TRANCE (Tumor necrosis factor [TNF]-related Activation-induced Cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor

Brian R. Wong
Régis Josien
Soo-Young Lee

Follow this and additional works at: https://digitalcommons.rockefeller.edu/steinman-publications
TRANCE (Tumor Necrosis Factor [TNF]-related Activation-induced Cytokine), a New TNF Family Member Predominantly Expressed in T cells, Is a Dendritic Cell–specific Survival Factor

By Brian R. Wong,§ Régis Josien,‡ Soo Young Lee,§ Birthe Sauter,‡ Hong-Li Li,‡ Ralph M. Steinman,‡ and Yongwon Choi*§

From the *Howard Hughes Medical Institute; the ‡Laboratory of Cellular Physiology and Immunology; and the §Laboratory of Immunology, The Rockefeller University, New York 10021

Summary

TRANCE (tumor necrosis factor [TNF]–related activation-induced cytokine) is a new member of the TNF family that is induced upon T cell receptor engagement and activates c-Jun N-terminal kinase (JNK) after interaction with its putative receptor (TRANCE-R). In addition, TRANCE expression is restricted to lymphoid organs and T cells. Here, we show that high levels of TRANCE-R are detected on mature dendritic cells (DCs) but not on freshly isolated B cells, T cells, or macrophages. Signaling by TRANCE-R appears to be dependent on TNF receptor–associated factor 2 (TRAF2), since JNK induction is impaired in cells from transgenic mice overexpressing a dominant negative TRAF2 protein. TRANCE inhibits apoptosis of mouse bone marrow–derived DCs and human monocyte-derived DCs in vitro. The resulting increase in DC survival is accompanied by a proportional increase in DC-mediated T cell proliferation in a mixed leukocyte reaction. TRANCE upregulates Bcl-xL expression, suggesting a potential mechanism for enhanced DC survival. TRANCE does not induce the proliferation of or increase the survival of T or B cells. Therefore, TRANCE is a new DC-restricted survival factor that mediates T cell–DC communication and may provide a tool to selectively enhance DC activity.

An important role of TNF members in dendritic cell (DC) biology has recently emerged. DCs have several specializations that lead to the stimulation of naive T cells and play a role in the initiation of the immune response (17). TNF-α and CD40 ligand (L) are molecules involved in the differentiation of DC from CD34+ bone marrow or cord blood progenitors (18–20). Moreover, CD40L increases DC survival, upregulates MHC and costimulatory molecule expression, and induces the expression of a variety of cytokines (e.g., IL-12) in DCs (21). Both CD40 and TNFR interact with TRAF2, suggesting that TRAF2 plays a role in DC function.

Recently, TRANCE (TNF-related activation-induced cytokine), a novel ligand of the TNF family, was cloned during a search for apoptosis regulatory genes (22). Remarkably, TRANCE expression is restricted to lymphoid-specific organs and is selectively expressed in T cells (22). In this study, we describe that TRANCE-R signals via TRAF2 in thy- 2075

mocytes and increases DC survival by upregulating Bcl-xL expression, a property shared with CD40L. However, unlike CD40L, TRANCE selectively acts on mature DCs but not on B cells. In addition, high levels of TRANCE-R are only detected on DCs, suggesting that a major function of TRANCE in vivo is to modulate DC activity.

Brian R. Wong and Régis Josien contributed equally to this report.
Materials and Methods

Expression and Purification of Soluble TRANCE. A FLAG epitope-tagged TRANCE molecule (FLAG-TRANCE) was expressed in 293T cells and purified as previously described (22). To create a human CD8-TRANCE recombinant molecule (hCD8-TRANCE), the extracellular domain of murine TRANCE (amino acid 245–316) was fused to human CD8α (amino acid 1–182) and produced in a baculovirus expression system according to the manufacturer's instructions (BaculoGold; Pharmingen, San Diego, CA). hCD8-TRANCE was purified on cyanogen bromide (CNBr)-activated Sepharose gel conjugated to OKT8 following the manufacturer's protocol (Pharmacia Biotech, Piscataway, NJ). mCD8-CD40L in insect cell supernatant was provided by Dr. R. Randolph J. Noelle (Dartmouth Medical School, Hanover, NH).

