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RATE MEASUREMENTS AND THEIR POTENTIAL APPLICATION IN 

QUANTIFYING DELETERIOUS EFFECTS OF HIGH MUTATION RATES 

Sri Ram, Ph. D. 
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The genomic mutation rate of wild-type Escherichia coli is 3 ൈ 10ିଷ per generation, a 

value that is shared by many DNA-based microbes and viruses. A majority of clinical 

isolates of E. coli also have a mutation rate that is close to the wild-type value. These 

findings raise the possibility that the observed mutation rate is constrained by some 

universal evolutionary forces. In many laboratory settings, however, strains with high 

mutation rate (mutator strains) have been shown to outcompete otherwise isogenic wild-

type cells. These results have been explained by positing that mutators offer a short-term 

benefit in the form of increased probability of generation of beneficial mutations. Yet, 

given that a majority of non-neutral mutations are deleterious, there is a long-term cost 

associated with high mutation rates. This thesis explores the idea that one form of the 

long-term cost involves the fixation of deleterious mutations when rare beneficial 

mutations sweep through large asexual populations. Our simulations suggest that this is 

indeed the case at high mutation rates (~200-fold higher than the wild-type mutation 

rate), but the deleterious effects are expected to be quite small (~1%). Detection of such 

effects requires the measurement of mean fitness of large populations with high precision 

and high frequency. Towards this end, we constructed an apparatus that combines 

bioluminescence based growth rate measurements with techniques for long-term 

microbial culture for recording of growth rate dynamics of luminescent Escherichia coli. 

After a comparison of several culture media, we found that the reproducibility of growth 



rate measurements is the best in LB.  In LB, growth rates can be measured every 65 min 

(~3.5 generations) and with an overall precision of ~2.7%. Instrumental errors are 

estimated to contribute only 0.3% to the overall precision. We show that the apparatus 

can be used to detect small changes in growth rates by measuring the sensitivity of 

growth rate to temperature changes as small as 0.3°C.  We also show that precision can 

be maintained in long-term measurements of growth rates. We are now poised to evaluate 

the deleterious effects of high mutation rates in our apparatus.  
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Chapter  1. Introduction 
 

The population geneticist’s view of evolution is one of population variation in traits being 

shaped by the forces of natural selection and genetic drift. This view has been developed 

through over 100 years of work in evolutionary biology, starting from the publication of 

Charles Darwin’s classic book On the Origin of Species by Means of Natural Selection in 

1859 (Darwin, 1859), the development of the mathematical theory of population genetics 

by Sewall Wright, J. B. S. Haldane, and R. A. Fisher (Fisher, 1930), and the formulation 

of the neutral theory of molecular evolution by Motoo Kimura (Kimura, 1983). 

Notwithstanding debates over the relative importance of selection and drift in shaping 

natural populations, the presence of genetic variation is essential for either mechanism to 

act. 

 

Population variation in traits can be generated through various mechanisms including 

ecological ones such as migration and genetic ones such as spontaneous mutations, 

recombination, and the action of certain viruses and mobile genetic elements such as 

transposons. Spontaneous mutations play a fundamental role in the generation of novel 

variations and have been referred to as “engines to drive evolution” (Maki, 2002). While 

most of these variations would be deleterious, rare beneficial mutations facilitate the 

process of adaptation to new environments. This is especially true in pure asexual 

populations that grow by clonal expansion, since other means of generating genetic 

variation are essentially absent. 
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Given the importance of spontaneous mutations, it is natural to ask whether the rate of 

such mutations has any special significance. What are the constraints on spontaneous 

mutation rates? Can the value mutation rates in natural populations tell us something 

about these constraints? In this thesis, I explore the hypothesis that the process of 

adaptation itself might impose a constraint on the value of the mutation rate. Specifically, 

I ask whether adaptive processes involving rare beneficial mutations with substantial 

fitness advantage can result in the fixation of linked deleterious mutations. Furthermore, 

would the combined effects of the fixation of such deleterious mutations over long term, 

present an evolutionary constraint against high mutation rates?  

1.1 Perspectives on Mutation Rates 

1.1.1 Quantitative biology of mutation rates 
 

The mutation rate of wild-type E. coli strains is estimated to be around 3 ൈ 10ିଷ per 

genome per genome replication (Drake, 1991). Is this value typical, small or large? While 

a theoretical answer is still lacking, insights into this question can be obtained from the 

following comparisons: 

(1) Genomic  mutation rate of E. coli compared to other species:  Drake and 

colleagues have shown that the genomic mutation rate of many DNA-based 

microbes and viruses, including E. coli, is the same and close to 3.4 ൈ 10ିଷ per 

genomic replication (Drake et al., 1998; Drake, 1999).  The organisms they 

surveyed had genomic sizes ranging from 6.4 kilobases (Bacteriophage M13) to 

42 Megabases (Neurospora crassa). This remarkable result suggests that the 

mutation rate of E. coli is typical. Furthermore, one can posit that the evolutionary 
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forces that shape mutation rates are fairly universal, i.e., not restricted to a 

particular organism or ecological niche. 

 

(2) Distribution of mutation rates in clinical isolates of E. coli: Several groups have 

surveyed the distribution of mutation rates in collections of E. coli strains (Hall 

and Henderson-Begg, 2006). Baquero et al. found that the distribution of the 

mutation rates had a strong mode around the wild-type value (Baquero et al., 

2004). These strains, the so-called normomutable strains, comprised around 60% 

of the collection.  They also found that around 15% of the strains had a mutation 

rate which was lower than the modal value (hypomutators). The overwhelming 

majority of the hypermutating strains have less than 10-fold elevation in mutation 

rate and are classified as weak mutators (Baquero et al., 2004; Matic et al., 1997). 

Strong mutators are found with a frequency of around 1-2% (Baquero et al., 2004; 

LeClerc et al., 1996; Matic et al., 1997). Thus, one finds that a majority of isolates 

of E. coli have a mutation rate close to its typical value.  

 

(3) Competition between high mutation rate and wild-type strains:  Competition 

experiments between high mutating strains of E. coli (mutators) and otherwise 

isogenic wild-type strains have demonstrated that mutator strains have an 

advantage, at least in the short term (see section 1.3.2). On the other hand, 

theoretical work suggests that the eventual outcome of such experiments should 

be the reduction of mutator strains to a minority fraction (see section 1.3.3). 

Nevertheless, available experimental data suggests that in the absence of severe 
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population bottlenecks, strong mutator strains can be grown for thousands of 

generations without any detectable loss in fitness (see section 1.3.2).  

 

The three comparisons outlines above show that the answer to even such a basic question 

as the typical value of mutation rate is nuanced. While the majority of natural isolates 

have a mutation rate close to the typical value, several laboratory experiments have 

demonstrated scenarios where strong mutators have an advantage. How can we reconcile 

these laboratory experiments with the relative paucity of strong mutators in nature?  Is 

there a cost to high mutation rates that existing laboratory experiments have not been able 

to detect? 

1.1.2 Mutation rate and adaptation to fluctuating environments 
 

Mutations help in generating and maintaining genetic diversity in a population. In a 

constant environment, genetic diversity reduces mean fitness and therefore mutation rates 

should evolve to zero or to the lowest value permitted by physiological costs. In 

fluctuating environments, however, a non-zero mutation rate may have long-term 

adaptive value. The notion that the mutation rate may be selected to generate an optimal 

amount of genetic diversity is often referred to as second-order selection (Tenaillon et al., 

2001). As such, second-order selection arguments are similar to ones examining the role 

of stochastic phenotypic switching as an adaptive strategy to counter fluctuating 

environmental conditions (Kussell and Leibler, 2005). Mutation can be viewed as a 

stochastic phenotypic switch, albeit with very low (and typically asymmetric) switching 

rate.  

 



 

5 
 

The idea that mutation rates can be optimized to maximize long-term fitness in 

fluctuating environments was first considered by Kimura (Kimura, 1967), who found, in 

essence, that the optimal mutation rate was equal to the average rate (per generation) at 

which new (fitter) alleles are substituted in the genome as a result of change of the 

environment. A similar result was obtained by Leigh (Leigh, 1970). Palmer and Lipsitch 

extended Leigh’s analysis to include the effects of unconditionally deleterious mutations 

(mutations which are deleterious in all environments) and finite population size and 

showed that a slightly modified version of the Leigh’s (and Kimura’s) result was valid for 

a wide parameter range (Palmer and Lipsitch, 2006). On the other hand, André and 

Godelle have argued that in small populations, the optimal mutation rate as computed by 

Leigh’s method does not represent a stable value and that rare populations with a 

mutation rate different from the optimal one can invade the population (André and 

Godelle, 2006). 

 

That high mutation rates can be an adaptive strategy in fluctuating environments is best 

illustrated by the existence of “contingency loci,” which are highly mutable loci in the 

genomes of pathogenic microorganisms and which play a role in evading host immune 

responses (Moxon et al., 1994). What is the disadvantage of having a global high 

mutation rate as opposed to restricting the high mutation rate to a few “contingency 

loci?” It has been argued that the restricted high mutation rate enables essential 

“housekeeping” genes to be replicated with greater fidelity and minimizes the acquisition 

of deleterious mutations. If that is the case, what are the fitness consequences of these 

deleterious mutations in a global high mutation rate strategy? 
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1.1.3 Clinical perspective 
 

The observation of mutator strains of bacteria among clinical isolates has prompted 

questions regarding whether the evolution of high mutation rates has a role to play in the 

emergence of antibiotic resistance and whether mutators pose a threat to failure of 

antibiotic regimens (Blázquez, 2003; Chopra et al., 2003). Mutator strains have been 

shown to develop increased resistance to commonly used antibiotics (Miller et al., 2004; 

Örlén and Hughes, 2006). Weak hypermutators among natural isolates of E.coli also 

show an increased propensity towards multidrug resistance (Denamur et al., 2005). Such 

weak mutators are also overrepresented in E. coli isolates with extended-spectrum  β-

lactamases (Baquero et al., 2005). These findings, although mostly associative, suggest 

that high mutation rates among bacterial populations might be of consequence in clinical 

settings. 

 

Nevertheless, the fact remains that there is only limited evidence demonstrating a direct 

link between mutators and the evolution of drug resistance (Blázquez, 2003). There are 

also doubts as to whether the phenomenon of mutators contributing to drug resistance is a 

general one or restricted to a few pathogens (Blázquez, 2003). It remains to be seen 

whether evolution of hypermutation is an epiphenomenon with regards to clinical 

progression of disease and potential therapeutic strategies. 
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1.2 Evolution of Asexual Populations 

1.2.1 Theoretical work 
 

In this section, I review some of the theoretical work on the evolution of asexual 

populations. Typically, these models study a population of size ܰ  with a beneficial 

mutation rate ܷ௕ and a deleterious mutation rate ܷௗ . In most models, every beneficial 

mutation has a selection coefficient of ݏ௕ and every deleterious mutation has a selection 

coefficient of ௗݏ  . In some cases, selection coefficients of beneficial and deleterious 

mutations are drawn from some pre-specified distribution. Another assumption that is 

often made is that epistasis is absent, so that the relative fitness of a genotype with ௕ܰ 

beneficial mutations and ௗܰ deleterious mutations would be ሺ1 ൅ ௕ሻே್ሺ1ݏ െ  .ௗሻே೏ݏ

 

When beneficial mutations are absent, large asexual populations ሺܰ ՜ ∞ሻ  achieve a 

mutation-selection equilibrium. For the particular case with deleterious mutations having 

equal fitness effects, Haigh showed that at equilibrium, the fraction ൫ ே݂೏൯ of individuals 

with ௗܰ deleterious mutations follows a Poisson distribution with mean  ܷௗ ⁄ௗݏ  (Haigh, 

1978). In this case, the mean fitness of the population at equilibrium is ݁ି௎೏  and is 

independent of the fitness effects of deleterious mutations  ሺݏௗሻ . For any finite  ܰ , 

however, there is steady accumulation of deleterious mutations, an effect known as 

Muller’s ratchet. This effect is most pronounced for small populations and early 

theoretical work suggested that the speed of the ratchet depended primarily on the 

number of individuals with the least number of deleterious mutations (Haigh, 1978). 

More recent work, based on diffusion approximation to the ratchet, has shown that the 

rate of the ratchet can vary over an order of magnitude even if the expected number of 



 

8 
 

individuals with the least number of deleterious mutations is kept fixed (Gordo and 

Charlesworth, 2000).  

 

The presence of beneficial mutations makes theoretical analysis more complex. When 

population size or beneficial mutation rate are small, beneficial mutations survive genetic 

drift and get fixed in the population independently, i.e., before other beneficial mutants 

are generated. In this regime, the rate of adaptation (rate of increase of population mean 

fitness) varies linearly with both population size and beneficial mutation rate (Desai and 

Fisher, 2007). When populations are large or beneficial mutations are not rare, the 

accumulation of beneficial mutations is impeded by two factors: (a) clonal interference, 

the possibility that the fixation of a particular beneficial mutation is prevented by the 

establishment of a clone with a more fit beneficial mutation (Gerrish and Lenski, 1998), 

and (b) the possibility that a lineage can acquire multiple beneficial mutations before any 

beneficial mutation gets fixed, and consequently there is competition between lineages 

with different number of beneficial mutations (Desai and Fisher, 2007). Clonal 

interference analyses usually neglect the effect of lineages with multiple beneficial 

mutations (Gerrish and Lenski, 1998; Orr, 2000; Wilke, 2004). On the other hand, 

theoretical studies on the effects of multiple mutations have been performed under the 

assumption that all mutations have an equal fitness effect and therefore clonal 

interference is not an issue. These analyses are performed using a semi-deterministic 

approximation: while the bulk of the population is treated deterministically, the most fit 

population, being rare, is described in a stochastic manner (Desai and Fisher, 2007; 

Rouzine et al., 2003; Rouzine et al., 2008; Tsimring et al., 1996). The main result of both 
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clonal interference analyses and multiple mutation analyses is that the rate of adaptation 

no longer increases linearly with population size and mutation rate, but shows only a 

logarithmic or sub-logarithmic increase with increasing ܰ and ܷ௕.  

 

When deleterious mutations are also taken into account, the probability of fixation of a 

beneficial mutation is reduced compared to a scenario when deleterious mutations are 

absent (Johnson and Barton, 2002; Orr, 2000). Moreover, the adaptation rate shows a 

maximum at a particular value of the total mutation rate, and this yields an optimal 

mutation rate. Orr showed that when beneficial mutations have a selection coefficient less 

than that of deleterious mutations ሺݏ௕ ൏ min ሼݏௗሽሻ, the optimal mutation rate is equal to 

the harmonic mean of the selection coefficients of the deleterious mutations (Orr, 2000). 

Johnson and Barton (Johnson and Barton, 2002) extended this analysis to the regime 

where ݏ௕ ൒  ௗ. While they found that an optimal mutation rate still existed, they couldݏ 

only compute it numerically.  

 

One aspect that has not received sufficient consideration in the literature is whether the 

fixing of beneficial mutations can result in fixation of linked deleterious mutations in 

large populations. In the ݏ௕ ൏ ௗݏ  regime, Peck demonstrated that this is not possible 

although the proof does not consider the possibility of multiple beneficial mutations 

compensating for the effect of a deleterious mutation (Peck, 1994).  On the other hand, 

Johnson and Barton showed that deleterious mutations can indeed be fixed if ݏ௕ ൐  ,ௗݏ 

but the caveat with their analysis is that it considers neither clonal interference nor 

multiple beneficial mutations. Campos and De Oliviera have carried out extensive 
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simulations which take into account clonal interference but discount the possibility of 

multiple beneficial mutations (Campos and De Oliveira, 2004). They, however, did not 

look at the fixation of deleterious mutations as a result of linkage. 

1.2.2 Laboratory evolution experiments 
 

Laboratory evolution experiments, in conjunction with modern tools of molecular 

biology and genomics, can provide major insights about evolutionary phenomena (Elena 

and Lenski, 2003). These experiments involve monitoring of populations over periods 

ranging from 100 generations (Chao and Cox, 1983) to over 20,000 generations (Cooper 

et al., 2003). Given the long times involved, such experiments require the use of 

organisms with short generation times, and unicellular microorganisms and viruses are 

the common choice.  

 

From the early experiments of Novick and Szilard in chemostats investigating 

spontaneous mutation rates (Novick and Szilard, 1950a) to relatively recent experiments 

of Lenski and colleagues involving propagation of E. coli over 20,000 generations by 

repeated serial dilutions (Lenski et al., 1991), laboratory evolution experiments have a 

rich history and a broad scope. Such experiments have unearthed several phenomena 

such as reproducible patterns of mutations or gene expression changes in replicate 

lineages (Cooper et al., 2003; Notley-McRobb et al., 2003), the emergence and fixation 

of strains with high mutation rates (Notley-McRobb et al., 2002a; Sniegowski et al., 

1997), the generation of high phenotypic diversity even in constant and unstructured 

environments (Maharjan et al., 2006), and the high rate of beneficial mutations (Perfeito 
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et al., 2007). In general, laboratory evolution experiments may be classified into two 

groups, depending on the measurement being performed: 

(1) Selection coefficient measurements: These experiments involve co-culturing 

of two or more populations which can be distinguished by some neutral or 

near-neutral markers. Changes in frequencies of these markers are indicative 

of selection events and the rate of such changes can be used to quantify the 

fitness difference (selection coefficient) between the marked populations. 

Typical markers that have been used include auxotrophic markers (de Visser 

and Rozen, 2006), microsatellite alleles (Imhof and Schlötterer, 2001), and 

fluorescent proteins (Hegreness et al., 2006). Selection coefficient 

measurements have been used to estimate the distribution of fitness effects of 

beneficial mutations (Imhof and Schlötterer, 2001) and to investigate clonal 

interference phenomena (de Visser et al., 1999; de Visser and Rozen, 2006). 

 

(2) Measurement of mean fitness trajectories: These experiments monitor the 

mean fitness of the population or the distribution of fitness of the population 

as a function of time. Fitness trajectories are usually recorded by competition 

between evolved strains and a common, ancestral reference strain at regular 

intervals (Desai et al., 2007; Lenski et al., 1991). Alternately, such trajectories 

can be obtained by monitoring environmental parameters as in the case of 

residual substrate concentration in nutrient-limited chemostats (Wick et al., 

2002). Measurements of such trajectories have been used to estimate the 

deleterious mutation rate and the average effect of deleterious mutations 
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(Kibota and Lynch, 1996), to study the reproducibility of fitness trajectories at 

large population sizes (Wick et al., 2002), and to compare different models 

(clonal interference models and models tracking lineages with different 

number of beneficial mutations , see section 1.2.1) for asexual adaptation 

(Desai et al., 2007).  

 

For measurement of mean fitness trajectories, there are three main requirements:  the 

ability to monitor populations over long periods of time and the feasibility of measuring 

fitness both frequently and precisely. Frequent measurements can reveal phenomena that 

coarser measurements do not resolve such as the presence of discrete jumps in fitness or 

correlates of fitness (Lenski and Travisano, 1994). Precise measurements, on the other 

hand, are necessary for small fitness differences to be resolved. Small fitness differences 

have to be measured in several contexts, for instance, the mutation load suffered by a 

mutS mutator strain well-adapted to its environment was estimated to be around 1% by 

Boe et al. (Boe et al., 2000). In Chapter  4, I describe the development of an apparatus for 

long-term, high-precision and high frequency measurements of bacterial growth rates. 

1.3 Mutators 

1.3.1 DNA repair and mutator strains 
 

The spontaneous mutation rate in all organisms is governed by a combination of 

proofreading and DNA repair mechanisms. Disruption of these mechanisms leads to an 

increase in the mutation rate, referred to as a mutator phenotype (Cox, 1976; Miller, 

1996). Beginning with the isolation of the mutT1 allele in the 1950s by Treffers and 

colleagues (Treffers et al., 1954), several mutator alleles have been characterized in E. 
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coli (Horst et al., 1999; Miller, 1998). These include: mutD (dnaQ), the proofreading 

subunit of DNA polymerase III; mutH, mutL, mutS, and uvrD involved in methyl-directed 

mismatch repair; and mutT, mutY, and mutM comprising the GO system for oxidative 

repair (Miller, 1996; Miller, 1998).  

 

Mutator alleles are characterized by their strength and by the spectrum of mutations that 

are enhanced in cells bearing them. A mutT-mutator shows increased rate of G:C→T:A 

transversions, while mismatch repair deficient strains have an elevated rate of transitions 

and frameshifts (Miller, 1996). The strength of the mutator phenotype refers to the factor 

by which mutation rates are elevated with respect to the wild-type. Based on mutation 

rate estimates derived from measurements of number of spontaneous rifampicin-resistant 

mutants, the strength of  the mutT mutator is about 25-fold, while that of the mutS 

mutator is around 80-fold (Garibyan et al., 2003).  

 

As described in section 1.1.1, E. coli mutator strains are found among natural isolates. 

Wild-type cells can also mutate to give rise to mutators. It is estimated that in a large 

culture of wild-type cells with population in excess of 1010 cells, about 1 in 105 cells are 

mutators (Boe et al., 2000; Miller et al., 1999). This mutator subpopulation can be easily 

enriched by subjecting the population to a sequence of strong selections such as antibiotic 

treatment or auxotrophic reversion (Mao et al., 1997; Miller et al., 1999).  

