
Rockefeller University
Digital Commons @ RU

Student Theses and Dissertations

2012

Exploring Synaptic Vesicle Exocytosis
Pablo Ariel

Follow this and additional works at: http://digitalcommons.rockefeller.edu/
student_theses_and_dissertations

Part of the Life Sciences Commons

This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and
Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact mcsweej@mail.rockefeller.edu.

Recommended Citation
Ariel, Pablo, "Exploring Synaptic Vesicle Exocytosis" (2012). Student Theses and Dissertations. Paper 170.

http://digitalcommons.rockefeller.edu?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations/170?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mcsweej@mail.rockefeller.edu


 

 

 

 

 

EXPLORING SYNAPTIC VESICLE EXOCYTOSIS 

 

 

A Thesis Presented to the Faculty of 

The Rockefeller University 

in Partial Fulfillment of the Requirements for 

the degree of Doctor of Philosophy 

 

 

 

 

 

by 

Pablo Ariel 

June 2012 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Pablo Ariel 2012 

  



 

 

EXPLORING SYNAPTIC VESICLE EXOCYTOSIS 

 

Pablo Ariel, Ph.D. 

The Rockefeller University 2012 

 

The strength of a synapse is an important variable that will affect the function of 

neural circuits. This thesis develops optical techniques to study determinants of 

presynaptic efficiency. Our methods are largely based on a chimera of a pH-sensitive 

variant of the green fluorescent protein and the vesicular glutamate transporter. This 

reporter is incorporated into synaptic vesicles and increases its fluorescence when those 

vesicles fuse with the presynaptic membrane. Using this reporter, we measure the size of 

the primed pool of vesicles (n), a privileged subset of synaptic vesicles which are docked 

at the active zone and can immediately fuse with the membrane, thereby releasing 

neurotransmitter in response to an action potential. We also estimate the probability that a 

vesicle within that pool will fuse upon arrival of a stimulus to the presynaptic terminal 

(Pv). Our studies show that at each bouton in a cultured rat hippocampal neuron there are 

four primed vesicles per synapses, each of which has a 10% chance of fusing with the 

membrane in response to a stimulus. These values only represent averages; both Pv and n 

vary widely between neurons and between synapses made by those neurons. 

Tomosyn, a molecule intimately involved with the fusion machinery of synaptic 

vesicles, exercises a negative control on exocytosis. Reducing the levels of this protein, 

without eliminating it completely from a synapse, leads to increases in Pv, but does not 

affect n. 



 

 

In addition to measuring synaptic properties of individual neurons, our methods 

can be used to study Pv and n at the level of single synapses. There is considerable 

variability among synapses in these properties, even between synapses formed by the 

same axon. This variability is not correlated with the fraction of P/Q or N-type Ca2+ 

channel subtypes present at each presynaptic terminal. Furthermore, it cannot be 

explained by the variance in distances between these channels and primed vesicles. 

Synapses differ not only in their basic properties, but also in the degree to which their 

strength can be modulated. In particular, activation of the cAMP pathway leads synapses 

with lower Pv to potentiate more than synapses with high Pv. 

In conclusion, the methods developed herein represent a powerful approach to 

study the molecular determinants of synaptic vesicle exocytosis at the level of individual 

synapses. 
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1. INTRODUCTION 

 

1.1 The basics of synaptic transmission 

Most neurons in the mammalian central nervous system are connected by 

chemical synapses. These specialized structures do not simply transmit a sequence of 

action potentials (APs) from one cell to the next, but can act as filters to modify the signal 

(Abbott and Regehr, 2004). For example, connections that are strong (like the climbing 

fiber synapse of the cerebellum) reliably transmit individual, isolated APs yet depress in 

response to trains where the same stimuli are delivered at high frequency. On the other 

hand, synapses that are initially weak (like the parallel fiber of the cerebellum) tend to 

facilitate, giving a larger response per stimulus if APs are delivered in bursts. These 

examples illustrate how strong synapses can function as low pass filters and weak 

synapses can operate as high pass filters, influencing how information flows through 

neural circuits (Abbott and Regehr, 2004). In addition to these relatively rapid effects (on 

the order of seconds), activity dependent presynaptic changes can occur on longer 

timescales (hours or longer) and lead to enduring modifications of network properties 

(McBain and Kauer, 2009). Thus, what determines a synapse’s strength at the molecular 

level is a key question that has important implications for circuit function. 

Before addressing neurotransmitter release, it is worth briefly reviewing the 

anatomy of the structure involved, as determined from three-dimensional reconstructions 

based on electron microscopy. While there is considerable variety among synapses, small 

(around 1 m diameter) synapses of the central nervous system typically have on the 
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order of a hundred vesicles, of which only a small subset (approximately 5%) are in 

direct contact with the presynaptic membrane (Schikorski and Stevens, 1997). This 

subset of vesicles, referred to as the docked pool, contacts the membrane in a region 

known as the active zone, in direct apposition across the synaptic cleft with a specialized 

area on the postsynaptic cell known as the postsynaptic density (Schoch and 

Gundelfinger, 2006). 

When an AP arrives at a presynaptic terminal, the depolarization leads to opening 

of Ca2+ channels. Calcium ions rush into the terminal down their electrochemical gradient 

and bind to a Ca2+ sensor (Bennett, 1999) widely thought to be synaptotagmin (Sun et al., 

2007; Burgalossi et al., 2010; Pang and Sudhof, 2010; Kochubey et al., 2011), on the 

synaptic vesicle membrane. Through a series of steps that take less than a millisecond 

and are not fully understood, this binding leads to SNARE-dependent membrane fusion 

of the vesicle with the membrane and release of neurotransmitter into the synaptic cleft 

(Chapman, 2008). Neurotransmitter quickly diffuses across the cleft and binds to 

postsynaptic ionotropic receptors that cause rapid conductance changes and/or 

metabotropic receptors that lead to slower effects mediated by G-protein coupled 

receptors in the postsynaptic cell. 
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1.2 A framework to study neurotransmitter release 

A simple model used as a framework to study this process posits that as a result of 

a single AP in the presynaptic neuron, a response Q is elicited in the postsynaptic cell 

(Schneggenburger et al., 2002):  

Q = n . Pv . q  (1.1) 

where 

- n = the number of primed vesicles, i.e. vesicles immediately available for fusion 

(also known as the readily releasable pool or RRP size). These vesicles have 

undergone all biochemical steps except for the final Ca2+-dependent fusion step. 

- Pv = the probability that each of those vesicles has of fusing with the membrane in 

response to one AP 

- q = the size of the postsynaptic response to a single vesicle fusion event (also 

known as quantal size) 

Two important assumptions implicit in this model are that all primed vesicles have 

the same fusion probability and that they behave independently. Even if these 

assumptions do not hold in every case, the model is still a very useful way to think about 

synaptic transmission. Note that the model makes no restrictions on the possibility of 

more than one vesicle fusing at once (multivesicular release) at a given synapse. For 

some time there was a debate regarding whether multivesicular release could take place 

at synapses of the mammalian central nervous system. However, there is now convincing 

evidence that this can happen (Abenavoli et al., 2002; Oertner et al., 2002; Balaji and 

Ryan, 2007; Ariel and Ryan, 2010) so it does not seem warranted to modify the model to 

restrict the possibility of multivesicular release occurring. Finally, a very important point 
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regards how this model connects to the typically measured parameter Pr 

(neurotransmitter release probability). Pr is the probability that a synapse will not fail, 

that is, that a presynaptic AP will elicit a response in the postsynaptic cell. This will be 

equivalent to the probability that at least one vesicle fuses in response to one AP. Given 

the implicit binomial distribution underlying the model: 

Pr = 1 – ( 1 – Pv )n (1.2) 

With this framework in mind, it is worth exploring how n, Pv, and q can be 

influenced to determine synaptic strength. 

Several factors can influence the number of primed vesicles. In a simplified 

model, n will be set by the interplay of rates of docking (and undocking), priming (and 

unpriming) and possibly (see below) spontaneous fusion (Fig. 1.1A): 

      kdocking                                          kpriming                       kspontaneous 

Ntotal   Ndocked,unprimed                  n   

    kundocking                                      kunpriming 

where 

- Ntotal = the total number of synaptic vesicles in a nerve terminal 

- Ndocked,unprimed = the number of vesicles in contact with the presynaptic membrane 

that are not fusion competent 

- ki= rate constants for process i, where i can be: docking, undocking, priming, 

unpriming and spontaneous vesicle fusion 

In this scenario, the rate constants of each step will influence n but so will any change 

in the total number of vesicles in the terminal, merely due to mass action. For example, 

anything that increased Ntotal would raise n without controlling docking or priming 
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processes per se.  Additionally, even in the absence of stimulation there is a low rate of 

release of neurotransmitter due to spontaneous fusion of synaptic vesicles with the 

membrane. While there is some debate as to whether these vesicles are in the primed pool 

to begin with (Fredj and Burrone, 2009; Hua et al., 2010; Wilhelm et al., 2010), if they 

were, any change in the spontaneous fusion (or mini) rate could lead to a reduction in 

steady state n. An alternative proposal for the control of n posits that fusion can only take 

place at certain “slots” or “sites” (Neher, 2010). In this scenario, control of the number of 

the sites is key. Thus, the important variables would be the abundance of molecules that 

make up the slots, and the rate constants of assembly and destruction of the sites (Fig. 

1.1B). These two scenarios are not incompatible, but rather should be considered 

extremes in a continuum of possibilities. The first implicitly assumes that the molecules 

necessary for fusion (presumably the site constituents) are in abundance and not rate 

limiting. Conversely, the second assumes that construction of sites is much slower than 

the docking and priming reactions such that once a site is formed, it captures a primed 

vesicle quickly. If the rates of the various processes outlined above are comparable, n 

will be set by a complex interplay between the number of vesicles, the number of sites 

and the rates of docking and priming within those sites. Which extreme of the model is a 

better representation of what actually occurs during priming is currently unknown. 

