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Cyclin dependent kinases (CDKs) are at the heart of the cell cycle.  Throughout 

the cycle, these complexes modify many proteins, changing various aspects of 

their regulation (stability, localization, etc.).  As cells exit mitosis, the CDK that 

has driven many of the cell cycle processes is inhibited and degraded, allowing 

many of the kinase substrates to return to their unphosphorylated state.  This 

assures that each subsequent cell cycle is begun in the same naïve state, again 

ready for CDK-dependent regulation.  The studies in this thesis focus on two 

mechanisms by which this restoration is accomplished in the budding yeast, 

Saccharomyces cerevisiae: (1) a transcriptional program that transcribes many of 

the genes required for physically dividing the mother and daughter cells and 

beginning the next round of cell division and (2) a phosphatase that specifically 

removes the phosphates from sites modified by CDK during exit from mitosis.   

 

Two transcription factors, Swi5 and Ace2, transcribe many of the genes required 

for physically dividing the mother and daughter cells and beginning the next 

round of cell division.  Previously our lab has shown that locking mitotic cyclin 

levels, by inducing transcription of an undegradable form of the protein, causes 

dose-dependent delays in different cell cycle events.  The first chapter addresses 

the contribution of the transcriptional program to this phenomenon.  Interestingly, 

in these cells where mitotic cyclin levels were sustained, deletion of the 



 

       

transcription factor Swi5 increases the mitotic cyclin inhibition, specifically as it 

relates to budding and cytokinesis.   

 

Importantly, when phosphorylated by CDK, Swi5 is excluded from the nucleus, so 

in the second chapter, we investigate its localization when mitotic cyclin levels 

are locked.  Swi5 still enters the nucleus.  In fact in some cells, Swi5 enters the 

nucleus several times before the cell cycle advances.  Given previous studies 

from our lab showing that the release of Cdc14 phosphatase also oscillates 

under these conditions, the reentry of Swi5 may support a model that a 

kinase/phosphatase balance allows cell cycle progression in these cells. 

 

All this suggests that Swi5 promotes the transcription of genes important for 

promoting cytokinesis and budding despite high mitotic cyclin levels.  In the third 

chapter, we begin to assess the contribution of specific targets of the mitotic exit 

transcriptional program to the mitotic cyclin-dependent regulation of specific cell 

cycle events. 

 

Finally, Cdc14, a phosphatase that removes the phosphate groups added by 

CDKs, is sequestered for most of the cell cycle but released from the nucleolus 

during the end of mitosis.  In the fourth chapter, we examine the physiological 

relevance of these dephosphorylation events on novel targets of the Cdc14 

phosphatase. 
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INTRODUCTION 

 

A cell is the basic unit for all living things, and all cells are formed from existing 

cells.  These principles make up the cell theory developed in the 1800s 

(Schwann and Schleiden 1847).  In order to produce a new cell, the original must 

grow, replicate key cell components, and produce the machinery that ensures 

proper distribution of these components and divides it from its progeny.  These 

processes are highly regulated and conserved across eukaryotes due to their 

fundamental importance to the propagation of life itself.   

 

Some of the important components of the cell, including many organelles and 

proteins, are distributed randomly throughout the cell in relatively high copy 

numbers. Therefore, there is no need to control their distribution during cell 

division.  However some components present in lower copy numbers, especially 

the genetic material, DNA, must be carefully distributed to ensure the viability of 

the two resulting progeny cells.  A cell begins the process − called the cell cycle − 

with one copy of its DNA, and it must be duplicated accurately and divided with 

fidelity between the two resulting cells.   

 

Chronology of the cell cycle 

In further detail, the cell cycle begins with a commitment to division during a 

period referred to as the first gap phase (G1); in yeast, this point of commitment 
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is called START (Hartwell 1974) and ensures that before committing to a 

complete cell cycle the cell has the appropriate nutrients, size, and external cues, 

such as freedom from mating signals in yeast (Cross 1995).  

 

Once the commitment to divide has been made, cells will replicate their DNA 

during the synthetic (S) phase.  The replication begins at several sites along the 

cell’s chromosomes referred to as replication origins.  The original DNA is 

carefully linked to the second copy, or sister chromatid, using a protein linker 

cohesin.  This linkage allows orderly and equal separation of the chromatids to 

the two progeny cells during mitosis (see below).  In addition to DNA, the 

duplication of another low copy-number component is required during G1 and S 

phases: the centrosome in animal cells or spindle pole body (SPB) in yeast.  This 

organelle organizes the microtubules in the cell in order to form the spindle in 

mitosis. 

 

Cell growth is usually continuous throughout the cell cycle (Hereford and Hartwell 

1974); however, in the budding yeast the growth is not evenly distributed.  At a 

time coincident with DNA replication, a shift in growth occurs towards a “bud” 

which becomes the new daughter cell.  At this point, the mother stops expanding 

with all growth instead directed to the nascent bud site.  The resulting daughter 

will generally be smaller than its mother at the time of cell division.  A lag in the 

subsequent G1 in the daughter cell cycle will allow it to reach a homeostatic size 
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before committing itself to the next cell cycle (Di Talia et al. 2007, Hartwell and 

Unger 1977, Johnston et al. 1977).  

 

After S phase, cells pass through a second gap phase (G2) that allows for 

several regulatory checkpoints and then enter mitosis.  Mitosis comprises (1) the 

division of the replicated genome into equal parts to both mother and daughter 

cells and (2) the physical separation of the cells (cytokinesis).  During the early 

stages of mitosis, the spindle is formed by the separation of the two spindle pole 

bodies, and the chromosomes are condensed, attached to both spindle pole 

bodies, and prepared for separation.  Unlike in animal cells, the nuclear envelope 

surrounding the DNA does not break down in budding yeast during mitosis; 

therefore, the spindle pole bodies remain embedded in the nuclear membrane.  

To segregate the sister chromatids, one spindle pole goes to each cell body 

during anaphase. Mitotic exit includes disassembly of the spindle, cytokinesis, 

and some preparatory steps for the subsequent cell cycle (including reloading 

origins of replication).  

 

Oscillations in CDK activity drive the cell cycle. 

This orderly progression of events during the cell cycle is primarily controlled by 

one enzymatic activity:  the serine and threonine directed cyclin-dependent 

kinase (CDK).  In budding yeast, a single essential CDK (Cdc28) is responsible 
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for driving the entire cell cycle and is homologous to Cdk1 in other organisms 

(Beach et al. 1982, Hartwell et al. 1974, Lee M. G. and Nurse 1987). 

 

CDK activity is dependent on binding to its partner cyclins, originally discovered 

in sea urchin eggs through their periodic oscillation of protein level during the cell 

cycle (Evans et al. 1983).  The synthesis and degradation of cyclins is tightly 

regulated, leading to these characteristic oscillations.  During the time when they 

are present, cyclins pair with a CDK to phosphorylate substrates in order to 

systematically complete the events of the cell cycle.  In addition to cyclin binding, 

the CDK activity in a cell depends on binding of CDK inhibitors and inhibitory 

phosphorylation (see below).  The cell cycle begins in a low CDK activity state, 

but as the cell progresses, cyclins are sequentially synthesized to coordinately 

activate CDK.  

 

Cyclins, CDKs, and many of the mechanisms governing their regulation of the 

cell cycle are highly conserved across eukaryotes; however, some details vary.  

Specifically in the budding yeast, nine cyclin genes interact with Cdc28 during 

different parts of the cell cycle, with three being termed G1 cyclins (CLN1-3) and 

six termed “B-type” cyclins (CLB1-6) (Bloom and Cross 2007a).  Temporally, 

Cdc28 is first activated by the G1 cyclins to start the cell cycle, allowing the 

emergence of the nascent bud through polarized growth, the duplication of the 

spindle pole body, and the induction of later B-type cyclin expression (Cross and 
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Tinkelenberg 1991).  Next, the S phase B-type cyclins Clb5 and Clb6 ensure 

efficient initiation of DNA replication (Epstein and Cross 1992, Schwob and 

Nasmyth 1993).  Finally, the mitotic cyclins Clb1-4 are responsible for 

progression into mitosis, including spindle morphogenesis, the switch to isotropic 

growth, and shutting off the G1 cyclins (Amon et al. 1993).  Typically, the cyclins 

are destroyed or inhibited during the transition out of mitosis (see below), 

returning the cell to the low CDK activity state with which it began the cycle.   

 

Except for CLN3, the cyclins are expressed in paralogous pairs.  This apparent 

redundancy of the cyclins is probably due to the whole genome duplication event 

that took place in budding yeast (Kellis et al. 2004).  Because the cyclins all work 

through the activation of Cdc28, the need for specific cyclins is uncertain.  In both 

budding and fission yeast, a single B-type cyclin can replicate DNA and drive 

mitosis: Clb2 and cdc13, respectively (Fisher and Nurse 1996, Hu and Aparicio 

2005).  Cells with only B-type cyclins Clb1-2 (clb3-6Δ) are inviable but can be 

rescued by expressing CLB2 earlier under the CLB5 promoter and removing the 

inhibition of early expressed Clb2 by deleting the inhibitory kinase Swe1 (Hu and 

Aparicio 2005).  Additionally, cells can survive without all three G1 cyclins when 

either Clb5 is overexpressed or a stoichiometric inhibitor of B-type cyclin/CDK 

complexes, Sic1, is deleted (Epstein and Cross 1992, Tyers 1996).    
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Despite these redundancies, there are instances when a cyclin/CDK activity 

cannot fully substitute for that of another cyclin/CDK (Miller M. E. and Cross 

2001).  For instance when CLB2 is expressed early under the CLB5 promoter, 

DNA replication initiation is less robust (Cross et al. 1999).  This is due to 

differences in cyclin specificities for targets; Clb5/CDK phosphorylates a subset 

of its substrates through interactions with its hydrophobic patch (Cross and 

Jacobson 2000).  By contrast, Clb2/CDK shows no highly specific substrates but 

instead has a higher intrinsic activity, therefore phosphorylating a broader 

number of targets (Loog and Morgan 2005). 

 

Transcriptional regulation in the cell cycle 

The cyclins are not the only cell cycle regulators under tight transcriptional control 

during the cell cycle.  About 15% of the budding yeast genome displays 

significant periodicity in transcription during the cell cycle (Spellman et al. 1998).  

Periodic transcription of cell cycle genes may be a useful mechanism to enforce 

the order of cell cycle events, to improve the coupling of related processes, or 

may simply be a method of conserving resources.   

 

There are many overlapping waves of transcriptional activation during the 

budding yeast cell cycle.  In G1, two related transcription factors with dissimilar 

target sequences, Swi4-Swi6 (SBF) and Mbp1-Swi6 (MBF), coordinately activate 

~200 genes (Koch and Nasmyth 1994, Spellman et al. 1998).   These genes 
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include the G1 cyclins CLN1 and CLN2 , the S phase cyclins CLB5 and CLB6, as 

well as genes required for budding, DNA replication, and SPB duplication 

(Spellman et al. 1998, Wittenberg and Reed 2005).  Cln2 reinforces its 

transcription through positive feedback, which commits the cell to enter the next 

cell cycle (Cross and Tinkelenberg 1991, Dirick and Nasmyth 1991, Skotheim et 

al. 2008). 

 

Cln1 and Cln2 help initially activate the mitotic cyclin Clb2/CDK (Schwob et al. 

1994, Tyers 1996, Verma et al. 1997), which activates a transcription factor 

containing Mcm1, Fkh2, and Ndd1 during G2 and mitosis (Amon et al. 1993, 

Koranda et al. 2000, Kumar et al. 2000, Pic et al. 2000, Zhu et al. 2000).  The 

targets (~35 genes) of this complex include CLB2 itself (triggering a positive 

feedback loop), many mitotic regulators, and the transcription factors Swi5 and 

Ace2 (Althoefer et al. 1995, Amon et al. 1993, Cho et al. 1998, Lydall et al. 1991, 

Spellman et al. 1998).  

 

At the end of mitosis, two groups of genes are activated, regulated by either 

Mcm1 or the combination of Swi5 and Ace2.  (1) Mcm1 binds a palindromic 

sequence called an early cell cycle box (ECB) (McInerny et al. 1997); however 

for most of the cell cycle this is inhibited by the presence of repressors Yox1 and 

Yhp1 (Darieva et al. 2010, Pramila et al. 2002).  Mcm1 targets include SWI4 and 

CLN3, important activators of G1/S transcription (Pramila et al. 2002).  (2) Swi5 
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and Ace2 enter the nucleus (Moll et al. 1991) and promote the transcription of 

(~30) genes including regulators of mitotic and exit and G1 (Di Talia et al. 2009, 

Knapp et al. 1996, O'Conallain et al. 1999, Piatti et al. 1995, Toyn et al. 1997).  

While Swi5 and Ace2 bind the same sequences in vitro and share many targets, 

they differ in their regulation (e.g. localization, timing of nuclear entry, and 

interactions with co-activators and co-repressors) and are each uniquely 

responsible for activating a subset of targets (Dohrmann et al. 1996, Dohrmann 

et al. 1992).  For example, Swi5 is solely responsible for the transcription of the 

HO endonuclease because of its unique interaction with a homeodomain protein 

Pho2 (Dohrmann et al. 1992, McBride et al. 1999, Nasmyth et al. 1987).  

Alternatively, Ace2 is restricted to the daughter nucleus by phosphorylation of its 

distinct nuclear export sequence by a daughter-restricted kinase and is uniquely 

responsible for the transcription of the chitin synthase gene CTS1 (Colman-

Lerner et al. 2001, Dohrmann et al. 1992, Jansen et al. 2006, Jensen et al. 2000, 

Mazanka et al. 2008, Weiss et al. 2002).  More detail about the regulation of 

these transcription factors is included in subsequent relevant chapters. 

 

Much of this transcriptional network is regulated in part by the activity of CDK.  In 

addition to the regulation mentioned above, in early G1, the transcription factor 

SBF is repressed by Whi5; phosphorylation of Whi5 by Cln3/CDK in late G1 

leads to export form the nucleus and SBF activation (Costanzo et al. 2004, de 

Bruin et al. 2004, Jorgensen et al. 2002, Zhang J. et al. 2002).  Mitotic cyclins 
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inactivate SBF and MBF, thus shutting off G1/S transcription (Amon et al. 1993, 

de Bruin et al. 2006, Siegmund and Nasmyth 1996).  G2/M-specific transcription 

is activated by the Clb2/CDK dependent phosphorylation of Ndd1, which converts 

Fkh2 from a transcriptional repressor to an activator (Reynolds et al. 2003). 

 

However, transcriptional oscillation can occur in the absence of CDK oscillation.  

Budding yeast with all six B-type cyclins deleted (clb1-6Δ) activate most (~70%) 

cell cycle regulated genes efficiently, despite their inability to replicate DNA or 

enter mitosis (Orlando et al. 2008).  Transcription factors, in addition to activating 

the effectors of cell cycle events, also activate other transcription factors that 

drive subsequent phases, thus pushing the cell cycle forward (many examples 

are noted above, including Mcm1-Fkh2-Ndd1 promotion of Swi5 and Ace2 

transcription) (Lee T. I. et al. 2002, Pramila et al. 2006, Simon et al. 2001).  This 

leads to a CDK-independent persistence of transcriptional oscillation.      