 

Mutators arising from mutations in DNA repair genes are usually constitutive, heritable 

and global (i.e., the mutation rate is high for the entire genome). In contrast, there exist 
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mutator phenotypes which are non-heritable and transient (Humayun, 1998; Sundin and 

Weigand, 2007) as well as heritable local mutators, where only a specific region of the 

genome shows an elevated mutation rate (Metzgar and Wills, 2000).  The prototypical 

system where the mutator phenotype can be transiently induced is the SOS response, 

which involves induction of error-prone polymerases in response to DNA damage 

(Nohmi, 2006). SOS-polymerases also appear to play a significant role in the generation 

of the wild-type Growth Advantage in Stationary Phase (GASP) phenotype (Yeiser et al., 

2002). Examples of heritable local mutators include the so-called “contingency loci,” 

which play a role in helping pathogenic bacteria evade host immune responses (Moxon et 

al., 1994). 

1.3.2 Laboratory phenomena associated with mutators 
 

Competition experiments between mutator and wild-type strains have shown that 

mutators have a short term advantage (Nestmann and Hill, 1973; Tröbner and Piechocki, 

1984a). In a series of experiments in glucose-limited chemostats, Cox and colleagues 

demonstrated that mutT-mutator strains outcompete their wild-type counterparts provided 

that they are present above a certain ratio in the population (Chao and Cox, 1983; Cox 

and Gibson, 1974; Gibson et al., 1970). The early experiments were inconclusive as to 

whether this reflected an intrinsic advantage of the mutT defect or whether the mutators 

won by generating beneficial mutations. Later experiments with finer sampling revealed 

that mutators take over the population following a characteristic lag period and only if 

they are present above a certain ratio. More recently, it has been shown that the transition 

(between mutators winning and wild-type winning) does not occur at a threshold ratio, 

but rather at a threshold mutator population size (Le Chat et al., 2006). The threshold 
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mutator population size corresponds to the one where the expected number of beneficial 

mutants in the mutator subpopulation is one. These observations suggested that mutators 

took over by hitchhiking with beneficial mutations rather than because of an intrinsic 

fitness advantage.  

 

In some cases, however, competition experiments between mutators and wild-type have 

demonstrated a fitness disadvantage for the mutator. Tröbner and Piechocki showed that 

the dam mutators lose to wild-type cells at all starting ratios (Tröbner and Piechocki, 

1985). However, the loss is probably due to the pleiotropic effects of the allele, rather 

than because of mutation load. In a separate report, Tröbner and Piechocki also showed 

that the mutation rate of a mutT mutator decreased as a result of acquisition of 

compensating mutations, when the strain was cultured in a chemostat for 2,200 

generations (Tröbner and Piechocki, 1984b). They interpreted their results as suggesting 

that high mutation rates are selected against once populations are well-adapted. An 

instance of mutators losing out to wild-type strains has been documented in an animal 

model as well. Daurel et al. showed that a mutL variant of Staphylococcus aureus 

suffered a fitness disadvantage when competed with an otherwise isogenic wild-type 

strain in the rat model of osteomyelitis of the tibia (Daurel et al., 2007). 

 

Even when mutator strains have not been deliberately introduced (as in competition 

experiments), cells with higher mutation rate have been observed to take over populations 

in long-term cultures. Mutator strains took over 3 out of 12 independent populations that 

were maintained for over 10000 generations by serial dilutions (Sniegowski et al., 1997). 
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Similarly, in 6 out of 11 independent glucose-limited chemostat populations, strains with 

elevated mutation rates were found to comprise between 30-100% of the population 

within 150 generations (Notley-McRobb et al., 2002a). A detailed analysis of both 

experiments yielded puzzling results (Notley-McRobb et al., 2002b; Shaver et al., 2002). 

In the first experiment, in one of the three populations where mutators were observed, 

mutators increased in frequency from 0% to 42% without any detectable increase in the 

average fitness (Shaver et al., 2002). Direct effects of the allele were measured to be 

negligible and could not be responsible for such an increase. In the second experiment, 

two of the populations that were analyzed in detail revealed that the mutator allele was 

first enriched and then eliminated (Notley-McRobb et al., 2002b). At the end of the 

enrichment phase, all isolates that were tested had a high mutation rate. However, in both 

populations, the mutators were eliminated within 150 generations. Mutation load, 

reversion of the mutator allele to the wild-type allele and antimutator mutations were 

ruled out as possible causes for the elimination. The emergence of mutators has also been 

observed in mouse models (Giraud et al., 2001). In 2 of 26 germ-free mice inoculated 

with a wild-type strain of E. coli, mutator bacteria formed a dominant fraction of the total 

E.coli population within 42 days. Furthermore, when mutators and wild-type bacteria 

were co-inoculated at ratios greater than 1/5000, the mutator/wild-type population ratio 

increased by over 2 orders of magnitude within 40 days.   

 

Given the emergence of mutators in many laboratory conditions, one has to explain their 

rarity in nature by the long-term cost of an elevated mutation rate. Some measurements 

have been made to elucidate this long-term cost. Using cycles of single-cell bottlenecks, 
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Kibota and Lynch estimated that the genomic deleterious mutation rate for wild-type cells 

is at least 2 ൈ 10ିସ per replication with an average decrease of at most 1.2% in fitness 

per deleterious mutation (Kibota and Lynch, 1996). They observed a 2% loss in fitness 

over 300 cycles of single-cell bottlenecks (about 7500 generations). A similar protocol 

carried out with mutS-mutator yielded more dramatic results in much fewer cycles 

(Funchain et al., 2000). 100 lineages were passed through single-cell bottlenecks. After 

90 cycles of single-cell bottlenecks (about 2400 generations), 5 lineages died out, while 

the remaining 95 lineages had growth rates ranging from 52% to 92% of the starting 

strain. Furthermore, all of these lineages accumulated mutations in biosynthetic pathways 

as assayed by inability to grow on various sugars and inability to form colonies on 

minimal media plates.  

 

However, experiments with single-cell bottlenecks reveal only one half of the story. In 

these experiments, it is equally easy to fix deleterious mutations with small and large 

fitness effects. A different picture emerges when large populations are considered. For 

example, Boe et al. estimated that the reduction in fitness of a mutS-mutator on account 

of deleterious mutations was around 1% in experiments with large populations (Boe et 

al., 2000). Furthermore, the authors suggested that this figure is an upper limit as the 

effect of the marker used to distinguish mutators from wild-type cells was not 

determined. More strikingly, in one of the twelve populations in the long-term cultures 

mentioned above (Sniegowski et al., 1997), mutators have survived over 8000 

generations without any discernible effect on viability or fitness when compared to 

populations where mutators did not take over the population. It is therefore an open 
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question whether there is any significant disadvantage to having a high mutation rate as 

long as population sizes remain large.  

1.3.3 Theoretical work on mutators 
 

The emergence of mutators in laboratory systems (see section 1.3.2) provided the 

motivation for theoretical investigation of the phenomenon of hitchhiking of mutator 

genes with beneficial mutations. Using simulations, Taddei et al. showed that 

intermediate strength mutators could get fixed in large populations by hitchhiking 

(Taddei et al., 1997). The effect of various parameters like population size and the height 

and steepness of the fitness peak on the probability of fixing mutators of different 

strengths has also been studied (Tenaillon et al., 1999).  

 

In models with finite number of beneficial mutations, the presence of a constant genetic 

landscape and the non-zero probability of back-mutation from a mutator state to the wild-

type state ensure that the eventual outcome is the establishment of a mutation-indirect 

selection (MIS) equilibrium (Kessler and Levine, 1998). At the MIS equilibrium, 

mutators form the minority population (typically, the mutator frequency is 

around 10ିହ െ 10ିସ). Tenaillon et al. provided an approximate expression for the MIS 

equilibrium fraction of mutators by ignoring the distribution of deleterious mutations in 

the wild-type and mutator subpopulations and treating them as a two populations at the 

classical mutation-selection (MS) equilibrium (Tenaillon et al., 1999). Since the mean 

fitness at MS equilibrium does not depend on the selection coefficient against deleterious 

mutations (cf. section 1.2.1), the approximation of Tenaillon et al. suggests that the 

mutator fraction at MIS equilibrium is independent of deleterious effects of mutations as 
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well. The MIS, however, differs from the MS equilibrium in one respect. In the MS 

equilibrium scenario, deleterious effects of mutations are manifested as soon as they are 

acquired (this follows from the definition of a deleterious mutation). In contrast, mutation 

from a wild-type state to a mutator state does not result in immediate reduction in fitness. 

The deleterious effects of the mutator state are not direct, but follow from the increased 

generation of deleterious mutations in subsequent generations.  Consequently, there is a 

delay in manifesting deleterious effects of the mutator state  (André and Godelle, 2006) 

and the approximation of Tenaillon et al. underestimates the equilibrium fraction of 

mutators (Johnson, 1999). A better approximation has been developed by Johnson 

(Johnson, 1999), who found that the mutator fraction at MIS varies inversely with the 

strength of selection against deleterious mutations.  

 

Another aspect of mutators that has been studied theoretically is the effect of 

environmental change in mutator frequency (Tanaka et al., 2003; Travis and Travis, 

2002). This has been studied in the context of antagonistic pleiotropy, viz., a situation 

where mutations which are beneficial in the current environment are deleterious in 

subsequent environments. If environmental fluctuations are too fast, there is no advantage 

to be gained in acquiring beneficial mutations, as these will prove deleterious in short 

time. In this case, a higher mutation rate proves disadvantageous as it leads to generation 

of beneficial mutations at higher rate. On the other hand, if environmental fluctuations 

are so slow that the population spends bulk of the time at MIS equilibrium, mutators 

would be the minority population for most of the time. At intermediate frequencies of 
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environmental fluctuations, however, mutators can be present at appreciable frequency 

(Travis and Travis, 2002). 

1.4 Microbial Growth and Measurement of Growth Rates 
 

Recording of growth curves is a classical quantitative measurement in microbiology and 

has many applications in the study of bacterial physiology and evolution. Indeed, in his 

classic review on the growth of bacterial cultures, Jacques Monod referred to such 

measurements as the “basic method of Microbiology” (Monod, 1949). Traditionally, a 

typical bacterial growth curve comprises several phases, including a lag phase, where the 

organism adapts to a new environment; an exponential phase, which can be viewed as 

steady state growth; and a stationary phase, which usually reflects the exhaustion of one 

or more nutrients from the medium. Monod characterized the exponential phase as “the 

only phase of the growth cycle when the properties of the cells can be considered 

constant, and can be described by a numeric value, the exponential growth rate” (Monod, 

1949). The exponential phase represents an ideal regime for laboratory evolution 

experiments and the precise measurement of growth rate is a crucial requirement for such 

investigations.  

1.4.1 Measurement of Growth Rates 
 

Consider an exponentially growing microbial population whose population at time ݐ is 

given by ܰሺݐሻ ൌ ܰሺ0ሻ݁ఒ௧, where ߣ is the exponential growth rate. For any measurement 

of the growth rate performed over a measurement duration ߬ , the precision of 

measurement is determined by two factors: (a) the intrinsic measurement precision of the 
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technique, which is the precision in measurement of ܰሺݐሻ , and (b) growth rate 

reproducibility, which is the variance of ߣ over the measurement duration ߬. The growth 

rate may vary over the measurement period either as a result of environmental 

fluctuations or because of changes in internal physiological states. In general, there are 

two methods for improving measurement precision: 

 

(1) Increasing measurement duration  ߬ . The intrinsic precision in growth rate 

measurement, roughly speaking, is given by Δߣ ൌ ଵ
ఛ

ቀΔேሺఛሻ
ேሺఛሻ

൅ Δேሺ଴ሻ
ேሺ଴ሻ

ቁ  . As a 

result, for a given intrinsic precision in population size measurement, a longer 

measurement period improves the intrinsic precision in growth rate 

measurement. Moreover, as the growth rate that is measured ሺߣ௠௘௔௦ሻ  is 

actually the time average of the fluctuating growth rate over the measurement 

period, i.e., ߣ௠௘௔௦ ൌ ଵ
ఛ ׬ ఛݐ݀ߣ

଴ , a longer measurement time would average out 

fluctuations in ߣ over a wider frequency range, resulting in better growth rate 

reproducibility. Increasing the measurement duration would, of course, 

impose constraints on how often growth rates can be measured. 

  

(2) Relative measurements, i.e., measurement of growth rate relative to a 

reference strain whose growth rate is ߣ௥௘௙. These techniques actually measure 

the difference ߣ െ  ௥௘௙ߣ  and ߣ ௥௘௙ , and exploit the fact that fluctuations inߣ

are likely to be highly correlated. As a result, the variance of ߣ െ  ௥௘௙ can beߣ

lower than the variance of ߣ  itself. In long-term evolution experiments, 

relative measurements of mean growth rates would require setting up 
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completions between evolved populations and the reference strain. This would 

require sampling of cultures and also impose constraints on how often fitness 

measurements can be made. 

 

Relative measurements of growth rate have been performed by measuring population 

sizes using a variety of techniques including plate counting (Desai et al., 2007), optical 

density readings (Dekel and Alon, 2005), or flow cytometry (Desai et al., 2007). As 

described, however, these techniques have long measurement durations ranging from 

several hours to a day. The alternative to relative measurements is to use absolute 

methods of evaluating population sizes. Absolute measurements have been performed 

using optical density (Kibota and Lynch, 1996) and bioluminescence (Kishony and 

Leibler, 2003). Absolute measurements using optical density have low intrinsic precision, 

while bioluminescence measurements have no such issues.  However, the measurement 

duration in the experiments of Kishony and Leibler was long (~10 generations or ~3 

hours in rich media). Nevertheless, bioluminescence measurements may be ideal for 

long-term, high-precision recording of growth rates, especially if the measurement 

duration can be reduced to facilitate high-temporal resolution as well.  

 

Bioluminescence has found numerous biotechnological and biological applications 

(Meighen, 1993; Roda et al., 2004) because of its high sensitivity and the ease of 

measurement of luminescence signals through automated means. Bacterial 

bioluminescence results from oxidation of reduced flavin mononucleotide (FMNH2) and 

a long-chain fatty aldehyde catalyzed by bacterial luciferase (Meighen, 1993). The lux 

operon, which comprises five structural genes (luxCDABE), forms a self-sufficient 



 

23 
 

bioluminescence module. Cloning of the five lux genes into non-luminescent bacteria 

makes them luminescent without the need for additional substrates. More importantly, in 

the exponential phase of growth, the expression of the lux operon from a constitutive 

promoter in Escherichia coli yields a quantitative signal proportional to the cell 

population (Kishony and Leibler, 2003; Marincs, 2000). The advantages of 

bioluminescence measurements are their feasibility even at low cell densities (unlike 

optical density measurements), low background and high dynamic range, and the absence 

of requirement for an external light source for measurement (unlike OD or fluorescence). 

In Chapter  4, we demonstrate that these advantages permit long-term, high-precision 

recording of growth rates with good temporal resolution. 

1.4.2 Long-term culturing techniques 
 

Laboratory evolution experiments, such as those described in section 1.2.2, require 

populations of organisms to be maintained over periods ranging from 100 to over 10,000 

generations. To maintain microbial cultures over such long periods, two kinds of 

culturing techniques have been adopted, viz., repeated serial dilutions and continuous 

culture devices.  

 

Repeated serial dilutions involve cycles of growth and dilution. Dilutions are performed 

periodically, typically once a day, and are performed by transfer of a small fraction of the 

current culture to a second culture with fresh medium. Such dilutions can be performed 

manually (Desai et al., 2007; Lenski et al., 1991) or automatically (Hegreness et al., 

2006). While serial dilutions are an elegant solution to the problem of maintaining 

cultures over long times, one typically dilutes culture around 100-fold or more in each 
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cycle to minimize the frequency of dilutions. Consequently, during the growth phase of 

the cycle, the density of the culture may vary over 100-fold, and thus the population may 

experience culture conditions that are not constant throughout the growth phase. This is 

especially true if cultures are allowed to reach stationary phase, but also true of 

exponential phase cultures in rich media, where exponential growth proceeds through a 

sequence of physiological states distinguished by their gene expression profiles (Baev et 

al., 2006). 

 

In order to achieve greater control over culture conditions, one typically uses continuous 

culture devices such as chemostats and turbidostats. The chemostat was invented almost 

60 years ago as a means for quantitative study of bacterial physiology and evolution 

(Monod, 1950; Novick and Szilard, 1950b). The chief advantage of the chemostat was 

the ability to establish user-defined, steady-state culture conditions with high 

reproducibility (Hoskisson and Hobbs, 2005). Chemostats are typically operated under 

conditions where a single nutrient limits the growth rate of the cultured microorganism 

(Tempest, 1970). While chemostats may provide constant environments over the short-

term, they also select for mutants that have increased affinity for the limiting nutrient 

resulting in a decrease in its concentration (Dykhuizen and Hartl, 1983). The main 

problem with chemostats is that the measure of fitness of the population is the 

concentration of the limiting nutrient in the medium (Wick et al., 2002). Such 

concentration measurements are inherently more difficult to perform than population size 

measurements.  
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Chemostats, are operated at a fixed dilution rate, which sets the concentration of the 

limiting nutrient. Turbidostats (Munson, 1970), and other similar devices such as 

permittistats (Markx et al., 1991),  differ from chemostats in that the rate of dilution is 

adjusted constantly to keep population size. The population size is monitored through 

culture turbidity (turbidostats) or dielectric constant (permittistats). In principle, the 

culture dilution rate required to maintain steady state provides a measure of population 

growth rate. This idea was demonstrated by Anderson, who built a device for continuous 

recording of growth rates using turbidity measurements (Anderson, 1953). The main 

disadvantage of both turbidostats and permittistats is that they require dense cultures for 

population measurements to be made, and thus are restricted in the density range that 

they can be used for. 

 

While continuous culture devices suffer from several technical problems, including the 

adherence of microorganisms to walls of the culture vessel, they have proven to be quite 

useful in laboratory evolution experiments (see section 1.2.2). Moreover, recent advances 

such as the development of microchemostats (Balagadde et al., 2005) and a renewed 

interest in the use of continuous culture devices (Hoskisson and Hobbs, 2005) may result 

in a greater adoption of such techniques.  
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Chapter  2. Materials and Methods 
 

2.1 Bioluminescence-based High Precision Measurement of Growth 
Rates 

 

Description of apparatus 

The setup is depicted in Figure 1 and has a 250 ml, four-necked glass flask (Kimble 

Kontes) at its core. The central neck of the culture vessel was covered with a borosilicate 

optical window (Edmund Optics) and a photomultiplier tube (PMT) module (Hamamatsu 

H5783) was positioned above the window to measure light emitted by the bacteria. The 

other necks were used to supply fresh medium, remove spent culture, and to fix an air 

vent (Cole Parmer) that allowed diffusion of air without compromising sterility of the 

culture. Inoculation of the medium was carried out through an inoculation port which 

consisted of a threaded cap with a PTFE-silicone septum (National Scientific) secured on 

a side-neck on the vessel. To minimize temperature fluctuations, the culture vessel was 

placed within an open-top transparent container (Nalgene) that was connected to a 

circulating water bath (VWR Scientific). A magnetic stirrer (Thermolyne) located 

underneath the vessel was used to gently stir (< 50 rpm) the culture. The stirrer, culture 

vessel and PMT were enclosed in a dark, cardboard box that blocked external light and 

facilitated measurement of bacterial luminescence.  

 

For long-term cultures, two peristaltic pumps (Rainin RP-1) were used to supply fresh 

medium and remove spent culture which were stored in 5-liter glass bottles (Kimble 

Kontes). Pumping flow rates were maintained by measuring the rate of fresh medium 
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supplied and the rate of spent culture removed using precision balances (A & D Company 

Limited, GX-6000 and GX-6100, precision of 0.1 g and 0.01 g respectively) and 

adjusting pump speeds accordingly. For peristaltic pump tubing, we used Pharmed® BPT 

tubing, while Dow Corning® Pharma-65 tubing was used in the rest of the apparatus. To 

minimize the risk of contamination during replacement of media/waste reservoirs, they 

were connected using quick-disconnect fittings (Colder Products Company). Other tubing 

connections were made with polypropylene barbed fittings. All fittings were secured 

using Barblock® retainers (Barblock Corporation). 

 

The current output signal of the PMT module was transduced to a voltage signal by 

means of a 1 MΩ resistor and then measured using a digital multimeter (Agilent 34401A) 

operated in the DC Voltage mode with an integration time of 100 power line cycles. A 

GPIB port was used to interface the digital multimeter with a personal computer, while 

serial ports were used to communicate with the pumps and balances. Regulation of 

devices and logging of data were performed using a custom program written in C and 

compiled using Microsoft Visual C++. The program used the Agilent VISA library 

(Agilent Technologies) for communicating with the external devices.  

 

Bacterial strains 

Unless otherwise indicated, all batch cultures and long-term culture experiments 

described in Chapter  4 were performed with the non-adherent Escherichia coli strain 

NS2 transformed with the luminescence plasmid pCSλ (Kishony and Leibler, 2003). 