However, the fact that synaptic vesicle fusion and docking are localized to a specialized 

region of the plasma membrane (the active zone) supports the concept of slots, though 

what is rate-limiting in the process of docking and priming a vesicle at those sites is 

unclear. 
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Figure 1.1. Models of priming with possible mechanisms to control the number of 

primed vesicles (n). (A) n is determined by the equilibrium between the rates of docking, 

undocking, priming, unpriming, and spontaneous fusion. SNARE complexes are 

symbolized by crossed blue lines and are shown in a loose configuration in the case of the 

docked, unprimed vesicle. (B) Model that assumes the construction of release slots is the 

rate limiting factor for control of n, whereas other processes are at saturation. Molecules 

that make up the slots are shown as blue squares that assemble to form release sites at the 

membrane. 

 

An interesting question is whether docking is the morphological equivalent of 

priming or if any additional biochemical steps are needed to make a vesicle fusion 

competent. An illustrative example of how thinking on this point has evolved is munc13, 

the mammalian homolog of a Caenorhabditis elegans gene that causes severe paralysis 

when mutated (unc13), and contains domains that can bind phorbol esters and Ca2+ 
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(Brose et al., 1995). Knocking out both isoforms expressed at hippocampal synapses 

eliminated neurotransmitter release (Varoqueaux et al., 2002). However, there was no 

effect on the number of docked vesicles determined from electron microscopy using an 

aldehyde fixation method. This was taken as evidence that after a synaptic vesicle 

docked, additional priming steps needed to take place before achieving fusion 

competence. The issue was revisited in a recent study on hippocampal slice cultures using 

high-pressure freezing and electron tomography, circumventing potential aldehyde 

fixation artifacts (Siksou et al., 2009). Contrary to the previous findings, the docked 

vesicle pool was almost completely eliminated in the absence of munc13. This led the 

authors to propose that docking is the morphological correlate of priming in small 

synapses of the central nervous system. It is important to point out that exact definitions 

of what constituted a docked vesicle were slightly different  in both studies (see Verhage 

and Sorensen, 2008, for further discussion of this issue), with the latter taking a stringent 

approach of only considering vesicles in contact with the plasma membrane and the 

former including vesicles within 6nm of the active zone. However, even applying the 

more inclusive criteria to the results using high-pressure freezing and electron 

tomography, the newer technique still shows a dramatic (~80%) reduction in the number 

of docked vesicles. Further study of additional mutants with high-pressure freezing and 

electron tomography will be needed to shed more light on this issue. If there are 

additional biochemical steps necessary for fusion competence after vesicle docking, 

eliminating molecules critical only for those steps would lead to smaller n - assayed 

physiologically (see below) -, yet no changes in the number of docked vesicles - assayed 

ultrastructurally -. On the contrary, if docking is equivalent to priming, we would expect 



8 

a tight correlation of effects on n and the number of docked vesicles over a wide variety 

of molecular interventions. Based on results from docking of synaptic vesicles in C. 

elegans, or of dense core vesicles in chromaffin cells, particularly interesting candidates 

to revisit in mammalian synapses with high-pressure freezing are syntaxin, SNAP-25, 

synaptotagmin and munc18 (Hammarlund et al., 2007; de Wit et al., 2009; de Wit, 2010). 

When considering how the value of Pv can be modulated, the main points to 

examine are local Ca2+ (its concentration at the vesicle) and vesicle fusion willingness 

(Fig. 1.2). Pv is steeply dependent on the Ca2+ concentration at synaptotagmin molecules 

on primed synaptic vesicles (Bollmann et al., 2000; Schneggenburger and Neher, 2000; 

Sun et al., 2007; Burgalossi et al., 2010) so control of that local concentration will have a 

strong effect on synaptic strength (Schneggenburger and Neher, 2005). Local levels of 

Ca2+ will be influenced both by how much Ca2+ comes into the terminal in the first place 

and by how much the concentration decays between the source (Ca2+ channels on the 

presynaptic membrane) and the primed vesicles. The amount of Ca2+ influx will be set by 

the intrinsic characteristics and abundance of Ca2+ channels (Fig. 1.2A), the extra- to 

intracellular electrochemical Ca2+ gradient and the shape of the AP waveform. The 

concentration decay to the vesicle will depend on the average distance between vesicles 

and Ca2+ channels (referred to as the coupling between them, Fig. 1.2B) and will also be 

shaped by any molecules between the channels and vesicles that can bind Ca2+ (Fig. 

1.2C). Depending on their concentrations, mobility, binding and unbinding rate constants, 

these Ca2+ buffers can potentially influence the local concentration of Ca2+ at primed 

vesicles (Schwaller, 2010). 
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Figure 1.2. Determinants of vesicle fusion probability (Pv). (A) to (C) Factors that 

influence the local Ca2+ concentration at the vesicle. Ca2+ concentration is symbolized by 

the intensity of red. The higher the Ca2+ concentration at a vesicle, the higher its Pv. (D) 

Effects of abundance and properties of SNARE complexes. SNARE complexes are 

symbolized by crossed blue lines. Higher numbers of complexes per vesicle, or tighter 

complexes, are presumed to lead to higher fusion willingness, and therefore higher Pv. 

 

The second major determinant of Pv is the fusion willingness (or fusogenicity) of 

a primed vesicle once calcium ions are bound to synaptotagmin (Fig. 1.2D). That is, once 

Ca2+ is bound to synaptotagmin molecules on a synaptic vesicle, how likely is that vesicle 

to fuse with the membrane? To consider this issue, we must first briefly discuss what is 

known about the fusion process itself (reviewed in Jahn and Scheller, 2006; Rizo and 

Rosenmund, 2008). 
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An indispensable requirement for fusion is the formation of a parallel four-helix 

bundle between the SNARE motifs of synaptobrevin, a protein on the synaptic vesicle, 

and SNAP-25 and syntaxin-1, two proteins on the presynaptic membrane. Synaptobrevin 

provides one helix, through its R-SNARE domain, while SNAP-25 and syntaxin-1 

provide two and one helices respectively through their Q-SNARE domains. The resulting 

four-helix bundle is called a trans-SNARE complex because it bridges two membranes. 

This tightly wound complex brings the vesicle and plasma membrane into close 

proximity and is thought to provide the driving force behind membrane fusion. After 

vesicle fusion, synaptobrevin joins SNAP-25 and syntaxin-1 on the presynaptic 

membrane. In that state, the four helix bundle - still assembled - is known as a cis-

SNARE complex because all its constituents are on the same membrane. The 

disassembly of the cis-SNARE complex is an ATP-dependent process mediated by NSF 

(N-ethylmaleimide-sensitive factor). This frees synaptobrevin so it can be taken up by 

endocytosis into synaptic vesicles and be available for further rounds of fusion. With 

these observations in mind, fusogenicity might depend on the exact state or abundance of 

trans-SNARE complexes on a primed vesicle (Mohrmann et al., 2010). Molecules such 

as complexin, tomosyn, or munc18 that can interact with the assembled SNARE complex 

or its constituents could potentially alter fusion willingness through either mechanism 

(Wojcik and Brose, 2007). 

 After considering the ways in which Pv can be influenced, we can revisit the 

assumption of homogenous Pv between vesicles in the primed pool. For example, is it 

reasonable to assume that all primed vesicles will be at the same distance from Ca2+ 

channels? Similarly, do we need to posit that all primed vesicles have the same number of 
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trans-SNARE complexes assembled? This uniformity seems unlikely, so our model must 

necessarily be taken as a first approximation that will only describe idealized, average 

primed vesicles on a per synapse basis. There might be considerable variability between 

vesicles in the same active zone lurking underneath this simplifying assumption. In fact, 

there have been claims in the literature of heterogeneity in Pv between vesicles (Sakaba 

and Neher, 2001b; Moulder and Mennerick, 2005). However, neither of these studies 

offers measures of Pv at the level of a single active zone, making it impossible to rule out 

that the variability results from vesicles in different active zones having different 

properties. Perhaps with increasingly precise techniques, the issue of within-synapse 

heterogeneity between primed vesicles will become tractable. For the moment, we are 

stuck with only a blurred picture that averages across the primed vesicles in a synapse. 

For q, there can be both pre- and postsynaptic influences. On the presynaptic side, 

the amount of neurotransmitter per vesicle might vary with the number or activity of 

neurotransmitter vesicular transporters present (Fig. 1.3A) and the vesicle size (Fig. 

1.3B). Additionally, there is a controversy regarding “kiss and run”, i.e. events that do not 

lead to full fusion and collapse of the vesicle (He and Wu, 2007; Dittman and Ryan, 

2009; Granseth et al., 2009; Zhang et al., 2009). If these events involve a small pore that 

opens only briefly or flickers, they could lead to less neurotransmitter release into the 

cleft (Fig. 1.3C). Finally, while this thesis focuses on presynaptic properties, it is worth 

keeping in mind that the abundance and specific properties of postsynaptic receptors, 

together with their orientation relative to release sites, can profoundly influence the size 

of the postsynaptic response. 
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Figure 1.3. Possible presynaptic mechanisms controlling the amount of neurotransmitter 

released per vesicle. (A) The increasing intensity of orange symbolizes higher 

concentrations of neurotransmitter in each vesicle as a result of an increase in the number 

of transporters or their rates of transport. (B) Larger vesicles will release more molecules 

of neurotransmitter if the concentration is constant. (C) Small, flickering fusion pores 

might occur during “kiss and run” and lead to less neurotransmitter release per vesicle. 