 

Mitotic exit: Inactivation of mitotic cyclins and release of Cdc14 

phosphatase 

As cells exit mitosis, the cyclin dependent kinase (CDK) activity that has driven 

many of the cell cycle processes is inactivated, allowing many of the kinase 

substrates to return to their dephosphorylated state.   

 



  - 10 -   

During mitotic exit, mitotic cyclins are degraded and inhibited.  Degradation 

occurs in two phases, both of which are dependent on the Anaphase Promoting 

Complex (APC) (Irniger et al. 1995, King et al. 1995).  The APC is a ubiquitin 

ligase, which when activated by one of two differentially regulated activators 

(Cdc20 or Cdh1), promotes the two phases of cyclin destruction (Prinz et al. 

1998, Surana et al. 1993, Yeong et al. 2000).  Deleting three regions in the major 

mitotic cyclin Clb2 responsible for its APC-mediated destruction (two ken boxes 

and a destruction box) render it undegradable (referred to as CLB2kd below) 

(Pfleger and Kirschner 2000, Wasch and Cross 2002).   

 

Inhibition of mitotic cyclins is achieved by both a stoichiometric inhibitor Sic1 and 

inhibitory phosphorylation by the Swe1 kinase (Hu and Aparicio 2005, Schwob 

and Nasmyth 1993, Schwob et al. 1994); however, both of these inhibitory 

mechanisms are themselves inhibited by mitotic cyclin/CDK activity (Jaspersen 

et al. 1999, Verma et al. 1997, Zachariae et al. 1998).  Therefore, their inhibitory 

role may be restricted to cell cycle periods when the CDK activity levels are low.     

 

In addition to the inactivation of mitotic cyclins, a counteracting serine and 

threonine phosphatase, Cdc14, promotes both the downregulation of CDK 

activity and reversal of previous CDK-dependent phosphorylations (Bloom and 

Cross 2007b, Visintin R. et al. 1998).  Cdc14 contributes to the mechanisms 

described above for CDK inactivation by dephosphorylating three key substrates:  
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(1) Cdh1, activating the APC, (2) Swi5, a transcription factor, therefore 

upregulating transcription of the CDK inhibitor SIC1, and (3) Sic1 itself, 

preventing its ubiquitin-dependent degradation (Jaspersen et al. 1998, Schwab et 

al. 1997, Visintin R. et al. 1998).  Cdc14 and CDK share a preference for 

phospho-Ser/Thr-Pro motifs, suggesting that Cdc14 may directly reverse some 

CDK-dependent phosphorylation events (Gray et al. 2003).    

 

The Cdc14 phosphatase is regulated primarily by localization; it is sequestered 

for most of the cell cycle in the nucleolus by a scaffolding protein, Net1 (Shou et 

al. 1999, Traverso et al. 2001, Visintin R. et al. 1999).   Two signaling pathways 

converge at the end of the cell cycle to release Cdc14 from the nucleolus and 

allow it to dephosphorylate targets: Cdc14 early anaphase release (FEAR) and 

Mitotic Exit Network (MEN).  During early anaphase, FEAR triggers a qualitatively 

minor release of Cdc14, which remains nuclear, accumulates at SPBs and is not 

sufficient for mitotic exit (Shou et al. 1999, Stegmeier et al. 2002, Visintin R. et al. 

1999, Visintin R. et al. 1998).  When the daughter bound SPB reaches the bud, it 

allows the activation of MEN (Bardin et al. 2000), thus coupling Cdc14 release 

and cell cycle progression to proper spindle formation and nuclear segregation.    

  

How are order and timing preserved in the cell cycle? 

Due to its oscillation during the cell cycle and its role in many of the discrete 

steps involved, CDK activity is in a unique position to possibly enforce the 
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necessary order of cell cycle events.  In Xenopus laevis extracts, Cyclin B is 

necessary and sufficient for early mitotic events; however, an undegradable form 

of the protein blocks late mitotic events (Murray and Kirschner 1989, Murray et al. 

1989).  In budding yeast, mitotic cyclins are required for mitotic entry (Fitch et al. 

1992, Surana et al. 1991).  Overexpression of the mitotic cyclin Clb2 inhibits 

mitotic exit (Shirayama et al. 1999, Surana et al. 1993, Thornton and Toczyski 

2003, Wasch and Cross 2002), suggesting that CDK inhibition is required for 

mitotic exit.  

 

Depending on the exact levels of CDK activity required to promote mitotic entry 

and block mitotic exit, the normal oscillation of CDK activity could enforce the 

order of mitotic entry and mitotic exit (King et al. 1994, Morgan David O 2007, 

Morgan D. O. and Roberts 2002, Murray and Kirschner 1989, Stern and Nurse 

1996, Zachariae and Nasmyth 1999).  Specifically, if a high level of CDK activity 

is required for mitotic entry and mitotic exit requires a relative drop in CDK 

activity, then the normal oscillation of CDK activity would necessitate that mitotic 

entry occur before mitotic exit.  This is termed a “ratchet” model referring to the 

restriction of motion in a single direction, and accordingly, temporal direction of 

cell cycle events could be maintained by the oscillation of CDK activity.   

 

In the example of DNA replication, a ratchet model appears capable of ordering 

events and restricting the sequence to once and only once per cell cycle.  In late 
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mitosis and early G1, the pre-replicative complex (pre-RC) is formed at origins of 

replication; this step is referred to as licensing.  Initiation, or firing, of origins 

follows in S phase.  The CDK regulation of these two steps enforces their order 

and ensures they occur once and only once per cell cycle.  In the early cell cycle 

when CDK is low, pre-RCs are allowed to form on origins.  Later, CDK activity 

inhibits the formation of pre-RCs through several mechanisms and components 

(Diffley et al. 1994, Nguyen et al. 2001, Piatti et al. 1995).  Licensed origins, 

however, require CDK activity to initiate replication (Schwob et al. 1994, Tanaka 

et al. 2007, Zegerman and Diffley 2007).  Indeed, CDK complexes localize to 

previously fired origins in order to block pre-RC formation and to prevent 

rereplication of DNA (Wilmes et al. 2004, Wuarin et al. 2002).    

 

A ratchet model for ordering the events of mitosis by the rise and fall of CDK 

activity relies significantly on the quantitative levels of CDK activity required to 

promote mitotic entry and inhibit mitotic exit.  For example, mitotic entry cannot 

be initiated by a CDK level lower than that required to block mitotic exit.  

Additionally, mitotic exit cannot be inhibited by levels above that of the entry 

threshold.  Therefore, we set out to measure the amount of CDK activity 

necessary for these events to determine if a ratchet model could order the events 

of mitosis (see below).   
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Sustained mitotic cyclin causes dose-dependent delays in mitotic exit 

events  

The requirement for mitotic cyclin activity to enter mitosis and the inhibition of exit 

from mitosis by overexpressed mitotic cyclin support a ratchet where the 

directional order is enforced by the rise and fall of CDK activity during each cell 

cycle (Nasmyth 1996, Stern and Nurse 1996, Zachariae and Nasmyth 1999).  

Through experiments led by Benjamin Drapkin (Drapkin et al. 2009), we 

developed a method to produce a fixed level of stable mitotic cyclin in cells and 

follow the effect during mitotic exit.  The protocol involves arresting cells in 

metaphase; briefly inducing the transcription of a fluorescently tagged, stable 

mitotic cyclin (Clb2kd-YFP); and following individual cells during release to assay 

their ability to exit mitosis [Figure Intro-1].  The level of mitotic cyclin sustained 

during the release in individual cells was compared to the average peak mitotic 

cyclin observed in a synchronous cell cycle so as to put the value in a 

physiological context.   

   

Using this method, a key prediction of the ratchet model was tested: the peak 

level of CDK activity in the cell cycle must inhibit exit from mitosis.  Otherwise, 

the CDK level required for promoting mitotic entry cannot be higher than the level 

necessary for prohibiting mitotic exit because these cells all enter mitosis with at 

maximum the peak level of mitotic cyclin.  By comparing the level of sustained 

mitotic cyclin in individual cells to their ability to execute events of mitotic exit, 
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Figure Intro-1:  Schematic of protocol (courtesy of Ben Drapkin).   
(1) Budding yeast cells are arrested in metaphase using Cdc20 depletion with a 
methionine repressible MET3-CDC20 allele in a cdc20 mutant background.   

(2) Using an introduced hormone-inducible allele, cells are pulsed with an 
undegradable version of the mitotic cyclin Clb2 (CLB2kd-YFP).  (3) Cells are then 
synchronously released by removal of methionine from the media, and their 
fluorescent signal (representing the amount of stable mitotic cyclin present) and 
their ability to complete individual events is assayed. 
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inhibitory concentration curves were generated [Figure Intro-2B].   

 

Cells with mitotic cyclin levels sustained at the peak of a normal cell cycle (and 

significantly above) were capable of the events assayed (including spindle 

disassembly, cytokinesis, and rebudding [Figure Intro-2A]).   We therefore 

conclude that a simple ratchet model of CDK activity is insufficient for ordering 

the events of mitosis.  Further experiments, primarily by Ying Lu, showed that the 

CDK-opposing phosphatase Cdc14 is periodically released in these cells (Lu and 

Cross 2010).  This led us to propose that the kinase-phosphatase balance is the 

important metric for cell cycle progression.  

 

These experiments additionally revealed that maintaining physiological levels of 

CDK activity caused dose-dependent delays in the events of mitotic exit [Figure 

Intro-2B].  For example, while only twenty-five percent of cells with peak (100%) 

mitotic cyclin sustained can complete cytokinesis at 60 minutes after release, the 

number increases to fifty percent at 90 minutes.  Each event had a different delay 

caused by the sustained mitotic cyclin.  This will be discussed further in Chapter 

One.   Additionally, cells with sustained mitotic cyclin (at levels less than 50% 

peak) exhibited defects in spindle assembly in the succeeding cell cycle (data not 

shown), suggesting an alternative requirement for CDK inhibition.   
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Figure Intro-2:  For events of mitotic exit, locking mitotic cyclin levels 
causes dose-dependent delays (courtesy of Ben Drapkin).  (A) Schematic 
representing the events assayed: spindle breakdown (blue), cytokinesis initiation 
(purple), cytokinesis completion (orange), and rebudding (green).  (B) Thresholds 
(colors as in (A)) for individual events at 45, 60, and 90 minutes post-release with 
the pulse expressed as a percentage of the average peak Clb2 level observed in 
a synchronous cell cycle.  Spindle disassembly not shown after 45 minutes 
because it reaches 100 percent by 60 minutes.    
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Rationale for present studies 

In addition to my contributions to the above work, I have further investigated the 

mechanisms that set the individual inhibitory thresholds for events of mitotic exit.  

Many genes involved in cell cycle processes have altered expression patterns 

during the cell cycle to impose the order and timing of events.  During mitotic exit 

in budding yeast, two transcription factors, Swi5 and Ace2, transcribe many of 

the genes required for physically dividing the mother and daughter cells and for 

beginning the next round of cell division (Di Talia et al. 2009, Knapp et al. 1996, 

Piatti et al. 1995, Toyn et al. 1997).  The first three chapters of this work detail the 

specific contribution of Swi5 to setting the mitotic cyclin thresholds for budding 

and cytokinesis, how Swi5 localization is affected by sustained mitotic cyclin, and 

which transcriptional targets of Swi5 contribute to setting the thresholds of 

budding and cytokinesis.   

 

In the fourth chapter, I detail the discovery of novel targets of the phosphatase 

Cdc14 during mitotic exit.  While its role in inhibiting CDK activity has been well 

studied, its role in resetting other CDK-phosphorylated proteins is less well 

understood.   In collaboration with the laboratory of Brian Chait and a 

postdoctoral fellow in our laboratory, Joanna Bloom, several targets were 

identified, and here, I present preliminary evidence that the Cdc14-dependent 

dephosphorylation of a protein involved in cytokinesis leads to a change in its 

localization.      
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CHAPTER ONE 
 

Swi5 promotes budding and cytokinesis in the  
presence of sustained mitotic cyclin. 

 

INTRODUCTION 

Our studies began with an interest in determining the amount of CDK activity 

required to inhibit mitotic exit.  Previous experiments showed that gross 

overexpression of mitotic cyclin arrests cells in telophase (Surana et al. 1993), 

but a CDK ratchet model (see Introduction) requires inhibition at physiological 

CDK levels.  In order to test the ratchet model for ordering the events in mitosis, 

we developed a protocol for determining the effect of maintaining physiological 

levels of CDK activity after entry to mitosis (Drapkin et al. 2009). 

 

The protocol [Figure Intro-1], developed primarily by Ben Drapkin, involved 

arresting cells in metaphase using depletion of the APC activator Cdc20 (Hartwell 

and Smith 1985, Irniger et al. 1995, Lim et al. 1998, Sethi et al. 1991, Wasch and 

Cross 2002).  A pulse of fluorescently tagged, undegradable mitotic cyclin 

(Clb2kd-YFP) was induced from the GAL1 promoter using an exogenous 

hormone (deoxycorticosterone) in cells constitutively expressing a Gal4-rMR 

fusion (Picard 2000).  Cells were then released from the metaphase block, and 

individual cells were assayed for the amount of stable mitotic cyclin they received 

from the pulse and their ability to complete cell cycle events within the assayed 
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time period (including spindle disassembly, cytokinesis, and new bud formation 

[Figure Intro-2B]).   

 

The average peak of a fluorescently tagged mitotic cyclin (Clb2-YFP) under its 

endogenous promoter in a synchronous cell cycle was used to standardize the 

measurements of stable mitotic cyclin (Clb2kd-YFP).  This provided a 

physiological reference for our measurements.  Previous estimates have placed 

estimated this peak value at around 3,000 molecules of mitotic cyclin Clb2 per 

cell (Cross et al. 2002).  During a normal cell cycle, a cell will only be exposed to 

approximately the peak amount of cyclin and below.  However, activation of the 

spindle checkpoint inhibits Cdc20 (Hwang et al. 1998), causing an accumulation 

of mitotic cyclin two fold higher than the peak (Drapkin et al. 2009).  Therefore, 

we consider that ranges up to twice our defined peak may be physiologically 

relevant to cells in certain contexts.     

 

When the level of sustained mitotic cyclin in individual cells is compared to a 

cell’s ability to accomplish a mitotic event (at a given time after release), the 

curves generated showed sharp inhibitory thresholds for the events of mitotic exit 

[Figure Intro-2B].  Rather than an all-or-none threshold, stable mitotic cyclin 

generated process-specific, dose-dependent delays.  For example, spindle 

disassembly, while blocked by overexpression of mitotic cyclin (Surana et al. 

1993), was only delayed by ~15 minutes when a physiological level of mitotic 
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cyclin (100% peak) was sustained.  In cells with twofold peak levels of mitotic 

cyclin, spindles were sustained for 45 minutes, while no physiological level of 

mitotic cyclin could sustain spindles for more than 60 minutes (data not shown).  

This trend of dose dependent delays was also observed for the initiation of bud 

ring contraction, completion of cytokinesis, and formation of a new bud [Figure 

Intro-2B].  Overall, inhibiting mitotic exit required levels of mitotic cyclin well 

above those achievable during a normal cell cycle. 