 

28 
 

Some experiments were performed with wild-type MG1655 strain (Figure 9) or the non-

adherent HEHA16 strain (Figure 12B)  (Kjargaard et al., 2000). 

 

Strain NS2 was constructed in collaboration with Doeke Hekstra and with advice from 

Dr. John Chuang. It was derived from the wild-type MG1655 strain by engineering 

deletions in the fimA and the flu genes sequentially. Deletions were made by P1 

transduction of the FRT-flanked kanamycin resistance cassette from the corresponding 

deletion mutant in the Keio Collection (Baba et al., 2006) and selecting for kanamycin-

resistant transductants. Strains JW4277 and JW1982 were used to prepare P1 lysates for 

generating the fimA and flu deletions respectively. The kanamycin resistance gene was 

flipped out by first transforming the transductants with the plasmid pCP20 (Cherepanov 

and Wackernagel, 1995), which has ampicillin and chloramphenicol resistance markers, a 

temperature sensitive origin of replication and temperature-inducible FLP expression. 

After transformation, induction of FLP expression and cessation of replication of pCP20 

were carried out by incubation at 42˚C. Removal of the kanamycin-resistance cassette 

and curing of pCP20 were verified by restoration of sensitivity to kanamycin, ampicillin 

and chloramphenicol. All genetic manipulations were performed using standard 

techniques (Miller, 1992). 

 

Media, inoculation, and culture conditions 

LB broth with 30 μg/ml kanamycin was used in most of the experiments described in 

Chapter  4. This medium was prepared by dissolving 25g of LB granules (EMD 

Chemicals) per liter of distilled water, adding 30 mg of kanamycin monosulfate (Sigma).  
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Other media used include: glucose and lactose minimal medium (Figure6) which had 

10mM KH2PO4,  15mM (NH4)2SO4, 0.5 mg/l FeSO4.7H2O (pH adjusted to 7.0 with these 

three components), 1mM MgSO4.7H2O, 30 mg/l  kanamycin monosulfate and either 

0.105% glucose of 0.1% lactose; and LB with 25 μg/ml Chloramphenicol for the culture 

of HEHA16 (Figure 12B). Medium was usually sterilized by means of a 0.2μm SFCA 

filter (Nalgene), with the exception of LB used for culture of MG1655 and HEHA16 

strains, which was sterilized by autoclaving. In all cases, antibiotics were added for 

maintenance of the luminescence plasmid. All experiments were performed at 38.3˚C, 

except for those described in Figures 9 and 12B which were performed at 37.2˚C, and 

those described in Figure 8, where the culture temperatures are indicated. Batch cultures 

were usually performed in 125 ml of the medium, whereas long-term cultures used 125.0 

g of medium in the culture vessel. 

 

For both batch cultures and long-term cultures, a small sample of glycerol stock of the 

strain to be cultured was streaked out on an LB agar plate with appropriate antibiotic and 

incubated at 35.5˚C or 37.0˚C. After 12 hours incubation, 10 colonies were randomly 

picked and inoculated in 0.65 ml of the culture medium. The inoculated medium was 

diluted 100-fold and 0.5 ml of the 100-fold diluted medium was used to inoculate the 

culture vessel. This procedure ensured that the initial inoculum was 510105 ×− cfu. Six 

hours prior to inoculation, the culture vessel with the medium was placed in the water 

bath and the PMT was switched on. This pre-inoculation phase was required for the 

temperature of the setup to equilibrate and for estimation of the background signal. While 
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batch cultures were allowed to go to stationary phase after inoculation, long-term cultures 

were performed using the indicated dilution protocol (Figures 10, 13A).  

 

Data processing 

The background signal, B , corresponds to the signal generated by the dark current of the 

PMT, and was typically taken to be the mean luminescence signal during the last 0.5 

hours of the pre-inoculation phase (see above). The background signal was subtracted 

from the raw signal recorded by the multimeter, )(iLraw , to yield the transformed signal, 

BiLiL rawtr −= )()( . The index i denotes the thi reading after inoculation.  

 

Growth curves (Figures 6A, 6C, 6E, 7A, 7C, 8A, 8C88) plot )(iLtr  (on a logarithmic 

scale) as a function of )(it , the time at which the thi reading was recorded. For plotting 

slope curves (Figures 6B, 6D, 6F, 7B, 8B88), the )(iLtr  time series was divided into 

overlapping blocks of 250=SN  points, with consecutive blocks separated by 25=SlideN  

points. For the thI  block, whose index i  varies from SlideNI ⋅  to 1−+⋅ SSlide NNI , 

( ))(ln)( iLiX tr=   was fitted to a linear function of )(it using least squares regression. The 

slope obtained from the regression, Blkλ , represents the growth rate in that block. We then 

plot Blkλ)2ln( (the generation time in the block) as a function of the geometric mean of 

the luminescence signal in that block, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

−+⋅

⋅=
S

NNI

NIi
Blk NiXL

SSlide

Slide

1

)(exp  by varying I from 0

to ( )⎣ ⎦SlideSTot NNN 1+− , where TotN is the total number of data points recorded. For 
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Figures 7D and 8D, a single block consisting of all data points in the operating region 

(2.65 mV ≤≤ )(iLtr 7.00 mV) was used to obtain the generation time.  

 

In long-term cultures, parameters such as masses of input and output reservoirs, RPM of 

input and output pumps, and temperature of the water bath were recorded in addition to 

the luminescence signal of the culture. The luminescence recordings were used to plot 

Figures 9A, 9B, 12B, and 14A, while the pump speed data was used to plot Figure 9C. In 

Figure14A, input flow rates were computed as the negative of the slope obtained by a 

linear least squares fit of the mass of the input reservoir to the time of recording of the 

mass during each period where pump RPMs where not changed. Vertical changes in 

input flow rate in Figure 14A are a result of changes in pump RPMs. For Figure 14B, 

data recorded in each no-dilution phase was used to calculate the growth rate ( )NDλ  in that 

phase by performing linear least squares regression of ( ))(ln)( iLiX tr=  against )(it  

followed by plotting of NDλ)2ln( against the arithmetic mean of the time of recording of 

the data points. 

 

Mock runs for measuring culture mass and temperature stability 

For measuring culture mass stability (Figure 11) and temperature stability (Figures 12A, 

13B), mock runs were set up with the indicated dilution protocols. In these mock runs, 

distilled water was used instead of culture medium, and no bacteria were grown. The 

control software was reconfigured to behave as if an ideal bacterial strain was growing 

exponentially with a doubling time of around 18 minutes. For recording culture mass, the 

stirrer in Figure 1 was replaced by a precision balance (A & D Company Limited, GF-
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200, precision of 1 mg). Temperature recordings of the culture and the surrounding water 

bath were made using two independent thermistor probes (Omega Engineering) with the 

stirrer in place.  The voltage output of the thermistor circuit was calibrated against a 

mercury thermometer (Figure 2) and digitized using a digital multimeter. The thermistor 

voltage varied linearly with temperature in the range used for calibration with a 

sensitivity of 10.5 mV/°C (Figure 2). Under measurement conditions, the digital 

multimeter had an accuracy of better than 0.35 mV, thus the thermistor probe could be 

used to perform temperature measurements with an accuracy of ~0.03°C. 

2.2 Synthetic Cooperation System in Yeast 
 

Construction of CoSMO components 

Yeast strains of desired genotypes were obtained through genetic crosses.  The complete 

genotype for WY811 ( ܴ՜௅
՚஺ ) is MATa ste3Δ::kanMX4 ade8Δ0  LYS21op trp1-

289::pRS404(TRP)-ADHp-DsRed.T4 and that for WY833 ( ՜ܻ஺
՚௅ ) is MATa  

ste3Δ::kanMX4  ADE4op  lys2Δ0 trp1-289::pRS404(TRP)-ADHp-venus-YFP. 

 

lys2Δ and ade8Δ mutations were derived from BY4743 (Euroscarf Y20000) (Brachmann 

et al., 1998) and SY9913 (Tomlin et al., 2001), respectively.  Yeast cells of the same 

mating type do not mate.  ste3Δ::KanMX4 (Euroscarf Y05028) cells lack Ste3, the 

receptor for a-mating factor (Hagen et al., 1986).  Thus, in the rare occasion where a cell 

of MATa ste3Δ genotype switches mating type to MATα ste3Δ, it still cannot mate.   
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ADE4op mutant is the PUR6 allele of ADE4 (Armitt and Woods, 1970).  LYS21op was 

isolated in an MNNG (1-methyl-3-nitro-1-nitrosoguanidine, Sigma-Aldrich) mutagenesis 

screen as a mutation that was resistant to the lysine analog thialysine (L-4-thialysine 

hydrochloride, Sigma-Aldrich) and that also cross-fed lysΔ cells (Gray and Bhattacharjee, 

1976).  One lysine-releasing mutation was dominant, showed tight linkage to LYS21 

(20/20 tetrads), and was therefore assigned LYS21op.  Both ADE4op and LYS21op 

mutations were backcrossed into the S288C background five times.   

 

To introduce fluorescent protein markers, WSB37 and WSB41were constructed after 

ligating three DNA fragments: the TRP1- integrating plasmid pRS404 (ATCC) digested 

with SacI and XhoI, a SacI-HindIII fragment harboring the ADH promoter from 

pKW431 (Stade et al., 1997), and a HindIII-XhoI PCR fragment containing either Venus-

YFP amplified from pDH6  (http://depts.washington.edu/~yeastrc/) or RGS-His6-

DsRed.T4 amplified from pQE81-L-DsRed.T4 (Bevis and Glick, 2002).  The resulting 

plasmids were linearized with XbaI and transformed into a yeast strain harboring trp1-

289.  Among TRP+ transformants, a stable integrant was selected such that all its progeny 

cells expressed the expected fluorescent protein even when grown in non-selective media 

containing tryptophane.   

 

Measurement of metabolite concentration using a bioassay 

A series of SD media (Guthrie and Fink, 1991) supplemented with various amounts of 

metabolite adenine (lysine) and inoculated with a test strain auxotrophic for adenine 

(lysine) were grown to saturation (~20 hours).  A linear regression of saturation OD600 
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values against concentrations of the metabolite was performed (correlation coefficient 

>0.99).  To measure the metabolite concentration in a culture, the culture was filtered 

through a 0.2-micron filter and the supernatant was supplemented with 1/10 volume of 

10×SD and inoculated with the appropriate test strain.  The metabolite concentration was 

obtained from the saturation OD600 value through interpolation. 

 

Measurement of population dynamics using flowing cytometry   

For every round of measurement on FACS Calibur (with 488nm and 633nm lasers, BD 

Biosciences), the flow rate k of the instrument (μl/sec) was determined using a dilution 

series of a bead stock.  Specifically, the concentration of a 6-micron bead stock 

(~2×106/ml, Duke, Cat #35-2) was measured using a hemacytometer.  The bead stock 

was diluted 25-, 10-, 5-, and 2.5-fold to a standard 0.5ml-series of bead samples and 

processed by Calibur for 65 sec.  The cumulative event counts at 5.2, 10.0, 15.2, 20.0, 

25.2, and 30.0 sec were plotted against time and the event rate (events/sec) for each bead 

sample was deduced from the slope.  Event rates (events/sec) were plotted against bead 

densities (beads/μl) for the standard series and the linear regression line was forced 

through the origin.  The slope k was the flow rate of Calibur (μl/sec).  The correlation 

coefficients of all linear regressions were greater than 0.999.   

  

To measure the population composition of a culture, a sample was diluted into H2O to 

OD600 ~0.01 and briefly sonicated.  S, the event rate of the sample (events/sec), was 

determined as described above for bead samples.  The total cell density is S/k (events/μl).  

Clusters of DsRed-positive, YFP-positive, and dark cells were clearly segregated (Figure 
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3), and the percentages of each cluster were calculated using FlowJo software (Tree Star).  

Dark cells accumulated during starvation and are considered dead because more than 

99% (sample size > 5000) had lost colony-forming ability in a fluorescence-activated cell 

sorting (FACS) analysis.  Fluorescent cells are considered alive because all of them retain 

the ability to exclude the nucleic acid dye propidium iodide (sample size>150).  

2.3 Construction of Non-adherent Mutator Strains 
 

In order to record mean fitness trajectories of strong mutators (cf. section 3.3), 

luminescent, non-adherent mutator strains are required so that they can be used in our 

apparatus for long-term culture (see Chapter  4). Mutators can, in principle, be 

constructed in a manner analogous to our construction of the non-adherent NS2 strain 

(section 2.1). However, the procedure involves several steps where single colonies have 

to be picked. Each such step introduces a single cell bottleneck and may result in 

accumulation of deleterious mutations in the strong mutators.  Thus, we modify our 

strategy as follows: 

(1) Create a plasmid where FLP recombinase is driven by an inducible promoter, and 

which also contains a wild-type copy of the mutator gene to be deleted. This copy 

should complement a chromosomal deletion. 

(2) Transform the plasmid obtained in step (1) into the NS2 pCSλ strain. 

(3) Create a strain where the mutator gene of interest has been replaced by FRT-

flanked antibiotic resistance cassette (Datsenko and Wanner, 2000). 

(4) P1 transduct the FRT-flanked antibiotic resistance cassette from the strain 

produced in step (3) into the transformants obtained in step (2). Induce expression 
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of FLP recombinase to flip out the chromosomal antibiotic resistance gene from 

the transductants. 

(5) Selectively cure the plasmid created in step (1) and transformed in step (2) to 

obtain the desired strain. 

 

Although this procedure also involves several steps where single colonies have to be 

picked, most of them are performed with the mutator deletion complemented by a 

plasmid copy. The steps where single-cell bottlenecks would be present in the mutator 

state are step (3) and step (5). Overall, our goal is to make six derivatives of the non-

adherent NS2 strain: ΔmutT, ΔmutS, ΔmutL, ΔmutY, ΔmutM, and ΔmutY ΔmutM.   

 

Creation of plasmid with inducible FLP expression and complementing mutator 

gene 

The plasmid which is normally used to express FLP recombinase in an inducible fashion 

is pCP20 (Cherepanov and Wackernagel, 1995). The expression of FLP recombinase 

from this plasmid is quite leaky, and subsequently it is not possible to isolate antibiotic 

resistant transductants in step (4), presumably because the antibiotic resistance gene is 

flipped out by the basal FLP recombinase. We therefore chose to use a derivative of 

pInvRecA (Sektas et al., 1999), a plasmid with a temperature sensitive origin of 

replication and FRT recombinase expression driven by the inducible tetA promoter. 

Antibiotic resistant colonies can indeed by obtained after transduction of strains 

harboring pInvRecA with a lysate prepared from a strain having a chromosomal FRT-

flanked antibiotic cassette. 
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Unfortunately, pInvRecA itself has two FRT sequences, and there is a possibility of 

pInvRecA integrating into the chromosome of NS2 since the strain has FRT scars left by 

the process of deleting the genes required to make it non-adherent. We therefore 

constructed pIndFLP, a derivative of pInvRecA without the FRT sequences. 

 

pIndFLP was constructed by digesting pInvRecA with AatII, treating the singly cut 

plasmid with calf intestinal  phosphatase, and then performing a restriction digest with 

XhoI. The larger band obtained by this process formed one of the ligation fragments for 

the construction of pIndFLP. The other ligation fragment was obtained by PCR 

amplification using pInvRecA as template, and with the following primers: 

5’-AGCTATCTCGAGCCGATCCCCAATTCCTGGCA-3’ and 5’-ATCTCAATGGTTC 

GTTCTCA-3’. Note that the first primer has a XhoI restriction site. The PCR product 

was ligated into pCR-Blunt-II TOPO vector (Invitrogen) and the resulting plasmid was 

transformed, mini-prepped and then cut with XhoI and AatII to obtain the second ligation 

fragment for pIndFLP. The two fragments were then ligated by overnight incubation with 

T4 DNA ligase at 16°C. The construct was verified both by restriction digests and DNA 

sequencing. 

 

The next step involved introduction of mutator genes into pIndFLP to create pIndFLP-

mut plasmids. pIndFLP was cut sequentially first with NheI and then with XhoI to 

generate one of the ligation fragments. Between the two restriction digest steps, the 

intermediate construct was treated with calf intestinal phosphatase. Mutator inserts were  
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Table 1. Primers used for the construction of pIndFLP-mut plasmids. 
Restrictions sites are indicated in bold 

 

generated by PCR amplification of a chromosomal DNA prep of MG1655 (prepared 

using DNAeasy Kit, Qiagen) with primers indicated in Table 1. The primers were 

designed with a XhoI or a NheI site, with the exception of the ones used for constructing 

pIndFLP-mutYM. These primers have a KpnI site instead of the NheI or XhoI site (Table 

1). The PCR product was ligated into pCR-Blunt-II TOPO vector (Invitrogen) and the 

resulting plasmid was transformed, mini-prepped and then cut with XhoI and NheI to 

obtain the second ligation fragment for pIndFLP-mut. The two fragments were then 

ligated by overnight incubation with T4 DNA ligase at 16°C.  To construct pIndFLP-

mutYM plasmid, a similar procedure was used, except that it involved ligation of three 

Construct 
Name 

Gene 
Amplified Primer Sequences 

pIndFLP-mutS mutS GTGAGACTCGAGCGATGAGATGACGCACGGTTA 
CGTTGTGCTAGCGGCGATAGTGATGGGCATTGAT 

pIndFLP-mutL mutL ATTCAACTCGAGGCTCTGGGTCATCAGGGTAA 
TCCGATGCTAGCCCAACCTTGCTCTGCCGCCT 

pIndFLP-mutT mutT GACCAACTCGAGGGAACAACAGCGTCGTATGGAA 
ATGACGGCTAGCCTCGGAGAATGGGCTGCTGAA 

pIndFLP-mutY mutY GCTCATCTCGAGGGTTTAGTCGCTTGTGAAAGTGTT
CTGGCAGCTAGCGTATCTTTGACCCAGGCTTC 

pIndFLP-mutM mutM CCTGGACTCGAGCTGCTAAAGGTATGCGTGTAA 
CGTCTTGCTAGCCGCCGATTACCGTAGTTTCT 

pIndFLP-
mutYM 

mutY GCTCATCTCGAGGGTTTAGTCGCTTGTGAAAGTGTT
CTGGCAGGTACCGTATCTTTGACCCAGGCTTC 

mutM CCTGGAGGTACCCTGCTAAAGGTATGCGTGTAA 
CGTCTTGCTAGCCGCCGATTACCGTAGTTTCT 
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fragments: the original XhoI-NheI pIndFLP fragment, a mutY fragment with XhoI and 

KpnI overhangs (constructed essentially as above except that the plasmid obtained after 

TOPO cloning was cut with XhoI and KpnI) and a mutM fragment with KpnI and NheI 

overhangs (constructed essentially as above except that the plasmid obtained after TOPO 

cloning was cut with KpnI and NheI). All six constructs were verified by restriction 

digests. 

 

We are currently in the process of testing whether the pIndFLP-mut plasmids 

complement mutator deletions by measuring the mutation rate of mutator strains with and 

without the plasmid. Once this is done, we can proceed with step (4). It has been verified 

that pIndFLP can be selectively cured (step 5) from derivatives of NS2 harboring both 

pCSλ and pIndFLP with an efficiency of ~20% by incubating the strain with the two 

plasmids on an LB + 30 µg/ml kanamycin plate at 42°C. Therefore, step (5) should be 

feasible with pIndFLP-mut plasmids as well. 
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Figure 1. Design of a bioluminescence based apparatus for precise measurement of 

growth rates. (A) Schematic illustration of the setup when used for batch cultures. A 

four-necked glass flask is at the core of the apparatus. A photomultiplier tube (PMT) 

module is used to measure bioluminescence, while a water bath maintains the 

temperature of the culture, which is stirred by a magnetic stirrer at the bottom. (B) A 

photograph of the setup showing the culture vessel, the open-top container used as a 

water bath, the PMT module and the inoculation port. (C) Schematic illustration of the 

setup when used for long-term culture. Peristaltic pumps are used to supply fresh medium 

and withdraw spent culture, and precision balances are used for tight control of the 

pumping flow rates. The light measurement apparatus is the same as in the batch culture 

setup. In panels A and C, the digital multimeter used to digitize the voltage readings and 

the personal computer used to record data and control the operation of the apparatus are 

not shown. 
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Figure 1. Design of a bioluminescence based apparatus for precise measurement of 
growth rates.  
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Figure 2. Calibration of thermistor probes for temperature measurement. 

Thermistor probes used for temperature measurements were calibrated against a mercury 

thermometer by placing the probe and the thermometer in a water bath whose 

temperature is varied as indicated. The voltage output of the thermistor circuit is plotted 

against the water bath temperature as measured by the mercury thermometer. Circles 

depict actual measurements, while the dashed black line is the least squares linear fit. 

Also indicated are the slope of the line (10.5 mV/°C) and the linear correlation coefficient 

ݎ) ൌ 0.999), which quantify the sensitivity and linearity of the thermistor probe in the 

calibration temperature range.  
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Figure 2. Calibration of thermistor probes for temperature measurement. 
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Figure 3. Characterization of CoSMO components using flow cytometry. 

