = total number of lysines in each independent validation 

dataset; m = number of times the particular residue is seen flanking in each 

position in validation dataset). Sensitivity (Sn) was calculated as the total 

number of correctly identified acetylation sites from the positive dataset 

divided by the total positive dataset. Specificity (Sp) was calculated as the 

total number of negative sites that were not predicted to be acetylated 

divided by the total negative dataset size. Accuracy calculated as the 

number lysines correctly predicted as acetylated/total number of acetylated 

lysines in dataset.  

Additional Methods of Classification 

 When I first began the project, I used a Support Vector Machine Classifier 

(SVM Light) to analyze my data (Yu, Joachims et al. 2008). I used a linear 

kernel function, which measures the similarity between a pair of inputs, and 

defines an inner product in the feature space. My feature space consisted of 

k-mers, where k = (2..6). These k-mers were extracted from the residues 

surrounding the flanking lysine.  The results of this method (75% accuracy 

on histone lysines, where a lysine was either classified as “validated” or “not 

observed” as acetylated) encouraged me to proceed and use additional 

machine learning methods empirically.  Hence,  I also used a mismatch 

kernel (Leslie, Eskin et al. 2004), which consists of a class of string kernels 

for use with support vector machines (SVMs) to measure sequence similarity 
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allowing for mutations between patterns. Thus, if two protein sequences 

contain many k-length subsequences that contain m, mismatches, the inner 

product one would expect is large. The mismatch kernel did not alter my 

results significantly as compared to the linear kernel.  Other types of kernels 

I used were the profile and quadratic kernels, however the best results were 

achieved using the linear and mismatch kernels.   

Weighting 

 As described in Chapter 2, I weighted residues to the left and to the right of 

target lysines within the sequence alignment. The weight was added to the 

raw alignment score such that the Ts= Raw alignment score + ∑wi of each 

identical or evolutionarily similar flanking residue, where Ts = total score, 

and wi = 1/d; d= position of flanking residue with respect to lysine. I also 

grouped chemically similar residues together, such that residues that may 

not be evolutionarily similar according to the BLOSUM matrix, but within the 

same chemical group, such as small, aromatic, hydrophobic, etc. are also 

given weight to.  Using chemical similarity improved the algorithm 

performance by a five to eight percent margin (accuracy measure) for both 

histones and non-histone proteins, and thus I included chemical similarity in 

my optimal tree analysis.   
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Sequence logos 

Sequence logos for displaying the flanking residue distribution of all lysines 

in my training and test datasets were created according to (Crooks, Hon et 

al. 2004). 

Software URL 

The acetylation prediction software, PredMod can be found at 

http://www.cs.cornell.edu/w8/~amrita/predmod.html  

Cross Validation and Evaluation of Test Sets 

I used Leave One out cross Validation (LOV) of histone lysines on the 

training set and performed a ROC analysis. The predictive performance was 

monitored using the AUC metric (Dodd and Pepe 2003) on the test lysines. I 

applied the procedure to 1000 random permutations of the labels of the 

observed and not observed lysines. The independent datasets were also 

measured by a ROC analysis, as described previously. 

Human Nonhistone Analysis Method 

 In order to measure whether the prediction method also works on 

nonhistone lysines, I first applied my algorithm to a list of validated lysine 

acetylation sites in human nonhistone proteins. I used the following two 

independent validation datasets for my analysis: Firstly, a proteomics 

159 
 

http://www.cs.cornell.edu/w8/%7Eamrita/predmod.html


survey of published cytosolic and nuclear protein fractions from Hela cells 

that were subjected to immunoaffinity purification using a pan-acetyl lysine 

antibody was applied. Isolated peptides were analyzed by HPLC-MS/MS and 

the final output contained 51 acetylated lysines in 38 proteins (Kim, Sprung 

et al. 2006). Secondly, I screened the literature for acetylated proteins and 

found 32 molecules containing 73 acetylated lysines that were reported as 

acetylated both in vitro and/or in vivo using mass spectrometry and 

immunoblotting detection methods. The test data sets were composed of 

lysines that were identified as acetylated and represent my positive set 

(“validated”), and lysines that were not observed as acetylated within these 

investigated substrates represented my negative dataset (“not observed”). 

By comparing validated acetyl marks to my computationally predicted 

acetylation marks, we tested whether sites are dictated by the surrounding 

amino acid sequences to validate my stated assumption that there is an 

intrinsic substrate specificity for KATs true for both histone and nonhistone 

proteins.  

Acetylation (Experimental) 

Cell Lines 

 Mammalian cell lines were grown in Iscove's DMEM supplemented with 10% 

fetal calf serum and penicillin/streptomycin at 37°C and 5% CO2.  
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Human Histone Purification 

Cell nuclei were isolated by hypotonic lysis in buffer containing 10 mM Tris-

HCl (pH 8.0), 1 mM KCl, 1.5 mM MgCl2, 1 mM DTT, 0.4 mM PMSF, and 

protease and phosphatase inhibitors. Pelleted nuclei were extracted using 

0.4 M sulfuric acid. The acid-soluble histones were precipitated with 

trichloroacetic acid and resuspended in water. Histones were separated by 

reverse phase HPLC using a C8 column (220 by 4.6 mm Aquapore RP-300, 

PerkinElmer Life Sciences) with a linear ascending gradient of 35–60% 

solvent B (solvent A: 5% acetonitrile, 0.1% trifluoroacetic acid, solvent B: 

90% acetonitrile) over 75 min at 1.0 ml/min on a Beckman Coulter System 

Gold 126 Pump Module and 166/168 Detector.  For the additional data that 

was obtained from sodium butyrate treated samples, histones were purified 

from HeLa S3 cells and treated with 10mM sodium butyrate for 15 hmys 

prior to harvesting (STable 6). H3 was also purified from HEK293 cells 

treated with sodium butyrate (see below). 

