




Figure 3.8  Contour plots of the power difference between LRTae and LRTstd at a significance level of 0.01 (multi-SNP scenario) 

 
Legend for Figure 3.8: The contour plots display the power difference between LRTae and LRTstd at various settings for the cost ratio of molecular 

haplotyping to genotyping (r) and the proportion of individuals double-sampled (α).  Power is compared at the 0.01 significance level.  The cost 

ratio of phenotyping to genotyping for (A) is 25 while the cost ratio of phenotyping to genotyping for (B) is 1000.  Generating haplotype 

frequencies for cases and controls were based on a dominant disease model with f = 0.025, R2 = 3.5, and DAF = 0.07, as well as, population 

haplotype frequencies found from the HAPMAP TAP2 dataset (haplotype comprising 5 SNPs).  The haplotype with a frequency closest to 0.05 

was placed in LD (D’ = 0.9) with the disease allele.  LRTae was only computed with the random double-sample selection method.  Haplotype pairs 

were inferred using SNPHAP v 1.3.1.  



Figure 3.9  Contour plots of the power difference between LRTae and LRTstd at a significance level of 0.05 (multi-SNP scenario) 

 
Legend for Figure 3.9: The contour plots display the power difference between LRTae and LRTstd at various settings for the cost ratio of molecular 

haplotyping to genotyping (r) and the proportion of individuals double-sampled (α).  Power is compared at the 0.05 significance level.  The cost 

ratio of phenotyping to genotyping for (A) is 25 while the cost ratio of phenotyping to genotyping for (B) is 1000.  Generating haplotype 

frequencies for cases and controls were based on a dominant disease model with f = 0.025, R2 = 3.5, and DAF = 0.07, as well as, population 

haplotype frequencies found from the HAPMAP TAP2 dataset (haplotype comprising 5 SNPs).  The haplotype with a frequency closest to 0.05 

was placed in LD (D’ = 0.9) with the disease allele.  LRTae was only computed with the random double-sample selection method.  Haplotype pairs  

were inferred using SNPHAP v 1.3.



Like the two SNP scenario, Figures 3.7, 3.8, and 3.9 illustrate that for the multi-

SNP scenario the power difference between LRTae and LRTstd increases as the 

significance threshold decreases.  Figures 3.7A, 3.8A, and 3.9A show that LRTae 

provides a power advantage over LRTstd when r is less than 5 and α is greater than 0.5 

when significance thresholds of 0.001, 0.01, and 0.05, respectively, are applied.  In each 

case a maximum power gain (0.182 for the 0.001 significance level, 0.153 for the 0.01 

significance level, and 0.084 for the 0.05 significance level) occurs when r and α are 1.0.  

Conversely, when the r is greater than 5, LRTae is less powerful than LRTstd for these 

parameter settings. 

Figures 3.7B, 3.8B, and 3.9B show that LRTae is almost always at least as 

powerful as LRTstd when 1000/ =gp CC  for the multi-SNP scenario.  We observe a 

slight power loss of 0.02 at the 0.001 significance level when α = 0.25 and r = 10 and of 

approximately 0.01 at the 0.01 and 0.05 significance levels when α = 0.25 and r = 5.  The 

maximum power gain of 0.217 occurs when r and α are 1.0 using a significance threshold 

of 0.001 (Figure 3.7B).  As we observed with the two SNP scenario, Figures 3.7B, 3.8B, 

and 3.9B indicate that for any cost ratio, r, increasing the double-sampling proportion, α, 

always increases the power gain with the maximum power gain occurring when α = 1.0.   

Furthermore, comparing the multi-SNP scenario (Figures 3.7, 3.8, and 3.9) with 

the two SNP scenario (Figures 3.4, 3.5, and 3.6), we find the same fundamental trends for 

both and 25=gp C/C 1000/ =gp CC .  However, the multi-SNP scenario generally 

displays a larger power advantage for LRTae over LRTstd due to the greater opportunity 

for misclassification of haplotypes composed of more double heterozygotes. 
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3.4 Discussion 

In practice, few researchers employ molecular haplotyping techniques in genetic 

case-control studies.  The absence of a high-throughput procedure relative to current SNP 

genotyping technologies is arguably the main reason that this methodology is not more 

widely used.  Another related reason is the cost in terms of both time and money 

associated with employing this methodology.  Our research suggests that the additional 

costs involved in molecular haplotyping may be worth the effort, especially if the cost of 

phenotyping is high relative to the cost of genotyping for a study.  Ji et al. found 

analogous results for the effects of genotype misclassification on genotypic tests of 

association (Ji et al. 2005).  Other research has shown that molecular haplotypes can 

greatly increase the power of family-based linkage studies for mapping complex diseases 

(Gillanders et al. 2006).  In practice, the situation where the cost of phenotyping is high 

relative to the cost of genotyping arises for replication studies.  A genome-wide scan 

involving thousands of SNP markers along with subsequent fine mapping in an initial set 

of case and control individuals may identify a number of promising regions for follow-up 

studies.  These follow-up or replication studies involve recruiting an independent sample 

of cases and controls for which only SNPs in the promising regions will be genotyped 

(Skol et al. 2006).  In replication studies for complex traits, the cost ratio of phenotyping 

to genotyping may be on the order of thousands.  For these situations, the LRTae for 

testing haplotype association should provide the most utility.  It is interesting to note, 

however, that applying the threshold double-sample selection method provided 

comparable powers for both high and low phenotyping to genotyping cost ratios.  This 
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finding suggests that this selection strategy may provide additional power for an initial 

genome-wide association study as well as for a replication study. 

One potential limitation of the test statistics that we selected is the increase in 

degrees of freedom associated with using haplotype pairs rather than individual 

haplotypes.  In general, larger degrees of freedom may result in a loss of power.  That is, 

methods that fully account for uncertainty in the phase assignment process (Schaid et al. 

2002; Zaykin et al. 2002; Stram et al. 2003) may be more powerful than LRTae because 

the LRTae method examines haplotype pairs rather than single haplotypes and therefore 

has more degrees of freedom.  We chose these statistics for the following reasons: 1) The 

most general misclassification model involves modeling errors in haplotype pairs rather 

than in individual haplotypes (Douglas et al. 2002; Sobel et al. 2002; Gordon et al. 2004).  

2) When haplotype pair frequencies deviate from Hardy Weinberg Equilibrium in either 

case or control sample populations, test statistics that utilize single haplotype frequencies 

may increase false positive rates and/or lose power (Sasieni 1997; Czika and Weir 2004).  

3) In contrast with methods that utilize single haplotype frequencies, the Cochran-

Armitage Linear Test of Trend maintains the nominal false positive rate and does not lose 

power (Cochran 1954; Armitage 1955; Czika and Weir 2004).  To our knowledge, a 

version of this test that incorporates double-sampling procedures to correct for haplotype 

miscalls does not currently exist. 