Exponentially-growing ܴ՜௅
՚஺ (left) and  ՜ܻ஺

՚௅ (right) cells were washed free of supplements 

at time zero.  Percentages of red-fluorescent (R), yellow-fluorescent (Y), and dark (Dark) 

cells were measured at 0 hour (top) and 97 hour (bottom), and their values are indicated. 
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Figure 3. Characterization of CoSMO components using flow cytometry. 
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Chapter  3. Quantifying Mutation Accumulation in Large 
Asexual Populations 

 

3.1 Motivation 
 

The mutation rate of wild-type E. coli strains is estimated to be around 3 ൈ 10ିଷ per 

genome per genome replication (Drake, 1991). More strikingly, as reviewed in section 

1.1.1, this genomic mutation rate is typical of many DNA-based microbes and viruses. 

One also finds that a majority of clinical isolates of E. coli have a mutation rate close to 

the wild-type rate (cf. section 1.1.1). Taken together, these facts highlight the possibility 

that the mutation rate of E. coli is determined by some universal evolutionary constraints. 

What could these constraints be? 

 

One way to understand the significance of the wild-type mutation rate is to ask what 

happens if the mutation rate is increased by 10-fold or 100-fold. If the wild-type mutation 

rate is special, one would expect to see some deleterious effects of high mutation rate. 

Many laboratory experiments (section 1.3.2), however, appear to contradict this 

expectation in that strains with high mutation rate (mutators) outcompete their wild-type 

counterparts. Theoretical work suggests that this should only be a transient phenomenon, 

and that eventually the wild-type mutation rate should be restored (section 1.3.3). In other 

words, mutators have a long-term  cost, which results in their eventual downfall.  What is 

the nature of this long-term cost? Can it explain the significance of the wild-type 

mutation rate? 
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There exist three hypotheses regarding the long-term cost of mutators: 

(1) Lower equilibrium fitness. As discussed in section 1.2.1, the mean fitness of an 

asexual population at mutation-selection equilibrium is given by ݁ି௎೏, where ܷௗ 

is the genomic deleterious mutation rate. Thus, a mutator strain would have lower 

equilibrium fitness than a wild-type strain, and would be outcompeted (rather, a 

mutation-indirect selection equilibrium will be established with mutators in the 

minority, cf. 1.3.3). 

 

(2) Mutation accumulation (MA). The gradual accumulation, through genetic drift, of 

mutations which are neutral in a given environment but are deleterious in others. 

This effect would be more pronounced in populations with high mutation rates. 

 

(3) Antagonistic Pleiotropy (AP). Mutations that are beneficial in a given 

environment are deleterious in subsequent environments. Acquiring such 

mutations may provide a short-term benefit in the current environment, but will 

prove detrimental in the long-term. 

 

While mutators have lower equilibrium fitness, it may take a long time for the 

equilibrium to establish (Johnson, 1999).  As a result, the other two hypotheses are more 

likely to have a greater impact. MA has been demonstrated by subjecting populations to 

single-cell bottlenecks, in which case Muller’s Ratchet becomes operational, and 

deleterious mutations can be accumulated rapidly (Funchain et al., 2000; Kibota and 

Lynch, 1996). AP has been demonstrated in the case of phage resistance mutants which 
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are outcompeted by their phage sensitive ancestral strain in the absence of phage (Lenski, 

1988), as well as in a long-term evolution experiment in glucose minimal media lasting 

over 20,000 generations (Cooper and Lenski, 2000). It should be noted, however, that 

MA and AP are not mutually exclusive (Cooper and Lenski, 2000). 

 

One explanation for the apparent competitive advantage of mutators in laboratory 

situations (cf. section 1.3.2) is that such experiments have been done with large 

populations and in a constant environment where MA and AP, as described above, may 

not operate. Is there a long-term cost to having a high mutation rate under these 

conditions? This question acquires particular importance if high mutation rate is viewed 

as an adaptive strategy (cf. section 1.1.2). Much theoretical work has been focused on the 

relationship between mutation rate and the speed of adaptation, i.e., the rate of increase of 

mean fitness of a population (cf. section 1.2.1). An alternate consideration would be to 

examine whether high mutation rate strategies are perfect. In particular, would a high 

mutation rate strategy lead the population to the top of a fitness peak, or would such a 

strategy necessarily result in accumulation of deleterious mutations on the way?  The 

latter case would be an instance of MA, but the mechanism of accumulation would be 

linkage to beneficial mutations, and not genetic drift. In other words, if high mutation rate 

strategies are imperfect, there is a long-term cost in the form of accumulation of 

deleterious mutations during adaptation to novel environments.  

 

In this chapter, we use simple simulations to explore the effects of MA in large asexual 

populations when rare beneficial mutations that confer high fitness advantage are present. 
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The goal of these simulations is to provide estimates of the deleterious fitness effects of 

MA and to give an idea of the precision, frequency, and duration of experimental 

measurements required to observe such effects. It should be emphasized that there is little 

experimental evidence for long-term costs of high mutation rates in large asexual 

populations (cf. section 1.3.2). 

3.2 Details of Simulations 
 

We model an asexual population of constant size ܰ  with discrete generations.  The 

genotype of an individual is characterized by three numbers, viz., (1) ௗܰ, the number of 

deleterious mutations in the genome, (2) ௕ܰ , the number of beneficial mutations with 

small fitness advantage, and (3) ௥ܰ௔௥௘, the number of rare beneficial mutations with large 

fitness advantage. All deleterious mutations have the same effect, ݏௗ . Likewise, the 

selection coefficients of small beneficial and rare beneficial mutations are ݏ௕ and ݏ௥௔௥௘ 

respectively. Epistasis is assumed to be absent, thus the relative fitness of an individual 

is ݓ ൌ ሺ1 ൅ ௥௔௥௘ሻேೝೌೝ೐ሺ1ݏ ൅ ௕ሻே್ሺ1ݏ െ  .ௗሻே೏ݏ

 

We define ܯto be the mutator strength, the ratio of the mutation rate of the current 

population to the wild-type populaiton. ܯ ൌ 1 for a wild-type population, and ܯ ൐ 1 for 

mutator populations. Deleterious, small beneficial and large beneficial mutations are 

generated by independent Poisson processes with means ܷܯௗ ௕ܷܯ , , and ܯ ௥ܷ௔௥௘ 

respectively. Each generation consists of three steps:  

(1) Selection, where the population of each genotype is multiplied by its fitness, i.e., 
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 ௦ܰ௘௟
௜ ሺݐ ൅ 1ሻ ൌ උݓ௜ܰ௜ሺݐሻඏ, where ܰ௜ሺݐሻ is the population of the ݅௧௛ genotype at 

the ௜ is the fitness of that genotype, and ௦ܰ௘௟ݓ  ,௧௛  generationݐ 
௜ ሺݐ ൅ 1ሻ is the 

population of that genotype after the selection phase. 

(2) Mutation, where the number of individuals of genotype ݅  that mutate to a 

genotype ݆  is given by a binomial random variable with parameters ௦ܰ௘௟
௜ ሺݐ ൅

1ሻ and mutation probability ݌௜௝  ௜௝ is consistent with deleterious, small݌ .

beneficial, and rare beneficial mutations arising from independent Poisson 

processes. After this step, the population of the ݅௧௛ genotype is denoted by 

ܰ௠௨௧
௜ ሺݐ ൅ 1ሻ. 

(3) Random sampling to maintain population size, where the population of the 

݅௧௛ genotype is given by a binomial random variable with parameters ܰ௠௨௧
௜ ሺݐ ൅

1ሻ and ܰ ∑ ܰ௠௨௧
௜ ሺݐ ൅ 1ሻ௜⁄ . At this stage, we obtain ܰ௜ሺݐ ൅ 1ሻ. 

 

In our simulations, ௗܰ ൑ 15, ௕ܰ ൑ 10 and ௥ܰ௔௥௘ ൑ 4. Thus, the relative fitness of the 

most fit genotype would be ௠௔௫ݓ  ൌ  ሺ1 ൅ ௥௔௥௘ሻସሺ1ݏ ൅ ௕ሻଵ଴ݏ . To speed up our 

simulations, we only consider single and double mutations for step (2) above, and only 

single rare beneficial mutations. More precisely, there are seven possibilities for an 

individual in step (2): it can acquire (i) no mutations, (ii) one rare beneficial mutation, 

(iii) one small beneficial mutation, (iv) one deleterious mutation, (v) two small beneficial 

mutations, (vi) two deleterious mutations, or (viii) one small beneficial and one 

deleterious mutation. 
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In all cases, ܷௗ ൌ 2 ൈ 10ିସ  per genome per generation, which is the lower limit 

determined by Kibota and Lynch (Kibota and Lynch, 1996), and ݏௗ ൌ 0.01, a value 

based on the results of Kibota and Lynch (Kibota and Lynch, 1996). Rare beneficial 

mutations have the following parameters: ݏ௥௔௥௘ ൌ 0.1 and ௥ܷ௔௥௘ ൌ 10ିଽ per genome per 

generation. The rare beneficial mutation rate corresponds to a target size of one base pair 

in the entire genome. For small beneficial mutations, ݏ௕ ൌ 0.01 , and ܷ௕ ൌ 10ିହ  per 

genome per generation The values of selection coefficients and mutation rates of 

beneficial mutations have been modeled on the results of Perfeito et al., who looked at 

the distribution of beneficial mutations in long-term cultures in LB medium (Perfeito et 

al., 2007). 

3.3 Mutation Accumulation in Large Populations 
 

Consider a large asexual population which is at a fitness peak, i.e., there are no beneficial 

mutations which can improve the mean fitness of the population (ܷ௕ ൌ ௥ܷ௔௥௘ ൌ 0). As 

discussed in section 1.2.1, in such cases, a mutation selection balance is established in 

which the mean fitness depends only on the fitness of the most fit genotype in the 

population and the deleterious mutation rate. In the particular case of the model presented 

in section 3.2, the equilibrium distribution is given by ே݂೏ ൌ ଵ
ே೏!

݁ିெ௎೏ ௦೏⁄ ቀெ௎೏
௦೏

ቁ
ே೏

 

where ே݂೏ is the fraction of individuals with ௗܰ  deleterious mutations and the most fit 

genotype has a relative fitness of 1 (Haigh, 1978). In Figure 4, the distribution of 

deleterious mutations is depicted for some values of mutator strength ܯ. As expected, the 

population harbors greater number of deleterious mutations with increasing ܯ. In fact, 

for sufficiently high mutation rates ሺܯ ൐ ௗݏ ܷௗ⁄ ሻ, the mode of the distribution (i.e., the 
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value of ௗܰ which maximizes ே݂೏) no longer corresponds to the fraction of the population 

with zero deleterious mutations.  

 

In the presence of beneficial mutations, however, the mean fitness of the population 

keeps increasing till all such mutations have been acquired and a new mutation-selection 

balance is established. If beneficial mutations with large fitness effects are present, these 

will rapidly sweep through the population once they are generated. Since such mutations 

are expected to be rare, the fraction of the population which generates them is likely to be 

small. When the beneficial mutation becomes fixed, the entire population would be 

composed of the progeny of these small number of chance mutants. Thus, even though 

the total population can be large, sweeps of beneficial mutations with large fitness effects 

can constitute a population bottleneck. 

 

Asexual populations can be forced to accumulate deleterious mutation by forcing them 

through small population bottlenecks (cf. section 1.3.2). Can the presence of beneficial 

mutations with large fitness effects also have similar consequences even when 

populations are large? We explored this question using simulation as described in section 

3.2 (Figure 5). For each simulation run, we examined the mutation-selection equilibrium 

that is established after all beneficial mutations have been fixed and asked whether the 

most fit genotype in the population has zero or non-zero number of deleterious mutations. 

In the former case, we called the run perfect as the mean fitness of the population at 

equilibrium is as high as it can be. Figure 5A shows some representative mean fitness 

trajectories for three different values of mutator strength. When a run is perfect, the mean 
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fitness converges to ௠௔௫݁ିெ௎೏ݓ  , where ݓ௠௔௫ is the relative fitness of the most fit 

genotype (the genotype with all beneficial mutations but with zero deleterious ones). For 

ܯ ൌ 1, all simulation runs were perfect, whereas the fraction of perfect runs decreased to 

~40% for ܯ ൌ 200 (Figure 5A inset). When looking at high mutation rate as an adaptive 

strategy, these results suggest that there is a long-term cost in the form of accumulation of 

deleterious mutations during adaptation to novel environments. 

 

One of the motivations for the simulations was to give an idea of the precision, 

frequency, and duration of experimental measurements required to observe deleterious 

effects of high mutation rate. If one looks at simulation runs with ܯ ൌ 200, there are 

signatures of fixation of deleterious mutations within ~1000 generations (Figure 5B). The 

fact that the different mean fitness trajectories do not converge to the same level points to 

the accumulation of deleterious mutations. From an experimental point of view, 

deleterious effects would be most pronounced and manifested in the fewest number of 

generations if one used strong mutators ሺ200~ܯሻ. 

 

The detection of the deleterious effects, however, poses several experimental challenges. 

First, it should be emphasized that the fitness effects of deleterious mutation 

accumulation are quite small (~1%). The experimental recording of mean fitness 

trajectories as in Figure 5 would necessitate precise and frequent (~once/generation) 

fitness measurements over periods as long as ~1000 generations. Second, we have 

assumed that all rare beneficial mutations offer the same advantage; there is no variability 

in fitness trajectories on account of fixation of beneficial mutations with different effects. 
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In this context, it is pertinent to note that mutators in practice do not behave like ideal 

mutators and do not uniformly increase the mutation rate across the entire genome. All 

mutators have a spectrum, and tend to have elevated levels of certain specific kinds of 

mutations. In the case of very rare mutations, if the mutation that yields the fitness benefit 

is within the spectrum of the mutator, the beneficial mutation is acquired with the mutator 

rate, otherwise it is acquired only at the wild-type rate and there might be other beneficial 

mutations with large effect that are generated more frequently. Nevertheless, there is 

some evidence that in large populations (10ଵ଴ െ  10ଵଵ), mean fitness trajectories are 

quite reproducible, i.e., mutations of the same effect get fixed in the same order in 

independent experiments (Wick et al., 2002).  

 

In spite of the difficulties mentioned above, there are some general merits in obtaining 

high precision, high frequency, mean fitness trajectories. First, they can be used to test 

whether the reproducibility of fitness trajectories in large populations breaks down when 

measurements are done with greater precision and frequency. Second, even if deleterious 

effects of high mutation rate are not resolved, mean fitness trajectories can aid in the 

development of empirical models for describing the adaptation process in large asexual 

populations. Finally, mean fitness trajectories with mutators of different strength can 

complement our knowledge of the short-term advantage of mutators, which is primarily 

based on competition-based experiments (cf. 1.3.2), and perhaps shed greater light on the 

hitchhiking of mutators with beneficial mutations. 
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3.4 Summary 
 

We have used simulations to explore the possibility that deleterious mutations can be 

accumulated in large asexual populations. At high mutation rates ሺ200~ܯሻ, at least one 

deleterious mutation was fixed in around 60% of the simulation runs. Although this 

phenomenon can be seen in simulations, it would be quite challenging to demonstrate it 

experimentally in view of the small effects involved. At the very least, it requires the 

ability to record mean fitness trajectories of large populations (~10ଽ) with high precision 

(~1%), high frequency (~1 fitness measurement/generation) and over long times (~1000 

generations). 
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Figure 4. Distribution of deleterious mutations at mutation-selection equilibrium. In 

the absence of beneficial mutations ሺܷ௕ ൌ ௥ܷ௔௥௘ ൌ 0ሻ, populations achieve a mutation-

selection equilibrium in which the fraction of the population harboring a given number of 

deleterious mutations remains fixed. For the case of ܷௗ ൌ 2 ൈ 10ିସ  per genome per 

generation and ݏௗ ൌ 0.01, the fraction of population with ௗܰ deleterious mutations ൫ ே݂೏൯ 

is plotted as a function of ௗܰ at indicated mutator strengths. Crosses mark the mode of 

the distribution for each mutator strength. 

   



 

57 
 

 

 

Figure 4. Distribution of deleterious mutations at mutation-selection equilibrium. 
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Figure 5. Mean fitness trajectories show fixation of deleterious mutations at high 

mutation rates.  Simulations were performed with  ܰ ൌ 10ଽ, ܷ௕ ൌ 10ିହ per genome per 

generation, ݏ௕ ൌ 0.01, and with indicated values of mutator strength ሺܯሻ. Rare beneficial 

mutations with ݏ௥௔௥௘ ൌ 0.1 and ௥ܷ௔௥௘ ൌ 10ିଽ were present in each simulation with their 

maximum number being four. ܷௗ was set to 2 ൈ 10ିସ per genome per generation, with 

ௗݏ ൌ 0.01 . At time zero, the population consisted entirely of individuals with zero 

deleterious mutations and zero beneficial mutations. 100 simulation runs were carried out 

for each value of ܯ for a period of 3500 generations. (A) Mean fitness trajectories for 

five representative simulation runs for each value of ܯ.  The dashed horizontal line 

represents the mean fitness at mutation-selection equilibrium in the absence of fixation of 

deleterious mutations. For ܯ ൐ 1, the realized mean fitness at mutation-selection 

equilibrium is sometimes lower than the horizontal dashed line, implying that deleterious 

mutations were fixed in these runs. The inset displays the fraction of simulation runs in 

which no deleterious mutations were fixed (i.e. perfect runs) as a function of  .ܯ 

When ܯ ൌ 200 , only ~40% of the runs are perfect.  (B) Magnification of the 

representative mean fitness trajectories displayed in panel A for ܯ ൌ 200. The mean 

fitness during the first 1000 generations is plotted for each run.  
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Figure 5. Mean fitness trajectories show fixation of deleterious mutations at high 
mutation rates.
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Chapter  4. Bioluminescence-based High Precision 
Measurement of Growth Rates  

 

4.1 Motivation 
 

The long-term culture of microorganisms has proved to be a very useful tool for studying 

evolutionary phenomena in the laboratory (section 1.2.2). Many such laboratory 

evolution investigations involve measurement of mean fitness trajectories (or the 

distribution of fitness) of the population over the course of the experiment (Desai et al., 

2007; Lenski et al., 1991). For such experiments, there are three main requirements:  the 

ability to monitor populations over long periods of time from around 100 to over 10,000 

generations (Chao and Cox, 1983; Lenski and Travisano, 1994), and the feasibility of 

measuring fitness both frequently and precisely.  Development of an apparatus that can 

achieve these goals can therefore prove quite beneficial for laboratory evolution 

experiments.  

 

In Chapter  3, we saw that detection of deleterious effects of high mutation rates in large 

asexual populations necessitated the measurement of mean fitness of large populations of 

bacteria (~109) over a period of ~1000 generations with a precision of ~1%. The primary 

motivation of our work was to build a device that was capable of performing such 

measurements. Both frequency and precision of fitness observations have proven to be 

useful in independent contexts. For example, frequent measurements have resolved 

phenomena such as the presence of discrete jumps in fitness or correlates of fitness 
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(Lenski and Travisano, 1994). Precise measurements are required to resolve small fitness 

differences as in the case of the mutation load suffered by a mutS mutator strain well-

adapted to its environment, estimated to be around 1% by Boe et al. (Boe et al., 2000). 

Simultaneous high precision and high frequency measurements, however, can be quite 

challenging as the two considerations which are often at odds with each other (see section 

1.4.1).  

 

In section 1.4, exponential growth was presented as a paradigm that is ideally suited for 

the laboratory evolution experiments. The advantages of bioluminescence-based growth 

rate measurements were also presented there. Previous work in our laboratory had shown 

that bioluminescence-based measurements of growth rate could achieve a precision of 

5% (Kishony and Leibler, 2003). However, as described, the measurement duration in the 

experiments of Kishony and Leibler was long (~10 generations or ~3 hours in rich 

media), a potential impediment for high frequency measurements. Nevertheless, this was 

a promising starting point for us to build an apparatus for long-term, high precision and 

high frequency recording of growth rates. This chapter details the steps taken to extend 

Kishony and Leibler’s measurements to a long-term regime with improved precision and 

frequency. 

4.2 Apparatus Design and Operational Concerns 
 

The design of our apparatus is depicted in Figure 1 and described in detail in section 2.1. 

While sharing some features with previously described bioreactors and continuous 

culture devices for culturing luminescent organisms (Picart et al., 2004; Pooley et al., 
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2004), the operation of our apparatus has been optimized for  high frequency, high-

precision growth rate measurements. In this section, some of the design choices for the 

apparatus as well as the procedure for operating the apparatus (cf. section 2.1) are 

explained.  

 

Reproducibility of growth rate measurements is influenced by environmental factors such 

as temperature and pH. The growth rate of E. coli is sensitive to temperature, with the 

sensitivity being the least between 37°C and 42°C (Ingraham and Marr, 1996). For this 

reason, growth rates were measured in this temperature range. In addition, to minimize 

the effects of temperature fluctuations on growth rate measurements, a circulating water 

bath was used. The temperature stability of the water bath was determined to be 0.05°C 

which included a slight drift correlated with ambient temperature. The effects of adding 

pH buffers to the medium were also investigated, but no positive effects were found (data 

not shown). 