Mass Spectrometric Analysis of Human Histones H2A and H3 

Histones were isolated and H2A was purified as described previously 

(Shechter, Dormann et al. 2007) from HL60 cells. The HPLC fraction 

containing purified H2A was resuspended in water, and an aliquot was 

diluted with 100 mM ammonium bicarbonate, pH 8.  The diluted aliquot was 

divided in half. One half was digested with GluC protease (Princeton 
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Separations, Inc, Adelphia, NJ) at a substrate-to-enzyme ratio of 20:1 for 4 

h at RT, and glacial acetic acid was used to quench the digest. An aliquot of 

the GluC-digested H2A containing approximately 1 picomole of H2A was 

diluted 3-fold with ammonium bicarbonate to increase the pH to 8.0. H2A 

peptides were then derivatized by treatment with deutero succinimido 

acetate. This reagent was created by adding deutero acetic anhydride and 

triethylamine to N-Hydroxysuccinimide, and the white precipitate was 

collected after rinsing with hexanes. 0.35mg (≈ 2 micromoles) of deutero 

succinimido acetate was added to the H2A peptide mixture, containing an 

estimated 20 picomoles of free amino groups. The deutero-acetylation 

reagent and H2A peptides were allowed to react for 2 h at 4 °C. Deutero-

acetylation of the N-termini of peptides and the epsilon amino groups of 

lysine residues increases the hydrophobicity of the H2A peptides, and allows 

the smaller, hydrophilic peptides of H2A to be retained on a C18 column. 

Instead of adding a 42-Da acetyl group (C2H3O), this reagent adds a 45-Da 

acetyl group (C2D3O) since it contains 3 deuteriums instead of 3 hydrogens. 

Therefore, an in vivo lysine acetylation is distinguished from a deutero-

acetylation because of their difference in mass.  

After performing this reaction, the mixture was acidified with glacial acetic 

acid and loaded onto a capillary precolumn (360 μm O.D. x 75 μm I.D. fused 

silica, Polymicro Technologies, Phoenix, AZ) packed with irregular 5–20 μm 

C18 resin (YMC Inc., Wilmington, NC). The precolumn was then connected to 
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an analytical column packed with regular 5 μm C18 resin equipped with an 

electrospray tip.H2A peptides were separated using nanoflow HPLC on an 

1100 series binary HPLC pump (Agilent Technologies, Palo Alto, CA) coupled 

to a micro-electrospray ionization smyce on a Finnigan LTQ Orbitrap mass 

spectrometer (Thermo Scientific, San Jose, CA) The HPLC gradient consisted 

of 0-60 %B in 50 min and 60-100 %B in 10 min (solvent A: 0.1 M acetic 

acid, solvent B: 70 % acetonitrile, 0.1 M acetic acid), with a flow rate of 60 

nL/min. Full mass spectra were acquired with the Orbitrap as the analyzer, 

and MS/MS spectra were acquired in the LTQ ion trap. After each full MS 

scan, m/z values of 535.6, 537.1, 513.1, 514.6, 534.1, and 511.6 were 

targeted sequentially for isolation and fragmentation. The last scan event in 

the cycle (prior to acquisition of the next full MS scan) was a data-dependent 

MS/MS scan of the most abundant ion in the previously acquired full MS 

scan. MS/MS spectra were manually interpreted. This approach employing 

GluC digestion and deutero-acetylation was used to examine the C-terminal 

H2A peptide, residues 122-129. 

The second half of the H2A aliquot was treated with propionic anhydride to 

derivatize endogenously monomethylated and unmodified epsilon amino 

groups of lysine residues. Chemical derivatization with propionic anhydride 

converts amino groups of lysines to their corresponding propionyl amides 

and has been detailed previously (Garcia, Mollah et al. 2007). Briefly, equal 

volumes of propionylation reagent and protein were reacted, and 
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derivatization was repeated twice to ensure full conversion of amino groups.  

The sample was vacuum-dried after each derivatization. H2A was then 

digested with trypsin (Promega, Madison, WI) at a substrate-to-enzyme 

ratio of 20:1 for 7 h at 37 °C. Derivatization blocks lysine residues from 

cleavage, and thus trypsin cleaves C-terminal to arginine residues only. The 

resulting H2A peptide mixture was acidified with glacial acetic acid and 

loaded onto a reverse phase capillary column for LC-MS/MS analysis as 

described above.  H2A peptides were analyzed using a hybrid quadrupole 

linear ion trap Fourier transform (LTQ-FT) mass spectrometer (Thermo 

Scientific, San Jose, CA). The LTQ-FT instrument was operated in data-

dependent mode with dynamic exclusion enabled. The data-dependent 

method consisted of acquisition of a full scan mass spectrum using the FT as 

analyzer followed by ten MS/MS scans of the ten most abundant ions in the 

initial full scan. MS/MS scans were acquired using the ion trap as the 

analyzer and spectra manually interpreted. This approach employing 

propionylation and trypsin digestion was used to examine N-terminal H2A 

peptides, 4-11 and 12-17. 

Histone H3 was purified as described previously (Garcia, Barber et al. 

2005; Hake, Garcia et al. 2006) from sodium butyrate-treated HEK293 cells.  

H3 was treated with propionic anhydride and digested with trypsin, similar to 

the procedure described for H2A. Following digestion, the samples were 

again reacted with propionic anhydride to derivatize the amino-termini of the 
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trypsin-generated H3 peptides.  The peptide mixture was dried in a speed-

vac concentrator, and subsequently reconstituted in 0.1% acetic acid. H3 

peptides were loaded onto a capillary reverse phase precolumn, and the 

precolumn was connected to an analytical column as described above.  

Peptides were gradient-eluted into an LTQ Orbitrap mass spectrometer 

(Thermo Fisher Scientific, San Jose, CA).  The instrument was operated in 

data dependent mode and cycled through acquisition of a full mass scan 

followed by MS/MS scans of the ten most abundant peptide cations in the 

initial full scan.  This approach was used to examine the N-terminal H3 

peptide, 27-40. All MS/MS spectra were manually interpreted. 

Mass spectrometric analysis of nonhistone lysine acetylation sites  

Tagged cells of my nonhistone proteins were lysed under cryogenic 

conditions. Tandem Tap-tag purification was performed on candidate yeast 

proteins as described (Puig, Caspary et al. 2001) and eluates run on SDS-

PAGE gels and stained with coomassie. Protein bands were in-gel digested 

with trypsin or chymotrypsin, and peptides extracted.  