 

So far, we have discussed what happens when a single AP invades the nerve 

terminal. However, neurons can burst, firing many APs at frequencies up to 100 Hz and 

higher. Under those circumstances synaptic transmission will be influenced by factors 

beyond those considered above (Xu-Friedman and Regehr, 2004; Fioravante and Regehr, 

2011). The size of the primed pool of vesicles at any given moment will be determined 

by the balance of vesicle fusion and priming rates. Under conditions of sustained activity, 

not only vesicle fusion, but also priming rates are Ca2+ dependent (Dittman and Regehr, 

1998; Stevens and Wesseling, 1998; Wang and Kaczmarek, 1998; Neher and Sakaba, 

2008). Therefore, Ca2+ channel inactivation (Xu and Wu, 2005) or facilitation (Ishikawa 

et al., 2005; Mochida et al., 2008), exhaustion of extracellular Ca2+ in the synaptic cleft 
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(Borst and Sakmann, 1999; Rusakov and Fine, 2003), saturation of intracellular Ca2+ 

buffers (Blatow et al., 2003), and the rates of Ca2+ clearance (Scullin et al., 2010) during 

a burst of APs can all shape the postsynaptic response. Additionally, if there are slots for 

release, these might require a clearance time before they become available once more 

(Hosoi et al., 2009; Neher, 2010). Finally, on the postsynaptic side receptors may 

saturate, desensitize (Xu-Friedman and Regehr, 2004) or even diffuse out of the 

postsynaptic density (Heine et al., 2008) during a burst. These effects can complicate 

attempts to use postsynaptic measurements as linear indicators of presynaptic activity. 

 

1.3 Model systems and methods to study synaptic transmission 

Given this panoply of potential influences on the neurotransmitter release process, 

to convincingly ascribe the functions of a molecule to any one of the processes mentioned 

above requires considerable effort. Typical experiments involve genetic manipulation of 

neurons to eliminate or replace certain molecules or increase their concentration. If there 

are pharmacological tools available to interfere with a molecule’s function these can also 

be used, ideally coupled with experiments in the absence of the molecule to test for any 

off-target effects. There are many possible techniques and preparations to estimate n, Pv, 

and q, with a few general considerations applicable to any of them. Methods to measure 

n tend to rely on a strong, fast stimulus that causes exocytosis of all primed vesicles 

before there is time for significant replenishment of that pool of vesicles through priming 

processes. Under those conditions, the size of the response will be equivalent to n. In 

cases where there is significant replenishment during the stimulus, a model of the vesicle 

priming process is needed to correct the estimate appropriately. To measure Pv, the size 
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of the response to one AP is simply divided by n. This places a minimum requirement on 

the sensitivity of any method used to determine Pv, as it must be possible to measure the 

response to a single AP precisely. Finally, to estimate q, it is necessary to determine the 

postsynaptic response to a single vesicle fusion event or quanta. A usual approach is to 

use the average response to spontaneous, low frequency events that happen in the absence 

of stimulation and which are presumed to correspond to single vesicles fusing.  

The best biophysical measurements of synaptic transmission currently available 

come from the calyx of Held, a large, cup-like excitatory synapse in the auditory pathway 

(Sakaba et al., 2002; Schneggenburger and Forsythe, 2006). This giant synapse has 

hundreds of active zones and effectively operates as a parallel array of small synapses. It 

has become a valuable model system to study synaptic transmission because its large size 

makes it amenable to both pre- and postsynaptic whole-cell recording and Ca2+ uncaging 

experiments. In this synapse n has been estimated as the size of the response to a step 

increase in Ca2+ concentration using uncaging, a constant current or a burst of APs. At 

the moment, Ca2+ uncaging is the only tool that allows unambiguous separation of effects 

on local Ca2+ and fusion willingness by bypassing Ca2+ channels entirely and elevating 

Ca2+ with spatial uniformity to cause neurotransmitter release. Historically, the main 

disadvantage of the calyx of Held preparation has been the difficulty in achieving 

molecular control of the system beyond non-lethal knockouts or peptide injections. 

However, recent developments promise this will no longer be the case (Young and 

Neher, 2009; Han et al., 2011; Kochubey and Schneggenburger, 2011). 

Perhaps the most widely used system for molecular studies of presynaptic release 

in mammalian synapses is primary culture of cortical or hippocampal rodent neurons, 
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studied electrophysiologically. Cultures of neurons can be prepared easily from 

genetically modified mice and studied even in cases where the mutations are lethal 

beyond birth. Simple transfection protocols to knock down, overexpress or replace 

proteins of interest can be used for detailed studies of structure-function relationships. In 

these cultures, which can be dissociated or autaptic (where a single neuron is grown on a 

microisland of glia and synapses onto itself), n is usually estimated as the response to 

application of a hypertonic solution containing 500 mOsm of sucrose. This stimulus was 

shown to correlate with the size of the primed pool of vesicles as determined by depletion 

experiments using bursts of action potentials (Rosenmund and Stevens, 1996). However, 

the mechanism involved remains mysterious and its correspondence with primed vesicles 

accessed with physiological stimuli is under debate (Moulder and Mennerick, 2005; 

Stevens and Williams, 2007). Alternatively, bursts of 20-40 APs at 20-40 Hz have been 

used to deplete the pool. Unfortunately, there is typically substantial replenishment of 

primed vesicles during this stimulus and a large correction must be applied (Moulder and 

Mennerick, 2005; Stevens and Williams, 2007). A downside of the primary culture 

system was, until very recently (Burgalossi et al., 2010), the inability to perform Ca2+ 

uncaging experiments to directly probe the fusion willingness of synaptic vesicles. 

Additionally, any electrophysiological method will be affected by the complications 

inherent in using a postsynaptic measure to estimate presynaptic function. 

 In Chapter 3 of this thesis, we develop an alternative assay to estimate Pv and n 

using a direct optical presynaptic readout based on the pH-sensitive GFP pHluorin 

(Miesenbock et al., 1998) tagged to the lumen of the vesicular glutamate transporter 

(Voglmaier et al., 2006). 
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1.4 Tomosyn – a negative regulator of synaptic transmission 

Of the many molecules that regulate synaptic transmission, tomosyn is a 

particularly interesting example. It is a 130 kDa protein that was discovered as an 

interaction partner for syntaxin-1 in a pull-down assay from rat brain cytosol (Fujita et 

al., 1998). Since then, it has emerged as an important player in synaptic vesicle 

exocytosis, one of the few that exercises a negative control on synaptic efficacy (Ashery 

et al., 2009). However, the exact mechanisms by which it performs this function are not 

clear. 

Tomosyn’s domain structure contains a pair of N-terminal, seven-bladed WD40 

-propeller domains, and a C-terminal R-SNARE domain similar to synaptobrevin (Fig. 

1.4). -propellers are so named because the carbon backbone folds into several blades 

with a roughly radial symmetry and each of these blades is formed by several -sheets. 

The C-terminal domain structure has been determined in conjunction with syntaxin-1a 

and SNAP25, forming a SNARE complex (Pobbati et al., 2004). Additionally, the 

structure of the N-terminal -propellers of the yeast ortholog Sro7 has been solved 

(Hattendorf et al., 2007) and used as a basis for homology modeling of rat tomosyn 

(Williams et al., 2011). This analysis shows there are three unstructured loops emanating 

from between the blades of the second -propeller. There is also a small tail domain 

between the second -propeller and the R-SNARE domain, which folds back and binds to 

the bottom of the -propellers in the yeast Sro7 structure.  
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Figure 1.4. Tomosyn domain structure (based on Williams et al., 2011). 

 

In rodents, there are two tomosyn genes (62% sequence identity) that are 

alternatively spliced to generate seven isoforms in total: -m, -b, -s for tomosyn-1 and -m,   

-b, -xb and -s for tomosyn-2 (Groffen et al., 2005). All isoforms retain the basic domain 

structure and alternative splicing events are concentrated in a hypervariable region in 

loop 2. The -m and -s isoforms are brain specific, whereas isoform -b is ubiquitous 

(Yokoyama et al., 1999). Tomosyn-1 and -2 have different, but partially overlapping 

mRNA expression patterns in the brain. Somatic, dendritic and presynaptic localizations 

have been reported for the protein in different brain regions (Fujita et al., 1998; Barak et 

al., 2011). While tomosyn’s structure indicates it is a cytosolic protein, it has been found 

closely associated with synaptic vesicles, using mass spectrometry in purified 

preparations of this organelle (Takamori et al., 2006). Tomosyn-1 and -2 are 

differentially regulated during development with the expression levels of the latter rising 

more sharply (30 vs. 2.7-fold rise in mRNA levels between E10 and P12, Groffen et al., 

2005). Most work has focused on tomosyn-1, which we will discuss in more depth in 

what follows. Preliminary reports on tomosyn-2 suggest it is functionally equivalent 

(Williams et al., 2011) but might execute its function in a postsynaptic compartment 

(Barak et al., 2011). 
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The idea that tomosyn might inhibit exocytosis was present in the original paper 

describing its discovery wherein overexpression of tomosyn-1 led to decreased 

exocytosis of human growth hormone in response to high K+ application in PC12 cells 

(Fujita et al., 1998). The subsequent discovery of an R-SNARE domain in its C-terminus 

(Masuda et al., 1998), provided a reasonable mechanistic basis for how it might inhibit 

neurotransmitter release. As discussed above, the formation of fusion competent SNARE 

complexes between the synaptic vesicle protein synaptobrevin and membrane proteins 

syntaxin-1 and SNAP25 is necessary for vesicle fusion. Thus, if tomosyn can compete 

with synaptobrevin in the formation of SNARE complexes (Hatsuzawa et al., 2003) it 

might interfere with the process. In what follows, we will first review the evidence that 

shows that tomosyn is a negative regulator of neurotransmitter release. Subsequently, we 

will discuss studies that try to address how tomosyn might execute this function, which 

has turned out to be considerably more complicated than initially expected. 