 

Another concern for precise growth rate measurements is the potential for artifacts 

resulting from trace chemical contaminants. In our apparatus, leaching of chemicals from 

the tubing and spallation of peristaltic pump tubing could perturb the chemical 

composition of the culture medium. It has been reported that peroxide-cured silicone 

tubing can be toxic to plant cell cultures while platinum-cured silicone is biocompatible 

(Park et al., 2005). To minimize such effects, we chose low-spallation, long-life 

peristaltic pump tubing (Pharmed® BPT) and  tubing with low extractable content for the 

rest of the set up (Dow Corning® Pharma-65). There could be some leaching of 
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chemicals from the Pharmed® BPT tubing, but our results indicate that this is not much 

of a concern (cf. section 4.4.3). 

 

Growth rate reproducibility may also be limited by the intrinsic physiological state of the 

cells used to inoculate the culture. It is conceivable that the initial inocula differ in some 

physiological parameter which has a heritable effect on growth rates. One example of 

such a parameter could be the age of the old pole of a newly divided cell (Stewart et al., 

2005). To buffer the effects of physiological heterogeneity, ten colonies were picked for 

the initial inoculum of our cultures (cf. section 2.1).  

 

Mechanical aspects of the device can also introduce subtle artifacts. For instance, the 

placement of the PMT module above the culture vessel rendered the apparatus 

susceptible to glitches (sudden increases in luminescence signal) resulting from splashing 

of luminescent culture in the direction of the PMT sensor. Glitches were more 

pronounced in new glass vessels, and therefore vessels were “aged” before use by filling 

them with distilled water and subjecting them to vigorous stirring for about a week. 

Glitching was essentially eliminated by reducing the stirring speed in both batch and 

long-term cultures to less than 50 rpm and using 125 ml as culture volume. 

 

While the factors mentioned above would tend to improve growth rate reproducibility, it 

was also desirable to achieve high intrinsic measurement precision (cf. section 1.4.1). 

Preliminary results in batch cultures revealed that the bioluminescence of the bacterial 

strain was sufficient to be measured by the analog PMT module without the need for 
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optics to increase the collection of light. To improve intrinsic measurement precision, the 

voltage generated by the current output of the PMT across a 1MΩ resistor was measured 

by the digital multimeter with its integration time set to its highest value (100 power line 

cycles). Although the long integration time made the duration between successive 

readings as long as 3.4 s, the sampling rate was more than adequate for measuring growth 

rates (typical generation times of ~18.5 min). 

4.3 Batch Culture Results 

4.3.1 Identification of medium with best growth rate reproducibility 
 

We began our pursuit of high frequency, high precision growth rate measurements by 

exploring the possibility that higher growth rate reproducibility may be achieved in a 

culture medium other than the one used by Kishony and Leibler. We therefore measured 

the precision of growth rate measurements in different minimal media with glucose or 

lactose as the sole carbon source as well as the original medium used by Kishony and 

Leibler (a glucose minimal medium supplemented with casamino acids, methionine, and 

thiamine). In addition, we also tried LB (rich medium). Growth rate reproducibility was 

quantified by setting up multiple batch cultures in the same medium and evaluating the 

ratio of the difference between the maximum ሺߣ௠௔௫ሻ  and minimum growth rate 

measurements ሺߣ௠௜௡ሻ   to the minimum measurement, i.e., reproducibility 

ؠ  ሺߣ௠௔௫ െ ௠௜௡ሻߣ ⁄௠௜௡ߣ . 

 

We found that reproducibility in minimal media ranged from 3.5% in Kishony and 

Leibler’s medium to 9% in unsupplemented glucose minimal media, whereas it was 
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much better (<2%) in LB (Figure 6 and data not shown).  Figure 6 is representative of the 

results we obtained in our search for the ideal culture medium.  Multiple batch cultures of 

the non-adherent luminescent E. coli strain NS2 pCSλ (see section 2.1) were set up in the 

same medium at a temperature of 38.3°C. The growth curves obtained with glucose 

minimal medium, lactose minimal medium and LB are shown in Figures 6A, 6C, 6E 

respectively. In order to appreciate the variation in the growth curves, it is useful to plot 

the “slope curves,” the derivative of the growth curve as a function of luminescence 

signal (Figures 6B, 6D, 6F and section 2.1). It is evident from Figure 6 that slope curves 

in LB are much flatter and more reproducible that those obtained in other media. We 

therefore chose LB as the medium for our experiments. 

4.3.2 Identification of operating region for precise measurement of growth rates in 
LB 

 

Having established LB as the medium of our choice, we wanted to further characterize 

the precision of growth rate measurements in LB. In particular, since LB broth is 

chemically undefined, we wanted to evaluate reproducibility across different lots of the 

medium.  We set up batch cultures of NS2 pCSλ in different lots of LB at a temperature 

of 38.3°C. The resulting growth curves are shown in Figure 7A and the corresponding 

slope curves are shown in Figure 7B. Note that the slope curves in Figure 7B are over a 

broader region (0.1 mV to 70 mV) than those shown in Figure 6F (0.5 mV to 12 mV). 

 

The typical slope curve is relatively flat until the luminescence signal reaches about 20 

mV, and then shows a precipitous drop. Lot-to-lot variability is evident in Figure 7B as 

slope curves corresponding to batch cultures with the same lot of medium show a similar 
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trend. The variability, however, decreases as the average luminescence signal of the 

region of the growth curve used to measure growth rates increases. 

 

For LB medium, we identified the region between 2.65 mV and 7.00 mV to be conducive 

towards precise growth rate measurements over long-term (Figure 7, dashed magenta 

lines). In this operating region, the average luminescence signal is high enough that 

effects of lot-to-lot variability are small (Figure 7D, total spread of ~1.1%), while it is 

low enough to avoid the region where slope curves drop sharply. In fact, growth curves 

within the operating region (Figure 7C) are well described as straight lines (linear 

correlation coefficient 9998.0>r ). The operating region spans ~1.4 generations of 

growth and NS2 pCSλ  takes ~26 minutes to traverse it. Thus, in the operating region, 

growth rates can be determined both quickly and precisely. It should be noted that our 

growth rate measurements are not limited by intrinsic measurement precision, i.e., the 

precision with which luminescence is measured. The estimated spread in growth rates on 

account of such errors is only 0.3% in the case of Figure 7D (Appendix  B). 

4.3.3 Temperature dependence of growth rates 
 

In order to demonstrate the ability of the apparatus to detect subtle changes in growth 

rates, we examined the sensitivity of the growth rate to systematic changes in 

temperature. Batch cultures were set up in the same lot of medium at five different 

temperatures centered around the usual operating temperature of 38.3°C. The growth 

curves and the corresponding slope curves are shown in Figures 8A and 8B respectively. 

In the operating region (dashed magenta lines in Figure 8, growth curves in Figure 8C), 

we observe a strong negative correlation between the observed generation time and the 
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culture temperature (Figure 8D, 993.0−=r ). We find that the generation time decreases 

by ~1.3 minutes(~7.0%) over a temperature increase of 1.2°C, giving a temperature 

sensitivity of ~5.8%/°C. This is comparable to the temperature sensitivity of  6%/°C 

estimated from empirical square-root models of temperature dependence of growth rate 

of E. coli (Ratkowsky et al., 1982)  and only slightly lower than the estimate of 7%/°C 

obtained by extrapolating Arrhenius-type models (Ingraham and Marr, 1996) that 

describe temperature dependence in the normal temperature range (21˚C to 37˚C, see 

Appendix  A). Owing to this temperature sensitivity, a long-term growth rate 

measurement precision of around 1% would require a temperature stability of ~0.15°C. 

4.4 Long-Term Culturing  
 

Having established optimal growth conditions in batch cultures, we proceeded to 

optimize the set up for high frequency, high precision measurements of growth rates over 

long-term. 

4.4.1 Requirement of non-adherent strains 
 

Our first attempts at long-term culture showed that wild type E. coli strains such as 

MG1655 readily formed biofilms on the surface of the glass vessel at the liquid-air 

interface within a few hours of inoculation. For example, when the wild-type strain 

MG1655 was cultured using the luminostat protocol (described in section 4.4.2), the 

output pump failed to reduce the luminescence signal of the culture even when operating 

at maximum speed after five hours of the culture reaching the luminescence setpoint 

(Figure 9A and 9C). This suggested that cells were adhering to the vessel walls and could 

not be diluted out. 
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The adhesion property rendered wild-type strains unsuitable for long-term culture. 

However, we found that HEHA16, an E. coli strain lacking type 1 fimbriae and the 

autoaggregation mediating protein Ag43 (Kjargaard et al., 2000), behaved like a non-

adherent strain and could be used for long-term culture. We also constructed a non-

adherent variant of MG1655 as described in section 2.1. This strain, which we called 

NS2, can also be used for long-term culturing. 

4.4.2 Optimization of the dilution protocol 
 

In order to maintain cultures in the operating region (section 4.3.2), it is necessary to 

adopt some kind of dilution protocol to remove cells from the culture and to add fresh 

medium. In this section, we describe the process of development of the dilution protocol 

that was ultimately used in high frequency, high-precision measurements. 

 

Luminostat protocol 

The natural way to maintain cultures in the operating region is by continuously 

modulating the input and output flow rates so as to keep culture luminescence at a fixed 

setpoint. This is the idea behind the luminostat protocol which is schematically illustrated 

in Figure 10A (the luminescence profile in an actual experiment is shown in Figure 9B). 

The basic equation describing the population size in a luminostat is:  

 

⎟
⎠
⎞

⎜
⎝
⎛ −==

m
F

dt
dN

Ndt
dL

L
Oλ11

 (1) 



 

69 
 

where N is the population size, L is the luminescence signal, λ is its growth rate, FO is the 

output flow rate (mass per unit time) and m is the mass of the culture. In principle, the 

dilution rate in the luminostat protocol can be used as a continuous readout of the growth, 

since at constant luminescence, mFO=λ . This idea has been demonstrated in the case 

of turbidostats using optical density measurements instead of luminescence (Anderson, 

1953). 

 

 Note that while FO can be measured in our apparatus by means of the output precision 

balance (Figure 1), there is no way of measuring m directly in our apparatus.  At the time 

of starting the experiment, m can be set to a known value. Subsequently, however, in 

order to record growth rates, one either has to assume that m is constant, or one has to 

estimate changes in m based on the measurements of input (FI) and output flow rates. 

Assuming that mass of medium in the setup is conserved, changes in m ( )estmΔ are given 

by: 

( )τOI
est FFm −=Δ  (2) 

where τ is the time interval over which the quantities FI and FO are measured.  The 

estimated culture mass then becomes estest mmm Δ+= 0 , where m0 is either the initial 

known value of the culture mass or the previous mass estimate.   

 

For the luminostat protocol to work, it is necessary that estm be an accurate estimate of 

the culture mass. We set up mock runs using the luminostat protocol (see section 2.1) to 

evaluate whether this was indeed the case. Unfortunately, the difference between the 

actual culture mass (as measured by a precision balance) and estm , referred to as 
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discrepancy, shows a steady negative drift (Figure 11). This result can be qualitatively 

understood by accounting for mass loss due to evaporation. Although the drift is slow, it 

renders the luminostat protocol unsuitable for high precision measurements over long 

times.  

 

Rapid serial dilution protocol 

The solution to the mass estimation problem is to measure growth rates in the absence of 

dilutions, i.e., with 0=OF . In this case, equation 1 simplifies to λ==
dt
dN

Ndt
dL

L
11 , 

allowing measurement of growth rates without the need for mass estimates. For such 

measurements, the dilution protocol would consist of a growth phase, where the growth 

rates are measured in the absence of dilutions, and a dilution phase, where the cultures 

are diluted to maintain them in the operating region. To achieve the highest frequency of 

growth rate measurements, one would like to perform the dilutions at the maximum speed 

possible, and this leads to the rapid serial dilution protocol (Figure 10B). In this protocol, 

dilutions are performed by pumping out M grams (usually 40.0-55.0g) of culture at 

maximum speed, and then adding the same amount of fresh medium, again at maximum 

speed.  

 

The problem with the rapid serial dilution protocol is that it induces large temperature 

fluctuations in the culture. The temperature inside the enclosing box (Figure 1) in our 

setup is higher than the ambient temperature as the stirrer is a source of heat, and the box 

is made of insulating material. Consequently, there is a temperature difference between 

the input reservoir (which is at ambient temperature) and the box temperature so that 
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supply of medium from the input reservoir increases the culture temperature (Figure 

12A). In the case of the rapid serial dilution protocol, the temperature increases by as 

much as 0.3°C, which is unacceptable (cf. section 4.3.3). Either as a direct consequence 

of the temperature fluctuations or because of the rapidity of the dilutions, growth curves 

recorded with this protocol in the growth phase are not linear, but show reproducible 

kinks (Figure 12B).  The kinks make the task of measuring growth rates difficult. 

 

High precision dilution protocol  

To devise a serial dilution protocol which did not have the problems associated with the 

rapid protocol presented above, we performed several mock runs with different dilution 

protocols and recorded the temperature fluctuations. At the same time, we also tried to 

improve the ventilation of the enclosing box and fine tuned several parameters including 

the temperature of the water bath (the main reason why cultures are performed at 

38.3°C). We found that it is better to operate input and output pumps simultaneously, and 

to have a multi-phased dilution process (instead of a single, rapid dilution). The result of 

these optimizations was the development of the protocol that we used for long-term, high 

precision measurement of growth rates.  This protocol is schematically illustrated in 

Figure 13A and the temperature fluctuations in it are shown in Figure 13B.   

 

The protocol for high precision measurements has four dilution phases: (1) a fast-dilution 

phase where the signal is reduced from the high setpoint (7.00 mV) to the low setpoint 

(2.65 mV), (2) an intermediate-dilution phase, where the signal is further reduced to 2.00 

mV, (3) a slow-dilution phase, where the signal is allowed to recover to the low setpoint, 
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and (4) a no-dilution phase (equivalent to the growth phase), which lasts until the signal 

reaches the high setpoint again. Dilutions were performed by adjusting input and output 

pump RPMs so that predicted flow rates in different phases would be as follows: fast-

dilution, 12.5 g/min; intermediate-dilution, 7.5 g/min; slow-dilution, 1.88 g/min; and no-

dilution, 0 g/min. One of the main considerations in the design of the protocol was to 

ensure that the slow-dilution phase lasted at least 10 minutes (the time constant for the 

equilibration of the temperature of culture in the absence of dilutions is around 3 minutes, 

10 minutes ~ 3 time constants). During the dilution phases, both pumps were operating 

simultaneously, and so culture mass should remain the same. In practice, however, there 

were differences between the realized flow rates and the predicted flow rates. To correct 

for culture mass changes accruing from these differences, the input flow rate was 

modulated from the nominal value of 12.5g/min during the fast-dilution phase.   

 

Figure 14A shows growth curves recorded using the optimized protocol. The growth 

curves during the no-dilution phase do not have any kinks. 

4.4.3 High precision measurement of growth rates in long-term cultures 
 

Long-term cultures of NS2 pCSλ were performed using the optimized dilution protocol 

described in the previous section. Figure 14B displays the observed generation time as a 

function of time after inoculation during such a culture. When a new media reservoir is 

put in place of an old one, there is often a transient period lasting one or two dilution 

cycles, where the observed generation time is substantially different from the generation 

time observations in the remaining dilution cycles with that reservoir. If such transient 

points are omitted from the evaluation of the spread of generation time observations, then 
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it is possible to achieve a precision of 2% over a period of ~75 generations (Figure 14B). 

Overall, if we pool all generation time measurements in the operating region in both 

batch cultures and long-term cultures (Figures 7D and 14B) and exclude transient long-

term culture measurements, we find that they lie between 18.25 and 18.75 minutes (0.5 

minute total spread), giving a precision of ~2.7%. The intrinsic measurement precision, 

on the other hand, for measurements in the operating region is only 0.3% (Appendix  B), 

underscoring the fact that we are not limited by instrument precision in our 

measurements. 

 

The optimized dilution protocol sets the time resolution of growth rate measurements. 

For cultures of NS2 pCSλ in LB medium, the average time between the end of one no-

dilution phase (the phase in which growth rate is measured) and the beginning of the 

subsequent no-dilution phase is ~39 minutes. Given that each no-dilution phase lasts 

around 26 minutes, the dilution protocol results in a growth rate measurement resolution 

of ~65 minutes (~3.5 generations). 

4.5 Summary 
 

We have built a device capable of long-term recording of growth rates with high 

frequency (~3.5 generations) and high precision (~2.7%). We identified LB as the 

medium offering the most reproducible growth rate measurements and delineated a small 

region of the growth curve (operating region) in LB as most conducive to high precision 

measurements. Although we observed lot-to-lot variability in the measurement of growth 

rates with LB, we could achieve a precision of ~1.1% in the operating region. To achieve 
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similar levels of precision in long-term measurements, we developed an optimized serial 

dilution protocol that maintains cultures close to the operating region, while minimizing 

temperature fluctuations. Overall, we found that all growth rate measurements (batch and 

long-term cultures) performed in the operating region lie within a 30 second window 

(between 18.25 and 18.75 minutes) corresponding to a total spread of ~2.7%. The 

estimated spread from intrinsic measurement errors in this region, on the other hand, is 

only 0.3% (Appendix  B), thus their contribution to the observed spread (2.7%) is small.  
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Figure 6. Growth curves and slope curves in batch cultures of NS2 pCSλ in different 

culture media. Batch cultures of NS2 pCSλ were set up in indicated media  and growth 

curves (A, C, E) and corresponding slope curves (B, D, F) were plotted as described in 

section 2.1. Slope curve in panels B,D, and F  were plotted for the region between the 

horizontal dashed gray lines (0.5 mV to 12 mV) in the growth curves.  Batch cultures in 

glucose and lactose minimal media were performed with the same lot of medium, 

whereas different lots were used in the case of LB. Reproducibility is the best in LB 

cultures (see Figure 7). 
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Figure 6. Growth curves and slope curves in batch cultures of NS2 pCSλ in different 
culture media.   
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Figure 7. Growth curves and slope curves in batch cultures of NS2 pCSλ in different 

lots of LB. Batch cultures of NS2 pCSλ were set up over a period of 8 days in different 

lots of the medium (Lot A, B, or C) and growth curves (A) and slope curves (B) were 

plotted as described in section 2.1. The slope curve in panel B was plotted for the region 

between the horizontal dashed gray lines (0.1 mV to 70 mV) in panel A. The operating 

region chosen for our setup in indicated by the dashed magenta lines (2.65 mV to 7.00 

mV) and a magnification of the growth curves in the operating region is shown in panel 

C. In panel D, the generation time measurements in the operating region are plotted 

against the lot of the medium. The numbers (1-6) in panels C and D indicate the sequence 

in which batch cultures were set up. Error bars correspond to the estimated intrinsic 

measurement error ( slpσ2± , equation 0 of Appendix  B). 
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Figure 7. Growth curves and slope curves in batch cultures of NS2 pCSλ in different 
lots of LB. 
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Figure 8. Temperature dependence of growth curves and slope curves in batch 

cultures. Batch cultures of NS2 pCSλ were set up at indicated temperatures in the same 

lot of medium and growth curves (A) and slope curves (B) were plotted as described in 

section 2.1. The slope curve in panel B was plotted for the region between the horizontal 

dashed gray lines (0.1 mV to 70 mV) in panel A.  Dashed magenta lines in panels A, B, 

and C indicate the operating region (2.65 mV to 7.00 mV) and a magnification of the 

growth curves in the operating region is shown in panel C. In panel D, the generation 

time measurements in the operating region are plotted as a function of temperature. The 

black dashed line depicts the least squares linear fit and the corresponding linear 

correlation coefficient is indicated. Error bars correspond to the estimated intrinsic 

measurement error ( slpσ2± , equation 0 of Appendix  B). 
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Figure 8. Temperature dependence of growth curves and slope curves in batch 
cultures.  



 

81 
 

Figure 9. Long-term cultures require the use of non-adherent strains. A long-term 

culture was set up with wild-type MG1655 strain transformed with luminescence plasmid 

pCSλ using the Luminostat protocol (Figure 10A). (A,B) Difference between culture 

luminescence and the luminescence setpoint, expressed as percentage of the setpoint. 

Panel B is a magnification of panel A during the first few hours where steady 

luminescence could be maintained.(C)  Pump speed during the luminostat phase. Arrows 

indicate the time when the pump reached maximum speed. Culture luminescence 

continued to increase even when pumps were operating at maximum speed, suggesting 

that cells were adhering to the vessel walls and could not be diluted out.  