Each of the protein bands were cut into two pieces with similar size and 

washed with 10% acidic acid in 50% ethanol (acetic acid:ethanol:water = 

10:50:40 (v/v/v)) three times and then overnight.  After destaining three 

times with 25 mM ammonium bicarbonate in ethanol buffer (ethanol:water = 

50:50 (v/v)), the gel bands were swollen in water twice and then cut into 
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small pieces.  They were dehydrated in acetonitrile and then dried in a 

SpeedVac (Thermo electron, Waltham, MA).  Overnight digestion was 

performed at 37 ºC with about 200 ng of modified porcine trypsin (Promega, 

Madison, WI) or chymotrypsin (Roche, Indianapolis, IN) in 50 mM 

ammonium bicarbonate. The resulting peptides were extracted sequentially 

with 5% TFA/50% acetonitrile/45% water (v/v/v), and 0.1% TFA/75% 

acetonitrile/24.9% water (v/v/v), and 100% acetonitrile.  The extracts were 

combined and dried in a SpeedVac. The resulting peptides were cleaned with 

C18 ZipTips (Millipore, Bedford, MA) according to the manufacturer’s 

instructions, prior to nano-HPLC/mass spectrometric analysis. 

The extracted peptides were separated using a capillary HPLC column (11 

mm length × 75 μm I.D., 4 μm particle size, 90 Å pore diameter) packed in-

house with Jupiter C12 resin (Phenomenex, Torrance, CA). LC-MS/MS 

analysis was performed in an integrated system that includes an Agilent 

1100 series nanoflow LC system (Agilent, Palo Alto, CA) and a LTQ 2D trap 

mass spectrometer (Thermo Electron, Waltham, MA) equipped with a 

nanoelectrospray ionization (NSI) smyce.  The gradient-eluted peptides 

were electrosprayed directly into the LTQ mass spectrometer, which was 

operated in a data-dependent mode.  Mascot (version 2.1, Matrix Science, 

London, U.K.) was used for database searching. Acetylated lysine containing 

peptides identified with a Mascot score of 20 or above were manually 

verified by a method described previously (Chen, Kwon et al. 2005). 

166 
 



Yeast Strains and Plasmids. 

Strain MSY421 from M. M. Smith (University of Virginia) [MAT a, Δ(hht1-

hhf1) Δ(hht2-hhf2) leu2-3, 112, ura3-62, trp1, his3, pMS329 (HHT1-HHF1, 

URA3, CEN)] was used to shuffle in plasmids containing histone H3 A15K, 

H3G13V, and H3A15V mutations using 5-FOA as a counterselecting agent for 

the URA3 plasmid. The mutant plasmids were generated by PCR 

mutagenesis (H3A15K, H3A15V, H3G13V) and confirmed by sequencing. The 

final yeast strain was confirmed by PCR amplification of the HHT2-HHF2 

locus and DNA sequencing. Yeast growth, plasmid and DNA fragment 

transformation of yeast cells were done according to standard yeast 

protocols (Hieter et al, Methods in Yeast Genetics).  

Extraction of Histones 

Histones were extracted from nuclei made from 1 liter of cells grown to an 

OD600 of 0.8 in yeast-rich media. Nuclei were prepared in the presence of 

protease inhibitors, and histones were obtained by acid extraction as 

described in (Hsu, Sun et al. 2000). One-tenth of each fraction was used to 

confirm the presence of purified histones by SDS/PAGE separation and 

Coomassie blue staining. The remainder of the fraction was used for MS 

analysis. 
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Mass Spectrometry of Yeast Histones 

Histones were prepared using propionic anhydride reagent and digested with 

trypsin as described previously (Garcia, Mollah et al. 2007).  For mass 

spectrometry analysis, histones were loaded on to C18 packed columns and 

separated using an Agilent 1200 series HPLC system (Agilent Technologies), 

and the LC gradient used was 5% B to 45% B over 60 min.  All data was 

acquired on an LTQ-Orbitrap as previously described (Leroy, Toubeau et al. 

2006).      

Domain Prediction (computational)   

I performed the domain prediction analysis by creating a multiple sequence 

alignment of known effector proteins of my domain of interest using the 

software program ClustalW. Sequences that were fed into my MSA were 

based on a concatenated sequence, ie. If the domain consisted of a helix, 

loop, helix, then I ensured that the loop region of the sequence had a lower 

gap penalty, while the helix part of the sequence had a more stringent gap 

penalty (JPred) (Cole, Barber et al. 2008). The MSA was then fed into a 

Hidden Markov Model 2.0 which calculated the probability of the output 

sequence based on a probabilistic weight analysis of input sequences. The 

final result I obtained was an E-value of the statistical significance of my 

prediction given the selected parameters. I compared this value against an 
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unadjusted loop, and so I obtained a list of predictions for the unadjusted 

and adjusted loops.  

PcG domain detection  

I  selected E(z), Pc, dRing and Psc as my PcG reference set: the “writer” 

(E(z)) and the “reader” (Pc) of the H3K27me mark, the only other known 

catalytic member of the PcG (dRing), and dRing’s associated factor (Psc). 

Sequence and domain information was retrieved for Drosophila, mouse, and 

human PcG proteins from the Swissprot, Uniprot, Ensembl, and SMART 

databases. In order to identify putative homologs of these proteins in other 

organisms, I performed BLAST searches using the Drosophila, mouse and 

human proteins as queries2, 3. The Blastp searches, using the NCBI web 

server (http://www.ncbi.nlm.nih.gov/BLAST) were performed at low, 

medium, and high stringencies to obtain all possible proteins in the following 

organisms: Arabidopsis thaliana, Caenorhabditis elegans (worm), 

Strongylocentrotus purpuratus (sea urchin), Danio rerio (zebrafish), Xenopus 

laevis (frog), Gallus Gallus (chicken), Canis familiaris (dog), Mus musculus 

(mouse), and Homo sapiens (human). Since homologous domains between 

my species are very well conserved, variation of BLAST parameters, such 

as gap costs and substitution matrices did not significantly alter my results. 