A point for further research involves identifying the scenarios that produce 

differential and non-differential haplotype pair misclassification as well as the effects of 

each kind of misclassification on type I error and power.  Under the null hypothesis that 

haplotype frequency distributions are equal in case and control populations, theoretical 
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and simulation studies (including the work presented in this chapter) suggest that 

misclassification is non-differential.  Under the alternative hypothesis, it is conceivable 

that haplotype pair misclassification rates may be different in case and control 

populations.  While recent research (Clayton et al. 2005; Moskvina et al. 2006) indicates 

that differential misclassification increases the type I error, the effects of differential 

misclassification on the power of these statistics remain unclear.  

While the current perception may be that molecular haplotyping costs are not 

cost-effective, recent publications suggest that for relatively small regions of the genome 

accurate molecular haplotyping is no more expensive than performing fluorescent 

polymerase chain reactions (Proudnikov et al. 2004; Proudnikov et al. 2006).  In addition, 

current techniques are able to provide molecular haplotypes for an entire chromosome at 

a cost ratio (Cmh/Cg) of approximately 5 (C. Ding; personal communication).  Finally, as 

technology improves, the costs associated with molecular haplotyping will likely 

decrease, and the throughput will likely increase. 
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CHAPTER 4:  ASCERTAINING THE DISTRIBUTION FOR THE 

LIKELIHOOD RATIO STATISTIC 

 

4.1 Introduction 

Although haplotype misclassification can decrease the power for a study, the issue 

can be avoided by applying an approach that does not infer haplotype pairs for each study 

participant.  An alternative approach is to employ a test statistic that relies on haplotype 

frequency estimates rather than haplotype calls.  Besides the consequences of estimates 

deviating from their true values, this alternative approach faces complications of its own.  

In some situations, the exact distribution of the test statistic under both the null and 

alternative hypotheses can be unclear. 

Haplotype-based studies are often hindered by the fact that some haplotypes occur 

very rarely.  The number of possible haplotypes grows exponentially as the number of 

component SNP loci increases.  Consequently, the number of possible haplotypes is often 

quite large, and many of these possible haplotypes are rare or do not appear at all in the 

population.  Recent studies have found that haplotypes appear in blocks such that there 

are several common variants while many other variants do not appear at all or are very 

rare (Daly et al. 2001; Patil et al. 2001; Stephens et al. 2001a; Subrahmanyan et al. 2001; 

Gabriel et al. 2002; International HapMap Consortium 2003; International HapMap 

Consortium 2005).  As mentioned earlier, several strategies, such as clustering based on 

similarity (Hoehe et al. 2000), pooling rare haplotypes (Sham and Curtis 1995; Schaid et 

al. 2002; Zhao et al. 2003), and applying haplotype diversity criteria for SNP selection 

(Johnson et al. 2001; Jannot et al. 2004) 
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(http://www-gene.cimr.cam.ac.uk/clayton/software/stata/htSNP/htsnp.pdf), have been 

utilized to reduce the number of haplotype categories and potentially to gain power.  

However, rare or non-existent haplotypes can have other effects on an analysis besides a 

reduction in power. 

Since multilocus genotypes lack phase information, the testing situation for 

haplotype-based association studies is more complex than that for other genetic 

association studies where the variants under investigation are directly observed.  In tests 

of haplotype-based association where haplotype frequencies are estimated from 

multilocus genotypes, estimation procedures may find a small frequency for some 

haplotypic variants.  There is uncertainty whether haplotypes with small frequency 

estimates are present but rare in the sample or not present in the sample at all but merely 

compatible with the multilocus genotypes observed.  The effect of this situation on the 

distribution of the resulting test statistic under both null and alternative hypotheses 

remains unclear.  One still expects that the test statistic will follow a central χ2 

distribution under H0 and a noncentral χ2 distribution under H1.  However, the degrees of 

freedom associated with either χ2 distribution are no longer well defined.   

In this work, we investigate the distribution of a test statistic which relies on 

haplotype frequency estimates to detect an association between a haplotype and disease 

status.  In particular, we are interested in the distribution of this statistic when some 

haplotypic variants are extremely rare or nonexistent.  Furthermore, we apply a rule to 

predict the distribution of the statistic and evaluate the accuracy of its prediction. 
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Table 4.1  Factorial design parameter settings assuming the haplotype under 

investigation contains two SNP markers 

Description of parameter Low High 
Number of subjects (equal cases and controls) 500 2000 
Minor allele frequency at locus 1 (MAF1) 0.01 0.5 
Minor allele frequency at locus 2  (MAF2) 0.01 0.5 
LD between locus 1 and 2 (measured by D’) 0 0.9 
 
Legend for Table 4.1: This table presents the settings for all parameters considered in the 

simulations to study the distribution of LRTem under H0 and H1 assuming the haplotype under 

investigation contains two SNP markers.  We consider a 2  factorial design, where g = 4.  The 

number of experimental runs was reduced from 16 to 12 due to redundancy.  D’ is the 

standardized linkage disequilibrium measure.  The simulations included 10,000 replicates, and 

EHP was used to estimate haplotype frequencies and calculate likelihoods for LRT

g

em. 

 

Examination of the distributional properties of LRTem under the alternative 

hypothesis.  We also examined the distribution of the LRTem statistics under the 

hypothesis that a disease allele at an unobserved locus exists in linkage disequilibrium 

(LD) with the haplotype under study.  Table 4.1 contains the factorial design settings for 

the study of the distribution of LRTem under H1.  As for the study under H0, the allele 

frequencies at each marker locus and the LD between marker loci were used to determine 

the population haplotype frequencies.  For the study under H0, these haplotype 

frequencies were used directly to simulate haplotypes.  However, for the study under H1, 

we used the population haplotype frequencies to compute the conditional (on case status) 

haplotype frequencies.  These conditional haplotype frequencies were then used, in turn, 

to simulate haplotypes for case and control individuals.  Conditional haplotype 

frequencies were found from population haplotype frequencies and specified disease 

model parameters by a method described by Sham and subsequently by De La Vega et al. 
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(Sham 1998; De La Vega et al. 2005) (also see the Power for Association with Error 

(PAWE) website at http://linkage.rockefeller.edu/derek/pawe1.html).  However, we 

selected a specific haplotype to be in LD with the disease allele.  For completeness, 

details regarding the conditional haplotype frequencies including notation and 

computation as described by De La Vega et al. (2005) are provided in subsection 3.2 of 

chapter 3.  For all runs under H1, the generating haplotype frequencies for cases and 

controls were based on a dominant disease model ( 12 RR = ) with f = 0.025, R2 = 3.5, and 

DAF = 0.07.  In addition, the marker haplotype with a frequency closest to 0.05 was 

placed in LD (D’ = 0.9) with the disease allele.  (In the previous chapter, we utilized 

these disease parameter settings for the in-depth power analysis for both the two SNP and 

multi-SNP scenarios.)  Subsection 3.2 also provides an example of how the conditional 

frequencies are computed.  As for the study under H0, we reduced the number of 

experimental runs from 16 to 12 due to redundancy.  Again, the number of cases and 

controls were equal within each replicate dataset, and 10,000 replicate datasets were 

simulated during each run. 