 

82 
 

 

 

Figure 9. Long-term cultures require the use of non-adherent strains.
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Figure 10. Schematic illustrations depicting dilution protocols for long-term 

cultures. (A) Luminostat protocol. The protocol consists of two phases, an initial phase 

where the culture is allowed to reach a luminescence setpoint, and a luminostat phase 

where the dilution rate of the pumps is continuously modified to keep the total 

luminescence constant. Both input and output pumps operate simultaneously and at the 

same flow rate. (B) Rapid serial dilution protocol. After an initial phase, the protocol 

consists of periodic dilution/growth cycles. In each cycle, the output pump first operated 

at maximum speed to remove M grams of culture. Next, the input pump flows in M 

grams of fresh medium at full speed. Finally, in the growth phase, the pumps are 

stationary, while the bacteria grow to reach the setpoint again. Growth rates are measured 

in the phase where there is no dilution.  
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Figure 10. Schematic illustrations depicting dilution protocols for long-term 
cultures.   
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Figure 11. Discrepancy between estimated and actual mass of culture as a function 

of time during a mock run with the luminostat protocol (Figure 10A). A mock run 

was performed using the luminostat protocol with water as the fluid to assess the mass 

stability of the culture (section  2.1). The culture vessel was filled with 100.0g of water 

and the input and output pump speeds were modulated to maintain a constant flow rate. 

Culture mass was estimated by correcting for differences between measured input and 

output flow rates (section 4.4.2). Actual mass was measured by replacing the stirrer in 

Figure 1 with a precision balance. The difference between the estimated and the actual 

mass is referred to as discrepancy and shows a steady negative drift, possibly because of 

evaporative losses.  
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Figure 11. Discrepancy between estimated and actual mass of culture as a function 
of time during a mock run with the luminostat protocol (Figure 10A). 
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Figure 12. Temperature fluctuations and associated problems with rapid serial 

dilution protocol (Figure 10B). (A) Difference between the temperature of the culture 

and that of the surrounding water bath during one dilution/growth cycle. Data is color-

coded as in Figure 10B.  A rise of ~0.3°C occurs during the phase where the input pump 

supplies fresh medium. (B) Luminescence signal profile during a long-term culture with 

non-adherent HEHA16 strain using the rapid serial dilution protocol. The curves are not 

linear, instead, they show reproducible kinks (arrows).  
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Figure 12. Temperature fluctuations and associated problems with rapid serial 
dilution protocol. 
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Figure 13. Dilution protocol for high precision growth rate measurements in long-

term cultures. (A) Long-term cultures are subjected to a multi-phase dilution protocol. 

The typical luminescence signal profile during each phase is indicated in the top panel, 

while nominal values of pump flow rates are plotted in the bottom. After an initial phase 

(which begins right after inoculation), where the luminescence signal is allowed to reach 

the high setpoint (7.00 mV), a cyclic, four-phase dilution protocol is followed: (1) a fast-

dilution phase where the signal is reduced from the high setpoint to the low setpoint (2.65 

mV), (2) an intermediate-dilution phase, where the signal is further reduced to 2.00 mV, 

(3) a slow-dilution phase, where the signal is allowed to recover to the low setpoint, and 

(4) a no-dilution phase, which lasts till the signal reaches the high setpoint again. The 

nominal flow rates during the dilution phases are as follows: fast dilution, 12.5 g/min; 

intermediate dilution, 7.5 g/min; slow dilution, 1.88 g/min; and no dilution, 0 g/min. 

During the dilution phases, both pumps operate simultaneously with the indicated flow 

rates except that during the fast-dilution phase, the input rate is modulated to correct for 

small differences in input and output rates in previous phases and maintain culture mass. 

When required, replacement of media and waste reservoirs were performed in the no-

dilution phase. (B) Temperature stability in the dilution protocol depicted in (A). 

Difference between the temperature of the culture and that of the surrounding water bath 

is plotted as a function of time and color coded as in (A). During the no-dilution phase, 

temperature remains stable to within 0.03°C. 
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Figure 13. Dilution protocol for high precision growth rate measurements in long-
term cultures. 
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Figure 14. High precision growth rate measurements in long-term culture. A long-

term culture of NS2 pCSλ was set up in LB+30μg/ml kanamycin. (A) Transformed 

luminescence signal ( )black ,trL  and the input flow rate of fresh medium (green) during a 

few hours of operation. Different phases of the dilution protocol are indicated as follows: 

initial phase (P1), fast-dilution (P2), intermediate-dilution (P3), slow-dilution (P4), and no-

dilution (P5, see section 4.4.2). Output flow rate is nearly identical to input flow rate in all 

phases except the fast-dilution phase, where input rate is modulated to correct for small 

differences in input and output rates in previous phases and maintain culture mass. 

Horizontal dashed magenta lines indicate the operating region (2.65 mV to 7.00 mV). (B) 

Growth rates computed during the no-dilution phase (phase P5 in panel A) are plotted as a 

function of time (see section 2.1). The black vertical dashed line (16.2 hours after 

inoculation) represents the time when media and waste reservoirs were changed. Except 

for the first point after change of reservoirs, all growth rate measurements fall within a 

2% band as indicated by the horizontal dashed maroon lines. Error bars correspond to the 

estimated intrinsic measurement error ( slpσ2± , equation 0 of Appendix  B). 
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Figure 14. High precision growth rate measurements in long-term culture. 
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Chapter  5. A Synthetic Cooperation System in Yeast 
 
This chapter contains work done in collaboration with Dr. Wenying Shou and Dr. José 

Vilar, and has been published before (Shou et al., 2007). 

5.1 Motivation 
 

In nature, cooperation emerges under diverse conditions and over varying scales ranging 

from the physiological, as in the emergence of cell-cell cooperation that facilitates tumor 

progression (Hanahan and Folkman, 1996), to the ecological, as in the evolution of 

mutualistic interactions between species (Bergstrom et al., 2002; Boucher, 1985).  In 

some cases, the cooperative interaction is essential to the viability of the system 

(Bronstein and Hossaert-McKey, 1995; Cook and Rasplus, 2003; Pellmyr and Leebens-

Mack, 1999; Rowan et al., 1997; Wernegreen, 2002).   

 

Cooperation is often viewed as a paradox, as one might expect that natural selection 

would favor selfish traits that maximize an organism’s chances of survival.  This naïve 

expectation prompted the development of a rich theoretical framework to explain the 

evolution of cooperative behavior (Lehmann and Keller, 2006; West et al., 2007). There, 

however, remains a disconnect between theoretical and empirical work on cooperation 

(Leimar and Hammerstein, 2006). While abstract theoretical models are useful to 

illustrate the basic paradox of cooperation and the scenarios in which it can arise, they are 

unlikely to shed light on constraints that emerge from the biology of cooperating entities. 

One way to address this issue is to develop a quantitative description of a particular 
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cooperative system and enumerate the constraints on the viability of the system. While 

such an approach may limit the generality of the conclusions, it can also uncover 

biologically relevant constraints that are often not considered by idealized theoretical 

models, especially if one chooses a system that is representative of a broad class such as 

that of metabolically coupled microbes (Dean-Raymond and Alexander, 1977; 

Nurmikko, 1956; Stams et al., 2006). 

 

There are several challenges in performing quantitative measurements on natural 

cooperative systems. These include difficulties in measuring beneficial exchanges and 

population dynamics (Boucher, 1985) and in disengaging cooperation from non-

cooperative interactions such as competition and inhibition (Rowan et al., 1997; Yeoh et 

al., 1968). To circumvent these difficulties, we decided to engineer a system with 

obligatory cooperation based on metabolite exchange. By designing the system so that it 

was easy to quantify population sizes, we were able to perform experiments that are 

difficult in natural systems. For example, we looked at how reliably viable cooperative 

communities could form under various initial conditions, and how well they could 

recover from population bottlenecks.   

 

Prior to our work, there had been some reports documenting the emergence of 

cooperation in laboratory systems. Cooperation among cells of a single population had 

been shown to arise spontaneously under selective pressures (Rainey and Rainey, 2003), 

and cooperation between two populations had been attained either through mixing of 

organisms with natural capacities to cooperate (Buchsbaum and Buchsbaum, 1934; 

Shendure et al., 2005) or through evolution from originally parasitic associations (Fiegna 
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et al., 2006; Jeon, 1972).  We were interested in constructing a synthetic cooperative 

system, in part to distinguish our work from these previous efforts, but largely to have a 

system where it would be easy to study constraints on viability. 

 

Our system, which we have termed CoSMO (for Cooperation that is Synthetic and 

Mutually Obligatory), consists of a pair of non-mating yeast strains, each supplying an 

essential metabolite to the other strain.  

5.2 Results 

5.2.1 Construction of CoSMO 
 

As the initial step, we genetically modified the yeast S. cerevisiae to obtain two non-

mating strains with different metabolic capabilities (section 2.1) so that they behave 

essentially as two different species.  Specifically, the AR←  strain, labeled with red-

fluorescent protein (DsRed), synthesizes lysine at normal levels but requires adenine to 

grow; and the LY←  strain, labeled with yellow-fluorescent protein (YFP), synthesizes 

adenine at normal levels but requires lysine to grow.  AR←  and LY←  can be propagated 

in mono-cultures in the presence of adenine and lysine supplements, respectively.  When 

the two strains were washed free of supplements and subsequently mixed to form a co-

culture, both strains initially underwent residual growth using stored metabolites 

(Messenguy et al., 1980; Nagy, 1979) but eventually died off (Figure 15A).  Thus, even 

though the two populations together have the required enzymes to synthesize both 

adenine and lysine, their co-culture failed to achieve sustained growth. 
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To create cooperation, we introduced an additional mutation in each strain by replacing 

the first enzyme in adenine or lysine biosynthetic pathway with an overproduction mutant 

that is no longer sensitive to end-product feedback inhibition (Armitt and Woods, 1970; 

Feller et al., 1999). Consequently, AR←  and LY←  were respectively transformed 

into  ܴ՜௅
՚஺ , which requires adenine to grow and overproduces lysine, and ՜ܻ஺

՚௅ , which 

requires lysine to grow and overproduces adenine .  

 

Cooperation can indeed exist between ܴ՜௅
՚஺ and  ՜ܻ஺

՚௅, as verified through the viability of 

their co-cultures.  We defined co-culture viability as the ability to attain saturation density 

(~5×107 total cells/ml) in the absence of adenine and lysine supplements.  We found that 

co-cultures initiated at low density (~105 total cells/ml) can be viable (Figure 15B) and 

that viability of cooperation requires both adenine- and lysine-overproduction mutations 

(Figure 15C).  Together, ܴ՜௅
՚஺  and  ՜ܻ஺

՚௅ form a cooperative system termed CoSMO 

(Cooperation that is Synthetic and Mutually Obligatory), which mimics two-species 

obligate mutualistic systems in which cooperation is essential for the survival of both 

species (Cook and Rasplus, 2003; Kroon and van Ginkel, 2001; Nurmikko, 1956; 

Pellmyr and Huth, 1994; Stams et al., 2006; Zientz et al., 2004). The final design of 

CoSMO is depicted in Figure 16. 

5.2.2 Behavior of CoSMO strains in monoculture and deduction of CoSMO 
growth pattern  

 

To better understand the properties of CoSMO, we performed monocultures of the two 

strains in the absence of adenine and lysine supplements.  After washout of the essential 

adenine or lysine supplement, each strain initially underwent residual growth using stored 
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metabolites (Messenguy et al., 1980; Nagy, 1979) until time TI ~10 hours (Figure 17A).  

Immediately afterwards,  ՜ܻ஺
՚௅ cells entered the death phase characterized by a decrease in 

the number of live cells (Figure 17, green stars) and an increase in the number of dead 

cells (Figure 17B, grey squares). ܴ՜௅
՚஺ cells, in contrast, did not enter death phase until 

time TR ~70 hours (Figure 17A, red stars and Figure 17B, grey circles).  The release of 

the overproduced metabolites into the medium was associated with cell death (Figure 

17B).  Consequently, the onset of lysine release by ܴ՜௅
՚஺ was significantly delayed until 

time TR when the majority of  ՜ܻ஺
՚௅ population already lost viability (Figure 17B). Thus, 

the two strains in CoSMO are not equivalent, and there is asymmetric starvation 

tolerance. 

 

The properties of the two strains under monoculture can be used to construct a schematic 

diagram of the initial stages of CoSMO growth (Figure 17C) as well as to derive 

constraints on the viability of the system (section 5.2.3). In particular, the total cell 

density takes on a pattern of “rise-plateau-rise,” with each rise resulting from net growth 

of at least one partner (Figure 17C).       

5.2.3 Cosmo viability requirements 
 

We used the individual characteristics of the two strains (Figure 17) to compute viability 

conditions for CoSMO.   
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Supply-consumption requirement 

The supply of metabolites must be sufficiently high to sustain net growth of both 

components.  Let As (Ls) be the total amount of adenine (lysine) supplied per  ՜ܻ஺
՚௅ (ܴ՜௅

՚஺) 

cell until its death, and Ac (Lc) be the amount of adenine (lysine) consumed to make a 

new ܴ՜௅
՚஺ ( ՜ܻ஺

՚௅) cell.  Assuming that all released metabolites are completely consumed, 

changes (Δ) in population densities of live ܴ՜௅
՚஺ and  ՜ܻ஺

՚௅, denoted R and Y, and of the 

corresponding dead cells, denoted ෨ܴ  and ෨ܻ , are related through 

 and  .s s

c c

A LR Y R Y R Y
A L

Δ = Δ − Δ Δ = Δ − Δ% % % %  (1) 

Positive growth of both components requires s

c

AY R
A

Δ > Δ% %  and s

c

LR Y
L

Δ > Δ% % , which leads 

to / 1s s c cA L A L > .  This condition is analogous to those derived in mathematical models 

of obligate mutually cross-feeding systems in chemostats at steady state (Meyer and 

Tsuchiya, 1975). For CoSMO, experimentally measured values (see Appendix  C) lead to 

/ 22s s c cA L A L ≈ , implying that CoSMO significantly exceeds this fundamental supply-

consumption requirement.   

 

The supply-consumption requirement is a fundamental constraint on the strain properties. 

It is not, however, a constraint on the initial conditions of the system. Even if the supply-

consumption requirement is met, the system can fail to be viable, if a released metabolite 

is too dilute and its uptake rate is too slow to keep its consumer alive, or if any one strain 

goes extinct before its partner strain has a chance to release a substantial amount of 

metabolite.  These two failure modes lead to constraints on the initial cell densities and 

initial cell numbers as described below. 
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 Minimum initial cell density requirement 

The growth rate of  ՜ܻ஺
՚௅, GY, must exceed the death rate DYLate at a finite time τ  after the 

initiation of lysine release from dying ܴ՜௅
՚஺ at time ~TR (Figure 17C).  If each  ՜ܻ஺

՚௅ cell 

uptakes lysine at concentration L in the medium following Michaelis-Menten kinetics 

with half-saturation constant KmL and maximum rate VmaxL, and produces a new cell after 

acquiring a quantity Lc of lysine, we obtain 

max max1 1 .L L
YLate Y

c mL c mL

V VD G L L
L K L L K

< = ≈
+

 (2) 

Note that measured L is small compared to KmL.  L is given by 

L= ,max (1 )RD
sR e Lτ− ⋅−  (3) 

where Rmax is the population density of ܴ՜௅
՚஺  at time TR, and (1 )RDe τ− ⋅−  is the fraction of 

ܴ՜௅
՚஺ cells that have died from time TR to TR+τ.  Rmax is related to R0 and Y0, the initial 

population densities of the two partners, through 

max 0 0 ,s
R Y

c

AR I R I Y
A

≈ +  (4) 

accounting for increase in R resulting first from IR-fold residual growth from R0 and then 

from adenine released upon the death of almost the entire  ՜ܻ஺
՚௅ population which has 

undergone IY-fold residual growth from Y0.  From inequality 2, equation 3, and the 

measured parameters (Appendix  A), we obtain the minimal Rmax required for CoSMO 

viability as 

* 4
max

max

6 10  cells/ml.YLate mL c

L s

D K LR
V L

= ≈ ×  (5) 
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Minimum initial cell number requirement 

For a co-culture of volume V, the initial number of ܴ՜௅
՚஺ cells must be at least 1:  

0 1.R V ≥  (6) 

In addition, there must be at least one  ՜ܻ஺
՚௅ cell alive at time RT τ+ : 

( )
0 1.Y R I YLateD T T D

YI Y Ve τ×− − − ≥  (7) 

From inequalities 2 and 7 and equations 3-5, we obtain the condition 

( ) ( )* *
max max

0
max 0 0

1 1 .
YLate YLate

R I Y R I YR R

D D
T T D T T DD D

Y Y R Y s c

e R e RY V
I R I I R I Y A A

− −
− −⎛ ⎞ ⎛ ⎞

> − ≈ −⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
 (8) 

The minimum initial number of  ՜ܻ஺
՚௅ cells required for CoSMO viability is obtained after 

setting R0 in inequality 8 to the saturation density 5x107 cells/ml: 

0Y V ≥  9. (8a) 

 

The initial cell density and cell number requirements can be combined to define the 

viability and inviability domains of CoSMO as a function of the initial densities of the 

two strains at a given volume.  The two domains can be represented in a phase diagram 

(Figure 18), which has been drawn using parameter values detailed in Appendix  C. 

5.2.4 Experimental verification of viability phase diagram 
 

As mentioned in section 5.2.3, the initial cell density and cell number requirements can 

be used to delineate viability and inviability domains of CoSMO in a phase diagram 

(Figure 18).  We proceeded to verify whether the calculations of viability and inviability 

domains are accurate. 
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For initial conditions well within the calculated inviable domain (Figure 18, broken 

circles), replicate CoSMO cultures are never viable (time series not shown).  In contrast, 

for initial conditions well within the calculated viable domain, replicate CoSMO cultures 

are always viable (Figure 18, filled circles).  Specifically, when both cell-density and 

cell-number requirements were exceeded by at least ~10-fold (e.g. Figure 18, purple 

filled circles), CoSMO cultures initiated at ܴ՜௅
՚஺:  ՜ܻ஺

՚௅  ratios spanning 9 orders of 

magnitude from 10-5 to 104 achieved 100% viability (Figure 19, panels II-V).  The 

inherent ability to survive a wide range of partner ratios is important for natural 

cooperative systems, because such wide ranges would be expected either as a result of 

initial encounters of partners at different population sizes or through intrinsic system 

dynamics.   

 

For initial conditions close to the boundary that separates the viable and inviable domains 

(black and grey curves in Figure 18), the behavior of CoSMO is stochastic (Figure 18, 

open circles), leading replicate cultures non-deterministically to either viability or 

inviability.  For instance, when the initial-density requirement was significantly exceeded 

and the initial-number requirement for either strain was barely satisfied (Figure 18, 

purple open circles), only a fraction of replicate CoSMO cultures were viable (Figure 

19A, panels I and VI).  Similarly, when the initial-density requirement was barely 

satisfied and the initial-number requirements were significantly exceeded (e.g. Figure 18, 

brown open circle), CoSMO was not viable in one case (Figure 19B, panel I) while it 

reached saturation in the other two (Figure 19B, panels II and III).  These results confirm 

the viability and inviability domains calculated in section 5.2.3 and depicted in Figure 18. 
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5.2.5 Long-term population dynamics of CoSMO 
 

Properties of CoSMO components can be used not only to determine system viability, but 

also to elucidate certain features of CoSMO dynamics.  In particular, upon long-term 

culturing, the wide range of initial population ratios compatible with CoSMO viability 

converges to a narrow range.  CoSMO cultures were seeded at ܴ՜௅
՚஺: ՜ܻ஺

՚௅ ratio of 103, 1, 

and 10-3 (Figure 20A, panels I, II, and III, respectively) and maintained at low density 

through monitoring of culture turbidities and performing dilutions at a fixed frequency 

(once per day or twice per day).  Even though population ratios initially spanned 6 orders 

of magnitude, they underwent several oscillations and eventually settled into a narrow 

range between 1:5 and 5:1 (Figure 20A).  In a similar experiment where dilutions were 

performed at high cell density, oscillating population ratio converges to the same range 

(Figure 20B).   

 

Calculation of the steady state population ratio 

The stabilized ratio can be computed from the supply and consumption of adenine and 

lysine. When a finite non-zero steady state ratio is achieved, ܴ՜௅
՚஺ and ՜ܻ஺

՚௅ grow with the 

same rate G .  Furthermore, let RD  and YD  represent the death rates of ܴ՜௅
՚஺ and  ՜ܻ஺

՚௅ at 

this stage, respectively. 

 

Since RR D R t
R GR t

Δ Δ
=

Δ Δ

%
and YY D Y t

Y GY t
Δ Δ

=
Δ Δ

%
, equation 1 in section 5.2.3 becomes 

 and  .     s sY R R Y

c c

A LD D D DR Y R Y R Y
G A G G L G

Δ = Δ − Δ Δ = Δ − Δ  
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Solving for R
Y

Δ
Δ

 after replacing G , we obtain:  

21+ 4 ( 1) .
2

c Y s sY Y

s R R c c R

L D A LR D D
Y L D D A L D

⎡ ⎤Δ
= − + −⎢ ⎥

Δ ⎢ ⎥⎣ ⎦
 

If we assume YLateY

R R

DD
D D

= , then R
Y

Δ
Δ

~1 for CoSMO (parameter values are detailed in 

Appendix  C).  0

0

R RR
Y Y Y

+ Δ
=

+ Δ
 tends to R

Y
Δ
Δ

when t is large because R0 and Y0 are small 

compared to ΔR and ΔY.  Therefore, R
Y

 is on the order of 1 for CoSMO.  In CoSMO, 

1Y

R

D
D

−  is small compared to 4 Y s s

R c c

D A L
D A L

, in which case R
Y

 can be simplified to 

Y s c

R s c

D A L
D L A

, a function of adenine and lysine supply rates ( Y sD A and R sD L ) and 

consumption (Ac and Lc). 