Produced in a baculovirus expression system according to the manufacturer's protocol (PharMingen, San Diego, CA). The extracellular domain of murine TRANCE (amino acid 245–293) was expressed in 293T cells and purified as previously described (22). To create a tagged TRANCE molecule (FLAG-TRANCE) was expressed in 293T cells and purified as previously described (22). To create a tagged TRANCE molecule (FLAG-TRANCE) was expressed in 293T cells and purified as previously described (22). To create a tagged TRANCE molecule (FLAG-TRANCE) was expressed in 293T cells and purified as previously described (22).

Cells. Bone marrow–derived DCs (BMDC) were generated as previously described (24) and used on day 8 of culture. Enriched populations of fresh lymph node or splenic DCs were prepared by digesting organs with collagenase then selecting for low density cells via centrifugation on a Nycodenz column (14.5% wt/vol in PBS + 5 mM EDTA; Nycodens Pharmaceuticals, Osoyoos, BC, Canada) for 15 min at 4°C. Mature spleen DCs were prepared by culturing freshly isolated spleen DCs overnight as previously described (25). The cytokine-induced generation of human DCs from PBMCs was performed as previously described (26). After 2 d in monocyte-conditioned medium, TRANCE or PBS was added to the DCs. Lymph node T cells (99% CD3+ as assessed by flow cytometry) were prepared by magnetic bead depletion (Dynal, Inc., New York, NY), and F4/80-positive cells were prepared by magnetic depletion of Thy1+ positive cells (Dynal). Cell viability was assayed by trypan blue exclusion or by propidium iodide uptake.

Flow Cytometry. DC phenotype was assessed by flow cytometry as described previously (27) using the following FITC- or PE-conjugated mAbs: H-2Kb-I-Aβ, intracellular adhesion molecule (ICAM)-1, CD11b, CD11c, CD80, CD86, CD25, and CD40 (all from Pharmingen). Other mAbs used were biotinylated αα-Fas, CD3-FITC, B220-FITC (Pharmingen), and N. L. Fas-IgG, IgG-Fas, and Bc1-2 (4C11) or Bc1-2 (236; both provided by Dr. Gabriel Núñez, University of Michigan, Ann Arbor, MI) and detected with the appropriate horseradish peroxidase–conjugated secondary antibodies and enhanced chemiluminescence substrate (ECL; Amersham Corp., Arlington Heights, IL). For reverse transcription-PCR analysis of bcl-2 mRNA expression, BMDCs (2 × 10^6 cells/well) were cultured in 24-well plates, treated with the appropriate reagents, and quickly frozen in a dry ice/ethanol bath at the various time points. Total RNA was extracted (RSN easy Qiagen Inc., Chatsworth, CA), and cDNA was diluted to allow PCR amplification to occur as a linear function of starting concentrations. PCR was performed using the conditions and primers as previously described (13).

Results and Discussion

TRANCE-R is Expressed at High Levels in DCs. To identify cells that express TRANCE-R, hCD8-TRANCE was used as a molecular probe for FACScan® analysis. TRANCE-R was detected on mature BMDCs freshly isolated lymph node DCs and freshly isolated spleen DCs (Fig. 1). TRANCE-R was greatly upregulated upon the maturation of spleen DCs induced by overnight culture. No expression could be detected on freshly isolated lymph node B cells, lymph node T cells, thymocytes, or peritoneal macrophages. Therefore, the highest levels of TRANCE-R expression are found on mature DCs and suggest that the major role of TRANCE is restricted to DCs.