In addition, I developed a program (Motif Search) to query motifs less than 

15 amino acids in length such as the Pc box. Sequence similarity between 
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homologous domains and full-length sequences was used to compute a 

weighted score by multiplying a fixed weight to the BLAST score and 

computing an overall weighted sum. Key domains for PcG proteins were 

identified including: the chromodomain and Pc-box for Pc homologs, the 

RING domain for Psc and dRing homologs, and the SET and SANT domains 

for E(z) homologs. A list of putative homologs containing the highest scores 

was compiled for each class of PcG proteins, and homologs in different 

species were selected by manual inspection. Finally, the ClustalW 

program was used to cluster putative homologs to ensure that proteins with 

similar key domains with minor amino acid differences such as Ring1A and 

Ring1B were categorized correctly. In addition, a reverse BLAST of all the 

putative homologs was also performed against the Drosophila genome to 

ensure that the forward BLAST hit was accurate. Many databases of 

translated cDNA libraries are inherently incomplete, and so gene sequences 

of those PcG homologs that were found to be absent in a given organism 

were also queried against the organism’s genome. Finally, putative PcG 

homologs were mapped onto a phylogenetic tree of organisms. Additional 

potential paralogs of dPsc were found in Drosophila through my algorithm. 

These proteins are Su(z)2 and l(3)-73Ah; however as they are not well 

characterized as functional Psc homologs, these proteins have been excluded 

these proteins from my phylogenetic tree. 
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Sequence alignments were constructed using the Emboss program and 

CEC-1 was predicted as a putative Polycomb homolog because of its high 

sequence similarity with Drosophila and mouse Cbx8 chromodomains. Two 

stretches of amino acids within the N-terminus and C-terminus of CEC-1 also 

shared a strong sequence similarity with the Drosophila and mouse Cbx8 Pc 

boxes. In Figure 4.5B, the ClustalW program was used to create a multiple 

sequence alignment of Cbx proteins and subsequently fed into the PHYLIP 

software program5. The protdist and neighbor joining programs within 

PHYLIP were used to construct the Cbx paralog tree (Figure 4.5B) and the 

Emboss local alignment program was used to determine sequence similarity 

and identity percentages. 

Domain Prediction (Experimental) 

Peptide Pulldown Assay  

Extracts were made by taking frozen, lysed cells (1 g/ pull-down condition) 

and extracting them in 500cmM extraction buffer (500 mM NaCl, 20 mM 

HEPES pH 7.9, 25% glycerol, 1.5 mMcMgCl2, 0.2 mM EDTA, 1 mM PMSF, 

Complete Mini EDTA-free [Roche], 0.2% Triton X-100) for 1 hour at 4°C. 

Extracts were then diluted to 150 mM NaCl with ‘no-salt’ extraction buffer, 

mixed with 2.5 μg of biotinylated histone peptide-linked Dynabeadsc(M-280 

Streptavidin, Dynal) at the ratio of 2.5 μg /100 μL beads and nutated for 30 

minutes at 4°C. Peptide-linked Dynabeads and associated proteins were 
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then washed five times in 300 mM KCl wash buffer (300 mM KCl, 20 mM 

HEPES pH 7.9, 0.2% Triton X-100), and one time in a buffer containing 4 

mM Hepes pH 7.5 and10 mM NaCl. Peptide-bound proteins were eluted in 

boiling SDS-PAGE loading buffer, resolved on Novex 4-20% gradient gels, 

and probed with antibodies recognizing the PrA tag (DAKOP0450). Peptides 

were synthesized by Upstate Biotech (UBI) and Proteomics Resource Center 

of The Rockefeller University. 
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Appendix 

 

Collaborations  

 

During my PhD, I had a chance to collaborate with a variety of groups on 

and off the Rockefeller campus. A group that I collaborated with was Dr. 

Dmitri Krainc’s group, at Harvard Medical School (Cambridge, MA). His group 

was interested in looking at human Htt (a Hungtingtin disease related 

protein), and was interested in studying PTMs on this specific protein. I 

contributed to this project by using my software tool, PredMod, to predict  

several acetylation sites on this protein. My top ranked predicted lysine was 

K444, which eventually was shown to facilitate trafficking into 

autophagosomes, and had an effect on neurodegeneration in cultured 

neurons and in mouse brain (Jeong, Then et al. 2009).  

A second collaboration that I was involved in with the lab of Dr. Elliott 

Hertzberg at Albert Einstein College of Medicine, who was involved in looking 

at a series of Connexin proteins (gap junction proteins) in rat cells. My top 

predictions aligned with their primary detected acetyl-sites in Connexin23. 

They are in now the process of conducting further experiments to determine 

the acetyltransferase of the lysine mark.   
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Software Tools  

During my graduate studies, I developed PredMod as described in the 

computational section of my thesis. The usage of this tool is as follows:  

Usage of PredMod. After you have inserted the sequence of your protein of 

interest, press “Submit” and the following output will appear: The first 

section displays the entire sequence with each lysine colored red or blue. A 

red colored lysine indicates that the lysine is predicted as acetylated, and a 

blue colored lysine suggests that the lysine is not acetylated. Listed below 

the protein sequence are the total number of predicted acetylated lysines, 

not predicted as acetylated lysines, and a total lysine count. In the second 

section, you will see that there are two tables of proteins, one table shaded 

in yellow and one table shaded in blue.  Table columns are as follows:  

Position of lysine in protein, confidence (calculation described below), and 

the flanking sequence with the target lysine bolded. The yellow shaded list 

contains predicted acetylated lysines, and the blue shaded list lysines that 

are not predicted as acetylated. Note that the confidences are in ranked 

order. The top-most yellow shaded lysine is the lysine predicted as 

acetylated with the highest confidence.  The bottom-most blue shaded lysine 

is least likely to be acetylated.  Note that this program runs at a lower 

stringency threshold than results reported in the text (high stringency), and 

thus the output contains a higher number of positive predictions.   
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Confidence levels are calculated by the difference between the output score 

and the optimal calculated threshold. Thus, if a lysine scores above the 

designated threshold, it is predicted as an acetylated lysine. Confidence 

values range between 0.5 and 67, where 67 most likely represents an 

identical match between a histone sequence existing in the training set and 

an identical input sequence.  