5.2.6 Changes in cell-density requirement upon long-term culture 
 

An intriguing aspect of CoSMO is that upon long-term culturing, the cell density 

requirement for viability can undergo drastic reduction.  The density requirement was 

estimated by performing a series of dilutions of a viable CoSMO culture and evaluating 

the minimum density at which viability was retained.  Such an experiment is a laboratory 

analog of a natural system recovering from population bottlenecks, a commonly 

occurring perturbation.  
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 Five CoSMO cultures were initiated, grown to near-saturation (Round-0) and subjected 

to ten rounds of dilution-and-regrowth, ending in Round-10 cultures (Figure 21A).  The 

population density of both Round-0 and Round-10 cultures was on the order of 107 total 

cells/ml.  The Round-0 cultures typically tolerated 103-104 - fold dilution (Figure 21B, 

left), and therefore a total population density on the order of 103-104 cells/ml was 

required for the viability of a diluted CoSMO culture.  In contrast, the Round-10 cultures 

typically tolerated 105-106-fold dilution (Figure 21B, right), and therefore a total 

population density on the order of 101-102 cells/ml was sufficient for viability.  Thus, 

even though the initial requirements for viable cooperation can be accurately predicted 

from properties of components (Figure 18), the density requirement underwent 100-fold 

relaxation over a relatively short period of time (~70 generations).  This phenomenon 

may result from changes in one or both strains that aid the survival of the strain itself 

(e.g. through increased starvation tolerance) or the survival of its partner (e.g. through 

increased overproduction or expedited release of metabolites). 

5.3 Summary 
 

We have constructed a synthetic obligatory cooperative system, termed CoSMO, that 

consists of a pair of non-mating yeast strains, each supplying an essential metabolite to 

the other strain. Our results show that persistent cooperation between two populations can 

be created de novo through a small set of targeted genetic modifications.  The behavior of 

the two strains in isolation however revealed unintended constraints that restrict 

cooperation, such as asymmetry in starvation tolerance and delays in nutrient release until 

near cell death.  This monoculture behavior was used to derive constraints on the viability 
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of the system. In spite of such constraints, CoSMO is viable over a wide range of initial 

conditions, with the population ratio converging to a value predicted by nutrient supply 

and consumption.  Unexpectedly, even in the absence of explicitly engineered 

mechanisms to stabilize cooperation, CoSMO can consistently develop increased ability 

to survive population bottlenecks. 
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Figure 15. Viability of CoSMO requires both adenine- and lysine- overproduction 

mutations.  At time zero, mono-cultures of indicated strains grown in synthetic dextrose 

medium (SD) with the required adenine or lysine supplement (Guthrie and Fink, 1991) 

were washed free of supplements and mixed.  Plots show population dynamics of 

fluorescent live R (red), fluorescent live Y (green), non-fluorescent dead (grey), and total 

(black) cells of the coculture as measured by flow cytometry (section 2.1).  (A) CoSMO 

is not viable in the absence of mutant strains which overproduce adenine and lysine. (B) 

CoSMO cultures can be viable if both overproduction mutants are present, but not if only 

one is present (C). In panel B, data from three replicate cultures are superimposed.  
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Figure 15. Viability of CoSMO requires both adenine- and lysine- overproduction 
mutations.  
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Figure 16. The “wiring” diagram of CoSMO.  CoSMO consists of two yeast strains: 

ܴ՜௅
՚஺ which lacks Ade8 enzyme and harbors Lys21op enzyme and  ՜ܻ஺

՚௅ which lacks Lys2 

enzyme and harbors Ade4op enzyme.  Cells lacking Ade8 (Lys2) cannot synthesize 

adenine (lysine) and therefore require intake ( ← ) of the corresponding metabolite.  

Ade4op and Lys21op are no longer sensitive to end-product feed-back inhibition and 

consequently overproduce (op) the corresponding metabolite which is eventually released 

( → ) into the medium (Armitt and Woods, 1970; Feller et al., 1999).  Crosses represent 

genetic inactivation; yellow bars and arrows represent losses and gains in metabolite 

synthesis, respectively.   
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Figure 16. The “wiring” diagram of CoSMO. 
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Figure 17. Characterization of individual strains in mono-cultures and deduction of 

CoSMO growth pattern.  (A, B) Asymmetry in starvation tolerance between two strains 

and delayed metabolite release.  At time zero, mono-cultures of the two strains grown in 

the presence of the required supplement were washed free of the supplement.  (A) shows 

live population density over time for an initial population density of ~3x105 cells/ml.  (B) 

shows dead population density (top panel) and the concentration of lysine or adenine 

released into the medium over time (bottom panel) as measured by a bioassay (section 

2.1) for an initial population density of ~6x106 cells/ml.  The left and the right scales are 

for experiments on  ՜ܻ஺
՚௅  (squares) and ܴ՜௅

՚஺  (circles), respectively.  Grey vertical lines 

mark the time TI when residual growth ends and the time TR when ܴ՜௅
՚஺  enters death 

phase and releases lysine.  (C) A schematic diagram of the initial stage of CoSMO 

growth deduced from (A) and (B).  R and Y denote live population densities of ܴ՜௅
՚஺ and 

 ՜ܻ஺
՚௅, respectively.  Their initial values R0 and Y0 increase IR- and IY- fold respectively 

during residual growth until time TI.  After TI, adenine released from dying  ՜ܻ஺
՚௅ enables 

growth of ܴ՜௅
՚஺.  By time ~TR, most of the  ՜ܻ஺

՚௅ population has died and R is at a local 

maximum Rmax.  Lysine is subsequently released from dying ܴ՜௅
՚஺, and at some time τ 

after TR, results in an increase in Y under conditions that permit CoSMO viability.  The 

death rate for ܴ՜௅
՚஺ after TR is DR, and for  ՜ܻ஺

՚௅ is DY from TI to TR and DYLate from TR 

onward.  The total cell density, which is the sum of R, Y, and dead populations, 

consequently takes on a pattern of “rise-plateau-rise”, with each rise resulting from net 

growth of at least one partner.   
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Figure 17. Characterization of individual strains in mono-cultures and deduction of 
CoSMO growth pattern.   
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Figure 18. Phase diagram for CoSMO viability.  The domain of viability for CoSMO 

at volume V of 2.6 ml is bounded by a black vertical line (single-arrowhead, section 5.1, 

Inequality 6) and grey curves (section 5.1, Inequality 8, with IY set to different values in 

the experimentally observed range from 2 to 4).  The shoulder represents the viability 

threshold imposed by the density requirement alone (section 5.1, Equations 4 and 5) and 

is therefore not affected by the culture volume.  Different volumes affect only the black 

vertical line (single-arrowhead) and the horizontal asymptote (double-arrowhead), which 

shift along the R0 and Y0 axis according to the initial-number requirements expressed in 

inequalities 6 and 8a of section 5.1, respectively.  Circles indicate values of (R0, Y0) 

corresponding to different experiments (orange for Figure 15 panel II; purple from top 

left to bottom right for Figure 19A panels I to VI; and brown for Figure 19B).  In 

experiment marked with cyan, 1 out of 5 replicate cultures was viable (time series not 

shown); in experiments marked with black, 0 out of 4 or 5 replicate cultures was viable 

(time series not shown).  Overall, the viability-inviability outcome of replicate CoSMO 

cultures close to the calculated boundary is highly variable (open circles), while cultures 

significantly above and below the boundary show 100% viability (filled circles) and 0% 

viability (broken circles), respectively.   
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Figure 18. Phase diagram for CoSMO viability. 
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Figure 19. Viability of CoSMO.  Mono-cultures of the two strains were washed free of 

adenine and lysine, and mixed at time zero.  (A) CoSMO is viable under a wide range of 

initial partner ratios.  The two strains were mixed at the indicated ܴ՜௅
՚஺: ՜ܻ஺

՚௅ ratios (R0:Y0) 

and at the same total initial cell density and culture volume (~5×105 cells/ml × 2.6 

ml=1.3×106 cells/culture, four replicate cultures per condition).  Plots show culture 

turbidity in OD600 (optical density at 600nm) over time.  OD600 of 1 corresponds to a 

population density from 1×107 to 5×107 cells/ml depending on the cell size.  (B) 

Stochastic CoSMO behavior close to the initial-density requirement.  Three replicate 

cultures (൒20 ml) were set up at 1.1x104 cells/ml/strain.  Plots show the dynamics of live 

ܴ՜௅
՚஺(red), live  ՜ܻ஺

՚௅ (green), dead (grey), and total (black) cell densities.  One of the 

cultures was inviable (I) while the other two were viable (II and III).  
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Figure 19. Viability of CoSMO.   
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Figure 20. Long-term population dynamics in CoSMO.  (A) At time zero, duplicate 

CoSMO cultures (brown and blue) were initiated at OD600 of 0.01 (4.7x105 total cells/ml) 

and ܴ՜௅
՚஺: ՜ܻ஺

՚௅ ratios of 103 (I), 1 (II), and 10-3 (III).  When OD600 exceeded the set point 

of 0.06 for the first time, two 3ml-samples were taken from each culture (brown and 

magenta from the brown; blue and cyan from the blue), and thereafter diluted once per 

day (magenta and cyan) or twice per day (brown and blue) to the set point.  A low set 

point was chosen so that nutrients other than adenine and lysine were not limiting.  Plots 

show ܴ՜௅
՚஺: ՜ܻ஺

՚௅  ratios over time, with triangles marking points of dilution. (B) Duplicate 

CoSMO cultures, in which partners were mixed at ܴ՜௅
՚஺: ՜ܻ஺

՚௅ =103 (magenta), 1 (cyan), 

and 10-3 (blue) to OD600 of 0.01, were initiated at time zero.  Whenever the cultures 

reached the near-saturation set point of OD600=0.4-1, they were diluted to OD600 of ~ 

0.008.  At various time points, population densities of DsRed-positive and YFP-positive 

cells were measured twice by flow cytometry.  The average ܴ՜௅
՚஺: ՜ܻ஺

՚௅ ratio is shown with 

a vertical bar indicating the range.  Triangles mark points of dilution. 
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Figure 20. Long-term population dynamics in CoSMO.  
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Figure 21. Long-term increase in the ability to survive reductions in population 

density.   (A) A schematic diagram of the experimental protocol.  Five 2.6 ml-CoSMO 

cultures, initiated at different partner ratios, were grown to near-saturation and used as 

Round-0 cultures for five independent series. Each Round-0 culture was subjected to 10-

fold serial dilutions with three replicate cultures per dilution so that density requirement 

of the culture, expressed in the number of cultures (out of 3) that are viable at various 

dilutions, could be measured.  Out of the diluted cultures that were able to grow, one 

near-saturation culture was randomly chosen and subjected to 10-fold serial dilutions.  

This procedure was repeated ten times, spanning a total of ~70 generations.  The last 

near-saturation culture chosen was the Round-10 culture, and its density requirement was 

determined in a manner similar to Round-0 cultures.  (B) Increased ability to survive 

reductions in population density.  Each row corresponds to a particular series and depicts 

the number of tubes (out of 3) that were viable at indicated dilutions for Round-0 (left) 

and Round-10 (right) cultures.  Population densities of ܴ՜௅
՚஺  (red) and  ՜ܻ஺

՚௅  (green) in 

million cells/ml for Round-0 and Round-10 cultures are shown in the inset.  
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Figure 21. Long-term increase in the ability to survive reductions in population 
density.
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Chapter  6. Discussion 
 

6.1  Mutation Accumulation in Large Asexual Populations 
 

The mutation rate of wild-type E. coli strains is estimated to be around 3 ൈ 10ି3 per 

genome per genome replication (Drake, 1991). More strikingly, as reviewed in section 

1.1.1, this genomic mutation rate is typical of many DNA-based microbes and viruses. 

Many laboratory experiments (section 1.3.2), however, have shown that mutator strains 

outcompete their wild-type counterparts, and therefore have at least a short-term 

advantage. Theoretical work suggests that this should only be a transient phenomenon, 

and that eventually the wild-type mutation rate should be restored (section 1.3.3). In other 

words, mutators have a long-term  cost, which results in their eventual downfall.  What is 

the nature of this long-term cost? This question is particularly relevant for large asexual 

populations as there is little experimental evidence for long-term costs of high mutation 

rates in such populations (cf. section 1.3.2). 

 

In Chapter  3, we used simulations to explore the possibility that the long-term cost 

involves deleterious mutations being fixed when rare beneficial mutations in large 

populations. At high mutation rates (mutator strength ~200), at least one deleterious 

mutation was fixed in around 60% of the simulation runs. The fitness consequences of 

the fixation of deleterious mutations, however, was quite small (~1%). The small effects 

are consistent with the observation that large populations of mutators do not suffer an 
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obvious fitness disadvantage in long-term evolution experiments (Sniegowski et al., 

1997). 

 

Our results suggest that high mutation rates are not a perfect strategy for climbing fitness 

peaks in the presence of rare beneficial mutations with large effects, i.e., they can lead to 

accumulation of deleterious mutations, and that the top of the fitness peak may never be 

reached. Most theoretical work on evolution in asexual populations does not consider the 

fixation of deleterious mutations. The primary emphasis is on the speed of adaptation, 

i.e., the rate of increase in mean fitness, and the effect of deleterious mutations in 

reducing the speed of adaptation (cf. section 1.2.1). To the best of our knowledge, there 

has not been any previous work directly examining mutation accumulation in large 

populations through the fixing of rare beneficial mutations.  

 

Although mutation accumulation can be seen in simulations, it would be quite 

challenging to demonstrate it experimentally in view of the small effects involved. 

Deleterious effects would be most pronounced and manifested in the fewest number of 

generations if one used strong mutators ሺ200~ܯሻ . Even with strong mutators, the 

experimental recording of mean fitness trajectories as in Figure 5 would require the 

ability to measure fitness of large populations (~10ଽ) with high precision (~1%), high 

frequency (~1 fitness measurement/generation) and over long times (500-1000 

generations). 
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6.2 Bioluminescence-based High Precision Growth Rate 
Measurements 

 

In Chapter  4, we described a bioluminescence-based apparatus which allows recording 

of growth rate trajectories with a precision of 2.7% and a time resolution of 3.5 

generations. The precision of measurements is sufficient to allow detection of changes in 

doubling time of as small as ~20 seconds as is the case between growth curves recorded 

at temperatures 0.3°C apart in Figure 8.  We have improved upon the previously 

described technique of bioluminescence based growth rate measurements which achieved 

a precision of 5% (Kishony and Leibler, 2003). It is difficult to compare the precision of 

our measurements with other techniques as we are not aware of any studies which 

measure growth rates over such short time periods (~26 minutes) as we do. In some 

cases, the precision of measurements exceeds 5%, but the ability to make large number of 

replicate measurements is exploited to achieve an accuracy of less than 1% (Dekel and 

Alon, 2005). For experiments such as those involving measurement of fitness trajectories 

(cf. section 3.3), replicate measurements are not feasible as they would require sampling 

of the system, which would then limit the frequency of measurement.  

 

Our work has some general bearing on making precise growth rate measurements of E. 

coli. First, we strongly recommend bioluminescence as a fast and precise method for 

measuring growth rates at low densities. Second, assuming that the observed temperature 

sensitivity of ~5.8%/˚C is typical (Figure 8), any technique should aim for a temperature 

stability of 0.1˚C or better to make sure that temperature fluctuations contribute at most 
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0.6% to the precision. Third, we find that growth curves in rich media (LB) are more 

reproducible than those in minimal media (Figure 6).  

 

We identified a narrow operating region in growth curves in LB which is amenable to 

high precision measurement of growth rates (Figure 7). Measuring growth rates over a 

small operating range has several advantages: (a) the growth curves are well-described as 

straight lines (linear correlation coefficient 9998.0>r ), (b) the time for a single 

measurement is small (~1.4 generations),  and therefore not an impediment for high 

measurement frequency, (c) the operating range corresponds to culture densities where 

resource limitations are thought to be absent and cells are likely to be in the same 

physiological state (Baev et al., 2006), and (d) the small region ensures that intracellular 

physiological changes are likely to be small, thereby avoiding complications arising from 

changes in cellular luminescence, which is quite sensitive to physiological changes.  

 

In order to achieve the same levels of precision in long-term cultures as in batch cultures, 

we had to devise an optimal dilution protocol. We find that rapid serial dilution protocols 

induce unacceptable temperature fluctuations in the culture (Figures 10B and 12A). This 

is probably an issue which is very specific to our apparatus. There is, however, a slight 

chance that the poor performance of rapid serial dilutions is not the direct result of the 

temperature fluctuations it induces (Figure 12A ). In the temperature regime that we 

operate out apparatus, growth rates increase monotonically with temperature (Figure 8D). 

The temperature is expected to decrease by ~0.3°C during the growth phase of the rapid 

serial dilution protocol, and therefore one would expect growth rates to monotonically 
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decrease. Instead growth curves with the rapid serial dilution protocol (Figure 12B) have 

points of inflection, i.e. growth rate changes are non-monotonic.  To avoid problems with 

temperature fluctuations, we devised a multiphase dilution protocol (Figure 13A), which 

maintains temperatures within 0.03°C (Figure 13B).  Because there are multiple dilution 

phases, some of which are slow, the protocol sets the measurement frequency to around 

once every 3.5 generations. 

 

Intrinsic measurement precision (0.3%, see Appendix  B) can only account for a small 

fraction of the observed precision (2.7%). Growth rate reproducibility may be limited by 

fluctuations in environmental factors such as temperature, pH, dissolved oxygen 

concentration, and the chemical composition of the medium. Given the measured 

temperature sensitivity of ~5.8%/˚C (Figure 8D) and the temperature stability of 0.05˚C, 

we can rule out temperature as a factor limiting reproducibility. We also found that 

addition of pH buffers did not improve reproducibility. Medium composition is one 

factor that we have identified as a source of variation. There is clearly an effect on 

growth rate upon using different lots of medium (Figures 7B and 7D), although this 

cannot be the only relevant factor. For instance, the spread in generation times obtained 

with the first reservoir in Figure 14B (till 16.2 hours after inoculation) is ~1.3%, again 

more than the expected 0.3%, even though all these measurements are made with the 

same lot of medium.  There could be some leaching of chemicals from the peristaltic 

pump tubing, but we do not see any systematic decrease in growth rates over time. 

Besides, this effect would be absent in batch cultures, even though the reproducibility in 

batch cultures is worse than 0.3%.  
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Our device is not without its limitations. First, it can only be used to measure growth 

rates of luminescent organisms. Long-term cultures also require the use of non-adherent 

strains. These two considerations would limit the range of microorganisms that can be 

potentially cultured in our device.  Second, the operating region that we have identified is 

probably specific to our strain and medium. As such, this region would have to be 

determined afresh for each new strain. Third, bioluminescence is quite sensitive to 

intracellular physiology. The narrow operating region minimizes the chances of changes 

in light intensity per cell in that region, thereby ensuring that growth rate measurements 

are still valid. The operating region, however, is defined by the luminescence signal. If 

luminescence per cell changes, the operating region would correspond to different cell 

densities. Thus, it is possible that over the course of an evolutionary experiment, the 

operating region corresponds to different culture densities, and therefore growth rate 

measurements would be performed at slightly different densities. Nevertheless, given the 

possibility of high frequency, high precision measurements of growth rate over long-

term, it is well-suited for laboratory evolution experiments. 

 

6.3 Synthetic Cooperative System 
 

In Chapter  5, we described the construction of a synthetic obligatory cooperative system, 

termed CoSMO, that consists of a pair of non-mating yeast strains, each supplying an 

essential metabolite to the other strain. Our system falls in the broad class of 

metabolically coupled microbes (Dean-Raymond and Alexander, 1977; Nurmikko, 1956; 

Stams et al., 2006) and provides a solution to several challenges that are present in 
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performing quantitative measurements on natural cooperative systems. By engineering 

the metabolic dependency, we know the exact nature of interaction between the two 

cooperating entities. In contrast, in natural systems, there are difficulties in measuring 

beneficial exchanges and population dynamics (Boucher, 1985). Population dynamics are 

easy to measure as the two CoSMO strains are marked by different fluorescent proteins.  

 

In order to generate viable cooperative systems, we had to engineer mutations that 

overproduce metabolites in addition to the original auxotrophic mutation that creates the 

metabolic dependency (Figures 15, 16).  Our results show that persistent cooperation 

between two populations can be created de novo through a small set of targeted genetic 

modifications.  In fact, persistent cooperation is obtained in our system under a wide 

range of initial conditions (Figures 18,19A) 

 

We then characterized the behavior of the two strains in isolation (Figure 17). The 

monoculture behavior revealed unintended constraints that restrict cooperation, such as 

asymmetry in starvation tolerance and delays in nutrient release until near cell death.  