 

The mitotic cyclin inhibitory thresholds for individual mitotic events could enforce 

their order during a normal cell cycle.  The delays caused by sustained mitotic 

cyclin were process specific, and generally, the same amount of cyclin inhibited 

later events more robustly [Figure Intro-2B].  This was further supported by the 

observation that a portion of cells with sustained mitotic cyclin rebudded before 

completing cytokinesis.  The disordering of these events could be explained by 

the observation that the budding threshold shifts faster than the threshold for 

cytokinesis [Figure Intro-2B]. 

 

To ascertain the molecular determinants of the mitotic cyclin inhibitory thresholds, 

I tested the role of the primary transcriptional activator during the transition from 

mitosis to the subsequent cell cycle, Swi5.  During the exit from mitosis and the 

early stages of the next cell cycle, the mitotic cyclin levels usually drop and 

Cdc14 phosphatase is released from its nucleolar anchor (Shou et al. 1999).  
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When Cdc14 dephosphorylates Swi5 (Visintin R. et al. 1998), it activates a 

coordinated transcriptional network to prepare for the important transition from 

the end of one cell cycle to the beginning of another.   

 

SWI5 is transcribed starting in G2 and present for the entirety of mitosis 

(Althoefer et al. 1995, Lydall et al. 1991).  However, Swi5 is excluded from the 

nucleus by CDK-dependent phosphorylation.  Following the release of Cdc14 

phosphatase in anaphase, Swi5 dephosphorylation uncovers a nuclear 

localization sequence (NLS), permitting its entry into the nucleus (Moll et al. 

1991, Nasmyth et al. 1990).       

 

In the nucleus, Swi5 is able to bind to promoters and recruit chromatin-

remodeling factors (Cosma et al. 1999, Cosma et al. 2001).  While first 

characterized for its role at the promoter of the HO endonuclease required for 

mating-type switching in yeast, Swi5 has since been shown to be important for 

the transcription of many more genes, including the stoichiometric inhibitor of 

mitotic cyclin/CDK complexes Sic1 (Knapp et al. 1996, Toyn et al. 1997).  More 

detail about Swi5 transcriptional targets will be discussed in Chapter Three.   

 

In early G1, Swi5 is phosphorylated, allowing it to be recognized by a ubiquitin 

ligase complex (SCF-Cdc4) and degraded by the proteasome (Kishi et al. 2008).  

The kinase responsible has yet to be identified; however, two non-essential 
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CDKs have been suggested to contribute to the instability of Swi5: Srb10 and 

Pho85 (Kishi et al. 2008, Measday et al. 2000).  Due to tight regulation of its 

nuclear entry and stability, Swi5 is only active during a brief window of the cell 

cycle immediately following anaphase. 

  

RESULTS 

To determine the role of the mitotic exit transcriptional network in setting the 

mitotic cyclin inhibitory thresholds for individual mitotic exit events, I compared a 

wild type (WT) strain with one that has the SWI5 gene deleted (swi5Δ).  The 

protocol is otherwise the same as the one used in previous experiments [Figure 

Intro-1] (Drapkin et al. 2009).  At timepoints following release from the metaphase 

arrest, samples were taken, and individual cells assessed for (1) the amount of 

stable mitotic cyclin induced and (2) the ability to accomplish individual mitotic 

exit events [Figure 1.1A].  Using fluorescently labeled tubulin (TUB1-CFP), 

spindle disassembly was monitored.  The shrinking and disappearance of the 

actomyosin ring (MYO1-mCherry) marked cytokinesis initiation and completion, 

respectively.  The formation of a new bud was scored by the establishment of a 

new actomyosin ring.  The amount of mitotic cyclin is standardized to the peak 

(defined as 100% or 1x) amount of Clb2 reached in a synchronous cell cycle, as 

described.  This allows us to establish that the levels assayed are physiologically 

relevant.  
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Figure 1.1:  Swi5 promotes budding and cytokinesis in the presence of 
locked mitotic cyclin levels. (A) Representative cells, 45 minutes after release.  

Merged Tub1-CFP and Myo1-mCherry on left; Clb2.kd-YFP on right.  WT (left, 
blue) and swi5Δ (right, red). (B) Thresholds for each event at 45, 60, and 90 
minutes after release.  The percentage of cells that complete an event is plotted 
against the cyclin concentration, expressed as a fraction of the peak from a 
synchronous cell cycle.  The data were binned to ensure a sufficient number of 
cells within a given range of mitotic cyclin levels.  In cells with SWI5 deleted, a 
similar level of sustained mitotic cyclin causes a stronger delay or inhibition of 
cytokinesis and rebudding than in wild type.   
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Figure 1.1
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In cells that were not induced with a pulse of stable mitotic cyclin, the deletion of 

SWI5 had minimal effects on the events assayed [Figure 1.2].  When cells were 

loaded with the stable mitotic cyclin and released, the same dose-dependent 

delays were seen in wild type cells that we observed previously [Figure1.1B].  In 

swi5Δ mutant cells, the same amount of mitotic cyclin had a more severe 

inhibitory effect on initiating ring contraction, completing cytokinesis, and 

rebudding in the subsequent cell cycle [Figure1.1B].  For all three mitotic exit 

events, the swi5Δ cells were less likely to have completed the event than a wild 

type cell with a similar amount of locked mitotic cyclin.  This leads to the 

conclusion that in cells with sustained mitotic cyclin, Swi5 is promoting budding 

and cytokinesis. When the experiment was repeated using timelapse microscopy 

to follow the release with higher resolution (every 3 minutes) and for longer (360 

minutes), the result was reproduced [Figure 1.3].     

  

Since one of the transcriptional targets of Swi5 is Sic1, the stoichiometric inhibitor 

of mitotic cyclin/CDK complexes (Toyn et al. 1997), deletion of SWI5 may be 

decreasing the inhibition of the mitotic cyclin during the timecourse.  While 

expression of a stable mitotic cyclin (Clb2kd) from its endogenous promoter is 

lethal, the strain can be rescued by overexpression of Sic1 (Archambault et al. 

2003, Wasch and Cross 2002). Similarly, ten copies of the endogenous SIC1 can 

bypass the necessity of APC-mediated degradation of mitotic cyclin altogether  
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Figure 1.2:  In the absence of locked mitotic cyclin, the deletion of SWI5 
has minimal effects on the timing of events assayed.  The timing of 
cytokinesis initiation, completion, and rebudding is similar between wild type 
(blue) and swi5Δ (red).   
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Figure 1.3:  Swi5 promotes budding and cytokinesis in the presence of 
locked mitotic cyclin levels.   Experimental protocol is the same as in Figure 
1.1, but cells were assayed after release using timelapse microscopy with three-

minute resolution.  Data from timelapse movies shown in scatter-plots, of wild 
type (blue) and swi5Δ (red), with mitotic cyclin pulse concentration versus time 

after release (in minutes) for individual cells to initiate cytokinesis (top), complete 
cytokinesis (center), or rebud (bottom).  Dashed line represents the end of the 
movie at six hours; points above this line are therefore cells that did not 
accomplish the event before the end of the movie.  Results from a Mann-Whitney 
test between the wild type and swi5Δ strains are indicated by boxes 

(approximating bin sizes horizontally) above the graphs (p-value given and 
represented by shade, with color denoting which of the two strains has the longer 
median time in a given bin).    
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Figure 1.3
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(Thornton and Toczyski 2003).  However, several points of evidence suggest that 

the effect of the SWI5 deletion on these mitotic cyclin inhibitory thresholds is not 

due to a reduction in Sic1 transcription.   

 

First, the shift in thresholds was specific to the event of cytokinesis and 

rebudding; the deletion of SWI5 had no effect on the disassembly of anaphase 

spindles when compared to wild type [Figure 1.4A].  If the effect of the SWI5 

deletion were due to a general increase in the CDK activity, it would be expected 

that all thresholds would be affected.  Instead, the limited effect of Swi5 argues 

that it specifically contributes to the ability of cells with locked mitotic cyclin to 

initiate and complete cytokinesis and bud in the next cell cycle.  However, the 

possibility that the mitotic cyclin inhibitory threshold for spindle disassembly is 

steeper than those for cytokinesis and rebudding, obscuring an effect, cannot be 

eliminated.   

 

Since SIC1 is the Swi5 target most likely to increase general CDK activity, we 

further tested its ability to affect mitotic cyclin inhibitory thresholds.  Drapkin et al 

(2009) investigated whether increasing the level of Sic1 affected the thresholds.  

If Sic1 does set the thresholds through its stoichiometric inhibition of mitotic 

cyclin/CDK complexes, then it would be predicted that doubling the amount of 

Sic1 would require a compensatory doubling of the cyclin for the same delay in 

mitotic exit events.  Doubling the SIC1 gene dosage (which resulted in twice 
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Figure 1.4:  Spindle thresholds are not affected by the deletion of SWI5.  
(A) Threshold for anaphase spindle disassembly (shown at 45 minutes post-
release) for wild type (blue) and swi5Δ (red) is not affected by the deletion of 

SWI5.  (B) Timing of spindle disassembly is similar for wild type and swi5Δ 

strains when unpulsed (solid lines) or with locked mitotic cyclin (dashed lines). 
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the mRNA levels) did not change the thresholds; however, increasing it six fold 

shifted them moderately (Drapkin et al. 2009).  Furthermore, when in vitro histone 

H1 kinase activity associated with the stable mitotic cyclin pulse was assayed 

throughout the timecourse, the activity of the induced undegradable protein in 

both the wild type and 2xSIC1 remained stable.  Together, these results indicate 

that Sic1 is not setting the thresholds through inhibiting mitotic cyclin complexes.   

 

Sic1 levels are periodic due to CDK-mediated proteolysis and CDK-inhibited 

periodic transcription (Verma et al. 1997, Knapp et al. 1996, Schwob et al. 1994).  

We hypothesized that any Sic1 produced may be quickly turned over when 

mitotic cyclin levels are sustained.  I tested this by measuring the protein level of 

Sic1.  When cells were released from metaphase, Sic1 was significantly 

decreased in cells that had sustained mitotic cyclin compared to those that were 

unpulsed [Figure 1.5A].  When compared directly, the peak of Sic1 protein was 

decreased by half in cells with sustained mitotic cyclin [Figure 1.5B].   

 

Together, the inability of SIC1 to shift the thresholds when doubled and the 

lowered Sic1 protein levels in cells with sustained mitotic cyclin led us to 

conclude that Sic1 is not setting the thresholds through inhibition of the mitotic 

cyclin/CDK complexes.  Assaying mitotic cyclin-associated kinase activity in a 

swi5Δ mutant with sustained mitotic cyclin could be used to demonstrate if there 

is a general increase in CDK activity in these cells due to targets besides SIC1.  
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Figure 1.5:  Sic1p levels are significantly lower in cells with locked mitotic 
cyclin. (A) Protein samples collected from a wild type strain (with SIC1-GFP) 
after release from metaphase in either unpulsed or pulsed (CLB2,kd) conditions.  
In both treatments, SIC1-GFP peaks at 40 minutes.  (B) Peak samples (40min) 
from same experiment in (A) compared adjacent to a peak Clb2-YFP sample.  
Quantification (below) was calculated by standardizing to loading control (Pgk1) 
and normalizing to peak Sic1-GFP from unpulsed cells. 



  - 34 -   

However, previous assays of mitotic cyclin-associated kinase activity when near-

peak levels of mitotic cyclin were sustained showed that the measurable kinase 

activity per unit protein was maximal (Drapkin et al. 2009); therefore, it is unlikely 

a significant increase in kinase activity will occur in swi5Δ mutants.  This 

evidence supports the conclusion that Swi5 is specifically able to promote 

budding and cytokinesis despite locked mitotic cyclins, through a target other 

than Sic1.   

 

CONCLUSION 

Sustaining mitotic cyclins after release from metaphase does not block mitotic 

exit events but causes dose-dependent delays (Drapkin et al. 2009).  In order to 

accomplish this feat, the cells depend on Swi5 to promote cytokinesis and new 

bud formation.  Sic1, despite being a target of Swi5 and an inhibitor of mitotic 

cyclin/CDKs, does not have a major role in setting the thresholds, ostensibly due 

to its CDK-induced destruction.  Because it activates an entire transcriptional 

program, Swi5 is in a unique position to orchestrate several events of mitotic exit.  

Similar regulators may help us understand the thresholds for events other than 

budding and cytokinesis.    

 

This result raises several questions.  First, CDK-dependent phosphorylation 

would be expected to maintain Swi5 in the cytoplasm (Moll et al. 1991).  

However, the significant effect of deleting SWI5 on mitotic cyclin inhibitory 
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thresholds indicates that it has an activity despite sustained CDK activity.  This 

may be a new role for Swi5 independent of its ability to promote transcription, or 

Swi5 may overcome the high level of mitotic cyclin/CDK activity to enter the 

nucleus.  In Chapter Two, I determine the localization of Swi5 in the presence of 

sustained mitotic cyclin levels. 

 

Second, if Swi5 is acting in its role as a transcription factor, then we can ask if 

individual targets of Swi5 are responsible for setting the mitotic cyclin inhibitory 

thresholds for budding and cytokinesis.  In Chapter Three, we assay the effect of 

deletions in individual Swi5 targets on these thresholds to further our 

understanding of the coordinated effect of the transcriptional network on mitotic 

exit events. 
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CHAPTER TWO 

Swi5 enters the nucleus despite locked mitotic cyclin levels. 

 

INTRODUCTION 

The mitotic exit transcription factor Swi5 helps promote budding and cytokinesis 

in the presence of locked mitotic cyclins.  However, a major question raised by 

this result is whether Swi5 is capable of entering the nucleus to promote 

transcription of its targets in the presence of continued CDK activity.   

 

As discussed in Chapter One, localization of Swi5 is regulated during the cell 

cycle.  Until anaphase, the mitotic cyclin/CDK maintains Swi5 in a 

phosphorylated state on three serine residues (Moll et al. 1991, Surana et al. 

1991).  These post-translational modifications are within or proximal to a classical 

bipartite nuclear localization signal (NLS) in the carboxy-terminus of the Swi5 

protein (Hahn et al. 2008, Moll et al. 1991).  Mutation of these serine residues to 

alanine, mimicking constitutive dephosphorylation, causes continuous nuclear 

localization of Swi5 (Moll et al. 1991).   

 

When the phosphatase Cdc14 is released from the nucleolus in anaphase, it 

removes the inhibitory phosphorylations on Swi5, enabling the recognition of the 

NLS (Moll et al. 1991, Nasmyth et al. 1990, Visintin R. et al. 1998).  Once in the 

nucleus, Swi5 binds to promoters and recruits chromatin-remodeling factors 
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(Cosma et al. 1999, Cosma et al. 2001).  This allows for a coordinated 

transcription of approximately 30 genes (Morgan David O 2007, Spellman et al. 

1998).   

 

Ace2 is a homologue of Swi5 that has many similarities in its cell cycle regulation 

but some key differences.  Both Swi5 and Ace2 are transcribed in G2, retained in 

the cytoplasm until anaphase, and finally translocated into the nucleus during 

mitotic exit (Dohrmann et al. 1992, Nasmyth et al. 1990).  Entry into the nucleus 

is similarly inhibited by CDK-dependent phosphorylations and presumably 

permitted by Cdc14 phosphatase activity (O'Conallain et al. 1999, Sbia et al. 