 Another tool, useful for the lab was Motif Search, a software program which 

enables a user to enter any length motif, and then this motif is searched for 

in the entire proteome of all organisms. The output received is something 

like this:  

Together, PredMod along with Motif Search can potentially help the scientific 

community obtain additional information on their “favorite protein.”  
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All Tables 
Table represents lysines in human histones H3, H4, H2B, H2A and their acetylation status as 

noted in literature (references are in rightmost column). Asterisk (*) represents lysines that 

were predicted by the algorithm and validated experimentally by mass spectrometry.  

 
Human Histone H3.1  (NP_003520.1) 
 
 
Lysine residue Validated as 

Acetylated 
Not Observed as 
Acetylated 

Reference(s) 

K4 X  (Zhang, Tang et 
al. 2002; Zhang 
and Tang 2003; 
Zhang, Eugeni et 
al. 2003; Garcia, 

Barber et al. 
2005; Hake, 

Garcia et al. 2006; 
Garcia, Hake et al. 

2007) 
K9 X  (Cocklin and Wang 

2003; Beck, 
Nielsen et al. 

2006) 
K14 X  (Cocklin and Wang 

2003; Beck, 
Nielsen et al. 
2006; Kim, 

Sprung et al. 
2006) 

K18 X   (Garcia, Hake et 
al. 2007),(Hake, 

Garcia et al. 
2006),(Zhang and 
Tang 2003),(Beck, 

Nielsen et al. 
2006),(Kim, 
Sprung et al. 

2006) 
K23 X  (Garcia, Hake et 

al. 2007),(Hake, 
Garcia et al. 

2006),(Zhang and 
Tang 2003),(Beck, 

Nielsen et al. 
2006),(Kim, 
Sprung et al. 

2006) 
K27 X  (Cocklin and Wang 

2003; Beck, 
Nielsen et al. 
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2006) 
K36 X  (Morris, Rao et al. 

2007) 
K37   *(sod but) 
K56  X  (Xie, Song et al. 

2009),(Das, Lucia 
et al. 2009) 

K79 X                  
(Garcia, Hake et 
al. 2007) 

K64  X  
K115  X  
K122  X  
 
Human Histone H4 (NP_003529.1) 
 
Lysine residue Validated as 

Acetylated 
Not Observed as 
Acetylated 

References 

K5 X  (Zhang, 
Williams et 
al. 2002; 
Smith, 

Gafken et 
al. 2003; 

Pesavento, 
Kim et al. 

2004) 
K8 X  (Zhang, 

Williams et 
al. 2002; 
Smith, 

Gafken et 
al. 2003; 

Pesavento, 
Kim et al. 

2004) 
K12 X  (Zhang, 

Williams et 
al. 2002; 
Smith, 

Gafken et 
al. 2003; 

Pesavento, 
Kim et al. 

2004) 
K16 X  (Zhang, 

Williams et 
al. 2002; 
Smith, 

Gafken et 
al. 2003; 

Pesavento, 
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Kim et al. 
2004) 

K20  X  
K31 X  (1) 
K44  X  
K59  X  
K77  X  
K79  X  
K91  X  
 
 
Human Histone H2B.2(Q) (NP_003519.1) 
 
Lysine residue Validated  as 

Acetylated 
Not Observed as 
Acetylated 

References 

K5 X  (Beck, Nielsen et 
al. 2006),(Kim, 
Sprung et al. 

2006) 
K11 X   (Beck, Nielsen et 

al. 2006),(Kim, 
Sprung et al. 

2006) 
K12 X  (Bonenfant, Coulot 

et al. 2006) 
K15 X  (Bonenfant, Coulot 

et al. 2006) 
K16 X   (Beck, Nielsen et 

al. 2006),(Kim, 
Sprung et al. 

2006) 
K20 X  (Beck, Nielsen et 

al. 2006),(Kim, 
Sprung et al. 

2006),(Bonenfant, 
Coulot et al. 2006) 

K23 X  (Kim, 
Sprung et 
al. 2006) 

K24 X                (9) 
K37  X  
K30  X  
K34  X  
K43  X  
K46  X  
K57  X  
K85  X  
K108  X  
K116   *(sod but) 
K120  X  
K125  X  
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Human Histone H2A.C (NP_003503.1) 
 
Lysine residue Validated as 

Acetylated 
Not observed as 
Acetylated 

References 

K5 X  (Bonenfant, Coulot 
et al. 2006) 

K9   * 
K13   * 
K15   * 
K36   X  
K75  X  
K76  X  
K95 (R)  X  
K118  X  
K119  X  
K125 (R)   * 
K127(R)   * 
K129    * 
 
Note (R) stands for reversed sequences that were used in the alignment 
H2AK125  KTESHHKAKGK  (R)KGKAKHHSETK 
H2AK125   ESHHKAKGK    (R)KGKAKHHSE 
H2AK96         NDEELNKLLGRVT  (R)TVRGLLLKNLEEDN 
 
(sod but) =This modification observed under sodium butyrate treatment 
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Human pan-acetyl IP substrates  
Table includes published proteins that were immunoprecipitated with a pan-acetyl antibody 

(Kim, Sprung et al. 2006). Asterisk (*) represents lysines that were not predicted by the 

algorithm but experimentally identified by mass spectrometry. 