These constraints were used to derive the requirements for the viability of the system 

which could be summarized as a phase diagram (Figure 18). This highlights the 

importance of the synthetic approach to studying cooperation. Because population 

dynamics could be measured easily, and the nature of the cooperative exchange was 

known, we were able to compute constraints on the viability of the system and verify the 

existence of these constraints experimentally.  
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Long-term population dynamics of CoSMO involves the collapse of the wide range of 

initial population ratios compatible with system viability to a value predicted by nutrient 

supply and consumption (Figure 20).  Stabilization of population ratio irrespective of the 

starting ratio and the dilution regime suggests that CoSMO may be regarded as a single 

cooperative entity with the two partners serving as mutually dependent components.  The 

relative quantities of components are self-adjusted to achieve a stoichiometric balance 

between nutrient supply and nutrient consumption.  Ratio convergence has been observed 

in other cooperative systems (Rai et al., 2000; Yeoh et al., 1968) and it is possible that 

similar mechanisms are important in the evolution of multicellularity where proportions 

of different cooperating cell types are regulated (Mohanty and Firtel, 1999). 

 

Unexpectedly, even in the absence of explicitly engineered mechanisms to stabilize 

cooperation, CoSMO can consistently develop increased ability to survive population 

bottlenecks (Figure 21). This phenomenon may result from changes in one or both strains 

that aid the survival of the strain itself (e.g. through increased starvation tolerance) or the 

survival of its partner (e.g. through increased overproduction or expedited release of 

metabolites). Unlike natural systems in which partner coevolution has rendered the 

evolutionary history of cooperation difficult to retrace (Cook and Rasplus, 2003), 

multiple CoSMO cultures can be initiated and their evolutionary trajectories compared.  

Uncovering the nature of these changes will elucidate the adaptation pathways of 

cooperation and the diversity in adaptive strategies (Shendure et al., 2005).   
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 Despite its artificial origin, CoSMO closely mimics aspects of naturally occurring 

cooperative systems such as exchange of essential nutrients between partners (Kroon and 

van Ginkel, 2001; Nurmikko, 1956; Zientz et al., 2004), death of a fraction of one partner 

population to support the reproduction of the other partner (Cook and Rasplus, 2003; 

Pellmyr and Huth, 1994), and delayed reward for a particular investment. It is therefore a 

useful system to study the evolution of cooperation, especially given the ease with which 

replicate CoSMO cultures can be set up and monitored. 

6.4 Future Directions 
 

We are now poised to use the apparatus described in Chapter  4 to measure mean fitness 

trajectories with strong mutators (cf. section 3.3) and to potentially quantify the 

deleterious effects of mutation accumulation in large populations. In the immediate 

future, we will use the apparatus for long-term cultures with the NS2 strain (wild-type 

mutation rate) for a period of ~1000 generations, and verify that sweeps corresponding to 

beneficial mutations of large effect occur.  

 

We also have some preliminary promising results with long-term cultures in lactose 

minimal media, which also appear to have a precision of~2%, even though independent 

batch cultures show a much higher spread (~4%, Figure 6B). We would like to see 

whether this is a general phenomenon, i.e., the spread in growth rate measurements in 

long-term cultures in minimal media is smaller than the spread obtained by setting up 

independent batch cultures with the same lot of medium. 

 



 

129 
 

We are currently in the process of constructing non-adherent mutator strains of E. coli as 

described in section 2.3. Once this process is complete, we will focus our efforts on the 

strongest mutator. We will first evaluate the reproducibility of growth rates in batch 

cultures followed by recording of mean fitness trajectories in long-term cultures. Our 

initial measurements will be used to verify that independent experiments charting mean 

fitness trajectories are reproducible in the sense that they correspond to successive 

sweeps of beneficial mutations of identical effect in the same order. This reproducibility 

has been documented in glucose-limited chemostats with large populations (Wick et al., 

2002), but it may break down if measurements are made with greater precision and 

frequency. We will then try and align mean fitness trajectories to see if the variability is 

indeed higher in the case of strong mutators. 
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Appendix  A. Temperature Sensitivity of Growth Rates 
 

The temperature dependence of the growth rate ( )λ  of E. coli over the normal range 

(21˚C to 37˚C) can be described by an Arrhenius-type relationship (Ingraham and Marr, 

1996): 

( )RTT μλ −= exp)(  (1) 

where T is the absolute temperature, R is the universal gas constant and μ is the so-called 

temperature characteristic. Typical values of μ  range between 54,000 J/mol and 59,000 

J/mol. The temperature sensitivity of growth rate ( )λTS  can then be calculated as: 

2

1
RTdT

dTS μλ
λλ =≡  (2) 

Extrapolating equation 1 to the temperature range used in Figure 8 and using 500,56=μ

J/mol and 5.311=T K (38.3˚C), we estimate the temperature sensitivity at 38.3˚C to be 

07.0 /˚C or 7%/˚C. 

 

Square-root models describe the temperature dependence of growth rate as follows: 

( )0)( TTbT −=λ  (3) 

where b and 0T  are parameters obtained by fitting the above equation to growth rate data. 

They are better descriptors of growth rate dependence than Arrhenius-type models over a 

broader range of temperatures (Ratkowsky et al., 1982). Values of 0T  for E. coli range 

from 277K to 280K. Here, the temperature sensitivity of growth rate ( )λTS  is simply: 
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0

21
TTdT

dTS
−

=≡
λ

λλ  (4) 

Using 5.311=T K (38.3˚C) and 5.2780 =T K, we estimate the temperature sensitivity at 

38.3˚C to be 06.0 /˚C or 6%/˚C. 
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Appendix  B. Intrinsic Measurement Precision of Growth Rate 
Measurements 

 

B.1 Estimating the contribution of intrinsic measurement precision to 
growth rate observations 

 

Intrinsic measurement precision refers to the precision with which population size is 

measured. In our apparatus, this translates to the precision of measurement of 

bioluminescence. We adopt a conservative approach in estimating intrinsic measurement 

errors as our claim is that the precision in growth rate measurements is not limited by 

these errors.  

 

The raw signal recorded by the multimeter, )(iLraw , can be viewed as a random variable 

and written as 

)()()( iBiLiL trueraw ε++=  (1) 

where )(iLtrue is the true luminescence signal (a fixed value), B is the background signal 

(a fixed value), and )(iε is the intrinsic measurement error (a random variable). Since the 

background signal can be measured during the pre-inoculation phase, we concern 

ourselves with errors in the transformed signal, )()()( iiLiL truetr ε+= . In order to estimate 

statistical properties of )(iε , we divide the data into contiguous, non-overlapping blocks 

of size 150=EN points. Assuming that the dynamics of ))(ln()( iLiX truetrue =  is a linear 

function of time )(it  in each block, we get for each block 

BlkBlktrue itiX βλ += )()(  (2) 
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The subscript Blk is used to denote that these are block-specific parameters. We estimate 

Blkλ  and Blkβ using linear least square regression of ))(ln()( iLiX trtr = against )(it . The 

estimated intrinsic error in each point then becomes 

))(exp()()( BlkBlktr itiLi βλε +−=  (3) 

Denoting the mean block error as Blkμ  , variance of block error as 2
Blkσ , and the geometric 

mean of the luminescence signal in the block as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

∈Blki
tr

E
Blk iX

N
L )(1exp  , we find that 

to a first approximation (Figures 22 and 23),  

0)(1
≈= ∑

∈BlkiE
Blk i

N
εμ  (4a) 

( ) ( ) 21222 9,)(
1

1 mVVCLCi
N Blk

Blki
Blk

E
Blk μμεσ ≈≈−

−
= ∑

∈

 (4b) 

We therefore posit that )(iε ’s are independent random variables with mean 0)( =iεμ and 

variance )()( 22 iLCi true=εσ , which would be the case if the error was dominated by shot 

noise in the detection of photons by the PMT. We shall refer to this assumption as our 

intrinsic error model.  

 

We now compute the contribution of intrinsic errors to slopes calculated from blocks of 

size  SN . Assuming that intrinsic errors are small, the mean ( ))(iXμ  and the variance 

( ))(2 iXσ  of ))(ln()( iLiX trtr = can be approximated as 

( ))(ln)( iLi trueX ≈μ  (5a) 

( ) )(
)(

)(
1)(

2
2

2
2

iL
Ci

iL
i

trtrue
X ≈≈ εσσ  (5b) 
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Once the error in individual data points in the linear regression is known, one can 

estimate the variance in the slope computation ( )2
slpσ  using standard procedures (Press et 

al., 1992) as: 

211
2

1

1
2

2

)()()()()(

)(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

∑∑∑

∑
−+

=

−+

=

−+

=

−+

=

SSS

S

NI

Ii
tr

NI

Ii
tr

NI

Ii
tr

NI

Ii
tr
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iLC
σ  (6) 

 

Based on simulations performed with the intrinsic error model presented above, we find 

that the true slope value is within slpσ2± in about 95% of the cases (see section 0). We 

therefore use slpσ4 as an estimate of the expected spread in growth rate measurements 

resulting from intrinsic measurement errors. Figure 25C shows how the expected spread 

varies as a function of geometric mean luminescence for a block size of 250=SN points, 

the block size used in Figures 6B, 6D, 6F,7B, and 8B. The observed spread is larger than 

the estimated value, implying that growth rate measurement precision is not limited by 

intrinsic measurement errors.  In the case of Figures  7D, 8D and 14B, where at least 450

points were used to compute the generation time, the spread expected from intrinsic 

measurement errors is 0.3%, while the observed spread in Figure 14B is 2%, and the 

overall precision is ~2.7%. 
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B.2 Simulated Growth Curves 
 

In order to verify the estimation procedure for intrinsic errors, we generated synthetic 

growth curve data using simulations which followed the intrinsic error model presented 

above. In the simulations,  

30010,)(,2)( )(
0 ≤≤⋅== iiitLiL gentit

true τ  (7) 

where )(iLtrue is the true luminescence signal at time )(it , 1.00 =L mV is the 

luminescence signal at time 0)0( =t , 5.18=gent  min is the generation time and 4.3=τ  s 

is the measurement sampling interval. These parameters were chosen as they are 

representative of the growth curves presented in Figure 7. Simulated growth curves were 

generated according to the following equation:  

( ))()()1()( iLPoissCiLCiL truetruetr ⋅+−=  (8) 

where )(iLtr is the measured luminescence signal, ( ) 219 mVVC μ= is defined in 

equation 4, and )(LPoiss is an independent deviate drawn from a Poisson distribution 

with mean L . Consequently, the intrinsic measurement error in the thi data point is 

( )( ))()()( iLiLPoissCi truetrue −=ε  and its mean and variance are 0)( =iεμ  and 

)()( 22 iLCi true=εσ respectively.  

 

A total of 500simulated growth curves were generated. For each simulated growth curve, 

we first performed the procedure for estimating the statistics of )(iε as explained in 

section B.1. The luminescence time series )(iLtr was divided into non-overlapping blocks 

of size 150=EN points, and the parameters Blkμ (mean block error) and Blkσ  (standard 
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deviation of block error) as defined in equation 4 were computed for each block. Blkσ was 

fitted to a power law of BlkL (the geometric mean of the luminescence signal in the block) 

as follows: 

( ) ( ) CLBlkBlk lnlnln +⋅≡ασ  (9) 

and the parameters α and C were estimated by linear least squares regression. 

 

Figure 24 shows the distribution of the relative error in the estimated parameters C and 

α  in the 500 simulated growth curves. Relative error is defined as (Estimated Parameter 

Value – True Parameter Value)/(True Parameter Value). We find that both parameters are 

estimated with an accuracy of %8~ , implying that if the intrinsic error model is taken to 

be true, then the estimation procedure described in section B.1 yields reasonable values 

for the two parameters.  

 

We also used the simulated growth curves to evaluate the contribution of intrinsic errors 

to the measurement of growth rates. For this, we computed slope curves as described in 

section 2.1 by dividing the time series into overlapping blocks of size 250=SN  points 

with 25=SlideN points. Since the true generation time is given by gent , we can compute 

the difference between the estimated ( )Blkλ  and true slope ( )gent)2ln( . In Figure 25A, the 

relative error (difference between estimated and true value scaled to the true value) is 

plotted. Using equation 6, we can estimate the contribution of intrinsic measurement 

errors to slope computations ( )2
slpσ .Figure  25B shows that the difference between the 

estimated and true slopes ( )genBlk t)2ln(−λ  lies within slpσ2±  in %95~ of the cases 
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across the entire range of the luminescence signal. slpσ4  is therefore a good estimate of 

the expected spread in the growth rate measurements resulting from intrinsic 

measurement errors. Finally, in Figure  25C, the expected relative spread (estimated 

spread in slope measurement scaled to the true value of the slope, i.e., ( )genslp t)2ln(4σ )  

is plotted as a function of geometric mean luminescence ( )BlkL . This curve gives an 

estimate of the spread in growth rate measurements that should be observed across 

multiple growth curves on account of intrinsic measurement errors for a block size of 

250=SN  points. 
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Figure 22. Estimating means of intrinsic measurement errors. Growth curves 

depicted in Figure 7 were divided into non-overlapping blocks of size 150=EN points, 

and mean block error ( )Blkμ  was plotted as a function of BlkL , the geometric mean of the 

luminescence of the block (see section B.1). Colors used in this plot are the same as those 

used in Figure 7 and indicate different lots of media used. The horizontal, dashed, black 

line indicates a mean of zero.  
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Figure 22. Estimating means of intrinsic measurement errors. 
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Figure 23. Estimating standard deviations  of intrinsic measurement errors. Growth 

curves depicted in Figure 7 were divided into non-overlapping blocks of size 150=EN

points, and the standard deviation of block error ( )Blkσ  was plotted as a function of BlkL , 

the geometric mean of the luminescence of the block (see section B.1). Open circles 

represent computed block parameters, whereas solid lines are power law fits as indicated 

in each panel. Colors used in this plot are the same as those used in Figure 7 and indicate 

different lots of media used.  
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Figure 23. Estimating standard deviations  of intrinsic measurement errors. 
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Figure 24. Accuracy of estimation of parameters C and α  in simulated growth 

curves. Simulated growth curves were generated as described in section 0, and divided 

into non-overlapping blocks of size 150=EN points. For each simulated curve, the 

standard deviation of block error ( )Blkσ  was fitted to the power law, 

( ) ( ) CLBlkBlk lnlnln +⋅≡ασ . The estimated values ofC and α were compared to their true 

values ( ( ) 219 mVVμ and 5.0  respectively) and the histogram of the relative error across 

all simulated growth curves is depicted. For both parameters, the accuracy of the 

estimation process is around 8%.  
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Figure 24. Accuracy of estimation of parameters C and α  in simulated growth 
curves. 
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Figure 25. Intrinsic measurement error in simulated growth curves. Simulated 

growth curves were generated as described in section 0, and divided into overlapping 

blocks of size 250=SN points with 25=SlideN  points. Slope curves were computed for 

each simulated growth curve as described in section 2.1. Observed error is the difference 

between the estimated slope ( )Blkλ  and the true slope ( )gent)2ln(  . (a) Relative error 

(ratio of observed error to true value) plotted as a function of geometric mean 

luminescence, BlkL . (b) Ratio of observed error and estimated standard deviation in slope 

measurements ( )slpσ  as a function of geometric mean luminescence. The solid horizontal 

black lines represent scaled deviations of 2± . Around 95% of the slope estimates fall 

within these two lines. (c) Estimated spread scaled to the true slope value 

( )( )genslp t)2ln(4σ  as a function of geometric mean luminescence ( )BlkL . This curve 

gives an estimate of the spread in growth rate measurements that should be observed 

across multiple growth curves on account of intrinsic measurement errors for a block size 

of 250=SN  points. 
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Figure 25. Intrinsic measurement error in simulated growth curves. 
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Appendix  C. Definitions and Experimental Values of 
Parameters Used in Chapter  5 

 

Table 2. Parameter values used in Chapter  5. 
 

*: Values used in calculations. 

[i] Data from Figure 17. 

Symbol Definition Value Range 
(Experimental) Value*

TI [i] Time of the end of residual growth 10 hours 10 

TR [i] Delay in ܴ՜௅
՚஺‘s entry into death phase after the 

onset of starvation 60-80 hours 70 

DR [ii] Death rate of ܴ՜௅
՚஺ in the absence of adenine after 

time TR 0.007-0.04/hour 0.01 

DY [ii] Death rate of  ՜ܻ஺
՚௅ in the absence of lysine 

averaged from time TI to TR 0.054/hour 0.054 

DYLate 
[ii] 

Death rate of  ՜ܻ஺
՚௅ in the absence of lysine after 

time TR 0.02/hour 0.02 

As [iii] Adenine supplied per ՜ܻ஺
՚௅  cell upon death 3 fmole/cell 3 

Ls [iii] Lysine supplied per ܴ՜௅
՚஺ cell upon death 15 fmole/cell 15 

GmaxY 
[iv] 

Maximum growth rate of ՜ܻ஺
՚௅ when lysine is in 

excess 0.31/hour 0.31 

VmaxL 
[iv] 

Maximum lysine uptake rate per ՜ܻ஺
՚௅ cell when 

lysine is in excess 
2.4 

fmole/cell/hr 2.4 

Ac-fed [v] Adenine consumed to produce a fed ܴ՜௅
՚஺ cell 

when adenine is in excess 1 fmole/cell  

Lc-fed [v] Lysine consumed to produce a fed ՜ܻ஺
՚௅  cell when 

lysine is in excess 5.4 fmole/cell  

IR Fold-increase in cell density during residual 
growth of ܴ՜௅

՚஺ 1-2 1.5 

IY Fold-increase in cell density during residual 
growth of  ՜ܻ஺

՚௅ 2-4 3 

Ac [vi] Adenine consumed in order to produce a starving 
ܴ՜௅

՚஺ cell 0.5-1 fmole/cell 1 

Lc [vi] Lysine consumed in order to produce a starving 
 ՜ܻ஺

՚௅ cell 
1.4-2.7 

fmole/cell 2 

KmL
[vii] Michaelis-Menten half-saturation constant of 

lysine transporter 20-80 μM 50 
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[ii] Death rates were measured during the specified time windows, and were found to be 

density-dependent.  DR=0.01 is the average of 0.007, 0.009, and 0.018/hour, obtained 

over a range of initial cell densities varying from 0.05 to 1.1×106 cells/ml.  DY and DYLate 

were obtained at initial cell densities ranging from 0.28 to 1.2×106 cells/ml. 

[iii] The kinetics of metabolite release approximately coincided with that of cell death 

(Figure 17B).  Thus, we assume that a starving cell releases a fixed amount of the 

overproduced metabolite into the medium upon death.  Metabolite supplied per dead cell 

was estimated from Figure 17B by dividing the final concentration of released metabolite 

by the final population density of dead cells. 

[iv] Figure 26. 

[v] When adenine was present in excess, the maximum uptake rate of adenine VmaxA was 

0.5 fmole/cell/hr and the maximum growth rate of ܴ՜௅
՚஺ cells was GmaxR = 0.37/hr 

(methods of measurement similar to those in Figure 26).  Thus, it took Ac-fed = VmaxA X 

(ln2/ GmaxR) ~1 fmole adenine to produce a fed ܴ՜௅
՚஺  cell, where ln2/ GmaxR was the 

doubling time of ܴ՜௅
՚஺ . Similarly, it took Lc-fed = VmaxL X (ln2/ GmaxY)= 5.4 fmole lysine to 

produce a fed   ՜ܻ஺
՚௅ cell.   

[vi] Since one fed  ՜ܻ஺
՚௅ cell gave rise to IY lysine-starved  ՜ܻ஺

՚௅ cells during residual growth, 

it took Lc= Lc-fed /IY amount of lysine to produce a starving  ՜ܻ஺
՚௅ cell.  Similarly, it took 

Ac=Ac-fed /IR amount of adenine to produce an adenine-starved ܴ՜௅
՚஺  cell. 

[vii] (Garcia and Kotyk, 1988; Sychrova and Chevallier, 1993). 
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Figure 26. Measurements of GmaxY and VmaxL.  ՜ܻ஺
՚௅ cells were grown in SD 

supplemented with lysine.  Time zero was arbitrarily chosen in early exponential phase.  

Plots show the population density of  ՜ܻ஺
՚௅  (left panel, green circles) and the 

concentration of lysine remaining in the medium (right panel, brown circles) over time.  

The least-square-fitting equation for the left panel is ܻ ൌ 0ܻ݁௧·ீ೘ೌೣೊ (dotted line) and 

yields the initial population density Y0 and the maximum growth rate GmaxY.  The least-

square-fitting equation for the right panel is ܮ ൌ 0ܮ ൅

௠ܸ௔௫௅ 0ܻሺ1 െ ݁௧·ீ೘ೌೣೊሻ ⁄௠௔௫௒ܩ  (dotted line), which is the solution to the differential 

equation ௗ௅
ௗ௧

ൌ െ ௠ܸ௔௫௅ܻ ൌ െ ௠ܸ௔௫௅ 0ܻ݁௧·ீ೘ೌೣೊ, and yields the initial lysine concentration 

L0 and the maximum lysine uptake rate per cell VmaxL.    
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Figure 26. Measurements of GmaxY and VmaxL.
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