 

Multi-SNP scenario 

Examination of the distributional properties of LRTem under the null and 

alternative hypotheses.  We performed additional simulations to investigate the 

distributional properties of LRTem when applied to haplotypes comprised of larger 

numbers of SNPs.  Table 4.2 contains the factorial design settings for the study of the 

distribution of LRTem under H0 and H1 when the haplotype under investigation contains 

many SNPs.  Our simulations were based on haplotype frequencies from two datasets—
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the Horan (Horan et al. 2003) and HapMap TAP2 (International HapMap Consortium 

2003; International HapMap Consortium 2005) datasets.  The datasets are described in 

subsection 3.2 of chapter 3 along with an explanation of how the generating population 

haplotype frequencies were attained from each dataset.  Also in subsection 3.2, Figure 3.2 

displays the inter-marker LD present in each dataset.  For the experimental runs (both 

under H0 and H1) based on these datasets, we simulated haplotypes comprised of five and 

ten SNPs.  In Figure 3.2, the five SNP markers comprising the five-SNP haplotype are 

indicated with an asterisk (*) for both Horan and HAPMAP TAP2 datasets.  For the 

experimental runs with the ten-SNP haplotype, we used the last ten SNP markers 

appearing in Figure 3.2A for the Horan dataset, and all ten SNP markers appearing in 

Figure 3.2B for the HAPMAP TAP2 dataset.  The number of cases and controls were 

equal within each replicate dataset, and 1000 replicate datasets were simulated during 

each run. 
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Table 4.2  Factorial design parameter settings assuming the haplotype under 

investigation contains many SNP markers 

Description of parameter Low High 

Inter-marker LD HAPMAP TAP2 Horan 
Number of SNPs comprising haplotype 5 10 
Number of subjects (equal cases and controls) 500 2000 
 
Legend for Table 4.2: This table presents the settings for all parameters considered in the 

simulations to study the distribution of LRTem under H0 and H1 assuming the haplotype under 

investigation contains many (more than two) SNP markers.  We consider a  factorial design, 

where g = 3.  Simulations were based on population haplotype frequencies from a dataset with 

low inter-marker LD, the Horan dataset (Horan et al. 2003), and on population haplotype 

frequencies from a dataset with high inter-marker LD, the HAPMAP TAP2 dataset (International 

HapMap Consortium 2003; International HapMap Consortium 2005).  The simulations included 

1000 replicates, and EHP was used to estimate haplotype frequencies and calculate likelihoods 

for LRT

g2

em.  

 

Predicting the degrees of freedom.  One goal of this work is to establish a “rule 

of thumb” for predicting the degrees of freedom for the χ2 distribution which most 

closely resembles the distribution of LRTem for a set of simulation parameters.  The rule 

that we test is that 
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In equation (4.4), df is the predicted number of degrees of freedom for the χ2 distribution; 

J is the total number of possible haplotypes; , , and  are frequency estimates for jĥ0 jĥ1 jĥ∗
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the jth haplotype using cases alone, controls alone, and all samples, respectively; and t , 

, and t  are the number of cases, the number of controls, and the total number of 

samples, respectively.   

0

1t

0

jx0

According to statistical theory, for large sample sizes the LRTem statistic 

asymptotically follows a central χ2 distribution under H0 and a noncentral χ2 distribution 

under H1 (Mitra 1958; Hogg and Craig 1995; Agresti 1996). The number of degrees of 

freedom associated with either χ2 distribution equals the difference between the number 

of free parameters estimated under H1 and H0 in equation (4.1).  For LRTem in the context 

of haplotype-based association, this quantity can be expressed as  

110 −−+= *df ηηη      (4.5) 

where η , 1η , and ∗η  are the number of haplotypes estimated using cases alone, controls 

alone, and all samples, respectively.  The rule described above in equation (4.4) examines 

how 0η , 1η , and ∗η  should be found.  Suppose we estimate haplotype frequencies from 

multilocus genotypes from t individuals.  A single individual possessing one copy of the 

variant represents the minimum frequency of a haplotypic variant present in this sample.  

Thus, the rule described in equation (4.4) applies this minimum frequency ( t21 ) as a 

threshold to distinguish haplotypes present in the sample from those that are not present.   

To test the performance of this rule, we computed the average values for , , 

and  over all replicate datasets for cases alone, controls alone, and all samples together 

and computed the predicted degrees of freedom using equation (4.4).  We rounded the 

value computed for df and plotted the χ

jx∗

jx1

2 distribution with df degrees of freedom (along 

with χ2 distributions with df –1 and df +1) for comparison with the distribution LRTem.   
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The software package R (see Electronic Resource Information) was used to create these 

plots.  The noncentrality parameter (ncp) for the “predicted” χ2 distribution was 

computed using  
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as described by others (see http://linkage.rockefeller.edu/derek/pawe2.html) (Mitra 1958; 

Sham 1998; Gordon et al. 2002).  Under the null hypothesis, ncp = 0 since  and  

are equal for each haplotype j. 

jh0 jh1

 

4.3 Results 

At the end of section 4.3, Table 4.3 summarizes the results for all experimental 

runs (both two SNP and multi-SNP scenarios under H0 and H1) presented in this chapter. 

 

Two SNP scenario. 

Examination of the distributional properties of LRTem under the null 

hypothesis.  Our simulation results under the null hypothesis can be classified into three 

categories—1) experimental runs where the rule described in equation (4.4) successfully 

predicts the correct distribution; 2) experimental runs where the rule described in 

equation (4.4) successfully predicts the correct distribution for larger sample sizes only; 

and 3) experimental runs where the rule described in equation (4.4) fails to predict the 

correct distribution regardless of sample size.  Figure 4.2 displays the distribution of 

LRTem for simulation runs that represent each of these categories.  In our factorial design 

(Table 4.1), some experimental runs contain no rare haplotypes in the generating 
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haplotype frequencies.  One example is the run in which MAF1 = 0.5, MAF2 = 0.5, and 

the LD between locus 1 and 2 (measured by D’) is 0.  These parameter settings result in 

four haplotypes with equal frequencies (0.25).  These frequencies serve as the generating 

frequencies for the simulation.  Figure 4.2A displays a histogram and density line for the 

LRTem statistic computed from simulations utilizing these parameter settings under H0 for 

500 samples (equal numbers of cases and controls).  Figure 4.2A shows that the 

distribution of LRTem for this experimental run closely resembles a central χ2 distribution 

with 3 degrees of freedom, the distribution predicted by the rule in equation (4.4).  Since 

all the generating haplotype frequencies are large, we expected LRTem for this run to 

exhibit this behavior.  For this run, the KS0,3 test (testing a central χ2 distribution with 

df = 3) p-value = 0.248 indicating that the distribution of LRTem is consistent with a 

central χ2 distribution with 3 degrees of freedom.  The experimental run with the same 

parameter settings and a sample size of 2000 showed similar results (results not shown). 
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Figure 4.2  Histograms displaying the distribution of LRTem under H0 for the two SNP 

scenario 

 
Legend for Figure 4.2: The histograms display the distribution of LRTem along with the density 

lines for several central χ2 distributions for a number of experimental runs.  The distribution of 