Rather surprisingly, the most detailed physiological studies of tomosyn at 

synapses to date come from the neuromuscular junction of C. elegans, a particularly 

difficult experimental preparation. A mutant of the C. elegans tomosyn ortholog was 

found with a premature stop codon that leads to lower mRNA expression (presumably 

due to nonsense mediated decay) and a protein truncated halfway through the first          

-propeller (Dybbs et al., 2005). This mutant was studied electrophysiologically by two 

labs, which found that responses to evoked potentials increased (Gracheva et al., 2006; 

McEwen et al., 2006). There were no changes in synapse numbers, and the enhanced 

synaptic efficacy was fully explainable by an increased RRP size, as measured with 

application of a hyperosmotic sucrose solution. Furthermore, the increase in RRP size 
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correlated well with higher numbers of docked synaptic vesicles (Gracheva et al., 2006). 

These two studies showed convincingly that tomosyn is a negative regulator of 

neurotransmitter release. In addition, they established that tomosyn controls RRP size, 

likely by negatively regulating the number of docked vesicles. 

Another study on tomosyn’s role in synaptic transmission used cultures of rat 

superior cervical ganglion cells and assayed the effect of overexpressing tomosyn or 

knocking it down using siRNA (Baba et al., 2005). As would be expected from a negative 

regulator, overexpression (4–fold) led to decreases in responses to single APs, yet 

surprisingly, knockdown (by 80%) gave similar results. This was taken as evidence for 

both negative and positive roles of tomosyn in neurotransmitter release. However, these 

results must be interpreted with caution. When using electrophysiological measures of 

synaptic transmission sensitive to the number of synaptic connections - as in this case - 

any effects on synapse development need to be studied and if necessary, corrected for 

appropriately. Given that both tomosyn overexpression and knockdown can interfere with 

neurite development (Sakisaka et al., 2004) this is a relevant concern. In the Baba et al. 

paper, there was no attempt to study synapse numbers. Nevertheless, the authors reported 

that synaptic coupling was significantly reduced between transfected neurons (that either 

overexpress tomosyn or an siRNA) and wild type counterparts. That is, the probability of 

finding two neurons connected in a culture was lower if the presynaptic one had modified 

tomosyn levels. Even though synaptic coupling is not a clean measure of synaptic 

numbers and might also depend on axon length or trajectory, these results do raise the 

concern that synaptic connectivity was affected. Therefore, it is possible that the 

reduction in responses to single APs was not due to a reduced synaptic efficacy, but 
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rather to a decrease in the number of synapses connecting the pre and postsynaptic 

neurons. Due to these concerns, it does not seem warranted to extract firm conclusions on 

the effect of tomosyn levels on neurotransmission from this study. 

Regrettably, a study of the tomosyn-1 knockout did not delve into synaptic 

properties in much detail (Sakisaka et al., 2008). The most informative result was a 

reduction in paired-pulse facilitation at CA1 to CA3 synapses of the hippocampus (Fig. 

1E in Sakisaka et al., 2008), consistent with an increase in Pr. However, there was no 

follow up to confirm this was the case or to determine if there were changes in Pv or RRP 

size. 

An alternative system in which tomosyn’s role has been studied in detail is the 

adrenal chromaffin cell. This neurosecretory cell has been used successfully as a model to 

study molecules involved in exocytosis and can be approached using a multitude of 

biophysical methods including patch-clamp, capacitance, Ca2+ uncaging, amperometry 

and total-internal-reflection fluorescence (TIRF) microscopy (Becherer and Rettig, 2006). 

When tomosyn is overexpressed (13-fold) Ca2+ uncaging elicits a smaller and slower 

response (Yizhar et al., 2004). This effect was ascribed to a reduced RRP size by fitting 

the response to a kinetic model. Interestingly, the number of docked vesicles was 

unchanged when tomosyn levels were increased, illustrating that in chromaffin cells 

primed vesicles are only a subset of the docked pool (Sorensen, 2004). Despite the 

differences in morphology between synapses and chromaffin cells, this study also 

supports a negative role of tomosyn in vesicle priming. 

Once the role of tomosyn as a negative regulator of neurotransmission was well 

established, later studies tried to elucidate its mechanistic basis by taking a structure-
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function approach. The initial idea that tomosyn’s function would be mainly executed 

through its C-terminal R-SNARE domain has been thoroughly complicated by a 

multitude of studies using mutants with various truncations. 

In chromaffin cells, overexpression of tomosyn without its C-terminal R-SNARE 

domain inhibited exocytosis in response to Ca2+ uncaging by reducing the RRP size, 

though this reduction was slightly less than in experiments using full length tomosyn 

(Yizhar et al., 2007). Conversely, overexpression of only the R-SNARE domain did not 

affect RRP size. Furthermore, experiments with other truncation mutants showed both -

propeller domains were necessary for inhibition of exocytosis. This suggests that, at least 

in this cell type, the R-SNARE domain is mostly dispensable and both -propeller 

domains are required for tomoysn’s function. By contrast, in superior cervical ganglion 

neurons, injection of either the R-SNARE domain or fragments of the -propellers 

inhibited synaptic transmission, indicating both types of domains are necessary for 

tomosyn’s action (Sakisaka et al., 2008). 

Biochemical work has provided a few clues as to how parts of tomosyn other than 

its R-SNARE C-terminal end might negatively regulate neurotransmitter release. 

Biochemical characterization of the -propeller domains has shown that they can enhance 

the formation of SNARE complex oligomers (Sakisaka et al., 2008). This could be a 

mechanism to inhibit exocytosis if post-fusion cis-SNARE complexes are trapped by 

tomosyn such that they cannot be disassembled by NSF, reducing the availability of 

SNARE proteins necessary for docking and fusion (Ashery et al., 2009). Another relevant 

finding is that -propeller domains can interact with synaptotagmin-1 in a Ca2+ dependent 

manner and inhibit its facilitatory effect on an in vitro vesicle fusion assay (Yamamoto et 
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al., 2011). Additionally, deletion of the first or third unstructured loops in the second -

propeller domain abolishes the inhibitory action of tomosyn on K+-induced  release of 

human growth hormone from PC12 cells, despite having normal binding to syntaxin and 

trafficking to the membrane (Williams et al., 2011). This suggests these loops may be 

critical for tomosyn’s function in vivo. Finally, the tail domain has been reported to 

inhibit the efficacy of the R-SNARE domain’s ability to inhibit neurotransmitter release 

(Yamamoto et al., 2009), though the mechanism underlying this action remains obscure 

(Yamamoto et al., 2010). 

In addition to tomosyn’s effects under baseline conditions, its action can be 

regulated in several ways. First, the phosphorylation of syntaxin by Rho-associated 

serine/threonin kinase (ROCK) increases its affinity for tomosyn, leading to an inhibition 

of the formation of fusion competent SNARE complexes (Sakisaka et al., 2004). This 

layer of regulation has been implicated in tomosyn’s effects on neurite extension. Second, 

tomosyn can be directly phosphorylated by protein kinase A (PKA) in loop two of the 

second -propeller domain (Baba et al., 2005). A priori, the consequences of this 

phosphorylation are hard to predict. On the one hand, the phosphorlyation reduces 

tomosyn’s affinity for syntaxin, potentially allowing more SNARE complexes to be 

formed. On the other hand, it leads to enhanced oligomerization of SNARE complexes 

via the -propeller domains, presumably with the opposite effect (Sakisaka et al., 2008). 

Regrettably, physiological experiments on the role of PKA phosphorylation of tomosyn 

are so far inconclusive due to previously discussed concerns regarding synapse numbers 

in experiments with transfected superior cervical ganglion neurons in culture. Finally, 

tomosyn can be SUMOylated in the same loop containing the PKA phosphorylation site 
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(Williams et al., 2011). Elimination of the SUMOylation site by mutation leads to 

enhanced inhibition of hGH secretion from PC12 cells, suggesting the covalent 

attachment of SUMO to tomosyn may inhibit its function. 

To summarize, studies on tomosyn indicate clearly that it has a negative influence 

on synaptic transmission, and that this seems mediated by a reduction in the RRP size. 

The mechanism of action remains unclear but involves both the -propellers and the R-

SNARE domains of tomosyn. In addition to effects on SNARE complexes and their 

constituents, interaction with synaptotagmin could be another conduit by which tomosyn 

regulates synaptic transmission. Furthermore, PKA phosphorylation and SUMOylation 

sites provide the potential for dynamic regulation. In this thesis, we extend studies of 

tomosyn’s function by using our newly developed techniques to measure effects on Pv 

and RRP size at hippocampal neurons in culture (Chapter 4). 
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1.5 Variability between synapses 

 Having explored the many ways in which Pv and n can be influenced, and after 

delving in detail into one possible regulator, it is evident that by virtue of any of those 

mechanisms release properties could vary between presynaptic terminals of the same 

axon. In fact, there is good evidence that this is the case for many synapses of the central 

nervous system. In what follows, we will briefly review the evidence for variability 

between synapses made by the same presynaptic neuron, discuss what little is known 

about its molecular underpinnings, and finally, consider what the implications of this 

heterogeneity may be for neural circuit function (Branco and Staras, 2009). 

 The first reports of variability between presynaptic terminals of the same neuron 

came from the crustacean neuromuscular junction where different synapses formed by 

the same axon had varying short-term synaptic plasticity properties depending on the 

muscle fiber targeted. This variance was shown to be presynaptic in origin and therefore 

implied the existence of a retrograde signal from target cells to presynaptic varicosities 

(Frank, 1973). Subsequently, similar results were found in the central nervous system of 

locusts (Laurent and Sivaramakrishnan, 1992) and crickets (Davis and Murphey, 1993). 

Regrettably, the lack of molecular tools in these systems did not allow more than a 

phenomenological characterization.  