 
 
Protein/accession 
number 

Total 
residu
es 

Lysines  Predicted/valid
ated 
(position on 
protein) 

Predicted but 
not validated 
experimentally 
by algorithm  
(position on 
protein) at  
threshold 

* 

Set-translocation  
(gi:4506891) 

277 18  7,10,159   

HrNP  
(gi:14043070)  

372 18 350 144,145,52  

SMARCA (gi|55958983)  1570 121 1531,1533, 1535 999, 1003 , 472, 
1366, 984 

 

P29ING4 (gi|18873723)  249  28 130 129, 156, 160  127* 
CREB binding (peptide 
info only known) 

  6    

DNMTl (gi:62088406)  1601 137 1100, 1098, 
1102,1104 

135,1589,160,9
44 

 

SON DNA BASS1 
(gi|5737751)  

344 26 206  144, 157, 98 117* 

HMG1 (gi|96888)  215 43  7,8,114,177 28* 
MYST3 (gi|150378493) 2004 139  1165, 

365,1014,1154 
815* 

MLL3(insufficient 
support for the 
transcript and the 
protein) 

     

EF1alpha (gi|62896589) 462 47  385, 386 318* 
PHD15 (gi|18676594) 639 39  605, 617, 604 109* 
Heat shock  90kd 
Protein 1 Beta  
(gi|34304590) 

724 75  624 148, 505 
 

 

Heat shock 27 KD 
(gi|4504517) 

205 6 123  171, 198, 112 
  

 

Chaperonin  
(gi|1137641) 

539  40 20  
 

 
509, 364, 528 

 

Peptidyl-prolyl 
isomerase(cyclophilin) 
(gi|10863927) 

165  14 125  44,49,76  

Cofilin(gi|30582531)  166  25 132 164,31  
Profilin1 (gi|30582841) 140    105* 
Tropomyosin3(gi|55665
780) 

232 22  100 212* 

Actin (gi|16924319) 363 19 49   
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LMNA (gi|21619981) 465 32 418 316, 90, 180  
ANXA5(gi|12655149) 320 22 101 29, 26 , 212  
RHO gdi alpha 
(gi|30582607) 

204  19 141    

Phospholipase Cbeta 1 
(gi|9438229)  

1210 120  966, 1070, 1079 
 

971* 

Phosphoglycerate 
mutase 1  

254 18  106 39   

PEST (gi|9966827) 179 22   152* 
Cyclin T1 (gi|2981196)  726 51  93,219, 356 492* 
VegF (gi|3712671) 254 21 171, 169  174, 44 176* 
B23 nucleoplasmin 
(gi|825671)  

280  66 198 40,188 
 

136* 

Thierodoxin 
(gi|55957946) 

85 11  65 
 

74* 

BCell (gi|32698936) 1494 41 36 49,275, 234  
GAPD(gi|230868) 334 26  2,112,116,65  

 
60* 

LOC84081 
(gi|62020992)  

557 70 499  410, 413, 56  

HYPK (gi|27692116) 129 9 35 87  
Rbbp7 (gi|57209887)  285 16   79, 9, 21 

 
39* 

UBL4A (gi|57284174) 180 10 48   54* 
Transkeletose 
(gi|31417921) 

457 33 66 94, 78 431* 

Aldolase A  (gi|28595) 108 7 13, 42 28   
P300(gi|50345997) 2414 108 1555 ,1554 1549,1550 1560

*, 
1558
* 
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Literature validated human proteins.  
Table includes lysines that were reported as acetylated in literature. Asterisk (*) represents 

lysines that were not predicted by the algorithm but identified experimentally by MS.  

 
Protein/accession 
number 

Total 
residu
es 

Lysin
es  

Predicted/vali
dated 
(position on 
protein) 

Predicted 
but not 
validated 
experimenta
lly by our 
algorithm  
(position on 
protein) at  
threshold 

* 

TFIIB (gi|135629) 290 31 238 267, 136, 14 52* 
P53(gi|23491729) 393 19 320, 370 

321,305 
357, 139, 120 372*, 

386*, 
373*, 
382* 

Rch1 (gi:791185)   529 28 22  102, 42  
Myc (gi:71774083)  
 

439 24  317, 143, 157, 
371, 275, 323 

422,289,355  

Smad 7 (gi|18418630)   426 20 64,70  5,185  
Stat1 (gi|2507413)  749 55  679, 511 410*, 

413* 
HIV1 – integrase  
http://ca.expasy.org/unipro
t/A6YEJ0 
 

288 26 266,273  219, 71 264* 

MyoD (gi|34862)  319 11 102 133 99*, 
104* 

HIV-tat (gi:114842145)  101 13  53, 12  50* 
Alpha-Tubulin (gi|55977864 
) 

451 19  60, 338, 112 40* 

ACTR (gi:2707770) 
 

1412 55  691, 316 , 87 630*, 
629* 

HMG14(Chen, Lin et al. 
1999) (gi:184251)  

216 43 11 , 2 8, 87 , 172  

CDK9 (gi|8099630)  372 29 44  24, 272, 178 48* 
P65 (gi|5689767) 
 

551 17  123, 343 221*  

HMG-A1 (gi|123377|)  107 16 65, 67,71 55, 15   
Stat3  ( gi|48429227) 770 47 685 631, 548, 153  
ANDR (gi|113830) 919 39 630,632,633 299,316, 590  
Esr1 (gi|544257)  595 28 299 401,266 302*, 

303* 
Gata3 (gi|120962) 443 21 302  250, 159, 

254 
305* 

P73 (gi:2370177)  500 17 331, 321 346, 138, 
157, 192 

327* 

RB  (gi|132164| )  928 76  417, 432, 873*, 
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265,8 874* 
Beta catenin (gi|860988)  781 26 49 270,672 345* 
HIF-1 (gi|4504385)  826 49  297, 159, 629  532* 
SATB1 (gi|417747) 763 44 136 241, 11, 518, 

129 
 

FOX01   
(gi|116241368) 

655 25 245, 248, 265 272, 354, 179  

INAR2  (gi|1352466) 515 21  180, 182, 243 399* 
HSP90alpha  (gi|92090606) 732 80  277, 513, 276 294* 
Ku70  (gi|125729) 609 59  253,249,358 539*, 

542* 
PGRC1   
(gi|6647589) 

798 47  646, 656, 
194, 254 

278*, 
271*,1
46* 

HTT (gi|1170192) 3144 278 444 178,1168,92,
410,700 

 

RIP140(gi|57232746) 1158 92  724, 
249,1105, 
127, 97 

111*, 
158*, 
286*, 
310*, 
481*, 
446* 

CDT1(gi|224471822) 546 23 49 429,218, 166, 
100 

24* 
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Literature validated human proteins and the references of 
acetylation sites. 
 