LRTem was created by simulating haplotypes comprised of two SNPs under H0.  For (A), 

MAF1 = 0.5 and MAF2 = 0.5; for (B and C), MAF1 = 0.5 and MAF2 = 0.01; and for (D) 

MAF1 = 0.01 and MAF2 = 0.01.  For all runs displayed, LD between SNP 1 and 2 = 0 (measured 

by D’).  10,000 replicate datasets comprised of 500 samples (A and B) and 2000 samples (C and 

D) were simulated.  The graphs were scaled to the observed data, and density lines off the scale 

were truncated. 
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Other experimental runs required larger sample sizes for the rule described in 

equation (4.4) to predict the correct distribution.  The experimental run in which 

MAF1 = 0.5, MAF2 = 0.01, and LD between locus 1 and 2 = 0 (measured by D’) exhibited 

this behavior.  This run had a minimum generating haplotype frequency (0.005) that was 

substantially smaller than the minimum generating haplotype frequency for the run 

described above yet still greater than any of the thresholds established by the rule 

described in equation (4.4).  Figures 4.2B and 4.2C display histograms for LRTem 

computed from simulations utilizing these parameter settings.  Figure 4.2B shows the 

distribution for simulated datasets containing 500 samples while Figure 4.2C shows the 

distribution for simulated datasets containing 2000 samples.  In Figure 4.2B, the 

distribution of LRTem does not resemble a central χ2 distribution with 2 degrees of 

freedom, the distribution predicted by the rule in equation (4.4) for this run.  Instead, it 

roughly resembles a central χ2 distribution with 3 degrees of freedom.  Figure 4.2C 

shows that increasing the sample size leads to a better fit with a central χ2 distribution 

with 3 degrees of freedom, the distribution predicted with the increased sample size using 

the rule described in equation (4.4).  Although the distribution of LRTem visually matches 

the density plot for the central χ2 distribution with 3 degrees of freedom in Figure 4.2C, 

the KS0,3 p-values for both the 500 and 2000 sample size runs are approximately 0.  Thus, 

the distribution of LRTem for the 2000 sample run still deviates from a central χ2 

distribution with 3 degrees of freedom. 

The rule described in equation (4.4) failed to predict the distribution for other 

experimental runs regardless of the sample size.  The experimental run in which 

MAF1 = 0.01, MAF2 = 0.01, and LD between locus 1 and 2 = 0 (measured by D’) is in 
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this category.  This run had a minimum generating haplotype frequency (0.0001) that was 

below all of the thresholds (for both a sample size of 500 and 2000) established by the 

rule described in equation (4.4).  Figure 4.2D displays a histogram for LRTem computed 

from simulations utilizing these parameter settings.  Figure 4.2D shows the distribution 

for simulated datasets containing 2000 samples.  In Figure 4.2D, the distribution of 

LRTem does not resemble a central χ2 distribution with 2 degrees of freedom, the 

distribution predicted by the rule in equation (4.4) for this experimental run.  Instead, the 

distribution of LRTem falls between central χ2 distributions with 2 and 3 degrees of 

freedom.  The distribution of LRTem utilizing the same parameters for simulating datasets 

with 500 samples exhibited near identical behavior (results not shown).  Thus, in this 

case, increasing the sample size did not increase the accuracy of the prediction rule 

described in equation (4.4). 

 

Examination of the distributional properties of LRTem under the alternative 

hypothesis.  The prediction rule in equation (4.4) was not as successful for our 

simulations under the alternative hypothesis for the two SNP scenario.  Although for the 

majority of cases the distribution of LRTem did not resemble the distribution selected by 

the rule, in some situations increasing the sample size provided a distribution of LRTem 

predicted by the rule (as we observed under H0).  Figures 4.3A and 4.3B display the 

distribution of LRTem for one such set of experimental runs.  Here MAF1 = 0.5, 

MAF2 = 0.5, and LD between SNP 1 and 2 = 0.9 (measured by D’).  Figures 4.3A and 

4.3B show the results from simulations of datasets with 500 and 2000 samples, 

respectively.  Although the distribution of LRTem appears to follow a noncentral χ2 
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distribution with df = 3 (the distribution predicted for both runs) in Figure 4.3A, the fit is 

improved in Figure 4.3B.  Furthermore, only the KS test results for the run with a sample 

size of 2000 support the idea that LRTem follows the predicted distribution (KS34.0,3 test 

p-value = 0.145 and KS8.5,3 test p-value = 0).  Figures 4.3C and 4.3D display the 

distribution of LRTem for datasets of 500 and 2000 samples, respectively, simulated for 

haplotypes comprised of two SNPs where MAF1 = 0.01, MAF2 = 0.01, and LD between 

SNP 1 and 2 = 0 (measured by D’).  The predicted distribution for both experimental runs 

is a noncentral χ2 distribution with df = 2; however, the distribution of LRTem in Figures 

4.3C and 4.3D seems to bear a greater resemblance to a noncentral χ2 distribution with 

df = 3.  For the run with 2000 samples, the results of the KS test support the idea that 

LRTem follows a noncentral χ2 distribution with df = 3 (KS13.1,3 test p-value = 0.286 and 

KS13.1,2 test p-value = 0). 
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Figure 4.3  Histograms displaying the distribution of LRTem under H1 for the two SNP 

scenario 

 
Legend for Figure 4.3: The histograms display the distribution of LRTem computed from 

simulated datasets comprised of 500 samples (A and C) and 2000 samples (B and D) along with 

the density lines for several noncentral χ2 distributions.  The distribution of LRTem was created by 

simulating haplotypes comprised of two SNPs under H1.  For (A) and (B), MAF1 = 0.5, 

MAF2 = 0.5, and LD between SNP 1 and 2 = 0.9 (measured by D’) while for (C) and (D), 

MAF1 = 0.01, MAF2 = 0.01, and LD between SNP 1 and 2 = 0 (measured by D’).  10,000 

replicate datasets containing equal numbers of cases and controls were simulated.  The graphs 

were scaled to the observed data, and density lines off the scale were truncated. 
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Multi-SNP scenario 

Examination of the distributional properties of LRTem under the null and 

alternative hypotheses.  For our simulations under the null and alternative hypotheses 

that rely on haplotype frequencies from the Horan dataset, LRTem did not follow the 

distribution predicted by equation (4.4).  Figure 4.4 displays histograms for LRTem 

computed from simulations utilizing haplotype frequencies from the Horan dataset as the 

generating haplotype frequencies.  Figures 4.4A and 4.4C show the distribution of LRTem 

for a haplotype comprised of 5 SNP markers (for data simulated under H0 and H1, 

respectively) while Figures 4.4B and 4.4D show the distribution of LRTem for a 

haplotype comprised of 10 SNP markers (for data simulated under H0 and H1, 

respectively).  The simulations providing the data for Figures 4.4 created 1000 replicate 

datasets, each containing 2000 samples (equal numbers of cases and controls).  For the 

haplotype simulations under H0 or H1 involving 5 SNP markers, the distribution predicted 

by equation (4.4) is a central or noncentral (ncp = 64.6), respectively, χ2 distribution with 