2008).  Unlike Swi5, however, Ace2 is primarily restricted to the daughter 

nucleus.   This localization is due to a Cbk1-dependent phosphorylation of Ace2 

in a nuclear export sequence (NES) that prohibits its interaction with the export 

machinery (Jensen et al. 2000, Mazanka et al. 2008).  Cbk1 is restricted to the 

daughter (Colman-Lerner et al. 2001, Jansen et al. 2006, Weiss et al. 2002).  

Ace2 nuclear entry and transcription is also somewhat delayed compared to that 

of Swi5 (Di Talia et al. 2009, Sbia et al. 2008, Toyn et al. 1997). 

 

While the entry of both Swi5 and Ace2 into the nucleus is similarly regulated, they 

have different fates after entering.  While Swi5 is very unstable after nuclear entry 

(Kishi et al. 2008, Measday et al. 2000), Ace2 levels are constant throughout the 

cell cycle (Sbia et al. 2008).  Instead, a mechanism involving its cytoplasmic 
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retention promoted by G1 cyclin/CDK activty is responsible for inactivating Ace2 

(Mazanka and Weiss 2010).         

 

RESULTS 

To assess the ability of Swi5 to enter the nucleus in the presence of locked 

mitotic cyclins, a strain with fluorescently tagged Swi5 (Swi5-YFP) and a histone 

(Htb2-mCherry) to mark the nucleus was used.  Similar to the protocol in Figure 

Intro-1, cells were (1) arrested in metaphase, (2) induced with a pulse of an 

unlabeled, undegradable mitotic cyclin (CLB2kd), and (3) followed during release 

by timelapse microscopy.  The cells were imaged every three minutes [Figure 

2.1A].  Anaphase was scored based on the nuclear segregation of the histone 

marker.  To quantify Swi5 nuclear entry, the ratio of the YFP signal in the nucleus 

(defined by HTB2-mCherry) and the cytoplasm (cell excluding nucleus) was 

used.  Typical traces for an unpulsed and pulsed cell are shown in Figure 2.1B.     

 

In cells without sustained mitotic cyclin (unpulsed), Swi5 enters the two nuclei 

(mother and daughter) soon after anaphase [Figure 2.1A and Figure 2.2A].  

Surprisingly, in the cells with sustained mitotic cyclins (pulsed), Swi5 entered the 

nucleus with no significant delay [Figure 2.1A and 2.2A], even though other 

mitotic exit events were delayed.  Therefore, the timing of initial entry of Swi5 is 

not affected by sustained mitotic cyclin.         
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Figure 2.1:  Swi5 nuclear entry assayed using Swi5-YFP and the nuclear 
marker HTB2-mCherry.  (A) Representative images from timelapse movies of 
unpulsed and pulsed conditions show similar initial nuclear entry of Swi5.  
Images are of first frame (left), first Swi5 nuclear entry (center), and second Swi5 
nuclear entry (right); timing is from anaphase (in minutes).  (B) Ratio of Swi5-YFP 
nuclear (defined by HTB2-mCherry) to cytoplasmic fluorescence used to 
determine timing and quantity of entry.  Examples of traces of two cells from 
movies, indicated by white arrows in (A).   
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 Figure 2.1
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Figure 2.2:  Timing of Swi5 nuclear entry shows multiple entries during 
delayed exit from mitosis. (A) Timing of first Swi5-YFP nuclear entry in minutes 
from anaphase (box defines lower and upper quartiles, whiskers define minimum 
and maximum values, dash defines median) shows no difference between 
unpulsed (n=39) and pulsed (n=66) cells (with a population average of ~1x peak).  
(B) Timing of second Swi5-YFP nuclear entry in minutes from first anaphase 
shows tendency to have a shorter period in pulsed (n=38) cells despite other 
events being delayed compared to unpulsed (n=23).  This data excludes cells 
that did not have a second entry during the length of the movie (6 hours).   
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Figure 2.2
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Also, the amount of Swi5 that enters the nucleus was the same with or without 

sustained mitotic cyclin [Figure 2.3].  Using the nuclear to cytoplasmic ratio as a 

quantitative metric, the first and second entries were similar for both unpulsed 

and pulsed conditions.  In both conditions the quantity of the first entry was larger 

compared to the second; however, this could be due to the preceding arrest (i.e. 

the amount of the protein accumulated or the maturation of the fluorophore during 

the arrest).   

 

Despite these similarities, a surprising difference in the timing of later entries of 

Swi5 was observed.  Cells without sustained mitotic cyclin completed division 

and progressed into the subsequent cell cycle, and Swi5 entered the nucleus 

immediately following the second anaphase [Figure 2.1A and 2.2B].  However in 

cells with locked mitotic cyclins, the timing of the next Swi5 entry was quite 

variable.  While some cells went through their delayed cell cycle and followed a 

pattern similar to unpulsed cells, others had an earlier second entry of Swi5 

without budding [Figure 2.1B].  This is reflected in a decrease in the median 

timing of the second entry [Figure 2.2B], despite the fact that most other events in 

these cells were delayed.  In fact, some cells even had additional entries before 

cell cycle progression. 

 

The repeated entries of Swi5 before cell cycle progression may be dependent on 

the dose of mitotic cyclin.   Table 2.1 shows the average estimated level of  
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Figure 2.3:  Quantification of amount of Swi5-YFP nuclear entry (based on 
nuclear to cytoplasmic ratio) shows very similar amounts of entry for both 
conditions.  Using the ratio of the YFP signal in the nucleus to that in the 
cytoplasm, the amount of Swi5 entering during the first and second nuclear 
entries was estimated.  Displayed is an average of the peak of this ratio for both 
unpulsed and pulsed cells (same experiment as shown in Figure 2.2).    
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mitotic cyclin in cells with each pattern of Swi5 nuclear entry.  Because the 

mitotic cyclin was not fluorescently labeled in these experiments, the phenotype 

of the cell was used to estimate the level (see Materials and Methods).  An 

increase in the amount of mitotic cyclin correlates with an increase in the number 

of times Swi5 enters before the cell cycle progresses.    

 

Table 2.1:   

Correlation between locked mitotic cyclin and Swi5 nuclear entries. 

Number of Swi5 nuclear 
entries before budding 

[Mitotic cyclin]/[peak] 
±  standard deviation 

N 

1 0.5 ± 0.5 37 
2 2.5 ± 1.1 13 
3 3.1 ± 0.3 5 

 

The correlation could be because overcoming an increase in the mitotic cyclin 

requires multiple rounds of Swi5-dependent transcription.  Alternatively, it may be 

because the dose-dependent delay in cell cycle progression uncovers another 

cyclical process.  However, the time between the last entry of Swi5 to bud 

emergence is similar in both pulsed and unpulsed cells (average ± standard 

deviation: 55 ± 26 versus 59 ± 22 minutes).  This correlation suggests that Swi5 

may play an active role in cell cycle progression but does not rule out roles for 

other contributing factors.  
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The effect of Swi5 on the thresholds of budding and cytokinesis [Figure 1.2], and 

its status as a target of mitotic cyclin/CDK and Cdc14 phosphatase activities 

lends support to a model we proposed for the mechanism of cell cycle 

progression in the presence of locked mitotic cyclins.  Studies from our lab show 

that when mitotic cyclin levels are sustained during mitotic exit, an intrinsic 

oscillation of Cdc14 nucleolar release and resequestration is revealed [Figure 

2.4B] (Drapkin et al. 2009, Lu and Cross 2010).  The level of mitotic cyclin/CDK 

activity regulates the frequency of the release oscillations; higher levels of mitotic 

cyclin induce faster cycles of Cdc14 release.  However, the amount and duration 

of Cdc14’s release is unaffected.   

 

This finding led us to propose a model where progression of the cell cycle in the 

presence of locked mitotic cyclin may occur due to a shift in the 

kinase/phosphatase balance, especially between CDK and Cdc14 activities 

(Cdc14 is released, and thus activated, multiple times in the presence of 

sustained CDK activity), resulting in the dephosphorylation of key mutual targets 

despite the maintenance of mitotic cyclin activity [Figure 2.5].  The results 

described here for the mutual CDK/Cdc14 target Swi5 are highly consistent with 

this model.  In cells delayed in cell cycle progression, the amount of sustained 

mitotic cyclin required to see oscillatory behavior in Swi5 [Table 2.1] was similar 

to the level necessary to see repeated release of Cdc14 without cell cycle 

progression (Lu and Cross 2010).  



  - 47 -   

 
 
 
 
 
 
 
 
Figure 2.4:  Cdc14 is released cyclically in cells with locked mitotic cyclins 
(courtesy of Ying Lu).  (A) Cdc14-YFP release from the nucleolus (Net1-

mCherry) observed by timelapse microscopy in cells with sustained mitotic 
cyclins.  Images from a metaphase blocked cell (t = 0 min) and a cell undergoing 
release of Cdc14 (at t = 24 min).  Arrows indicate Myo1-GFP at bud neck.  (B) 
Cdc14 localization traces after release from metaphase block for five cells with 
varying amounts of sustained mitotic cyclin (column at right).  Quantification is 
the ratio of coefficients of variation (CV=standard deviation/mean) of pixel 
intensities for Cdc14-YFP and Net1-mCherry.   This ratio will be high in cells with 
Cdc14 concentrated in specific regions and low in cells with Cdc14 evenly 
distributed in the cells.  Marked on the traces are events in mitotic exit: anaphase 
(blue bar), cytokinesis (red bar), and budding (green bar).  Frequency of Cdc14 
oscillation is increased with increasing mitotic cyclins, saturating at once per 45 
minutes; however, amplitude and duration are not affected.   
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Figure 2.4
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Figure 2.5:  Mitotic Exit may be regulated by kinase/phosphatase balance.  
(A) Model for co-regulation of mitotic exit by Cdc14 and mitotic cyclins (Clb2).  

The relative balance of these two may be the relevant variable for ordering the 
events of mitosis.  (B) In a normal cell cycle (left), kinase activity (blue) falls after 
anaphase (dashed line), and Cdc14 phosphatase activity increases (yellow), 
allowing a net decrease in the phosphorylation of targets (red).  When the net 
phosphorylation of targets (e.g. Swi5) drops below a certain threshold (grey box), 
an event is triggered (e.g. Swi5 nuclear entry, budding, and cytokinesis).  In the 
presence of stable mitotic cyclins (right), Cdc14 release may reach the threshold 
needed to permit mitotic exit events despite the maintenance of kinase activity. 
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Figure 2.5
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To test this model, I assessed if extra copies of CDC14 could rescue the viability 

of a CLB2kd/CLB2 strain; heterozygous CLB2kd expression under the CLB2 

promoter is lethal due to nonphysiological accumulation of mitotic cyclin activity 

(Wasch and Cross 2002).  This strain can be maintained by overexpression of 

SIC1, which inhibits mitotic cyclin/CDK complexes, from a galactose inducible 

promoter.  The strain was transformed with an empty vector or a centromeric or 

integrating plasmid with CDC14 under its endogenous promoter.  When SIC1 

expression was removed on glucose, both CDC14 containing plasmids were 

capable of rescuing the strain compared to the vector control [Figure 2.6, 

Glucose-uracil].  Therefore, the levels of CDK relative to Cdc14 phosphatase 

affect the ability of these cells to progress through the cell cycle.   

 

Since the localization of Ace2 is controlled in a similar manner to Swi5, I 

investigated its localization when mitotic cyclins are sustained.  The ratio of 

nuclear (defined by HTB2-mCherry) to cytoplasmic signal of Ace2-YFP was used 

to determine the timing and quantity of Ace2-YFP entry into the nucleus.  Here, I 

report my findings on the small number of cells analyzed to date (n=21) [Figure 

2.7].   

 

In cells without locked mitotic cyclins (unpulsed), Ace2 entered the nucleus on 

average twelve minutes later than Swi5 entered relative to anaphase in previous  
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Figure 2.6:  Additional copies of CDC14 rescue CLB2kd lethality.  A diploid 
strain (cdc14/CDC14-YFP CLB2,kd/CLB2 GAL-SIC1(2x) ura3/ura3), was 

transformed with one of three URA3-containing plasmids: vector control 
(pRS416), centromeric (pRS316-CDC14), or integrating (pRS406-CDC14).  
Transfomants were grown in galactose and plated in serial dilutions (10-fold) onto 
glucose or galactose that either lacked uracil or contained 5-FOA (which 
counterselects for the URA3 gene on the plasmids).  While all strains were fully 
viable on Galactose-uracil (top left), the vector control was the only one unable to 
rescue on Glucose-uracil (when the SIC1 construct was turned off) (top right).  
This rescue is dependent on the plasmid since it does not persist on glucose + 
FOA for the centromeric plasmid (bottom right).   
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Figure 2.7:  Constitutive mitotic cyclin activity shows an effect on the initial 
entry timing and quantity of Ace2 nuclear localization.  In (A), the average 
timing in minutes from anaphase of the first nuclear entry of Ace2 is shown for 
unpulsed versus pulsed cells, divided into mothers and daughters.  Error bars are 

standard deviation.  Mothers and daughters showed no significant difference in 
timing in either case.  In cells with locked mitotic cyclins (n=12), the average time 
before Ace2 nuclear entry increased, but the response was highly variable.  
Pulsed cells had an average mitotic cyclin level of 3x peak.  The combined 
unpulsed (n=9) cells have an average entry time of 15 minutes, which is about 12 
minutes after Swi5 entry (compare to Figure 2.2).  (B) The amount of Ace2-YFP 
entering the nucleus (based on the nuclear to cytoplasmic ratio as in Figure 2.3) 
for unpulsed (red) daughters (filled) and mothers (no fill) was similar for both 
entries.  The entry for pulsed cells (blue) was also similar for daughters (filled) 
and mothers (no fill).  Overall, the amount of Ace2 localizing to the nucleus during 
the first entry was lower when mitotic cyclins were sustained.     
 



  - 54 -   

Figure 2.7
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experiments [Figure 2.2A and Figure 2.4A], consistent with a previously 

published report of ten minutes (Sbia et al. 2008).  The timing and amount of 

Ace2 entry did not vary appreciably between mothers and daughters [Figure 2.7].  

While the duration of Ace2 nuclear localization was longer in daughters (average 

± standard deviation (in minutes): 15 ± 4.2 versus 11 ± 3.0), the difference was 

not as substantial as previously reported (23 versus 7 minutes) (Di Talia et al. 

2009).  However, this can be attributed to the unusually large size of daughters at 

birth after the long metaphase arrest used in the protocol (Di Talia et al. 2009).  

 

In cells with sustained mitotic cyclins (pulsed), Ace2 nuclear entry was affected, 

in a fashion distinct from that of Swi5.  The timing of entry into the nucleus from 

anaphase was generally increased compared to cells without locked mitotic 

cyclins with a high variability in timing [Figure 2.7A].  This contrasts with the 

relatively unchanged initial entry of Swi5 [Figure 2.2A].  Additionally, the quantity 

of Ace2 in the nucleus during the first entry was generally lower in pulsed cells 

[Figure 2.7B].  These results are from only a few cells with a relatively high 

average mitotic cyclin level in pulsed cells (~3x peak) and therefore require 

further investigation.  Still, the differences in regulation of the localization of these 

two transcription factors may prohibit Ace2 from contributing to mitotic exit 

progression when mitotic cyclins are sustained.  However, the fact that Swi5 and 

Ace2 show different patterns of localization when mitotic cyclin is sustained 

suggests that CDK activity during the normal cell cycle affects them differently.  