In the mammalian central nervous system there are several reports of target-

specific short-term plasticity in the same axon of neurons in the neocortex (Markram et 

al., 1998; Reyes et al., 1998). These studies represent some of the most convincing 

demonstrations of synapse-specific, target-dependent presynaptic properties to date and 

are therefore worth describing in some detail. Pyramidal cells (P) from layer 2/3 can 
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contact two types of interneuron targets: bipolar cells (B) and multitufted cells (M). 

Simultaneous patch clamp of all three cell types in acute slices shows that while PB 

connections facilitate, PM connections depress (Reyes et al., 1998). This correlates 

with lower Pr (Koester and Johnston, 2005) and higher failure rates (Rozov et al., 2001) 

in PB compared to PM synapses. Additionally, PM synapses have larger Ca2+ 

transients during single APs and are less sensitive to Ca2+ chelators. This suggests Pv is 

higher in those terminals due to effects on local Ca2+ both through the total amount of 

Ca2+ entry and the coupling between vesicles and channels. At the moment, the molecular 

players responsible for those differences are unknown. In the hippocampus, presynaptic 

properties of synapses made by the same axon onto different targets can also differ 

(Scanziani et al., 1998). 

The observation of variable properties between synapses of the same axon has 

been reproduced in primary neuronal cultures of cortical and hippocampal rodent neurons 

(both standard and autaptic). There are reports of substantial variation in Pr using a 

variety of techniques, including application of the use-dependent NMDA receptor 

blocker MK-801 (Rosenmund et al., 1993), loading and unloading of FM dyes (Murthy et 

al., 1997; Branco et al., 2008), pHluorin (Granseth and Lagnado, 2008; Matz et al., 

2010), and electron microscopy (Branco et al., 2010). In most cases, Pr is an average 

estimate obtained from low frequency trains of stimulation, as opposed to individual APs. 

Additionally, few examples attempt to measure Pv or n. 

The main reason to use neuronal cultures in studies of Pr variability is to gain 

mechanistic insights, yet there has been little progress so far beyond a few specific 

examples. An early study using the activity dependent blocker MK-801 proposed that 
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Ca2+ channel subtypes are differentially distributed across synapses of the same axon, but 

not according to Pr (Reid et al., 1997). However, that report must be regarded as 

preliminary since the method used did not allow direct measurement of Pr at individual 

synapses. More recent papers using FM dyes showed that Pr depends on the activity of 

the dendritic target (Branco et al., 2008), and is negatively correlated with the activation 

of presynaptic GABAB receptors, presumably determined by local GABA levels around 

each synapse (Laviv et al., 2010). In another example that used pHluorin, the amount of 

bassoon -a protein enriched at the active zone- was correlated with Pr at the level of 

single synapses (Matz et al., 2010). The results were interpreted as an increase in n, 

wherein synapses with larger active zones (and thus higher bassoon levels) had more 

primed vesicles. Finally, in a recent study, the levels of RIM were correlated with the 

total uptake of an antibody against a synaptic vesicle protein during stimulation 

(Lazarevic et al., 2011). While this is a very crude measure of synaptic output, the 

correlation is nevertheless quite interesting. Like bassoon, RIM is a protein enriched at 

active zones (Mittelstaedt et al., 2010). However, unlike bassoon, which seems to play a 

structural role, there is good evidence that RIM controls Pv and n through specific 

domains that interact directly with munc13 and Ca2+ channels, affecting priming, vesicle 

to channel coupling and fusion willingness (Deng et al., 2011; Han et al., 2011; Kaeser et 

al., 2011). Additionally RIM has a relatively short half-life of ~1 hour (Yao et al., 2007) 

which suggests it might act as a dynamic, rate-limiting control variable that sets synaptic 

strength. 

In addition to variable baseline neurotransmission properties, there is also 

evidence for heterogeneity in how synapses of the same axon can be modulated. An 
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interesting example is the type III metabotropic glutamate receptor 7 (mGluR7). This G 

protein-coupled receptor is specifically enriched on presynaptic terminals that contact 

interneuron targets (Shigemoto et al., 1996; Lujan et al., 1997). Consequently, glutamate 

release from individual CA3 pyramidal cells is inhibited by type III mGluR agonists at 

synapses onto interneurons, but not pyramidal cells (Scanziani et al., 1998). Another 

example is the negative modulation of Pr by GABAB receptors. In hippocampal neurons 

in autaptic culture, the agonist baclofen was unable to modify synaptic efficacy at a 

subset of high Pr synapses, suggesting a differential distribution of the receptors in 

presynaptic terminals of the same axon (Rosenmund et al., 1993). 

The potential role of synapse-specific properties on network function remains 

unclear in most cases and is likely to depend on the exact circuits in which these 

connections are involved. A good example of a functional consequence in a circuit is the 

demonstration of a spatiotemporal shift of recurrent inhibition in pyramidal neurons of 

the CA1 region of the hippocampus (Pouille and Scanziani, 2004). These principal cells 

project to two types of inhibitory interneurons using synapses with differing Pr and short-

term plasticity properties. Synapses onto one subset of interneurons have high Pr and 

undergo depression, whereas synapses onto a second subset have low Pr and facilitate 

during bursts. Additionally, the first set of interneurons project primarily to the somata of 

CA1 pyramidal cells, whereas the second set of interneurons projects mainly onto apical 

dendrites. Thus, during a burst of activity in a CA1 pyramidal cell first one and then 

another subset of interneurons will be preferentially activated. The resulting recurrent 

inhibition from interneurons back onto CA1 pyramidal cells will therefore shift during 

the burst, from the soma to the apical dendrites. Whether the wide range of activity 
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patterns present in CA1 pyramidal cells during exploratory behaviors (Andersen, 2007) 

are represented by spatially distinct inhibitory patterns using this mechanism is unknown. 

The general picture from these studies is that there can be substantial variability in 

baseline neurotransmission properties between synapses of the same axon, some of it 

target-dependent. In addition, synaptic strength can be modulated on a synapse by 

synapse basis. However, so far the underlying mechanisms remain, for the most part, as 

obscure as the implications for circuit function. 

 In Chapter 5 of this thesis, we extend the methods developed to study Pv and n to 

individual synapses. We then explore the contributions to synaptic variability of Ca2+ 

channel subtype and the coupling between Ca2+ channels and vesicles. Finally, we study 

the modulation of synaptic strength by the adenylyl cyclase activator forskolin at 

individual synapses.  
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2. MATERIALS AND METHODS 

 

2.1 Cell culture and optical setup 

Hippocampal CA3-CA1 regions were dissected from 1- to 3-d-old Sprague 

Dawley rats, dissociated, and plated onto poly-ornithine-coated glass as described 

previously (Ryan, 1999). A chimera of the pH-sensitive GFP pHluorin and the vesicular 

glutamate transporter (vG-pH, Voglmaier et al., 2006) was transfected using calcium 

phosphate precipitation 6-9 days after plating and imaging was performed 13-25 days 

after plating. Experiments in Chapters 3 and 4 had low transfection efficiencies, such that 

there were typically only one or a few well separated transfected cell bodies per dish. In 

cases where we equate single experiments with individual neurons, we confirmed this 

was the case by staining post-hoc for vG-pH (see below) and unambiguously tracing the 

imaged axons to a single transfected soma. Thus, in those cases the boutons imaged in 

each experiment belong to a single cell. The coverslips were mounted in a rapid-

switching, laminar-flow perfusion and stimulation chamber (volume 75 l) on the stage 

of a custom-built laser-illuminated epifluorescence microscope. Live-cell images were 

acquired with an Andor iXon+ (model #DU-897E-BV) back-illuminated electron-

multiplying charge-coupled device camera. An Ar+ ion or solid-state diode pumped 488 

nm laser was shuttered using acousto-optic modulation. Fluorescence excitation and 

collection was through a 40X 1.3 NA Fluar Zeiss objective using 515–560 nm emission 

and 510 nm dichroic filters (Chroma) and a 1.6X Optivar. Laser power at the back 

aperture was 2-5 mW. Action potentials were evoked by passing 1 ms current pulses, 
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yielding fields of 10 V/cm via platinum-iridium electrodes. Experiments in Figures 3.1 

and 3.2 were performed at room temperature ( 28-32°C in stimulation chamber), for all 

others the temperature was clamped at 30.0±0.1°C. Cells were continuously perfused at 

0.2-1.0 ml/min. in a saline solution containing (in mM) 119 NaCl, 2.5 KCl, 2 CaCl2, 2 

MgCl2, 25 HEPES, buffered to pH 7.4, 30 glucose, 10 M 6-cyano-7-nitroquinoxaline-

2,3-dione (CNQX), and 50 M D,L-2-amino-5-phosphonovaleric acid (AP5). All 

chemicals were obtained from Sigma except for bafilomycin (Calbiochem), Ca2+ channel 

toxins (Alomone Labs) and Ca2+ indicators (Invitrogen). For solutions with different Ca2+ 

concentrations in the 1-4 mM range, we substituted Mg2+ to maintain a constant divalent 

concentration. For 10 mM Ca2+ we reduced the concentration of glucose to maintain 

constant osmolarity. For 18 mM Ca2+ we also reduced the concentration of HEPES to the 

same end. Cells were only exposed to different Ca2+ solutions for 15-30 s necessary to 

acquire data. For experiments in the presence of 4-aminopyridine (4-AP), we repeatedly 

stimulated with 1 AP and only analyzed the responses once their amplitude was stable 

over several trials. A subset of cells showed no effect of 4-AP (<10% of all experiments) 

and were excluded from further analysis. For 4-AP experiments with 4mM external Ca2+ 

we incubated the cells in 4-AP continuously with standard external Ca2+ (2 mM) and only 

increased the Ca2+ concentration for the 15-30 s necessary for imaging. To block P/Q-

type Ca2+ channels we applied -agatoxin IVA (400nM) for 2 minutes. To block N-type 

Ca2+ channels we applied -conotoxin GVIA (1 M) for 2 minutes. Neither toxin showed 

any sign of wash-off during prolonged experiments. Due to the low baseline fluorescence 

of neurons that express vG-pH (Balaji and Ryan, 2007), we gave brief bursts with 6 APs 

at 33 Hz every 4 s to find transfected cells in a dish. Cells were allowed to rest 10 
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minutes after identification with 33 Hz stimuli, at least 30s between 1 AP trials and at 

least 5 min between 100 Hz AP bursts. Data was acquired at 100 Hz by integrating for 

9.74 ms in frame transfer mode and restricting imaging to a subarea of the CCD chip. The 

maximum width of the imaged field under those conditions was 167 pixels (41.75 m). 