4 degrees of freedom.  Figures 4.4A and 4.4C demonstrate that the distribution of LRTem 

more closely approximates a central χ2 distribution with 5 degrees of freedom.  The KS0,5 

test (under H0) p-value of 0.099 and the KS64.6,5 test (under H1) p-value of 0.163 confirm 

this similarity (while the KS0,4 and KS64.6,4 had p-values of 0). When the number of SNPs 

included in the haplotype is increased to ten for simulations under H0 or H1, the 

distribution predicted by equation (4.4) is a central or noncentral (ncp = 85.3), 

respectively, χ2 distribution with 19 degrees of freedom.  Figures 4.4B (under H0) and 

4.4D (under H1) show that the distribution of LRTem more closely approximates a central 

χ2 distribution with 20 degrees of freedom and a noncentral χ2 distribution with 18 
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degrees of freedom, respectively.  The results from the KS tests indicate that there is the 

most evidence to support the idea that, under H0, LRTem is distributed as a central χ2 

distribution with 21 degrees of freedom (KS0,21 p-value = 0.054) and, under H1, LRTem is 

distributed as a noncentral χ2 distribution with 18 degrees of freedom (KS85.3,18 

p-value = 0.342).  However, under H1, a noncentral χ2 distribution with 19 degrees of 

freedom is also consistent with the data (KS85.3,19 p-value = 0.243). 

 

121 



Figure 4.4  Histograms displaying the distribution of LRTem for simulations based on 

haplotype frequencies from the Horan dataset 

 
Legend for Figure 4.4: The histograms display the distribution of LRTem computed from 

simulations based on haplotype frequencies from the Horan dataset along with the density lines 

for several central χ2 distributions.  The distribution of LRTem was created by simulating 

haplotypes comprised of (A) 5 SNP markers and (B) 10 SNP markers under H0 and haplotypes 

comprised of (C) 5 SNP markers and (D) 10 SNP markers under H1.  1000 replicate datasets 

containing 2000 samples (equal numbers of cases and controls) were simulated.  The graphs were 

scaled to the observed data, and density lines off the scale were truncated. 
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The rule described by equation (4.4) had some success in determining the 

distribution of LRTem for the simulations under H0 and H1 based on haplotype 

frequencies from the HAPMAP TAP2 dataset.  Figures 4.5A and 4.5C show the 

distribution under H0 and H1, respectively, for a haplotype comprised of 5 SNP markers 

while Figures 4.5B and 4.5D show the distribution under H0 and H1, respectively, for a 

haplotype comprised of 10 SNP markers.  The simulations providing the data for 

Figures 4.5A and 4.5C created 1000 replicate datasets with 2000 samples (equal numbers 

of cases and controls) while the simulations providing the data for Figures 4.5B and 4.5D 

created 1000 replicate datasets with 500 samples (equal numbers of cases and controls).  

For the haplotype simulations involving 5 SNP markers, the distribution predicted by 

equation (4.4) under H0 or H1 is a central or noncentral (ncp = 76.3), respectively, χ2 

distribution with 9 degrees of freedom.  In Figure 4.5A, the distribution of LRTem under 

H0 falls between central χ2 distributions with 9 and 10 degrees of freedom.  Although the 

p-values for the KS tests are small, they favor a central χ2 distribution with 9 degrees of 

freedom (KS0,9 p-value = 0.006).  The distribution of LRTem under H1 presented in 

Figure 4.5C does not resemble the predicted noncentral χ2 distribution but instead 

appears to be derived from a noncentral χ2 distribution with many fewer degrees of 

freedom.  When we increased the number of SNPs to ten, both under H0 and H1 equation 

(4.4) predicted that LRTem would follow a central χ2 distribution with 16 degrees of 

freedom.  According to Figures 4.5B and 4.5D, the distribution of LRTem falls between 

central χ2 distributions with 16 and 17 degrees of freedom.  The KS test results under H0 

indicate that LRTem most likely follows a central χ2 distribution with 17 degrees of 

freedom (KS0,17 p-value = 0.750).  (Interestingly, before rounding, equation (4.4) 
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predicted df = 16.4.)  Figure 4.5D shows that, under H1, LRTem appears to follow a 

noncentral χ2 distribution with df = 16 and ncp = 18.0 (KS18.0,16 p-value = 0.628).  Thus, 

under H0 and H1, equation (4.4) demonstrated an ability to predict the approximate 

correct degrees of freedom for the multi-marker haplotypes simulations although it 

lacked consistency for exacting precision. 
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Figure 4.5 Histograms displaying the distribution of LRTem for simulations based on 

haplotype frequencies from the HAPMAP TAP2 dataset 

 
Legend for Figure 4.5: The histograms display the distribution of LRTem computed from 

simulations based on haplotype frequencies from the HAPMAP TAP2 dataset along with the 

density lines for several central χ2 distributions.  The distribution of LRTem was created by 

simulating haplotypes comprised of (A) 5 SNP markers and (B) 10 SNP markers under H0 and 

haplotypes comprised of (C) 5 SNP markers and (D) 10 SNP markers under H1.  1000 replicate 

datasets containing (A and C) 2000 samples and (B and D) 500 samples (equal numbers of cases 

and controls) were simulated.  The graphs were scaled to the observed data, and density lines off 

the scale were truncated. 
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Table 4.3  Summary table for the results from all experimental runs presented 

Scenario Hypothesis MAF1 MAF2 LD between SNP 1 and SNP 2 (D') Category Code

0.5 0.5 0.0 1 

0.5 0.01 0.0 2 H0 

0.01 0.01 0.0 3 
0.5 0.5 0.9 2 

Two SNP 

H1 0.01 0.01 0.0 3 
Scenario Hypothesis Dataset Number of SNPs in Haplotype Category Code

5 3 H0 
10 3 
5 3 H1 

Horan 

10 3 
5 3 H0 10 3 
5 3 

Multi-SNP 

H1 

HAPMAP 
TAP2 

10 1 
 

Legend for Table 4.3:  This table summarizes the results for all experimental runs presented in 

section 4.3.  The category codes are defined as: 1) experimental runs where the rule described in 

equation (4.4) successfully predicts the correct distribution; 2) experimental runs where the rule 

described in equation (4.4) successfully predicts the correct distribution for larger sample sizes 

only; and 3) experimental runs where the rule described in equation (4.4) fails to predict the 

correct distribution regardless of sample size. 

 

4.4 Discussion 

Even for the multi-SNP scenario where the range for the possible degrees of 

freedom of the χ2 distribution is much wider (from 1 to 2b, where b is the number of 

SNPs comprising the haplotype), the rule described in equation (4.4) was fairly consistent 

in predicting the χ2 distribution closest to the distribution of LRTem within a few degrees 

of freedom.  However, while the rule sometimes predicted the correct distribution of the 

test statistic, it was not consistently accurate.  Because of this inconsistency, we advocate 
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applying permutation and simulation methods to empirically generate the distribution of 

the test statistic under the null and alternative hypotheses, respectively, rather than 

applying the rule in equation (4.4).  Future research is required to investigate alternative 

threshold settings and refine the prediction capability of this rule.  