  - 56 -   

This could result from differences in localization (of the kinase, phosphatase, or 

transcription factors), affinities of the kinase and phosphatase for the 

transcription factors, or other mechanisms (see below)        

 

CONCLUSION 

Our results show that Swi5 translocates to the nucleus despite sustained mitotic 

cyclin levels with little difference in timing or amount of initial entry.  This result is 

not surprising given the effect Swi5 has on the thresholds of mitotic cyclin for 

budding and cytokinesis.  However, at first glance, it is inconsistent with the 

known CDK-dependent inhibition of Swi5’s nuclear localization (Moll et al. 1991).   

 

Swi5 is a target of both CDK and Cdc14 phosphatase activity (Surana et al. 

1991, Visintin R. et al. 1998) [Figure 2.5].  Studies from our laboratory show that 

Cdc14 is released from the nucleolus in a periodic fashion even when mitotic 

cyclins are sustained (Lu and Cross 2010).  Therefore, we propose that the 

repeated Swi5 nuclear entries are a result of the oscillations in the 

kinase/phosphatase balance between CDK and Cdc14 activities [Figure 2.5].  In 

future experiments, I will determine the correlation between Cdc14 nucleolar 

release and Swi5 nuclear entry in individual cells. 

 

Overall, these findings support the model we proposed for how cells progress 

through mitotic exit despite locked mitotic cyclins.  In a normal cell cycle, the 
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relevant variable for ordering mitotic exit events may be the balance of competing 

kinase and phosphatase activities and their control over different events.  

Therefore, thresholds for particular events in mitotic exit may be set, in part, by 

the susceptibility of relevant targets to both the kinase and phosphatase 

activities.  Preliminary analysis of the Swi5 homolog Ace2 showed that it may be 

incapable of entering the nucleus in the presence of sustained mitotic cyclin, 

demonstrating that even very similar proteins can respond differently to the 

kinase/phosphatase balance.  Additionally, neither mitotic cyclin/CDK nor Cdc14 

phosphatase is distributed uniformly in the cell (Bailly et al. 2003, Buttery et al. 

2007, Hood et al. 2001, Pereira and Schiebel 2003, Pereira et al. 2002, Shou et 

al. 1999, Visintin R. et al. 1999, Yoshida et al. 2002).  Therefore, local activity 

concentrations around substrates would be expected to play a role in setting the 

kinase/phosphatase balance.  Accounting for the variables of phosphatase 

activity, substrate susceptibility, and local concentrations of kinase and 

phosphatase activities near substrates may explain how the rise and fall of CDK 

activity once per cell cycle maintains order and timing; however, these are not 

easily assayed at this time. 
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CHAPTER THREE 
 

The contributions of selected Swi5 targets  
in promoting budding and cytokinesis. 

 
 

INTRODUCTION 

As transcription factors, Swi5 and Ace2 are responsible for a coordinated 

program of transcription during the transition from the end of mitosis into the 

subsequent cell cycle.  Since we proposed that Swi5 plays a critical role in 

promoting budding and cytokinesis in the presence of locked mitotic cyclins, I 

sought to determine if particular Swi5 targets were critical for setting the mitotic 

cyclin inhibitory thresholds of mitotic events.   

 

Swi5 was first described as an activator of the HO endonuclease, responsible for 

mating type switching in yeast (Dohrmann et al. 1992, Nasmyth et al. 1987). In 

addition, Swi5 regulates the transcription of several genes involved in cell cycle 

progression, including an inhibitor of DNA replication (CDC6) (Piatti et al. 1995) 

and two cyclin family genes (PCL2 and PCL9) (Aerne et al. 1998, Tennyson et al. 

1998).  Together with Ace2, Swi5 is responsible for promoting transcription of the 

mitotic cyclin/CDK inhibitor SIC1 (Knapp et al. 1996, Toyn et al. 1997).   

 

A more complete, unbiased list of Swi5 targets was recently generated by studies 

from our laboratory in collaboration with the laboratory of Bruce Futcher [Figure 

3.1] (Di Talia et al. 2009).  A wild type and a swi5Δ mutant strain were released  
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Figure 3.1:  Swi5 targets identified previously by microarray (courtesy of 
Stefano Di Talia).  Genes with differential expression between WT and the 
swi5Δ mutant are shown following release from a metaphase arrest. Interesting 
candidates discussed in this chapter are indicated with star (*).  Null mutations of 
these targets are being tested to see if they have a similar effect on mitotic cyclin 
inhibitory thresholds as a swi5Δ mutant.  As indicated by the color scale, yellow 
represents up-regulation while blue represents down-regulation compared to 
control (ratio of experiment/control).  Black is a ratio close to one, and grey is 
missing data.   
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from a metaphase arrest, and samples were collected every 5 minutes.  The 

resulting microarray data was aligned by the time of anaphase to increase 

accuracy, and hierarchical clustering was used to generate a list of genes whose 

expression during this period of the cell cycle is specifically activated by Swi5 

[Figure 3.1]. 

 

From this list, targets were selected that might be responsible for the ability of 

Swi5 to promote budding and cytokinesis.  Deletions of individual targets involved 

in shifting the thresholds might be expected have a similar effect to the SWI5 

deletion [Figure 1.2B], intermediate effects if they are one of several contributors, 

or stronger effects if their transcription is decreased but not eliminated by a SWI5 

deletion.  Because of the specificity of Swi5’s effect on promoting budding and 

cytokinesis, I initially focused on proteins that were known to be involved in these 

processes and/or that localized to the bud neck.  More details about the selected 

targets are discussed below. 

 

RESULTS 

In order to determine if an individual Swi5 target was involved in Swi5’s 

promotion of cytokinesis and budding, the timing of mitotic cyclin events was 

assayed using a strain with a deletion of the target gene in the presence of 

sustained mitotic cyclin (protocol in Figure Intro-1).  The cells were followed after 

release by timelapse microscopy [as in Figure 1.4].  For individual cells, the 
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amount of fluorescently labeled mitotic cyclin was compared to the timing of 

events in mitotic exit (cytokinesis initiation, completion and rebudding).  For 

statistical comparisons, the data were binned to ensure a sufficient number of 

cells within a given range of mitotic cyclin levels.  Because some events were not 

observed for some cells during the time of the experiment (360 minutes) and 

could not be accurately assigned a number value, a Mann-Whitney test was 

performed comparing the rank order of the values within a bin.   

 

The targets chosen for analysis were involved in cytokinesis and budding or 

localized to the bud neck.  They were also among those with the strongest 

dependence on Swi5 and Ace2 for their activation: YPL158c, NIS1, and CYK3 (Di 

Talia et al. 2009).  In cells without mitotic cyclin sustained, deletions in these 

genes did not cause delays in the events assayed when compared to wild type 

cells (data not shown); however, as with swi5Δ mutants, the sensitized 

background of sustained mitotic cyclins may reveal a synthetic relationship in 

promoting the events of cytokinesis and bud formation.   

 

YPL158c (AIM44) was previously identified as a Swi5 target (Doolin et al. 2001) 

and localizes to the bud neck (Huh et al. 2003).  However, the function of Aim44 

is undetermined.  A yeast two hybrid screen showed that it binds to the SH3 

domains of four proteins that are also localized to the bud neck: Cyk3, Hof1, 

Boi1, and Boi2 (Tonikian et al. 2009).  In addition, a deletion in AIM44 was 
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identified by two independent high-throughput screens as synthetically lethal in 

conjunction with a deletion in SLT2 (Costanzo et al. 2010, Tong et al. 2004), a 

mitogen-activated protein kinase (MAPK) that is active during times of polarized 

growth (Madden et al. 1997, Zarzov et al. 1996).   

 

When compared to wild type, aim44Δ mutants significantly shifted the thresholds 

for all mitotic exit events assayed [Figure 3.2].  Therefore, Aim44 promotes 

budding and cytokinesis in cells where mitotic exit is delayed by sustained mitotic 

cyclins; however, the effect was less than that seen in swi5Δ mutants.  This 

suggests Swi5 promotes cytokinesis and budding by regulating transcription of 

AIM44 and that of additional genes.   

 

The second target of interest, Nis1, localizes to the bud neck during G2 and 

mitosis (Iwase and Toh-e 2001).  Nis1 physically interacts with septins, which 

form a ring beneath the plasma membrane and act as an essential scaffold for 

the recruitment of the cytokinetic machinery (Iwase and Toh-e 2001, McMurray 

and Thorner 2009).  Nis1 also physically interacts with several components of the 

mitotic signaling network, including kinases Gin4 and Kcc4 (Iwase and Toh-e 

2001).  This pathway inhibits the ability of Swe1 kinase to inactivate mitotic 

cyclin/CDK complexes, which then promote isotropic growth in the emerging bud; 

in the event of delayed bud emergence, Swe1 inhibits mitotic cyclin/CDK  
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Figure 3.2:  Aim44 promotes budding and cytokinesis when mitotic cyclin 
is sustained.  Data from timelapse movies shown in scatter-plots with mitotic 
cyclin pulse concentration (as a fraction of peak) versus time (in minutes) for 
individual cells for cytokinesis initiation (top), completion (center), or rebudding 
(bottom).  aim44Δ (ypl158cΔ) (purple squares) plotted with wild type (blue 
circles) and swi5Δ (red triangles) controls in background. Dashed line represents 
the end of the movie at six hours; points above this line are therefore cells that 
did not accomplish the event before the end of the movie.  Results from a Mann-
Whitney test between the aim44 and wild type strains are indicated by boxes 
(approximating bin sizes horizontally) above the graphs (p-value given and 
represented by shade, with color denoting which of the two strains has the longer 
median time in a given bin).   
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Figure 3.2
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complexes and delays cell cycle progression (Keaton and Lew 2006, 

Sreenivasan and Kellogg 1999).  While the function of Nis1 has proved elusive, 

its interactions implicate a role in cytokinesis and budding.   

 

When NIS1 was deleted, the effect on the mitotic cyclin inhibitory thresholds was 

subtle but still constituted a statistically significant difference compared to wild 

type for cytokinesis initiation and completion [Figure 3.3].  This is with the caveat 

that the number of nis1Δ cells assayed with mitotic cyclin levels significantly 

higher or lower than the peak (represented by the left and rightmost bins in 

Figure 3.3) is presently low, and apparent significance is reliant on bin size.  

nis1Δ mutant had no significant effect on the ability of cells to rebud.  With 

additional data, this result may implicate Nis1 as an additional target contributing 

specifically to Swi5’s ability to promote cytokinesis.   

 

The final target tested, Cyk3, also localizes to the bud neck during cytokinesis 

and activates the chitin synthase to promote subsequent septum formation, 

contributing to the actomyosin-independent cytokinesis pathway (Jendretzki et al. 

2009, Korinek et al. 2000, Nishihama et al. 2009). 

 

When CYK3 was deleted, the effect on all thresholds was intermediate, strongest 

for budding, but not significant overall [Figure 3.4].  Therefore, Cyk3 may be a  
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Figure 3.3: Nis1 specifically promotes cytokinesis when mitotic cyclin is 
sustained.  Data from timelapse movies shown in scatter-plots with mitotic cyclin 
pulse concentration (as a fraction of peak) versus time (in minutes) for individual 
cells for cytokinesis initiation (top), completion (center), or rebudding (bottom).  
nis1Δ (orange squares) plotted with wild type (blue circles) and swi5Δ (red 

triangles) controls in background.  Dashed line represents the end of the movie at 
six hours; points above this line are therefore cells that did not accomplish the 
event before the end of the movie.  Results from a Mann-Whitney test between 
the nis1Δ and wild type strains are indicated by boxes (approximating bin sizes 

horizontally) above the graphs (p-value given and represented by shade, with 
color denoting which of the two strains has the longer median time in a given 
bin).   
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Figure 3.3
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Figure 3.4:  Cyk3 may promote budding when mitotic cyclin is sustained.  
Data from timelapse movies shown in scatter-plots with mitotic cyclin pulse 
concentration (as a fraction of peak) versus time (in minutes) for individual cells 
for cytokinesis initiation (top), completion (center), or rebudding (bottom).  cyk3Δ 
(green squares) plotted with wild type (blue circles) and swi5Δ (red triangles) 

controls in background.  Dashed line represents the end of the movie at six 
hours; points above this line are therefore cells that did not accomplish the event 
before the end of the movie.  Results from a Mann-Whitney test between the 
cyk3Δ and wild type strains are indicated by boxes (approximating bin sizes 

horizontally) above the graphs (p-value given and represented by shade, with 
color denoting which of the two strains has the longer median time in a given 
bin).     
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Figure 3.4



  - 70 -   

Swi5 target partially responsible for promoting budding despite locked mitotic 

cyclins.  Interestingly, a recent study showed that overexpression of mitotic 

cyclin/CDK activity inhibits the localization of Cyk3 to the bud neck (Meitinger et 

al. 2010).  The localization of Cyk3 in cells with sustained mitotic cyclin could 

vary from that caused by overexpression and needs to be determined to 

understand any interpretation of these results.  

 

CONCLUSION 

Of the Swi5 targets assayed, none was individually able to replicate the effect 

seen in the swi5Δ strain [Figure 1.4].   AIM44 contributed the most robustly to all 

three events assayed [Figure 3.2], and its location at the bud neck could allow it 

to affect both budding and cytokinesis.  However, little is known about its direct 

action there.  NIS1 contributed modestly but significantly to promoting 

cytokinesis, and it is known to physically interact with the cytokinetic machinery 

[Figure 3.3].  CYK3, in contrast, had its strongest effect in promoting budding, but 

this result was not robustly significant [Figure 3.4].  Some of these conclusions 

require additional data collection.  Furthermore, the effect of deleting SWI5 and 

sustaining mitotic cyclins on the expression level of these targets will be 

investigated by isolating RNA during the release and performing RTqPCR.   

 

The intermediate effects seen from the preliminary analysis so far could be the 

result of a coordinated process controlled during an important transition in the cell 
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cycle.  As a major transcription factor activated during mitotic exit, Swi5 is 

responsible for the transcription of a variety of targets that regulate the 

concomitant events.  Therefore, deletion of an individual target may never be 

able to phenocopy the effect of swi5Δ deletion, which results in the simultaneous 

decrease in expression of all Swi5 targets.      