Protein  References 
TFIIB (Imhof, Yang et al. 1997) 
HMG-A1 (Munshi, Merika et al. 1998) 
P53 (Gu and Roeder 1997) 
Gata1 (Boyes, Byfield et al. 1998) 
Rch1  (Bannister, Miska et al. 2000) 
HMG-14 (Bergel, Herrera et al. 2000) 
C-Myb (Tomita, Towatari et al. 2000) 

E2F1 (Martinez-Balbas, Bauer et al. 2000) 

C-myc  (Zhang, Faiola et al. 2005) 

Smad7 (Simonsson, Heldin et al. 2005) 

Stat1  (Kramer, Baus et al. 2006) 

HIV1-integrase (Kiernan, Vanhulle et al. 1999) 

MyoD (Polesskaya, Duquet et al. 2000) 

HIV-tat (Dormeyer, Dorr et al. 2003) 

ACTR (Chen, Lin et al. 1999) 

CDK9 (Fu, Yoon et al. 2007) 

P65 (Ishinaga, Jono et al. 2007) 

SATB1 (Pavan Kumar, Purbey et al. 2006) 

STAT3 (Glozak, Sengupta et al. 2005) 

HMGB-1 (Glozak, Sengupta et al. 2005) 

Beta-catenin  (Wolf, Rodova et al. 2002; Levy, Wei 
et al. 2004) 

Alpha-tubulin  (Glozak, Sengupta et al. 2005) 

GATA3 (33) 

P73 (33) 

SMC3 (Zhang, Shi et al. 2008) 

HIF-1 (Jeong, Bae et al. 2002) 

RB (Markham, Munro et al. 2006) 

ESR1 (Fu, Wang et al. 2004) 

Ku70 (35) 

Hsp90 (35) 
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Fox01 (Greer and Brunet 2005) 

PGC1 (35) 

INF (35) 

AR (Fu, Wang et al. 2004) 

HTT (Jeong, Then et al. 2009) 

CDT1 (Glozak and Seto 2009) 

RIP140 (Yang and Seto 2008) 
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P-values in Chapter 2 

To test whether the observed enrichment of small residues (G/A), K, S was 

statistically significant in the histone and nonhistone datasets, I determined 

the frequency of these same residues flanking a lysine in the entire human 

proteome. I employed the hypergeometric test to measure the statistical 

relevance of this observation (STable 4). “LIT” represents those lysines 

validated in literature, “HIST” represents lysines in histones, and “PAN” 

represents pan-acetyl antibody substrate lysines. Top row shows the 

position of the residue with respect to the target lysine (position 0, not 

shown). List below the table displays the values for each of the variables in 

the hypergeometric distribution: all lysines in the human proteome = N; 

number of times the particular residue is seen flanking in each position in 

human proteome= K; total number of lysines in each independent 

validation dataset = n; number of times particular residue is seen flanking 

in each position in validation dataset = m. 

 
 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 
small             
LIT 0.0

04 
1 0.9 2e-1 9e-4 0.00

3 
0.00
4 

0.4 0.3
2 

0.47 7e-6 0.5 

HIST 0.0
1 

0.01 0.7 1.9e-
8 

9.2e-
4 

1.6e-
5 

2e-
5 

1e-
2 

2e-
3 

3e-1 2e-1 1e-
3 

PAN 0.0
5 

1 0.44 0.09 0.03 8.6e-
5 

0.00
4 

0.8
5 

0.1
8 

0.17 5.91e
-4 

0.7 

             
K             
LIT 0.0

6 
0.7 0.03 0.13 0.36 0.6 0.01 0.3 0.0

2 
0.3 0.1 0.2 

HIST 0.3
3 

0.02 1.86e
-4 

0.7 0.5 0.47 0.4 0.5 0.4 0.3 0.08 0.6 

PAN 7.3
e-9 

5.6e-
4 

0.2 0.00
99 

0.11 0.07 0.7 0.0
1 

0.3 0.16 0.007 0.02 

             
S             
LIT 0.3

9 
0.12 0.005 0.05 0.12 0.09 0.99 0.8 0.1

5 
0.3 0.5 0.8 

HIST 0.4
5 

0.5 0.2 0.8 0.8 1 0.01 0.9 0.3 0.8 0.5 0.46 

PAN 0.2 0.4 0.04 0.11 0.11 0.6 0.09 0.8 0.0
7 

0.15 0.2 0.2 

186 
 



 
N in human dataset = 5127294 
 
K in each position for small, serine, and lysine residues dataset 
containing all human lysines. 
 
Position 0: GA:535591  S:291208  K:389280 
Position 1: GA:621026  S:315489  K:323314 
Position 2: GA:677578  S:307757  K:416567 
Position 3: GA:663899  S:312774  K:468003 
Position 4: GA:632418  S:310841  K:537247 
Position 5: GA:584283  S:289536  K:486015 
Position 7: GA:597697  S:296377  K:486758 
Position 8: GA:610849  S:404638  K:537885 
Position 9: GA:593694  S:362154  K:462707 
Position 10: GA:586526  S:336826  K:418813 
Position 11: GA:591499  S:303442  K:325808 
Position 12: GA:531503  S:292427  K:387452 
 
 
m in each position for small, serine, and lysine residues: Human 
Histone Dataset 
Position 0: GA:7  S:2  K:3    
Position 1: GA:8  S:2  K:5    
Position 2: GA:3  S:3  K:9    
Position 3: GA:16  S:1  K:2    
Position 4: GA:10  S:1  K:3    
Position 5: GA:12  S:0  K:3    
Position 7: GA:12  S:5  K:3    
Position 8: GA:8  S:1  K:3    
Position 9: GA:9  S:3  K:3    
Position 10: GA:4  S:1  K:13    
Position 11:  GA:5  S:2  K:4    
Position 12:  GA:9  S:2  K:2    
 