Knowing the precise distribution of a test statistic under the null and alternative 

hypotheses can be extremely practical.  This knowledge allows researchers the freedom 

to employ the distribution to determine the statistical significance (distribution under H0) 

and power (distribution under H1) of the test rather than relying on more computationally 

intensive methods such as permutation and simulation to generate the null and alternative 

distributions empirically.  Of course, reliance on a classically defined distribution (e.g. 

normal distribution, central χ2 distribution, F distribution, etc.) that does not accurately 

describe the distribution of a statistic under the null and alternative hypotheses can lead to 

erroneous estimates of the type I error and power.  In such cases, empirical techniques 

such as permutation and simulation are necessary even at the expense of computational 

resources.  Often, this compromise is inconsequential when analyzing a real dataset.  In 

fact, with modern computer processors and efficiently written code thousands of 

permutations can generally be performed in a reasonable timeframe.  The limitation of 

this approach is often only apparent when many tests, all requiring a separate permutation 

procedure, are performed.  Obviously, this situation arises for genome scans but can also 

be present for a haplotype-based association study that employs a sliding window 

approach across the SNPs in a single candidate gene. 

Estimating low haplotype frequency estimates while computing LRTem is 

somewhat analogous to constructing a sparse contingency table.  However, methods that 
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utilize observations from a contingency table exhibit two qualities not available to 

likelihood-based methods that rely on haplotype frequency estimates – 1) a clear 

guideline defining when the central χ2 distribution can be applied to determine the 

statistical significance and 2) the ability to combine categories containing rare 

observations.  Unless Cochran’s rule is violated (five or more observations in each cell of 

the contingency table), the central χ2 distribution can be applied to determine the 

statistical significance for Pearson χ2 or likelihood ratio statistics that utilize a 

contingency table (Cochran 1952).  We have been unable to establish a parallel guideline 

for likelihood-based statistics that rely directly on haplotype frequency estimates.  In 

addition, rare observations can be pooled (Sham and Curtis 1995; Schaid et al. 2002; 

Zhao et al. 2003) to produce a contingency table that is no longer sparse and contains a 

reduced number of categories.  While frequency estimates for rare haplotypes can be 

pooled, for LRTem the EM algorithm computes the likelihood during the haplotype 

frequency estimation step.  Thus, pooling does not affect the computation of the statistic.  

The likelihood could be computed in a subsequent step using the multinomial distribution 

after haplotype frequencies were estimated and low haplotype frequency estimates were 

pooled.  However, this approach is contrary to a key feature of LRTem in that it treats 

expected counts from the estimates as observations rather than working directly with 

estimates.  By working directly with haplotype frequency estimates in the expression for 

the likelihood, LRTem avoids assumptions regarding the “observed” counts required for a 

contingency table. 
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CHAPTER 5:  DISCUSSION 

 

5.1 Synopsis 

Although haplotypes can provide a powerful tool for gene mapping (Martin et al. 

2000; Akey et al. 2001; Fallin et al. 2001; Morris and Kaplan 2002; Zaykin et al. 2002; 

Botstein and Risch 2003; Clark 2004), several factors add to the complexity of haplotype-

based association studies relative to other forms of genetic association.  First, in common 

practice, original observations are multilocus genotypes, which lack phase information.  

Consequently, estimation or inference procedures are required to apply a haplotype-based 

test.  Second, haplotypes are a combination of alleles at multiple loci generally resulting 

in a large number of haplotypic variants.  In the context of association studies, a large 

number of variants corresponds to many degrees of freedom and often a less powerful 

test.  Third, as the number of marker loci comprising a haplotype grows, the number of 

possible haplotypic variants increases exponentially; however, many of these variants are 

not present in the population even though they may have positive frequency estimates.  

The complexity caused by these factors surfaces in several issues uniquely present in 

haplotype-base studies of association (as compared with other genetic association tests).  

For this thesis, we have developed work aimed at addressing several of these issues 

inherent in tests of haplotype-based association.  Specifically, these issues include 1) the 

multiple testing problem introduced by employing hierarchical clustering to group similar 

haplotypes; 2) haplotype misclassification resulting from statistically inferring haplotype 

pairs from multilocus genotypes; and 3) uncertainty predicting the precise distribution of 
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the haplotype-based association test statistic when haplotype frequency estimates are very 

small or zero.   

In the first part of this thesis, we examined the practice of applying a hierarchical 

clustering to haplotypes and then performing statistical tests at each step in the resulting 

hierarchy in the framework of multiple testing.  To determine the empirical significance 

level or global p-value of the experiment, we proposed a method that takes into account 

the clustering process as well as the correlation structure of the tests performed.  We 

applied our approach to datasets from haplotype association and microarray expression 

studies where hierarchical clustering has been used.  In all of the cases we examined, we 

found that relying on one set of classes in the course of clustering leads to significance 

levels that are too small when compared with the significance level associated with an 

overall statistic that incorporates the process of clustering.  In other words, relying on one 

step of clustering may furnish a formally significant result while the overall experiment is 

not significant. 

In the second portion of this work, our simulations showed that the 

misclassification present in calling phased haplotypes from multilocus genotypes using 

statistical methods is complete.  That is, each misclassified haplotype pair is consistently 

misclassified as the same incorrect haplotype pair throughout the entire dataset.  In 

addition, our simulations under the null hypothesis of no association demonstrate that 

applying the central χ2 distribution to evaluate the significance of test statistics produces 

conservative and anticonservative p-values while applying permutation methods 

consistently produces p-values that maintain the nominal false positive rate.  

Consequently, permutation methods should be exclusively used to determine statistical 
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significance for the tests we perform.  As expected, the LRTae provides the greatest 

advantage in terms of power over the LRTstd in situations where more haplotype 

misclassification errors are present.  These situations arise when the haplotype under 

investigation is comprised of many SNP markers with low pair-wise intermarker LD. 

For fixed costs, the power gain of the LRTae over the LRTstd varied depending on 

the relative costs of genotyping, molecular haplotyping, and phenotyping.  In general, the 

LRTae showed the greatest benefit over the LRTstd when the cost of phenotyping was very 

high relative to the cost of genotyping.  This situation is likely to occur in a candidate 

gene replication study as opposed to a genome-wide association study.  For intermediate 

phenotyping to genotyping cost ratios (e.g. 25/ =gp CC ), the LRTae may still provide a 

power advantage if the cost ratio of molecular haplotyping to genotyping is low 

(C  for 10/ <gmh C 5.0≥α ).  Currently, inexpensive long-range PCR methods for 

molecular haplotyping are under development.  As technology improves leading to less 

expensive molecular haplotyping methods, the LRTae will become applicable to a wider 

set of circumstances. 