TRANCE is a DC Survival Factor. The biological effects of TRANCE were further studied on mature DCs. TRANCE-treated DCs formed densely packed clusters whereas control, untreated cells exhibited relatively sparse aggregates (Fig. 2A). In addition, mature BMDCs treated with FLAG-TRANCE were significantly protected from spontaneous cell death compared to untreated cells. This effect was dependent on the dose of TRANCE (Fig. 2B).

hCD8-TRANCE elicited similar results (data not shown). This effect was not due to increased cell proliferation since the total number of cells remained the same over time (data not shown). TRANCE significantly prevented DC cell death until day 6, whereas untreated cells were almost completely dead by day 3 (Fig. 2C). A similar effect on DC survival was observed with human monocyte-derived DC (Fig. 2D). Confirming previous data, CD40L also induced the clustering of DCs (data not shown; 28, 29) and enhanced DC survival compared to TRANCE (Fig. 2C).

CD40L upregulates the antiapoptotic molecule, Bc1-2, in B cells and protects them from Ig receptor–mediated cell death (13). In addition, CD40L upregulates Bc1-2 in hu-
man DC derived from CD34+ progenitor cells, a phenomenon that was correlated with a resistance to Fas-mediated apoptosis (12). To determine whether TRANCE can influence Bcl-2 or Bcl-xL, we measured their expression in DCs stimulated with TRANCE or CD40L by Western blot analysis. BMDCs expressed relatively high levels of Bcl-2 and relatively low levels of Bcl-xL after reaching maturity in GM-CSF (Fig. 2E, 0 h). FLAG-TRANCE and CD40L stimulation lead to increased Bcl-xL expression by 24 h. Bcl-xL expression was nearly absent in cells treated with medium alone. bcl-xL mRNA was upregulated in TRANCE-treated DCs, suggesting a transcriptional as opposed to posttranscriptional regulation (data not shown). In contrast, Bcl-2 levels were decreased in both the TRANCE-treated and untreated cells (Fig. 2E). These results suggest that TRANCE, in addition to CD40L, upregulates Bcl-xL in DCs, which enhances their viability in vitro.

TRANCE Enhances DC-mediated T Cell Proliferation. To examine the functional consequences of TRANCE on DCs we measured the MLR-stimulating ability of DCs treated with TRANCE. Increasing doses of FLAG-TRANCE enhanced DC survival at 48 h, which in turn led to a proportional increase in the stimulation of T cell proliferation (Fig. 3A). When equivalent numbers of viable TRANCE-treated or untreated DCs were used in an MLR, there were no differences in T cell proliferation, suggesting that changes in the expression of costimulatory and antigen-presenting molecules did not account for the enhanced T cell proliferation (Fig. 3B). To verify this, the levels of several surface markers were tested by FACS to evaluate any TRANCE-mediated changes to the DC phenotype. There was a slight but reproducible downregulation of MHC class II expression and a slight upregulation of MHC recombinant TRANCE (1 μg/ml) or mCD8-CD40L (1/1000 of the culture supernatants). Cell viability was assessed daily by trypan blue exclusion. Representative data of three independent experiments are shown. (D) 3 × 105 GM-CSF and IL-4 stimulated human monocyte-derived DCs were cultured for 2 d in monocyte conditioned medium to generate mature DCs (26). Thereafter, DCs were cultured in the presence or absence of recombinant TRANCE (1 μg/ml) and cell viability was assessed each day by trypan blue exclusion. (E) 50 μg of protein extracted from BMDCs that had been cultured for 24 h as described in Fig. 2C were analyzed for Bcl-2 and Bcl-xL protein expression by Western blot analysis. Basal levels of Bcl-2 and Bcl-xL were determined in day 8 BMDCs (0 h).
class I expression (Fig. 3 C). There were no TRANCE-mediated perturbations in the expression of the costimulatory molecules CD80 (B7-1) or CD86 (B7-2), and no changes in the expression of the adhesion molecules intracellular adhesion molecule (ICAM)-1, CD11b, and CD11c. Interestingly, CD40 expression increased but Fas and TRANCE-R did not. In sum, TRANCE enhances DC-mediated T cell proliferation by increasing the survival of DCs.