 

Our previous criteria of bud neck localization and direct involvement in the 

processes of budding and cytokinesis unintentionally biased the selection for 

Swi5 targets that have relatively narrow effects.  Because the target responsible 

for Swi5’s ability to promote cytokinesis and rebudding may be one with more 

pleiotropic roles, it is interesting that Swi5 is responsible for the transcription of 

two homologous cyclin family genes, PCL2 and PCL9 (Aerne et al. 1998, Di Talia 

et al. 2009, Tennyson et al. 1998).   Both are responsible for binding to and 

activating the non-essential CDK Pho85 (Measday et al. 1997).  In the future, it 

will be interesting to see if these cyclins could contribute to the effect of Swi5 on 

cytokinesis and budding.  Pho85 CDK activity has been implicated in many 

events of the cell cycle during mitotic exit and G1, including the efficient 

restoration of growth after cell cycle delays when Cdc28 CDK activity is inhibited 

(Lee J. et al. 1998, Measday et al. 1997, Wysocki et al. 2006).  Consequently, 

(Pcl2 and Pcl9-dependent) Pho85 CDK activity could be the effector 

predominantly responsible for the bulk of Swi5’s promotion of cytokinesis and 

rebudding during the delay caused by sustained mitotic cyclin.   
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Because Pho85 is activated by the binding of ten different cyclins, a PHO85 

deletion would remove additional activities not known to be affected by the 

deletion of SWI5 (Huang et al. 2007).  Additionally, PHO85 deletion is known to 

hyperactivate Swi5 (Measday et al. 2000).  Therefore, a double deletion of the 

two cyclins (pcl2 pcl9) whose expression is Swi5-dependent will allow us to 

specifically assay the possibility that Swi5 promotes budding and cytokinesis in 

the presence of locked mitotic cyclins by activating Pho85-CDK activity. 
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CHAPTER FOUR 
 

Identifying novel Cdc14 phosphatase targets  
and the physiological relevance of their dephosphorylation. 

 
 
INTRODUCTION 

The focus of the preceding chapters has been on the regulation by CDK of 

events of mitotic exit; however, the counteracting phosphatase Cdc14 is also 

important for understanding this regulation.  As discussed in Chapter Two, the 

balance of CDK and Cdc14 activities may be the relevant variable in ordering 

mitotic events.  Therefore, I investigated novel Cdc14 substrates involved in 

mitosis and cytokinesis identified by a postdoctoral fellow in my laboratory, 

Joanna Bloom, in collaboration with Ileana Cristea in the laboratory of Brian 

Chait.   

 

Cdc14 is essential for mitosis and promotes inactivation of CDK by 

dephosphorylating three key substrates:  (1) Cdh1, which activates the APCCdh1, 

(2) Swi5, a transcription factor which upregulates transcription of the CDK 

inhibitor SIC1, and (3) Sic1 itself, preventing its ubiquitin-dependent degradation 

(Jaspersen et al. 1998, Schwab et al. 1997, Visintin R. et al. 1998).  While the 

role of Cdc14 in coordinating the decrease in CDK activity has been well 

characterized, less is known about its other targets in mitosis; it is known, 

however, that CDK and Cdc14 share a preference for phospo-Ser/Thr-Pro motifs 
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(Gray et al. 2003).  Therefore, identifying mutual targets will give us a better 

understanding of how these competing activities regulate mitotic events.   

 

Cdc14 phosphatase dephosphorylates substrates in several mitotic processes.  

These substrates include Sli15, Ask1, Fin1, and Ase1, which are critical for 

stabilizing the anaphase spindle (Higuchi and Uhlmann 2005, Khmelinskii et al. 

2007, Pereira and Schiebel 2003, Woodbury and Morgan 2007).  A role for 

Cdc14 in cytokinesis has also been implied.  Cdc14 localizes to the bud neck 

when released (Bembenek et al. 2005), and in cells where CDK activity is 

ectopically inactivated without Cdc14 release from the nucleolus, the actomyosin 

ring shows defects in contraction and cell separation (Corbett et al. 2006, Hwa 

Lim et al. 2003, Yeong 2005, Yeong et al. 2002).  However, the substrates 

responsible for Cdc14’s promotion of cytokinesis are not known.     

 

Cdc14 phosphatase activity is restricted to mitotic exit due to its subcellular 

localization.  The nucleolar protein, Net1, sequesters Cdc14 in the nucleolus until 

anaphase (Shou et al. 1999, Traverso et al. 2001, Visintin R. et al. 1999).  Two 

signaling pathways converge at the end of the cell cycle to release Cdc14: the 

Cdc14 early anaphase release (FEAR) pathway and the Mitotic Exit Network 

(MEN).  During early anaphase, FEAR triggers a qualitatively minor release of 

Cdc14, which remains nuclear, accumulates at SPBs, and is not sufficient for 

mitotic exit (Shou et al. 1999, Stegmeier et al. 2002, Visintin R. et al. 1999, 
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Visintin R. et al. 1998).  When the daughter-bound SPB reaches the bud, the 

MEN signaling pathway is activated and fully releases Cdc14 (Bardin et al. 2000), 

connecting proper spindle orientation and nuclear segregation with progression 

through mitosis. 

 

Previous studies using immunopurification and mass spectrometry (MS) analysis 

of Cdc14 in asynchronous cells identified a known Cdc14 substrate (Sli15) and 

novel cell-cycle proteins (Cristea et al. 2005).  However in asynchronous cells, 

Cdc14 would be primarily restricted to the nucleolus.  Therefore, Joanna Bloom 

and Ileana Cristea repeated such immunopurifications in a strain with the 

nucleolar anchor NET1 deleted (net1Δ).  In these cells, Cdc14 was released 

throughout the cell cycle and therefore more likely to interact with substrates.  For 

comparison, a conditional mutant in the MEN pathway (cdc15-2) was used at the 

restrictive condition, when Cdc14 would be primarily sequestered.   Cdc14 was 

immunopurified from net1Δ and cdc15-2 strains, and the associated proteins 

were analyzed by MS [Figure 4.1; Joanna Bloom and Ileana Cristea].  The 

released Cdc14 in the net1Δ strain interacted with more proteins than 

sequestered Cdc14 in the cdc15-2 strain; however, both conditions identified 

potentially interesting targets.  The interactions seen in predominately-

sequestered conditions may have occurred post-cell lysis.   
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Figure 4.1: Identification of proteins associated with released versus 
sequestered Cdc14 (courtesy of Joanna Bloom).  Left, Cdc14-5xGFP, 
released in net1Δ cells or sequestered in cdc15-2 cells, was immunopurified with 

a polyclonal GFP antibody conjugated to magnetic beads.  Eluates were resolved 

on SDS-PAGE gels and stained with Coomassie blue.  Right, Cdc14-associated 
proteins identified from the gel, shown on left, classified into functional groups.  
Highlighted are two functionally redundant formins: Bni1 (blue) and Bnr1 (red).    
Stars indicate proteins previously identified as either CDK substrates (*) (Ubersax 
et al. 2003) or preferred substrates of Clb5/CDK compared to Clb2/CDK (**)  
(Loog and Morgan 2005). 
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The Cdc14-associated proteins identified included many known to be involved in 

mitotic events.  For example, Bud3 and two partially redundant formins (Bni1 and  

Bnr1) have roles in cytokinesis (Bailly et al. 2003, Imamura et al. 1997, Tolliday 

et al. 2002, Yoshida et al. 2006), while Dyn1 and Kar9 orient the mitotic spindle 

(Liakopoulos et al. 2003, Maekawa and Schiebel 2004, Maekawa et al. 2003, 

Miller R. K. and Rose 1998, Miller R. K. et al. 1999, Moore et al. 2006).  

Importantly, many of these Cdc14 interacting proteins are also predicted to be 

CDK targets [Figure 4.1] (Ubersax et al. 2003).     

   

Because the interactions between a phosphatase and its targets may be too 

transient to detect by these methods, many potentially interesting Cdc14 

interactions may have been missed.  However, Mutations in the active site of 

protein tyrosine phosphatases (PTPs) stabilize interactions between the 

phosphatase and its substrates (“substrate-trapping” mutants) (Flint et al. 1997, 

Jia et al. 1995), and structurally, human Cdc14B is very similar to PTP-1B, 

including alignment of the Cys and Asp residues in their active sites (Gray et al. 

2003).  Additionally, these residues are conserved in budding yeast Cdc14, and 

their mutation leads to the inactivation of Cdc14 (Taylor et al. 1997, Wang et al. 

2004).  

 

Based on these results, our lab generated mutants in these residues 

(cdc14C283S and cdc14D253A) [Figure 4.2A; Joanna Bloom].  In vitro, these  
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Figure 4.2:  Enhanced binding of Cdc14 interactors to “substrate trapping” 
CDC14 mutants in vitro (courtesy of Joanna Bloom).  (A) Sepharose beads 
were coated with similar amounts of recombinant GST alone, GST tagged wild 

type Cdc14 (GST-WT) or GST tagged catalytically inactive Cdc14 mutants (GST-
C283S, GST-D253A).  Eluates were resolved on SDS-PAGE gels and stained 
with Coomassie blue.  (B) Beads in (A) were incubated with extract from yeast 
strains with the indicated PrA-tagged gene.  Affinity purified proteins were 
resolved on SDS-PAGE gels and immunoblotted with a rabbit IgG antibody.  (C)  
Quantification of binding of Bni1-PrA, Bnr1-PrA, Kar9-PrA and Sli15-PrA to GST-
C283A and GST-D253A over binding to GST-WT.  Quantification represents 
three independent experiments.   
 



  - 79 -   

 

 

 

Figure 4.2
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mutants were used in an immunopurification from strains with different 

associated proteins from Figure 4.1 tagged with Protein A (PrA) [Figure 4.2B; 

Joanna Bloom].  The mutants showed increased binding to the known Cdc14 

target (Sli15) and to several of the novel, associated proteins (Bni1 and Bnr1; 

also Kar9, not shown in A) [Figure 4.2C; Joanna Bloom]. 

 

Our lab compared the binding of prospective Cdc14 substrates with either Cdc14 

or the substrate-trapping mutant (cdc14D253A) in vivo [Figure 4.3; Joanna 

Bloom].  Co-immunoprecipitations after transient expression of Cdc14 (wild type 

or mutant) showed that known Cdc14 target Sli15 and novel potential substrates 

(Bni1 and Bnr1) showed enhanced binding to the substrate-trapping mutant.  

Net1, the nucleolar anchor, bound less to the substrate-trapping mutant, possibly 

because the tighter binding to other targets decreased the pool available to bind 

Net1.   

 

Our lab confirmed that Cdc14 not only bound but also dephosphorylated these 

novel targets in vivo and in vitro.  In cells overexpressing Cdc14 or the 

catalytically inactive, substrate-trapping mutant, the mobility of both Sli15 and the 

formins Bni1 and Bnr1 shifted in the presence of wild type but not mutant Cdc14 

[Figure 4.4A; Joanna Bloom].   In addition, an in vitro phosphatase assay was  
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Figure 4.3:  Enhanced binding of Cdc14 interactors to substrate trapping 
CDC14 mutants in vivo (courtesy of Joanna Bloom).  Immunopurifications of 
FLAG-tagged Cdc14 from strains transiently expressing wild-type Cdc14 (GALS-
WT-FLAG) or the substrate-trapping Cdc14 mutant (GALS-D253A-FLAG) in 
combination with the specified 6HA-tagged proteins (upper panels) and whole 
cell extract from these strains (lower panels).  Immunoprecipitates and extracts 
were resolved on SDS-PAGE gels and immunoblotted with an antibody to the HA 
tag or to Cdc14.  
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Figure 4.4: Confirmation of new Cdc14 substrates in vivo and in vitro 
(courtesy of Joanna Bloom).  (A) Immunoblot of the indicated 6HA-tagged 
proteins in the absence of overexpressed Cdc14 (-) or following transient 

expression of wild-type Cdc14 (GALS-WT) or the “substrate-trapping” Cdc14 
mutant (GALS-D253A).  The asterisk indicates a Bni1-6HA degradation product.  
(B) In vitro phosphatase assay of Bni1 and Sli15.  The 6HA-tagged substrates 
were immunopurified from cells transiently overexpresing Clb2 to ensure their 
phosphorylation.  Purified proteins were then incubated with buffer (untreated), 
recombinant GST alone (GST), GST-tagged wild-type Cdc14 (GST-WT), GST-
tagged catalytically inactive Cdc14 mutants (GST-C283S and GST-D253A), or λ 
phosphatase.  Immunoprecipitates were analyzed by immunoblotting with an 
antibody to HA.  (C) In vitro phosphatase assay after immunopurification of 6HA-
tagged Bni1 following transient expression of GAL-CLB2 as in (B).  
Immunoprecipitates were analyzed by immunoblotting with an antibody to 
phospho-serine/phospho-threonine residues or an antibody to HA.  
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 Figure 4.4
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performed with substrates isolated from cells overexpressing the mitotic cyclin 

CLB2 [Figure 4.4B,C; Joanna Bloom].  When exposed to wild type Cdc14, Bni1 

and Sli15 were both dephosphorylated similar to λ phosphatase treatment, as 

evidenced by a mobility shift on SDS-PAGE, but not when exposed to the 

catalytically inactive, substrate-trapping mutant [Figure 4.4B].  Similarly, when 

probed with an antibody that recognizes phospho-serine and phospho-threonine 

residues, Bni1 phosphorylation was decreased after incubation with wild type but 

not mutant Cdc14 [Figure 4.4C; Joanna Bloom].  While results for Bnr1 were 

similar, we are slightly less confident in them due to the smaller mobility shift 

[Figure 4.4A; Joanna Bloom] and less reproducible results from the anti-phospho-

serine/threonine antibody (data not shown).   

 

In summary, biochemistry experiments conducted by Joanna Bloom in our lab in 

collaboration with the laboratory of Brian Chait have identified several new Cdc14 

targets using immunopurification with MS analysis and a Cdc14 mutant designed 

to distinguish between substrates and other associated proteins.  These new 

substrates include the formins, Bnr1 and Bni1, and several other proteins 

involved in mitotic processes.  Therefore, to better understand the role of Cdc14 

in cytokinesis, I investigated the physiological consequences of Bni1 and Bnr1 

dephosphorylation by Cd14 phosphatase. 
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Formins are a conserved family of actin-nucleating proteins involved in many 

actin-dependent processes, including the contraction of the actomyosin ring 

during cytokinesis (Evangelista et al. 2002).  The defining feature of formins is 

adjacent formin homology domains, FH1 and FH2 (Goode and Eck 2007, Higgs 

and Peterson 2005).   The proline-rich FH1 domain recruits profilin-actin 

complexes to the elongating actin filament while the FH2 domain is responsible 

for nucleating and capping the filament.  Bni1 and Bnr1 are the only formins in 

yeast and have partial functional redundancy (Imamura et al. 1997).  Individual 

deletions of these formins are viable; however, in the absence of both formins, 

cells fail to form an actomyosin ring (Tolliday et al. 2002).  Phosphorylation of 

Bni1 does not affect actin nucleation in vitro (Moseley and Goode 2005), so 

Cdc14-dependent dephosphorylation is unlikely to affect formin activity.  

 

Of interest, both Bni1 and Bnr1 are localized to the bud neck, but during different 

periods of the cell cycle.  Bnr1 arrives during emergence of the bud and leaves 

just before actomyosin ring contraction (Buttery et al. 2007, Gladfelter et al. 2001, 

Kamei et al. 1998).  By contrast, Bni1 is localized to sites of growth including the 

bud tip and arrives at the bud neck after the mitotic spindle is disassembled, just 

prior to cytokinesis (Buttery et al. 2007, Ozaki-Kuroda et al. 2001). Deletion of 

BNI1 causes delays and occasional failures in actomyosin ring contraction 

(Vallen et al. 2000).  Conversely, overexpression of BNR1 causes a cytokinesis 
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defect (Kikyo et al. 1999).  These results could be explained by a requirement to 

switch formins at the bud neck during anaphase for efficient cytokinesis. 