The final part of this thesis proposes a rule for predicting the distribution of a 

likelihood-based statistic that relies on haplotype frequency estimates.  The rule 

consistently predicted the χ2 distribution closest to the distribution of the statistic within a 

few degrees of freedom even for haplotypes containing many SNP markers.  However, 

the rule did not consistently predict the distribution of the test statistic with pinpoint 

accuracy.  Because of this inconsistent performance, we do not advocate applying the 

predicted distribution to determine statistical significance or power.  Instead, permutation 

and simulation techniques should be employed to generate the distribution of the statistic 
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under the null hypothesis for determination of type I error and under the alternative 

hypotheses for determination of power, respectively. 

 

5.2 Future Directions 

This thesis introduces unique approaches for researchers utilizing haplotypes in 

case-control study designs to localize disease genes.  The approaches proposed overcome 

pitfalls in analyzing datasets; however, they also have several limitations.  One such 

limitation that is relevant for all three strategies described above is the means for 

computing type I error.  In each case, permutation proves to be the most reliable method 

because of the possibility of sparse datasets.  However, there are computational costs for 

this reliability.  With modern processor speeds, analyses which utilize a large number of 

permutations can be performed in a practical amount of time.  However, in the case of 

our computation of the global p-values for datasets where hierarchical clustering has been 

applied, the procedure is computationally more intensive.  After permuting the data to 

compute null statistics, the procedure requires a myriad of comparisons between these 

null statistics (at the same step in the hierarchy) to compute null p-values.  As a result, 

this procedure can be time-consuming, especially if the hierarchy created by clustering 

contains many steps.  Similarly, the computational time required for permutation can be a 

factor when many association tests are performed at different locations in the genome, as 

is the case for a genome-wide scan.  In addition, this situation arises for haplotype-based 

association studies within a single candidate gene that use a sliding window across the 

SNP markers in the gene.  Permutation can be a valuable tool; however, the researcher 
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needs to be aware of the context of the application to plan for the time required for the 

procedure. 

Aside from the computational issues, some limitations are inherent in the 

statistical methods themselves.  For example, the LRTae procedure relies on haplotype 

pairs to detect association.  As stated above, the number of haplotypes present can be 

quite large.  Consequently, the number of inferred haplotype pairs can be very large 

( ( )!2!2
!
−w

w , where w is the number of inferred haplotypes) resulting in many degrees of 

freedom for this test.  Tests with larger degrees of freedom are generally equated with a 

loss in power.  Thus, methods which examine single haplotypes (Schaid et al. 2002; 

Zaykin et al. 2002; Stram et al. 2003) rather than haplotype pairs may be more powerful 

than LRTae.  Future research will need to compare the power for these approaches with 

that of the LRTae.  Another option is to develop a version of the Cochran-Armitage 

Linear Test of Trend (Cochran 1954; Armitage 1955; Czika and Weir 2004) which 

incorporates a double-sampling procedure to correct for haplotype miscalls.  Unlike the 

LRTae which makes no assumptions regarding a disease model, the Cochran-Armitage 

Linear Test of Trend relies on specific weights for each risk category and has only one 

degree of freedom.  As a result, this test has the potential to be very powerful relative to 

other haplotype-based association tests, especially with the added capability of allowing 

for haplotype misclassification.  However, specifying the incorrect disease model can 

negatively impact the power of the test (Freidlin et al. 2002).  Future research will need to 

develop this test and assess its robustness to incorrect model selection. 

Another potential limitation of LRTae is that the method assumes non-differential 

misclassification between cases and controls in estimating haplotype misclassification 
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rates.  However, this assumption is not necessarily valid.  A future research direction is to 

extend LRTae to estimate haplotype misclassification rates separately from cases and 

controls.  Presumably, this feature will increase the effectiveness of the test. 

In our power studies of LRTae and LRTstd, we used the entire dataset to infer 

haplotype pairs for each individual.  We chose this approach because 1) it is conservative 

in terms of the power analysis (since differences between haplotype pair frequencies in 

cases and controls should not be as great); 2) the EM algorithm shows improved accuracy 

for haplotype frequency estimates when larger sample sizes are used (Fallin and Schork 

2000); and 3) the EM algorithm assumes Hardy-Weinberg equilibrium, and one is more 

likely to violate this assumption when analyzing cases and controls separately.  However, 

in practice researchers are more likely to examine cases and controls separately while 

inferring haplotype pairs.  Presumably, the power will increase for both LRTae and LRTstd 

for an analysis conducted in this fashion; however, the relative power gain is not clear.  

Additional studies are required to assess the power of LRTae relative to LRTstd for data 

analyzed with this alternative inference scheme. 

Finally, our rule for determining the distribution of LRTem did not consistently 

provide a precisely accurate prediction.  In some cases, a larger sample size improved the 

rule’s accuracy.  There are a number of possible explanations for this improvement.  

First, an increased sample size reduces the sparseness of the dataset.  Second, an 

increased sample size improves the accuracy of the haplotype frequency estimates.  

Third, an increased sample size decreases the frequency threshold for distinguishing 

haplotypes present in the sample from those that are not present.  Future research is 
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required to refine the prediction rule by investigating alternative algorithms for 

determining the thresholds for the estimated haplotype frequencies. 

Technological advancements, in the form of SNP chips and online databases, 

have provided the capability to cost-effectively assay and manage hundreds of thousands 

of SNP markers throughout the genome (Smith 2005).  With this explosion of genetic 

data, haplotype-based association studies have tremendous potential to localize disease 

genes.  Specifically, genotypes are available genome-wide with an average density less 

than a kilobase.  Prior to SNP chip technology which allows for this great density of 

genetic information, genome-scans were performed at substantially lower densities, such 

that the markers were in linkage equilibrium with one another and haplotype-based 

association analyses were less meaningful.  Now the desire for molecular haplotypes 

presents a new technological frontier.  Currently, the perception among molecular 

biologists appears to be that molecular haplotyping is too expensive to warrant 

widespread use.  However, the cost of molecular haplotypes over small regions of the 

genome can be roughly equivalent to that for performing fluorescent polymerase chain 

reactions (Proudnikov et al. 2004; Proudnikov et al. 2006).  In addition, industry has 

shown a serious interest in developing resources to reduce the cost of longer-range 

molecular haplotypes (Smith 2005).  As molecular haplotyping becomes more affordable 

and hence more commonly used, the approaches explained in this thesis will continue to 

be relevant for identifying genes for complex traits. 
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NOTATION INDEX 

 