 

2.2 Image and data analysis of vG-pH experiments 

Images were analyzed in ImageJ (http://rsb.info.nih.gov/ij/) using a custom-

written plugin (http://rsb.info.nih.gov/ij/plugins/time-series.html). 2 m diameter circular 

ROIs were placed on all varicosities that did not split or merge, were stably in focus 

throughout all trials and responded to a maximal stimulus at the end of the experiment. 

To estimate 1 AP Fs in Chapters 3 and 4, we took the difference between the average 10 

frames before the stimulus and 10 frames after the stimulus. The rise in vG-pH 

fluorescence in response to a single AP always took 2 frames when acquiring at 100 Hz 

time resolution. A subset of the data in Figure 3.2A1 was acquired at 2 Hz imaging with 

200 ms integration and the 1 AP F was calculated as a point to point difference. In 

experiments where we obtained information from single synapses (Chapter 5), we used 2 

Hz imaging for single AP trials, integrating for 25 ms and then converting the data for 

comparison with the 100 Hz imaging runs used to estimate RRP size. In those 

experiments, 1 AP Fs were estimated as the point to point difference before and after 

the stimulus. At the end of each experiment in Chapter 3 we measured the response to 

1200 APs at 10 Hz in bafilomycin at 2 Hz temporal resolution. Alternatively, for some 

experiments in Chapters 4 and 5, we normalized responses to the total number of reporter 
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molecules in each bouton. This was determined by briefly (<1min) exposing cells to a 

modified Tyrode’s solution containing NH4Cl buffered at pH = 7.40 instead of HEPES. 

This solution alkalinizes the interior of all synaptic vesicles and the resulting F is 

proportional to the total number of vG-pH molecules in the terminal. Given that there is 

typically one vG-pH molecule per vesicle, and that all vesicles are labeled (Balaji and 

Ryan, 2007), responses expressed as a percentage of the NH4Cl F can also be 

considered equivalent to the same of the total number of vesicles in the synapse (TP). 

For experiments where we stimulated at 100 Hz in 4 mM external Ca2+, we 

calculated the frame at which each AP fired taking into account the 2 frame rise time for 

the first AP. Independent experiments with varying numbers of APs at 100 Hz confirmed 

that the each AP took place at the expected frame (not shown). After the end of 

stimulation, there was an additional slower rise in fluorescence. Operationally, we 

defined exocytosis that occurred up to and including the last frame of the stimulus period 

as stimulus-locked and all later rises as delayed. The end of delayed exocytosis was set 

when the fluorescence stopped rising. Trials with 20 APs at 100 Hz were repeated at least 

4 times. To determine objectively from 100 Hz bursts the size of the RRP, in each cell we 

used an automated method that searched for plateaus in the F response where the 

fluorescence did not rise significantly. Sliding data windows of increasing size were used 

to fit a linear model to the cumulative F vs. AP number data. For example, 3 point data 

windows were used to fit cumulative F vs. AP number between 3 and 5 APs, 4 and 6 

APs and so forth up to 18 to 20 APs. Analogously, 4 point data windows were used to fit 

cumulative F vs. AP number between 3 and 6 APs, 4 and 7 APs and so forth up to 17 to 

20 APs. This procedure was repeated up to a 18 point fitting window for the F vs. AP 
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number data between 3 and 18 APs. For each of the fits, we tested whether the slope was 

statistically significant (greater than 0) at =0.05 (Sokal and Rohlf, 1994). A plateau 

representing the RRP size was identified as the largest window where the slope of F vs. 

AP number was not significant. If there was more than one window of the same size 

where this condition was met, we picked the one corresponding to the lowest AP 

numbers. Additionally, we only accepted cases where the slope of F vs. AP number for 

the points in the plateau was at most 50% of the slope of the F vs. APs 1-3. On average, 

the ratio of slopes between plateau and the first three points was 0.15±0.02 (n=24, range: 

0.03-0.50). To determine the RRP size, we averaged the F values within the identified 

window. On average, these windows where fluorescence did not rise were located 

between the 8th (range=3-14) and the 14th AP (8-20) in the 100 Hz train.  

Individual APs in the presence of 4-AP caused both a stimulus-locked component 

of exocytosis and the appearance of an additional delayed component. Typically, the 

latter had much slower kinetics but in some cases it could be further classified into a fast 

and a slow subcomponent. The fast subcomponent was similar in rate of rise to stimulus-

locked exocytosis, while the other subcomponent was noticeably slower (see Fig. 3.2A2 

for an example with and Figure 3.4A2 for an example without this fast delayed 

subcomponent). The end of the fast delayed subcomponent of exocytosis was set at the 

inflection point where the rate of rise of the fluorescence slowed. Because stimulus-

locked exocytosis and the fast subcomponent of delayed release were kinetically similar 

and distinct from the slow subcomponent of the latter, we took the sum as a measure of 

fast exocytosis in response to 1 AP. 
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To estimate the RRP size from single AP data (Fig. 3.2C), we used a generalized 

Hill model that relates exocytosis (Exo) and the relative increase in intracellular Ca2+ 

(rCai): 
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RRPExo  (2.1) 

We estimated Exo from vG-pH F measurements (using the fast exocytosis 

estimate if applicable) and rCai from Magnesium Green (MgGreen) relative F/F0 

measurements (see below). n, K and RRP were fit using a Levenberg-Marquardt 

optimization procedure with data points weighted inversely by their error bars (Origin 

7.0, OriginLab). 

 

2.3 Error analysis 

To estimate how precisely we could determine Pv and RRP size in each cell (Figs. 

3.3E and 3.5B), we used a standard formula to propagate the errors arising from 

fluctuations in our traces (Taylor, 1997): 
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To calculate Pv and RRP size with their errors, we relied on 3 traces from each 

cell: 

F1: response to 1 AP (average of at least 10 trials) 

F20: response to 20 APs at 100 Hz (average of at least 4 trials) 
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FBaf: response to 1200 APs at 10 Hz in bafilomycin 

To obtain the responses to 1 AP and 1200 APs at 10 Hz in bafilomycin we 

averaged the last 10 frames before the stimulus and the first 10 frames after the end of the 

stimulus. This gave us: 
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where the standard error in each case was the standard deviation of the 10 frames divided 

by the square root of 10. Based on these values, we calculated the responses to 1 AP and 

1200 APs at 10 Hz in bafilomycin with their corresponding errors: 
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For the 20 AP traces we proceeded similarly, averaging the last 10 frames before 

the stimulus and the frames included in the plateau to obtain: 
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           ,
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where the standard error was the standard deviation divided by the square root of the 

number of observations in each case (10 for F20pre and the number of points included in 

the plateau for F20plateau). Thus: 
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In addition to these instrumental errors, given that we measured the responses to 

20 APs at 100 Hz at least 4 times in each experiment we also obtained a statistical 

estimate of the error in F20plateau: 
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where SD F20plateau,stat is the standard deviation of the plateau estimates in different trials 

(n at least 4). We added the instrumental and statistical contributions to the error in 

quadrature and combined them to get the total error for F20plateau: 
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Finally, we calculated RRP size and Pv with their associated errors: 
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These calculations provide the error bars for Pv and RRP size in individual experiments. 
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To estimate errors involved in the determination of Pv and RRP size at individual 

synapses, we used the same equations with a few modifications: 

 F1: response to 1 AP (average of 30 trials) 

 F20: response to 20 APs at 100 Hz (average of 12 trials) 

 Our responses were normalized to the F resulting from a pulse of 50 mM 

NH4Cl, which alkalinizes all cellular compartments. 

 F1 traces were acquired at 2 Hz and we calculated F1 as the difference between 

the last point before firing an action potential and the first point after the stimulus. 

To estimate SE F1 we took the SE of the response to 1 AP across 30 trials. 

 We estimated SENH4Cl from the SE of the baseline and peak fluorescence during  

NH4Cl application 

To estimate the errors of the effects on single action potential responses of Ca2+ 

channel toxins, EGTA we first calculated the error in the F1post (after each 

pharmacological treatment) using the same formulas as for F1 and then used: 
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For forskolin (a positive modulator of exocytosis), we used: 
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2.4 Ca
2+

 indicator measurements and analysis 

MgGreen (Figs. 3.2B1, 3.2B3, 3.2B4, 3.3D, 5.3) or Fluo-3 (Fig. 3.2B2) were 

loaded at 20 M in their acetoxymethyl ester (AM) form for 10 min and washed off for 

30 min before experiments were started. Single AP stimuli led to robust, focal responses 

distributed over neuritic fields. We analyzed F/F0 of manually drawn ROIs placed on 

these punctate responsive regions. F0 was corrected point to point by subtracting local 

background from manually drawn ROIs on adjacent non-responsive regions. 