 

Since this alteration of formin localization at the bud neck occurs during 

anaphase when Cdc14 is released from the nucleolus, we hypothesized that the 

dephosphorylation of the formins could cause of the switch. I therefore set out to 

test if the switch in localization of the formins during anaphase results from 

Cdc14 dephosphorylation.         

 

RESULTS 

I first confirmed the timing of formin localization during a synchronized cell cycle 

[Figure 4.5].  Cells with Bni1-GFP or Bni-GFP were released from a metaphase 

block and visualized.  Bnr1-GFP showed bud neck localization starting at the 

time of the block and decreasing 20 minutes after release.   Bni1-GFP by 

contrast was not present at bud necks during the metaphase arrest, but arrived 

around the time Bnr1 left.  The switch between formins at the bud neck was 

coincident, and strikingly, this timing was similar to the time at which Cdc14 is 

released from the nucleolus in the same protocol (Ying Lu, personal 

communication).  Additionally, mutants in Cdc14 (cdc14-1) or in the signaling 

pathways leading to its release (cdc15-2) show Bnr1 localized to the bud neck 

and Bni1 absent from the bud neck (data not shown), suggesting that Cdc14 

plays a role in formin localization.  Together with the biochemical evidence that  
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Figure 4.5: The timing of the switch in formin localization is coincident with 
Cdc14 release.  (A) After a metaphase arrest (M), cells were released 
synchronously, and the localization of the formins (Bni1 or Bnr1) at the bud neck 
was scored.  The timing of Bnr1 leaving the bud neck is coincident with Bni1 
arriving.  This switch is also coincident with the timing of Cdc14 release from the 
nucleolus during the same protocol, grey box (Ying Lu, personal communication).  
(B) Representative images from the experiment in (A).  Scale bar is 10μm. 
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 Figure 4.5
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Cdc14 dephosphorylates the formins, these results are consistent with the 

hypothesis that Cdc14 dephosphorylation is directly responsible for formin 

localization. Subsequent studies were undertaken to verify this hypothesis.    

  

Mutations within the nuclear export sequence (NES) of Cdc14 were reported to 

allow destruction of mitotic cyclins but block cytokinesis (Bembenek et al. 2005).  

Using this conditional, separation-of-function mutant, I investigated the effect of 

Cdc14 release when it is incapable of reaching cytoplasmic targets.  At the 

restrictive temperature, cdc14ΔNES did cause cells to arrest with large buds and 

replicated DNA (data not shown).  However in my hands, Clb2 levels were not 

degraded with normal efficiency during the cdc14ΔNES arrest [Figure 4.6A].  This 

discrepancy negates the use of the cdc14ΔNES as a separation-of-function 

mutant.  Since the mutant cdc14ΔNES protein was not visible at the bud neck 

when compared to wild type (data not shown) as reported (Bembenek et al. 

2005), localization of the formins during the cdc14ΔNES arrest was still assayed.  

I observed that Bnr1 localized to the bud neck of large budded cells [Figure 

4.6B]; however, given that Clb2 levels remain high in these cells, this does not 

add anything significant to previous findings with other Cdc14 mutants (see 

above).   

  

I next determined the localization of formins in cells maintained in metaphase by 

depletion of Cdc20 and induced to overexpress Cdc14 [Figure 4.7].  An empty  
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Figure 4.6: A cdc14ΔNES strain does not degrade Clb2 during arrest. (A) 
Protein levels of mitotic cyclin Clb2 are shown for an asynchronous culture (A), at 
a G1 arrest (α), or after release (in minutes) to 37°C.  Alpha factor was added at 
60 min after release.  The cdc14ΔNES-GFP mutant did not result in the 
degradation of Clb2 as reported by Bembenek et al, 2005.   (B) Cells with BNR1-
GFP and an untagged version of the cdc14ΔNES mutant arrested with Bnr1 
present at the bud neck of most large budded cells (180 min after release).  
Scale bar is 10μm.    
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Figure 4.6
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Figure 4.7: Localization of formins during Cdc14 overexpression at a 
metaphase arrest.  Strains were arrested in metaphase and then galactose was 
added to induce the expression of CDC14 from the plasmids (vector control, wild 
type CDC14, or the catalytically inactive cdc14D253A mutant).  Presence of the 
formin at the bud neck is shown during arrest (M) and at one and two hours after 
addition of galactose (1, 2).  While the result shows CDC14 overexpression 
caused a relocalization of both formins, further examination showed that the 
overexpression was also causing exit from mitosis (assayed by actomyosin ring 
breakdown and DNA content; data not shown). 
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vector or plasmids expressing wild type or a catalytically inactive mutant of 

Cdc14 were transformed into strains with a fluorescently tagged formin.  A 

truncated galactose inducible promoter (GALL) was used to lessen the 

overexpression (Mumberg et al. 1994).  When wild type CDC14 was 

overexpressed, I observed a change in both of the formins’ localizations at the 

bud neck after two hours [Figure 4.7]; however, cells expressing wild type Cdc14 

were also no longer arrested in metaphase and instead exited mitosis as 

assayed by breakdown of their actomyosin rings and DNA replication (data not 

shown).  This experiment was repeated in a strain with CDH1 deleted to maintain 

high levels of mitotic cyclin, but the same release from the block was observed 

(data not shown).  Therefore, the change in localization of the formins seen could 

not be directly attributed to Cdc14 and may be explained by the normal pattern of 

bud neck localization during cell cycle progression. 

 

Since overexpression of Cdc14 during a metaphase arrest was unfeasible, I 

instead sought a system where an endogenous level of Cdc14 could be released 

from the nucleolus without cell cycle progression.  This was accomplished 

through the overexpression of separase (GALS-ESP1) in cells with Cdh1 and 

Cdc20 inactivated, causing continuous Cdc14 release during a prolonged 

anaphase [Figure 4.8A] (Lu and Cross 2009).  In a normal cell cycle, separase 

(Esp1) is kept inactivated by a chaperone and inhibitor called securin (Pds1) 

(Shirayama et al. 1999).  When the APCCdc20 becomes activated and degrades  
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Figure 4.8:  Cells sustained in anaphase with Cdc14 release show a 
coincident relocalization of the formin Bnr1.  (A)  Previous experiments (Lu 
and Cross, 2009) show that when cells lacking CDH1 are arrested in metaphase 
(by depletion of Cdc20) and released by the expression of separase (ESP1) to 
anaphase, Cdc14 is released for a sustained period before cell cycle 

progression.  Left, Quantitative measurement of Cdc14 release during the 
experiment.  The histogram of r values (r = [Cdc14max - Cdc14min] / [Net1max - 
Net1min] when the max and min values are the average intensity values of the 
maximum or minimum 5% pixels within a cell) shift to the left when Cdc14-YFP is 
more dispersed than its nucleolar anchor Net1-CFP.  This occurs between 1.5 
hours after ESP1 expression was induced.  Frequency of cells in metaphase (red 
line), anaphase (yellow line), and after rebudding (green line) is represented. 
Cells are unable to progress out of anaphase for 3-4 hours after induction.  Right, 
Clb2 cyclin levels are maintained throughout the experiment.  (B) MET-CDC20 
cdh1 GAL-ESP1 BNR1-GFP strain was arrested and either induced with ESP1 
(+, in green) as in (A) or not (−, blue).  The localization of Bnr1-GFP to the bud 
neck is graphed.  The percent of large budded cells was used to show cell cycle 
progression and is shown by the line graph.    
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Figure 4.8
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Pds1 (Yeong et al. 2000), Esp1 cleaves cohesins, allowing sister chromatid 

separation (Uhlmann et al. 2000).  In the procedure I used, ESP1 is 

overexpressed during a metaphase arrest caused by depletion of Cdc20 in a 

strain with CDH1 deleted.  Without the activators of the APC (Cdc20 and Cdh1), 

mitotic cyclin degradation is completely inhibited [Figure 4.8A] (Schwab et al. 

1997, Wasch and Cross 2002).  The overexpression of Esp1, however, induces 

anaphase (after 1 hr ESP1 expression) and Cdc14 release (after 1.5 hrs ESP1 

expression) but cell cycle progression is significantly delayed [Figure 4.8A] (Lu 

and Cross 2009, Sullivan and Uhlmann 2003).  The prolonged release of Cdc14 

is most likely due to the absence of Cdh1, which normally contributes to 

resequestration (Visintin C. et al. 2008).    

 

I employed this assay to determine if endogenous Cdc14 release without cell 

cycle progression was sufficient to shift the localization of the formins.  Cells were 

either maintained in a metaphase arrest (-ESP1) or released to anaphase by 

induction of GALS-ESP1 (+ESP1) [Figure 4.8B].  Consistent with our hypothesis 

that Cdc14 affects formin localization, the formin Bnr1 left the bud neck at a time 

coincident with the release of Cdc14.  Cells remained large budded during the 

timecourse, indicating that cell cycle progression was delayed.   

 

Further investigation is necessary to substantiate this result.  One caveat, for 

example, is that the current control is not optimal since control cells remain 
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arrested in metaphase.  In future experiments, a control that advances into 

anaphase without releasing Cdc14 will be used for a more appropriate 

comparison (using GAL1-TEV1/SCC1-TEV, in which inducible Tobacco etch 

virus protease cleaves the Scc1 cohesin subunit at an engineered site) (Sullivan 

and Uhlmann 2003, Uhlmann et al. 2000).  The localization of Bni1 during this 

protocol has yet to be assayed. Still, this result implicates Cdc14 

dephosphorylation as the trigger for the exchange in formin localization seen 

during anaphase and gives physiological importance to the biochemical 

observation that Bni1 and Bnr1 are Cdc14 phosphatase substrates.   

 

CONCLUSION 

Novel proteins that interact biochemically with the essential Cdc14 phosphatase 

were successfully identified and shown to preferentially bind a substrate-trapping 

mutant (Joanna Bloom and Ileana Cristea).  Furthermore, these proteins are 

dephosphorylated in vivo and in vitro by Cdc14 (Joanna Bloom).  I focused 

subsequent studies on the formins, which nucleate actin cables to build and 

contract the cytokinetic ring.  While the timing of a switch in formin localization at 

the bud neck is coincident with Cdc14 nucleolar release [Figure 4.5], a direct 

effect has been more difficult to show.  However, arresting cells in the presence 

of a long endogenous release of Cdc14, I observed that localization of Bnr1 is 

altered by Cdc14 release [Figure 4.8B].  
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In the future, I plan to look at the ability of the formins to bind to the substrate-

trapping mutant during a synchronized release from metaphase [timecourse as in 

Figure 4.5; pullout as in Figure 4.2].  Binding of the formins to the mutant Cdc14 

is expected to decrease, coincident with Cdc14 release in the cells, due to the 

assumed dependency of substrate trapping mutant interactions on the 

phosphorylation of substrates.   

 

Further studies could look into the physiological relevance of other targets 

identified in the biochemical experiments (data not shown).  In addition to the 

formins, novel Cdc14 substrates identified are involved in spindle orientation, 

SPB duplication, and bud formation.  Overall, identifying Cdc14 targets involved 

in mitotic exit events is essential to understanding how a cell that has 

accumulated CDK-dependent phosphorylations throughout the cell cycle returns 

to a naïve G1 state.   

 



  - 99 -   

DISCUSSION 

 

The exit from mitosis is an important transition during the cell cycle.  The CDK 

that has driven many of the events is inhibited, and Cdc14 phosphatase is 

activated to dephosphorylate many mutual targets.  All this serves to reset the 

cell cycle control system, allowing progeny cells to enter G1 in a naïve state, 

sensitive to CDK regulation again.    

 

Peak mitotic cyclin permits mitotic exit  

In studies led by Benjamin Drapkin, we tested the effect of sustaining mitotic 

cyclins during mitotic exit.  Using an assay that allowed metaphase-arrested cells 

to be loaded with stable mitotic cyclin, single cells were assayed for their ability to 

complete mitotic exit events including spindle disassembly, cytokinesis, and 

budding in the subsequent cell cycle (Drapkin et al. 2009).  The amount of stable 

cyclin produced was measurable in individual cells and was compared to the 

peak reached during a normal cell cycle. 

 

From these studies, we concluded that peak mitotic cyclin levels seen in a normal 

cell cycle do not prevent cells from exiting mitosis.  Instead, events are delayed 

by sustained mitotic cyclin in a dose-dependent manner.  Based on these 

findings, a simple ratchet model of CDK activity is insufficient to explain the 

ordering of mitotic entry and exit.      
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The role of Swi5 in promoting cytokinesis and rebudding 

To further understand the inhibitory thresholds of mitotic cyclin in the events of 

mitotic exit, I investigated the role of a key regulator during this cell cycle 

transition.  Swi5, along with its homolog Ace2, activates the transcription of a 

regulon of genes during the transition from mitotic exit to G1.   When SWI5 was 

deleted in cells, the delays in mitotic exit events caused by sustaining mitotic 

cyclins were increased specifically for cytokinesis and budding [Figure 1.2].  The 

specificity of Swi5’s effect for these two processes and the strict relationship 

between protein level and kinase activity indicated that it was not likely due to an 

effect on CDK activity (Drapkin et al. 2009).  Therefore, in wild type cells with 

mitotic cyclin sustained, Swi5 promoted cytokinesis and rebudding.    

 

The synthetic relationship between sustaining mitotic cyclin and eliminating SWI5 

allows us to investigate the regulation of these proteins in a normal cell cycle.  

swi5Δ had only minor effects on the timing of cytokinesis and no discernible 

effect on rebudding [Figure 1.1].  However, by sustaining mitotic cyclins, we have 

created a sensitized background that may amplify the effect of genes like Swi5, 

which otherwise have subtle phenotypes or redundant pathways.  Furthermore, 

our assay lends itself to a quantitative description of more subtle contributions 

than traditional all-or-none genetics (including delays and dosage sensitivity), 

which is a distinct advantage when investigating pathways with likely 
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redundancies.  Additionally, Swi5’s ability to promote cytokinesis and rebudding 

may be important during recovery from a spindle checkpoint arrest when mitotic 

cyclin levels accumulate to levels above the peak of the normal cell cycle 

(Drapkin et al. 2009, Hwang et al. 1998). Swi5 exclusively affected the ability of 

cells to complete cytokinesis and form a new bud; testing for similar synthetic 

relationships of sustained mitotic cyclin with other mitotic regulators may increase 

our understanding the rate limiting steps involved in other events, including 

spindle disassembly.  

 

The minor effects of a swi5Δ mutant in a normal cell cycle could be due to 

redundancy with the remaining homologous transcription factor, Ace2, or other 

unknown factors.  To further investigate the contributions of these two 

transcription factors, we would extend our current studies to look at an ACE2 

deletion and the double mutant ace2Δ swi5Δ.  While Swi5 and Ace2 have known 

differences in regulation and targets, their significant overlap may be sufficient to 

mask effects of individual deletions.  Laboratory strains and growth conditions 

may artificially downplay the importance of this redundancy.  For example in 

pathogenic yeast with only one orthologue of Ace2/Swi5 (C. albicans Ace2), loss 

of Ace2 leads to attenuation of virulence (Dujon et al. 2004, Kelly et al. 2004).  