Expression Brief Description        

gC  cost of genotyping 

mhC  cost of molecular haplotyping 

pC  cost of phenotyping 

gp CC  cost ratio of phenotyping to genotyping 

df  degrees of freedom for the (central or noncentral) χ2 distribution  

D’ standardized LD parameter, ( )1'0 ≤≤ D  

Dmax  maximum possible LD 

DAF disease allele frequency 

if  penetrance associated with possessing i copies of the disease allele 

g number of variables in a (fractional) factorial design 

hj or   population haplotype frequency of the jjh∗
th haplotype (consisting of 

exclusively of marker loci) 

jh0  haplotype frequency in cases of the jth haplotype  

jh1  haplotype frequency in controls of the jth haplotype 

h+,j  frequency of disease-marker haplotype containing the wild-type 

allele (+) at the disease locus and the marker haplotype j 

hd,j frequency of disease-marker haplotype containing the disease 

allele (d) at the disease locus and the marker haplotype j 

1i
h and  pair of haplotype frequencies for a haplotype pair consistent with 

the i

2i
h

th multilocus genotype 

jĥ∗  frequency estimates using all samples for the jth haplotype 

jĥ0  frequency estimates using cases alone for the jth haplotype 

jĥ1  frequency estimates using controls alone for the jth haplotype 

Hi set of haplotype pairs compatible with the ith multilocus genotype 
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21 ,, jjiI  conditional (on case status i) haplotype pair frequency for 

haplotype pair j1, j2 

3, jiI  conditional (on case status i) haplotype frequency for haplotype j3 

J number of total possible haplotypes 

k number of haplotype pairs 

KSvj the Kolmogorov-Smirnov (KS) test for a χ2 distribution with 

noncentrality parameter (ncp) of v and degrees of freedom (df) of j 

)ln( ,1 aeL  log-likelihood of data, where haplotype pair frequencies ' are 

allowed to differ among different phenotype classes 

t
jip '

)ln( ,0 aeL  log-likelihood of data , where haplotype pair frequencies ' are 

constrained to be equal among different phenotype classes 

t
jip '

)ln( ,1 stdL  log-likelihood of data when not correcting for misclassification, 

where haplotype pair frequencies are allowed to differ among 

different phenotype classes 

jip '

)ln( ,0 stdL  log-likelihood of data when not correcting for misclassification, 

where haplotype pair frequencies are constrained to be equal 

among different phenotype classes 

jip '

L likelihood of the data 

0HL  likelihood of the data under the null hypothesis 

1HL  likelihood of the data under the alternative hypothesis 

∗L   likelihood computed from the multilocus genotypes from cases and 

controls together 

0L  likelihood computed from the multilocus genotypes from cases 

alone 

1L  likelihood computed from the multilocus genotypes from controls 

alone 
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LD(j) amount of deviation from the equilibrium value for a disease-

marker haplotype comprised of the jth marker haplotype and either 

the wild type or disease allele. 

LRTstd standard likelihood ratio statistic (computed from contingency table) 

LRTae likelihood ratio statistic allowing for errors (computed from 

contingency table) 

 ' jjm  number of individuals that have been classified by the fallible 

method as haplotype pair j and by the infallible method as 

haplotype pair , where 'j kjj ≤≤ ',1  (where k is the number of 

haplotype pairs) 

 '+jm  number of individuals that have been classified by the infallible 

method as haplotype pair , where 'j kj ≤≤ '1  (where k is the 

number of haplotype pairs) 

m number of permutations 

)(min ii p  minimum of local p-values 

MAFj minor allele frequency at the jth SNP locus 

n number of steps in hierarchy 
)1(
'' jjin  number of individuals with (true) phenotype category , true 

haplotype pair category , and observed haplotype pair category  

'i

'j j
)2(

' jin  number of individuals with (true) phenotype category  and 

observed haplotype pair category  

'i

j

ncp noncentrality parameter for the noncentral χ2 distribution  

N sample size for the LRTstd 

NDS sample size for the LRTae 

NDS* sample size for the LRTae determined fromα  

),...,,( 21 npppp =
r  vector of local p-values  

pmin global p-value 

pd  allele frequency of disease-causing allele at the disease locus 

p+  allele frequency of the wild-type allele at the disease locus 
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jip '   observed population frequency of haplotype pair for individuals 

with true phenotype i  

j

'
t

jip ' '  true population frequency of haplotype pair for individuals with 

phenotype i  

'j

'
t

jp '*  true population frequency of haplotype pair under the null 

hypothesis that  

'j

t
j

t
j

t
j ppp '*'1'0 ==

t
iq '  true sampling frequency of phenotype  'i

gmh CCr =  cost ratio of molecular haplotyping to genotyping 

1R  genotype relative risk for the heterozygote 

2R  genotype relative risk for the homozygote 

s number of genetic variants 

t  total number of individuals (used to determine a threshold from 

haplotype frequencies) 

0t  number of cases (used to determine a threshold from haplotype 

frequencies) 

1t  number of controls (used to determine threshold from haplotype 

frequencies) 

u  mean vector 

V variance-covariance matrix 

w number of haplotypes (consisting of exclusively of marker loci) 

jx∗  indicator function for the jth haplotype (associated with frequency 

estimates using all samples) 

jx0  indicator function for the jth haplotype (associated with frequency 

estimates using only cases) 

jx1  indicator function for the jth haplotype (associated with frequency 

estimates using only controls) 

),...,,( 21 nXXXX =
r

 vector of statistical values (generic) 

Xnull matrix of null statistics 
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jX  event that an individual has observed haplotype pair kjj ≤≤1,  

(where k is the number of haplotype pairs) 
t
jX '  event that an individual has true haplotype pair  (where 

k is the number of haplotype pairs) 

kjj ≤≤ '1,'

t
jiX ''  event that an individual has phenotype )1,0'(,' =ii and true 

haplotype pair kjj ≤≤ '1,'  (where k is the number of haplotype 

pairs) 
t

iY '  event that an individual has phenotype )1,0'(,' =ii  

 Yi multivariate normal random variable transformed from null local 

p-value at ith step in hierarchy 

α double-sample proportion 

α  mean double-sample proportion 

δ posterior probability threshold for the threshold double-sample 

selection method 

∗η  number of haplotypes estimated using all samples 

0η  number of haplotypes estimated using controls alone 

1η  number of haplotypes estimated using cases alone 

 ' jjθ  misclassification probability that the true haplotype pair  will be 

misclassified as haplotype pair  

'j

j

φ  disease prevalence 

140 



ELECTRONIC RESOURCE INFORMATION 

 
 
The adenocarcinoma dataset published by Garber et al. (Garber et al. 2001) can be found 

at http://genome-www.stanford.edu/lung_cancer/adeno/index.shtml. 
 
The B-cell lymphoma dataset published by Alizadeh et al. (Alizadeh et al. 2000) can be 

found at http://llmpp.nih.gov/lymphoma/. 
 
The documentation for StatXact 5 software can be found at http://www.cytel.com/. 
 
The documentation for SNPHAP and PHASE can be found at 

http://www-gene.cimr.cam.ac.uk/clayton/software/ and 
http://www.stat.washington.edu/stephens/software.html, respectively. 

 
The documentation for PAWE can be found at 

http://linkage.rockefeller.edu/derek/pawe1.html.  
 
Data for the estimation of haplotype frequencies from SNP markers within the TAP2 

gene were downloaded from http://www.hapmap.org/downloads/index.html.en 
(HapMap public release #16c.1). 

 
LRTae software is available at ftp://linkage.rockefeller.edu/software/lrtae. 
 
EHP software is available at http://linkage.rockefeller.edu/yyang/resources.html. 
 
The documentation for the software package R is available at http://www.r-project.org/. 
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