The data in Figure 3.2B1 were fit to a single site binding model using a 

Levenberg-Marquardt optimization procedure with data points weighted inversely by 

their error bars (Origin 7.0, OriginLab): 
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For experiments with 100 Hz stimulation in 4 mM external Ca2+ (Fig. 3.3D), we 

calculated the frame at which each AP fired in the same manner as for vG-pH (see above) 

confirming separately that the each AP took place at the expected frame (not shown).  
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2.5 shRNA and tomosyn plasmids 

We synthesized 60-mer oligonucleotides (Invitrogen) containing the rat tomosyn-

1 target sequence (TCTCTTGATAGAGAAGAAC, sequence based on Cheviet et al., 

2006) or (GCGGTACTATATTGAGGTTAA, sequence based on Sakisaka et al., 2004), 

annealed them and ligated into pSUPER using BglII and HindIII enzyme sites according 

to manufacturer’s instructions.  The second knockdown vector (based on Sakisaka et al., 

2004) was only used for preliminary tests of tomosyn knockdown levels; all other data 

comes from experiments using the first knockdown construct. A plasmid containing the 

cDNA for mouse tomosyn-1 isoform s was a kind gift from Uri Ashery. We subcloned 

this cDNA using PCR with appropriate primers into EcoRI and XhoI sites of a modified 

pcDNA 3 vector that contained an insert coding for a hemagglutinin (HA) tag 

immediately upstream of the start codon, cloned between KpnI and EcoRI sites (tag 

sequence is MYPYDVPDYA). Additionally, we subcloned the cDNA into EcoRI and 

XhoI sites of pcDNA 3 to generate an untagged expression vector. After cloning, we 

sequenced the entire cDNA and vector-cDNA junctions to verify no mutations had been 

introduced during the procedure. 
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2.6 Immunostaining analysis of tomosyn levels 

To quantify the efficiency of shRNA-mediated knockdown, following live cell 

imaging, neurons were fixed for 10 minutes with 4% paraformaldehyde, permeabilized 

for 10 minutes with 0.2% Triton X-100, blocked 1 hour at 37°C with 5% BSA, and 

subsequently incubated for 3 hours with appropriate primary antibodies: chicken 

monoclonal anti-GFP (Invitrogen) and rabbit polyclonal anti-tomosyn (TC56, a kind gift 

from Reinhard Jahn), both diluted 1:500. Alexa-488- or Alexa-546-conjugated secondary 

antibodies were applied in primary antibody incubated samples at 1:1000 dilution for 1 

hour at 37°C. At least 3 washes with PBS (phosphate buffered saline) were perfomed 

between each solution exchange. Immunofluorescence images of fixed cells were 

acquired using our microscope under mercury arc lamp illumination. 

Neuronal somas were identified by DIC and regions of interest were drawn 

manually, excluding the nucleus in each case. Multiple background ROIs were drawn in 

each field, in areas with neither somas nor neurites. These were merged to generate one 

background ROI for each field which was used to correct all cells in that field. To 

generate an estimate of tomosyn levels that could be compared across multiple 

experiments, we normalized to levels in untransfected cells: 

backgroundcell    untrans

background

FF

FF
Fnorm

 (2.3) 

The untransfected cells averaged in each case were from the same field. In some cases 

there were less than 3 untransfected neurons in a given field, in which case we averaged 

untransfected cells from multiple nearby fields. Note that with this normalization scheme, 

untransfected neurons will, by definition, have average tomosyn levels of 100%. 



41 

2.7 Statistical analysis and data presentation 

All values mentioned in the text are averages ± standard errors of the mean (SE) 

unless stated otherwise. All error bars in graphs are SEs unless stated otherwise. Box 

whisker plots show the median (line), mean (point), 25-75 percentile (box) and 10-90 

percentile (whisker) ranges. 

To test differences between groups, parametric statistics were used whenever 

possible (Sokal and Rohlf, 1994). The assumption of homogeneity of variances was 

assayed with Levene’s test, using =0.05 as a cutoff. Normality was assed both visually 

in a normality q-plot (for cases with more than two groups) and using Lilliefor’s test for 

every group (using =0.05 as a cutoff). If either of the assumptions of parametric tests 

were not met, we either transformed the data and retested the assumptions or used an 

equivalent non parametric test. In the latter cases, Mann-Whitney U tests were used in 

lieu of t-tests or one way ANOVAs with 2 groups, and Kruskal-Wallis tests were used in 

lieu of one way ANOVAs with more than two groups. For cases with more than two 

groups and a statistically significant effect of the treatment (P<0.05), post hoc 

comparisons were used to assay differences between groups. Tukey-Kramer tests were 

used after ANOVAs and multiple comparisons were used after Kruskal-Wallis. All 

statistical analysis was performed in STATISTICA 8 (StatSoft). 

  



42 

 To calculate the P-values of significance tests of correlation coefficients (Chapter 

5, Figs. 5.5-8) we used a correction for small numbers of observations (section 15.5 in 

Sokal and Rohlf, 1994). For each experiment, we calculated the following statistic for the 

correlation coefficient: 

1nzts     (2.4) 
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r = correlation coefficient for each experiment 

n = number of synapses per experiment 

The value of ts follows a standardized normal distribution, and comparison to that 

distribution provides the corresponding P-value. The transformation outlined above is 

adequate when n≥10 so in some experiments with fewer synapses our P-values of 

individual experiments can only be considered imperfect approximations. An alternative 

test of whether there were correlations between the effect of each treatment and either Pv 

or RRP size was to test whether the distribution of correlation coefficients had a mean 

significantly different from 0. To this end, we used t-tests with null hypothesis =0. 
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3. OPTICAL MAPPING OF RELEASE PROPERTIES IN SYNAPSES 

 

3.1 Exocytosis measured at high time resolution with vG-pH 

As described in Chapter 1, there are two key requirements to determine Pv and 

RRP size (n). The first is a measurement system with a large enough signal-to-noise ratio 

to estimate precisely the response to a single AP. The second is an appropriate protocol to 

determine RRP size, where the main consideration is to use stimuli that rapidly deplete 

this vesicle pool before it refills. We sought to compare and validate different approaches 

using our optical methods that are, by design, a strictly presynaptic measurement of 

exocytosis. Using high frequency action potential bursts and single APs under conditions 

that cause large intracellular Ca2+ increases we looked for evidence of pool depletion in 

each case. To estimate Pv we divided the response to 1 AP in 2 mM external Ca2+ (our 

standard condition) by our estimate of the RRP size (see equation 1.1). 

Our exocytosis measurements were based on the sudden rise in pH of synaptic 

vesicles when they fuse with the plasma membrane. To detect this change optically we 

used the pH-sensitive GFP pHluorin (Miesenbock et al., 1998) tagged to the lumen of the 

vesicular glutamate transporter (Voglmaier et al., 2006). The lumen of a synaptic vesicle 

increases its pH (from approximately 5.6 to 7.4) upon fusing to the membrane and 

exchanging protons with the extracellular milieu. The pKa of the fluorescent reporter 

(around 7.1) is such that it dequenches upon that transition, increasing its fluorescence 

approximately 20-fold (Sankaranarayanan et al., 2000). Previously, it was demonstrated 

that fluorescence increases in response to a single AP evoked by field stimulation can be 
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reliably detected in our system using a 100 ms integration window with minimal 

bleaching or photodamage over several hours in the course of a typical experiment 

(Balaji and Ryan, 2007). 

To faithfully estimate RRP sizes we needed high time resolution to distinguish 

between stimulus-locked and delayed components of exocytosis expected after large 

stimuli. Furthermore, since the depression of release during a burst is used as a sign of 

RRP depletion, we had to image quickly enough to precisely quantify exocytosis in 

response to each AP within a stimulus train. At the same time, to estimate Pv we required 

adequate signal-to-noise to detect responses to single action potentials. After some 

preliminary tests, we selected a 10 ms integration window, imaging continuously at 100 

Hz. Under these conditions, the signal-to-noise ratio (SNR) at individual boutons for 

single trials is quite low. However, by averaging over many boutons from a single 

neuron, we measured responses to individual APs with excellent signal-to-noise at high 

time resolution (SNR>5 for examples shown in Fig. 3.1A). We routinely performed 

experiments over one hour in length with minimal bleaching or drift in cell 

responsiveness. To calibrate our signals as a fraction or percentage of the total releasable 

pool (TRP) we applied a maximally depleting stimulus (1200 APs at 10 Hz) in the 

presence of the V-ATPase H+ pump blocker bafilomycin (Baf, Fig. 3.1B). Individual APs 

led to exocytosis of 0.54±0.07% of the TRP (n=14 cells). 

Importantly, our data acquisition is fast enough that endocytosis is expected to 

have a negligible effect on the traces of single AP responses. We expect <0.01% decay of 

the peak amplitude in 100 ms, assuming endo 14 s and reacidification 4 s (Atluri and Ryan, 

2006; Granseth et al., 2006; Balaji and Ryan, 2007). 
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Figure 3.1. Exocytosis in response to 1 AP measured at 10 ms time resolution with vG-

pH. (A) Representative traces of a neuron’s response to 1 AP (n=25 synapses). (B) 

Response to 1200 APs at 10 Hz in the presence of Baf for the same neuron. 

 

3.2 A single AP that causes a large increase in intracellular Ca
2+

 can release the 

entire RRP 

Our first approach to measure the RRP size was to use single APs under 

conditions where sufficient Ca2+ entered the synapse so as to saturate the Ca2+ sensors on 

the vesicles (presumably synaptotagmin-1, see Burgalossi et al., 2010). Under these 

conditions, all vesicles in the RRP are expected to fuse synchronously. Whether these 

vesicles fuse separately (Abenavoli et al., 2002; Oertner et al., 2002; Conti and Lisman, 

2003) or through compound fusion (Matthews and Sterling, 2008; He et al., 2009) does 
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not affect our estimate of the RRP size as in both cases the compartments will alkalinize 

and the fluorescence of vG-pH will increase accordingly. 