TRANCE Does Not Affect B or T Cell Proliferation. Expression of high levels of the TRANCE-R appeared restricted to DCs by FACS® analysis. However, we found that TRANCE could activate JNK in thymocytes (22), suggesting that FACS® analysis might lack the sensitivity to detect low levels of receptor. To further examine the specificity of TRANCE for DCs, we tested its ability to induce B cell proliferation or survival, two functions mediated by CD40L. Recombinant hCD8-TRANCE, tested for its antiapoptotic function in BMDCs, could not stimulate B cell proliferation (Fig. 4), nor could it activate JNK activation (22). In contrast, CD40L efficiently stimulated B cell proliferation in a dose-dependent manner (Fig. 4). Finally, TRANCE could not prevent the spontaneous apoptosis of B and T cells as assessed by propidium iodide uptake (data not shown). Therefore, functionally, TRANCE appears to exhibit different cellular specificities and functions when compared to CD40L.

TRANCE-meditated JNK Induction Requires Functional TRAF2. Recruitment of TRAF2 to the TNFR complex or the CD40 receptor complex is necessary for JNK activation (7–9, 23). To test the possibility that TRANCE-R also signals via TRAF2, we analyzed TRANCE-mediated JNK activation in thymocytes from transgenic mice over-expressing a dominant negative form of TRAF2 (TRAF2.DN; reference 23). JNK activity peaked 2.5-fold over unstimulated cells at 5 min in control littermates, whereas JNK induction was significantly reduced in TRAF2.DN transgenic mice (Fig. 5). These results suggest that signaling from the TRANCE-R requires TRAF2. TRANCE-mediated JNK induction in DCs could not be assayed since TRAF2.DN expression has been restricted to lymphocytes in the TRAF2.DN transgenic mice. In addition, JNK activity was constitutively high in mature DCs (22), which are also known to have high levels of activated NF-kB (30), thus confounding detection of increased JNK activity.

In summary, we have shown that TRANCE, in addition to CD40L, is a regulator of DC function. Similar to CD40L, TRANCE promotes the survival of mature DCs by regulating the expression of Bcl-xL. However, in contrast to CD40L, TRANCE does not act on other APCs such as B cells. The signal transduction pathways via TRANCE-R in DCs are unknown. TRANCE appears to signal via TRAF2, at least in thymocytes, suggesting that TRAF2...
may play a critical role in mediating signals for differentiation, activation, and survival in DCs.

These findings complement our previous report describing the selective expression of this new TNF family member in T cells. The high level of expression of TRANCE-R on DCs suggests a specific role for TRANCE in T cell–DC communication during the primary immune response. Rapid upregulation of TRANCE upon TCR engagement on T cells (22) could specifically enhance the survival of DCs during antigen presentation. Both antigen-specific T cells and the antigen-presenting DCs would therefore depend on each other for activation and survival. Mature DCs that fail to present antigen to T cells would not receive T cell help and would therefore die of neglect. This T cell–DC interaction is likely to occur in the T cell area of lymphoid organs that contain DCs of mature phenotypes (31). DCs can only be detected in afferent lymph, not efferent lymph, suggesting that DCs are destined to die when they migrate to the lymph node. TRANCE may be important to maintain DC survival, perhaps acting before CD40L as TRANCE is an immediate early gene (22). Many experiments indicate that DCs pulsed ex vivo with antigen can be used to induce immunity to tumor or viral antigens in vivo (32). TRANCE could provide a tool to specifically enhance DC function by enhancing their survival in vivo. This hypothesis is currently being examined in a variety of viral and tumor models in mice.

References

2080 TRANCE Is a Dendritic Cell Survival Factor