However, in a related species with both orthologues (C. glabrata), deletion of 

ACE2 leads to hypervirulence (Kamran et al. 2004).  This example demonstrates 
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the importance of these paralogues and the fine-tuning that gene duplication 

allows (Kellis et al. 2004).  

 

Localization of Swi5 supports a model for kinase/phosphatase balance in 

cell cycle control 

CDK phosphorylation of Swi5 excludes it from the nucleus until Cdc14 is 

released during anaphase (Moll et al. 1991, Visintin R. et al. 1998).  Therefore, I 

investigated Swi5 localization when mitotic cyclins are sustained.  Both the timing 

and amount of Swi5’s initial entry were unaffected by the maintenance of mitotic 

cyclins, and subsequent nuclear entries revealed oscillations of Swi5 entry during 

the delay in cell cycle progression.  Release of Cdc14 phosphatase from the 

nucleolus similarly oscillates when mitotic cyclin levels are sustained (Drapkin et 

al. 2009, Lu and Cross 2010).  Swi5 is a mutual target of CDK and Cdc14 

phosphatase; therefore, we propose that the repeated Swi5 nuclear entries are a 

result of the oscillations in the kinase/phosphatase balance between CDK and 

Cdc14 activities [Figure 2.5]. 

 

Overall, these findings support the model we proposed for how cells progress 

through mitotic exit despite locked mitotic cyclins (Drapkin et al. 2009).  In a 

normal cell cycle, the relevant variable for ordering mitotic exit events may be the 

balance of competing kinase and phosphatase activities. In support of this model, 

a mutant in the MEN pathway that cannot release Cdc14 from the nucleolus 
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(cdc15-2) exits mitosis if the stoichiometric CDK inhibitor SIC1 is overexpressed 

(Yeong et al., 2000).  In a cdc15-2 arrest, the APCCdc20 degrades mitotic cyclin 

Clb2 to approximately 1/3 peak. The telophase arrest is stable but reverses 

promptly when Cdc14 is released, even if Sic1 inhibition or APCCdh1 degradation 

are prevented (Wäsch and Cross, 2002).   

 

In addition to the global activity of the kinase and phosphatase activities, 

thresholds for particular events in mitotic events may be set by the susceptibility 

of relevant targets to both the CDK and Cdc14 phosphatase activities.  According 

to preliminary data, the localization of the Swi5 homolog Ace2 may be quite 

different than that of Swi5 in the presence of sustained mitotic cyclins, 

demonstrating that very similar proteins may have different responses to the 

kinase/phosphatase balance.  Additionally, neither mitotic cyclin/CDK or Cdc14 

phosphatase is distributed uniformly in the cell (Bailly et al. 2003, Buttery et al. 

2007, Hood et al. 2001, Pereira and Schiebel 2003, Pereira et al. 2002, Shou et 

al. 1999, Visintin R. et al. 1999, Yoshida et al. 2002), and therefore, local activity 

concentrations around substrates may play a role in setting the balance of 

kinase/phosphatase activity.  Accounting for the variables of phosphatase 

activity, substrate susceptibility, and local concentrations of kinase and 

phosphatase activities near substrates may explain how the rise and fall of CDK 

activity once per cell cycle maintains order and timing of events. 
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Swi5 may promote cytokinesis and bud formation through coordinated 

promotion of several transcriptional targets 

In order to understand the ability of Swi5 to promote cytokinesis and rebudding, I 

compared the effects of deletions of individual transcriptional targets using our 

quantitative measurement of mitotic cyclin inhibitory thresholds.  Swi5-dependent 

transcription targets are normally expressed during a time of mitotic cyclin 

inhibition.  However, our quantitative assay may be sensitive to rare regulatory 

interactions that occur during the transition from high to low CDK activity or 

mechanisms that are important after checkpoints when mitotic cyclin activity 

accumulates (Drapkin et al. 2009, Hwang et al. 1998).   

 

So far, individual targets have only had intermediate effects.  Aim44 was capable 

of promoting budding and cytokinesis while Nis1 may only promote cytokinesis.  

This may indicate that numerous targets of Swi5 coordinate to promote these 

mitotic events.  Some may be involved in both processes while others may be 

exclusive to an individual process.  To fully understand the contribution of this 

network, combinations of mutants need to be analyzed.   

 

A coordinated effect of Swi5 targets on the subsequent cell cycle events would 

not be surprising considering the overlapping machinery involved in establishing 

a new bud and constricting the ring to separate the bud from its mother.  Still, 

some evidence demonstrates that these events may be regulated independently 
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by CDK activity, including (1) the ability of cells with sustained mitotic cyclin to 

rebud before completing cytokinesis (Drapkin et al. 2009) and (2) the ability of at 

least one Swi5 target analyzed, Nis1, to promote cytokinesis, but not bud 

formation [Figure 3.4]. 

 

Up until now, the marker used for cytokinesis has been the contraction of the 

actomyosin ring (Myo1-mCherry); however, in yeast, cytokinesis occurs through 

two interdependent pathways (Schmidt et al. 2002).  Actomyosin ring contraction 

invaginates the plasma membrane; and while constricting, guides the chitin 

synthase Chs2 as it deposits the primary septum (Bi 2001, Bi et al. 1998, 

Lippincott and Li 1998, Schmidt et al. 2002, Silverman et al. 1988, Tolliday et al. 

2003).  However, if either of these pathways is removed, the cell can still 

complete an aberrant cytokinesis (Schmidt et al. 2002, Tolliday et al. 2003).  At 

least one Swi5 target, Cyk3, is involved in the actomyosin-independent pathway 

and activates Chs2-dependent septum formation (Jendretzki et al. 2009, Korinek 

et al. 2000, Nishihama et al. 2009).  Chs2 is restricted to the endoplasmic 

reticulum by CDK phosphorylation and transported to the bud neck during 

telophase (Teh et al. 2009, Ubersax et al. 2003, Zhang G. et al. 2006).  It would 

be interesting to further explore the role of CDK regulation in these parallel 

pathways by using a marker for the plasma membrane (e.g. pleckstrin homology 

domain of phospholipase C fused to GFP (PH–GFP) (Mendoza et al. 2009)) to 

score abscission as an additional event in mitotic exit.  Furthermore, by analyzing 
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mutants that eliminate these pathways individually, we can understand the CDK 

regulation of cytokinesis as a whole.  

 

Aim44 and Nis1 are both implicated in the events of budding and cytokinesis by 

their localizations and physical interactions, although neither has a defined 

biochemical activity or well understood function in these processes.  

Furthermore, searches for sequence or structural homology do not reveal any 

significantly conserved domains (data not shown).  Overall, determining the exact 

roles of these proteins in the processes of cytokinesis and budding will require 

significant further analysis.      

 

Identification of novel Cdc14 phosphatase substrates 

The combination of immunopurification coupled with MS analysis is a powerful 

tool for identifying physical interactions between proteins.  However, interactions 

between enzymes and their substrates can be brief and hard to obtain with these 

methods.  When trying to identify substrates of the Cdc14 phosphatase, an 

additional complication of sequestration of the enzyme during most of the cell 

cycle is introduced.  Therefore, Joanna Bloom in our laboratory utilized mutants 

that constitutively release Cdc14 form the nucleolus or strengthen the interaction 

between the phosphatase and its substrates to identify novel targets of this key 

mitotic regulator.  
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To examine the physiological consequence of Cdc14 dephosphorylation of these 

targets, I first selected the partially redundant formins Bni1 and Bnr1.  These 

proteins change their localization in the cell at a time coincident with Cdc14 

release [Figure 4.5] (Buttery et al. 2007, Gladfelter et al. 2001, Kamei et al. 1998, 

Ozaki-Kuroda et al. 2001).  Showing a direct relationship between these events 

has been difficult.  However, Bnr1 does change localization coincident with an 

endogenous release of Cdc14 in cells when cell cycle progression is otherwise 

considerably protracted, suggesting that Cdc14 does directly affect Bnr1 

localization [Figure 4.8].  

 

Since septins are known to recruit the formins to the bud neck (Kamei et al. 1998, 

Pruyne et al. 2004), determining the effect of Cdc14 on this interaction in an in 

vitro system could further support the hypothesis that this dephosphorylation 

event promotes a reorganization of formins during anaphase.  In the future, 

identifying the sites of phosphorylation that regulate this exchange would allow us 

to further elucidate the importance of switching between formins at the bud neck 

for efficient cytokinesis.  However, mutating consensus sites within regions 

important for bud neck localization did not affect essential protein function 

(Joanna Bloom).  

 

The combination of determining quantitative relationships and identifying direct 

substrates of enzymatic activities is powerful in a system as well studied as the 
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cell cycle.  One of the proteins identified as a novel Cdc14 associated protein 

[Figure 4.1], Nis1, is also a Swi5 target partially responsible for the transcription 

factor’s ability to promote cytokinesis [Figure 3.4].  Additionally, Sfi1, a 

component of the SPB bridge, was identified as a likely Cdc14 target (Joanna 

Bloom; data not shown).   Using a similar quantitative assay to the one presented 

here, our laboratory has shown that CDK phosphorylation of Sfi1 is an important 

but not rate limiting determinant of spindle formation (Catherine Oikonomou, 

personal communication).  Future work will determine the contribution of 

additional newly identified substrates to the efficient progression of the cell cycle. 
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MATERIALS AND METHODS 
 
Strain and Plasmid Construction 
Standard yeast methods for strain and plasmid construction were used 
throughout. 
 
 
Measuring Mitotic Cyclin Inhibitory Thresholds  
(developed by Ben Drapkin; Drapkin et al. 2009) 

 
Loading undegradable mitotic cyclin into metaphase arrested cells. 

Strain: ADH1pr-GAL4-rMR cdc20::MET3-HA3-CDC20  
with either CLB2::GAL1-CLB2db,ken1,2-YFP or CLB2::GAL1-CLB2db,ken1,2 
Protocol: 
• Grow in raffinose medium lacking methionine to log phase.  
• Incubate for 2.5 hours in 2 mM methionine to turn off MET3-CDC20 and 

arrest in metaphase. 
• Split culture: pulsed and unpulsed.  Induce (pulse) CLB2kd–YFP or 

CLB2kd expression for ~30 or ~40 minutes respectively in 10 M 
deoxycorticosterone. 

• Wash out hormone from media (stop pulse). 
• Allow Clb2-YFP fluorescence to mature by additional 45 minutes in 

glucose + methionine. 
• Wash out methionine from media. 
• Release cells in glucose medium lacking methionine. 
• If indicated, add 2mM methionine after 45 minutes to block cells at a 

second metaphase block. 
 

Population Clb2kd-YFP measurement by immunoblot 
Strain: cdc20::MET3-HA3-CDC20 CLB2-YFP 
Protocol:   
• Grow in glucose medium to log phase. 
• Arrest with 100 nM alpha factor (α) for 2.5 hours. 
• Release to glucose medium ± methionine. 
• Samples collected every 10 minutes.  60 minute timepoints for both 

contained equal protein concentrations of Clb2-YFP and the maximum for 
the culture without methionine (see below). 

 
Clb2–YFP 60-minute peak and Clb2kd–YFP pulse samples were serially 
diluted two-fold into clb2 extract for calibration. Blots were probed with anti-
GFP (Roche), anti-Clb2, and anti-Pgk1 (Santa Cruz Biotechnology) (loading 
control) antibodies. ECL signal was imaged using a Fujifilm DarkBox and 
CCD camera and quantified using MultiGauge (Fujifilm) software (linear 
detection range). Multiple comparisons were performed for each time point. 
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Quantitative Fluorescence Microscopy 

Cells were lightly fixed in 4% paraformaldehyde as described (Drapkin et al. 
2009). YFP fluorescence was quantified from single unenhanced exposures, 
after single-cell masking and background subtraction.  This required a mask-
making program to define cell regions, developed in MatLab by Ben Timney 
(Drapkin et al. 2009). 
 
For analysis of spindles, cytokinesis rings and buds, 3–5 0.3 µm, contrast-
enhanced optical sections were combined. These procedures yielded single-
cell correlations between Clb2kd–YFP levels and mitotic exit phenotypes. 
  

Clb2kd inhibitory threshold calculation 
Inhibitory thresholds were measured at different time points after event 
completion in the unpulsed control.  
 
Clb2kd peak-equivalence (% peak or fraction peak) was determined by: 
 

 
 
Fcell = YFP fluorescence of an individual pulsed cell;  
Wpulse the quantified anti-YFP immunoblot signal from the pulsed population;  

Wpeak the quantified anti-YFP immunoblot signal from peak synchronized wild-
type samples. 

Cells were sorted into Clb2kd-YFP bins containing >60 cells, and phenotypes 
of cells in these bins yielded inhibitory Clb2kd concentrations 

 
 
Time-Lapse Microscopy 
Preparation of cells for time-lapse microscopy was performed as previously 
described (Bean et al. 2006). 
 
Adaptations to above threshold measurement protocol (above) for following cells 
during release by time-lapse microscopy: 
• After washing out methionine, cells were transferred to glucose medium 

without methionine at 30°C and imaged every 3 minutes for 357 minutes. 
• For each movie, the fluorescence of a calibrated GFP-conjugated bead is 

measured.  All measurements from that movie are standardized to the bead, 
to allow comparisons across movies.  

• The peak measurement is based on a population average of the maximum 
YFP fluorescence value of MET-CDC20 CLB2-YFP cells when arrested in 



  - 111 -   

metaphase by methionine repression for 2.5 hours before imaging.  The value 
was background subtracted and divided by two (two fold relationship between 
peak Clb2 in a synchronous cell cycle and during a MET-CDC20 block was 
established by Ben Drapkin, (Drapkin et al. 2009)).  

• In movies without the YFP tag on Clb2,kd (e.g. those looking at Swi5 and 
Ace2 localization), the amount of mitotic cyclin is estimated based on a linear 
relationship established between the amount of Clb2kd-YFP and the delay in 
budding (Ying Lu, personal communication).      

 
Image Analysis 
Image segmentation and fluorescence quantification were as described (Bean et 
al. 2006, Charvin et al. 2008). 
 
 
Immunoblots 
Western Blots were performed using standard methods.  Antibody concentrations 
used were mouse monoclonal anti-Pgk1 1:10,000 (Invitrogen), rabbit polyclonal 
anti-Clb2 1:10,000, and mouse monoclonal anti-GFP 1:1000 (Roche).   
ECL signal was measured in a Fujifilm DarkBox with CCD camera, and quantified 
using MultiGauge software (Fujifilm). 
 
Fixed cell fluorescence microscopy 
Cells were lightly fixed in 4% paraformaldehyde as described (Drapkin et al. 
2009). 
Fluorescence and DIC images were acquired using an Axioplan 2 microscope 
(Carl Zeiss MicroImaging Corp.) with a 63X 1.4 numerical aperture Plan- 
Apochromat objective, coupled to a Hamamatsu C4742-95 CCD camera 
(Sciscope Instrument). Camera and microscope were interfaced with the 
OpenLab software (Improvision). Filters and dichroics used were made by 
Chroma. YFP was detected with a YFP filter, mCherry with a Cy3 filter, CFP with 
a CFP filter, and GFP with a narrow band pass FITC filter.  Optical sections were 
taken at 0.3 micron spacing; for illustrative purposes these were merged into two-
dimensional maximum projections.  Acquisition was automated using an 
OpenLab script written by Ben Drapkin. 
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