m in each position for small, serine, and lysine residues: Pan-acetyl 
(PA) Dataset 
Position 0: GA:10  S:5  K:12    
Position 1: GA:11  S:4  K:11    
Position 2: GA:8  S:7  K:6    
Position 3: GA:11  S:6  K:11    
Position 4: GA:12  S:3  K:9    
Position 5: GA:17  S:6  K:9    
Position 7: GA:11  S:6  K:4    
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Position 8: GA:5  S:3  K:12    
Position 9: GA:9  S:7  K:6    
Position 10: GA:9  S:6  K:7    
Position 11: GA:11  S:5  K:9    
Position 12: GA:5  S:5  K:9    
 
m in each position for small, serine, and lysine residues: Literature 
(Lit) Dataset 
Position 0: GA:13  S:4  K:8    
Position 1: GA:7  S:6  K:3    
Position 2: GA:4  S:9  K:9    
Position 3: GA:9  S:7  K:8    
Position 4: GA:16  S:6  K:7    
Position 5: GA:14  S:6  K:5    
Position 6: GA:0  S:0  K:57    
Position 7: GA:8  S:2  K:11    
Position 8: GA:8  S:7  K:7    
Position 9: GA:8  S:5  K:10    
Position 10: GA:7  S:4  K:6    
Position 11: GA:14  S:2  K:6    
Position 12: GA:6  S:13  K:6    
 

n(hist) = 21  ; n(lit) = 49  n(pan) = 67   
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S. cerevisiae chromatin-associated protein predictions  

yEAF7   
Predictions: K27, K343, K165, K142 
 
ySPT6  
Predictions: K958, K491, K494, K118, K120, K319 
 
ySir3  
Predictions: K52, K436, K445,K3,K827 
 
 
Sodium butyrate (10mM) treated samples  
Additional acetylation sites detected: 
H2A:  K95, K119 
H2B: K34, K46, K108, K116 
H4: K77, K79, K91 
H3:K37 
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Appendix Figures  
 
Appendix Figure 1: Enlarged tree from Figure 2.3.  
Legend same as in 2.3. 
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Appendix Figure 2. Experimental Mass Spectrometry validation in human cells  
A. CAD (Collisionally Activated Dissociation) mass spectrum of the [M+2H]2+ histone H2A 4-11 

peptide. Shown is a mixture of two single-acetylated species with the same sequence but with 

different sites of acetylation. The MS/MS data indicate acetylation on K5 and K9. The amino acid 

sequence is shown above the spectrum, and the masses associated with the sequence 

correspond to the expected b- and y-type fragment ions for the propionylated H2A 4-11 peptide. 

The masses of the observed b- and y-type fragment ions are assigned to their corresponding m/z 

peaks in the spectrum and are also underlined with the sequence. The asterisks denote fragment 

ions that are shifted lower in mass by 14 amu, indicating the presence of in vivo singly-

acetylated species. For this analysis, histone H2A was purified from HL60 cells, lysines were 

derivatized with propionic anhydride, and H2A peptides were generated with trypsin. H2A 

peptides were gradient-eluted via nanoflow-HPLC and mass analyzed with an LTQ-FT mass 

spectrometer.  

B. CAD mass spectrum of the [M+2H]2+ histone H2A 12-17 peptide. Shown is a mixed spectrum 

of two single-acetylated species with the same sequence but with different sites of acetylation. 

The MS/MS data indicate acetylation on K13 and K15. The amino acid sequence is shown above 

the spectrum, and the masses associated with the sequence correspond to the expected b- and 

y-type fragment ions for the propionylated H2A 12-17 peptide. The masses of the observed b- 

and y-type fragment ions are assigned as in (A). For this analysis, histone H2A was purified, 

derivatized, trypsin digested, and gradient-eluted as in C.  CAD mass spectrum of the [M+2H]2+ 

histone H2A 122-129 peptide. Shown is is a mixed spectrum of three mono-acetylated species 

with the same sequence but with different sites of acetylation. The MS/MS data indicate 

acetylation on K125, K127, and K129. The amino acid sequence is shown above the spectrum, 

and the masses associated with the sequence correspond to the expected singly-charged b- and 

y-type fragment ions for the fully deutero-acetylated H2A 122-129 peptide. The masses of the 

observed b- and y-type fragment ions are assigned to their corresponding m/z peaks in the 

spectrum and are also underlined with the sequence. The asterisks denote fragment ions that are 

shifted lower in mass by 3 amu, indicating the presence of in vivo (non-deutero) mono-

acetylated species. For this analysis, histone H2A was purified from HL60 cells, digested with 

GluC, derivatized with deutero succinimido acetate to increase hydrophobicity of the 122-129 

H2A peptide, and H2A peptides were gradient-eluted via nanoflow-HPLC and mass analyzed with 

an LTQ Orbitrap mass spectrometer. To obtain this spectrum, the precursor ion, m/z 534.1, was 

targeted for isolation with a 3 amu window and fragmented via CAD. Image and text provided by 

Kristie Rose, Donald Hunt lab, UVA (Charlottesville,VA) 

 

192 
 



 

193 
 



 

 

 

 

 

 

 

 

 
Appendix Figure 3. MS validation of acetylation sites in budding yeast proteins 

Eaf7, Sir3, and Spt6.  

Identification of lysine acetylated peptides in Eaf7,Sir3,and Spt6 by LC/MS/MS. The labels b 

and y designate the N- and C-terminal fragments, respectively, of the peptide produced by 

breakage at the peptide bond in the mass spectrometer. The number represents the 

number of N- or C-terminal residues present in the peptide fragment. The superscripts 0, ∗ 

mean water or ammonia loss, respectively 

A.Eaf7K343 

B.Sir3K3 

C.Spt6K319, Spt6K773, Spt6K958, and Spt6K1238  

Images and data provided by Yingming Zhao, UT Southwestern Medical Center (Dallas, TX) 
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Appendix Figure 4 MS validation of acetylation sites in WT and A15K mutant strain  

 
LC/MS/MS spectra displaying H3K9ac and H3K14 ac. Figures supplied by Ben Garcia 

displaying the WT (H3K9-17) peptide and H3A15K (H3K9-17) spectrum. (Images and data 

provided by Ben Garcia, Princeton University (Princeton, NJ). H3K36 methylation data under 

A15K mutation and G13V mass spectra image is presently unavailable, but quantitative data 

presented in Chapter 3. 
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