In order to increase the number of calcium ions that entered the synapse in 

response to 1 AP, we first chose to elevate extracellular Ca2+ in the range from 2 mM to 

10 mM. While increasing extracellular Ca2+ 2-fold from 2 mM to 4 mM caused a 3-fold 

increase in exocytosis, the 2.5-fold increase between 4 mM to 10 mM only caused a 

60% increase in exocytosis (Fig. 3.2A1). This suggests that exocytosis as a function of 

external Ca2+ is close to saturation at 10 mM and indeed, increasing external Ca2+ 

concentration to 18 mM yielded only a 20% additional increase in exocytosis 

(exocytosis18mM=3.1±0.5% of TRP in 14 cells). 

An important point that we wished to address was how changes in extracellular 

Ca2+ concentrations affected relative increases in internal Ca2+ concentrations in response 

to single APs. While the relationship can be assumed to be linear at low Ca2+ 

concentrations, under the conditions used here that is not necessarily the case. In fact, in 

the calyx of Held giant synapse in the auditory brainstem, the relationship between 

relative Ca2+ entry and extracellular Ca2+ is not linear in the 2-10 mM range 

(Schneggenburger et al., 1999) and conforms to a model reflecting saturation of the flux 

through the pore of each Ca2+ channel. To study this issue directly, we used the low 

affinity Ca2+ indicator MgGreen AM to probe relative changes in intracellular Ca2+ 

concentration in response to 1 AP as a function of extracellular Ca2+. Our results from 

MgGreen measurements are in good agreement with those from the calyx of Held and 

show that increases in intracellular Ca2+ saturate as extracellular Ca2+ is increased (Fig. 

3.2B1). This means that the saturation of exocytosis as a function of extracellular Ca2+ in 
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the 2-10 mM range is in large part due to saturation of the flux through the Ca2+ channels 

and not necessarily to saturation of the Ca2+ sensors on synaptic vesicles. 

The use of an AM loaded Ca2+ indicator to determine presynaptic properties can 

be misleading as the indicator is taken up not only by axons and nerve terminals, but also 

by dendrites and spines which will be in the same field of view. Thus, it was necessary to 

determine whether the signals were mainly due to Ca2+ entry through the N and P/Q Ca2+ 

channels that drive presynaptic vesicle exocytosis (Meir et al., 1999). To test this we 

studied the effect of specific blockers of these and other channels on single AP responses. 

To enhance our signal-to-noise ratio and obtain more precise estimates of the degree of 

inhibition, we switched to the higher affinity Ca2+ indicator Fluo-3 AM and performed 

experiments with -conotoxin MVIIC 10 M (N, P/Q- blocker), SNX-482 1.2 M (R-

type blocker) or Nimodipine 20 M (L-type blocker) to test the contribution of different 

Ca2+ channel subtypes to our responses (Fig. 3.2B2). While all three inhibitors decreased 

responses to 1 AP (P<0.05 in one tailed t-tests with null hypothesis =1.0), the main 

contribution to the signal was from N and P/Q channels ( 80%). This gives us confidence 

that the response to different stimuli of AM loaded Ca2+ indicators can be used to 

estimate relative increases in intracellular Ca2+ in the presynaptic terminal. 

To probe exocytosis in response to single APs under conditions of larger 

intracellular Ca2+ increases we used 4-aminopyridine (4-AP), a K+  channel blocker that 

is expected to extend the duration of the action potential and therefore increase the open 

time of Ca2+ channels (Mathie et al., 1998). As predicted, applying 4-AP caused increases 

in intracellular Ca2+ levels in response to one AP larger than those attainable by 

increasing extracellular Ca2+ (Fig. 3.2B3). Importantly, we verified that the response of 
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the Ca2+ indicator itself remained linear in this measurement range (Fig. 3.2B4). In the 

presence of 4-AP, exocytosis in response to 1 AP also increased beyond what was 

achieved by increasing the extracellular Ca2+ concentration, confirming that the Ca2+ 

sensors on the vesicles were previously not saturated, even at 10 mM external Ca2+ (Figs. 

3.2A2, 3.2A3). 4-AP caused an increase in the stimulus-locked component of exocytosis 

and the appearance of delayed component, which could sometimes be further classified 

into a fast and a slow subcomponent (see Chapter 2 for more details). When there was a 

fast delayed subcomponent present, we added it to the stimulus-locked response to obtain 

a measure of fast exocytosis after 1 AP. If there was no fast delayed subcomponent, we 

simply used the stimulus-locked response for analysis. 

We combined our measurements of exocytosis in response to single action 

potentials under different conditions (Figs. 3.2A1, 3.2A3) with those of relative increases 

in intracellular Ca2+ under those same conditions (Figs. 3.2B1, 3.2B3) to show how 

exocytosis varies with increasing internal Ca2+ fluxes into the nerve terminal (Fig. 3.2C). 

The data were well fit by a generalized Hill model -equation (2.1)- where the saturation 

value corresponds to an estimate of the size of the RRP (5.9±0.7%). We also analyzed the 

data using only the stimulus-locked component of exocytosis (excluding the fast 

subcomponent of delayed release) and found that while the estimate of RRP size was 

20% lower, the difference with the previous estimate was not statistically significant 

(RRP=4.9±0.6% of TRP). 
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Figure 3.2. Single APs cause exocytosis of the entire RRP in conditions with large 

intracellular Ca2+ increases. (A1) Exocytosis in response to 1 AP as a function of 

extracellular Ca2+ (n=14 cells). Inset: representative individual trials at 2 mM (grey) and 

4 mM (black) from one cell. Scale bar= 1% of TRP, 100 ms. (A2) Representative 

experiment showing responses to a single AP under control conditions (2 mM external 

Ca2+, grey) and with 2.5 mM 4-AP (black). Note the presence of fast (arrow) and slow 

subcomponents of delayed release after the end of stimulus-locked exocytosis 

(arrowhead). n=7 and 3 trials for control and 4-AP respectively. (A3) Average responses 

to single APs under different 4-AP and extracellular Ca2+ conditions. The bars show the 

stimulus-locked (light grey) and fast delayed (dark grey) components of exocytosis with 

their SEs. (B1) Average relative peak F/F0 as a function of external Ca2+ across several 

experiments. The line is a fit (to the measurements) by a single site binding model 

(equation (2.2), Km=2.3±0.4 mM, Rmax=2.2±0.2). Inset: responses to 1 AP at 2 mM (grey) 

and 4mM (black) in a representative experiment (n=4 trials each). (B2) Effects of Ca2+ 

channel toxins on single AP responses measured with Fluo-3 AM. Beside each column 

there is an average control (black) and toxin (red) trace from a representative experiment 

(n=3-5 trials each). Scale bar= 20% F/F0, 50ms (B3) Increases in intracellular Ca2+ 

concentration in response to 1 AP relative to control in different 4-AP and extracellular 

Ca2+ conditions. Inset: response to control (grey, n=5 trials) and 4-AP (black, n=13 trials) 

from a representative experiment with 2.5 mM 4-AP. Scale bar= 2% F/F0, 50 ms. (B4) 

Top: representative experiment showing responses to 1 AP (blue) and 2 s stimuli at 10, 

25, 33 and 50 Hz (black). Scale bar=10% F/F0, 0.5 s. Traces are averages of 3 trials for 

2s stimuli and 13 trials for the 1 AP stimulus. Bottom: average steady state F/F0 at the 

end of 2 s stimuli of varying frequencies (n=4 experiments). Responses are normalized to 

the single AP peak in each experiment. Line shows fit (P<0.001, R2=0.995). (C) 

Exocytosis as a function of the relative increase in internal Ca2+ concentration (n=10-16 

vG-pH experiments, n=9-20 MgGreen experiments). The line shows the fit to a 

generalized Hill model (equation (2.1), RRP=5.9±0.7% of TRP, n=3.4±0.4, K=1.9±0.2). 
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Figure 3.2 
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3.3 High frequency action potential bursts deplete the RRP 

Our second approach to measure the RRP size was to study exocytosis in 

response to high frequency bursts of APs. In addition to validating our previous results, 

this type of protocol should be easier to use as it does not require multiple trials until a 

steady state is reached in the presence of a pharmacological agent (4-AP). We initially 

tried to measure the RRP by distinguishing a kinetically distinct component of exocytosis 

using 80 APs at 20 Hz (Fig. 3.3A) or 40 Hz (Fig. 3.3B) at 2 or 4 mM external Ca2+. 

Under these stimulation conditions we could not observe any obvious kinetic signature of 

depression expected from a rapid depletion of the RRP in any of the cells we tested 

(n=10, see Figs 3.3A and 3.3B for a representative example). This was surprising given 

the widespread use of these protocols in the literature (Murthy and Stevens, 1998; 

Moulder and Mennerick, 2005; Stevens and Williams, 2007). We explore this apparent 

discrepancy further in the discussion section of this chapter. While there was some 

gradual depression of responses during a stimulus train (Figs. 3.3A, 3.3B), any estimate 

of the RRP size would have required fitting a refilling model to the data. This would 

introduce additional assumptions regarding both the general kind of model that would be 

appropriate and its parameters (for example, see Wesseling and Lo, 2002), neither of 

which we could validate. Due to these complications, we chose instead to increase the 

strength of the stimulus. We predicted that the larger increase in intracellular Ca2+ would 

lead to a more rapid, clearly noticeable depression of exocytosis as a consequence of 

RRP depletion. After several tests, we found that increasing our stimulation frequency to 

100 Hz and external Ca2+ to 4 mM led to responses that showed clear evidence of distinct 

kinetic phases of exocytosis in all cells tested (see Fig. 3.3C for a representative 
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example). This protocol led to a rapid rise in fluorescence, followed by a plateau and then 

an additional increase that continued beyond the end of the stimulus period. We equated 

the RRP size with the amplitude of the plateau phase for each cell tested (see Chapter 2 

for more details). This plateau typically began after 5-10 stimuli and indicated that the 

rate of exocytosis had dropped to zero. Presumably, under these circumstances all 

vesicles in the RRP have fused with the membrane and the refilling of that pool becomes 

the rate limiting step for further exocytosis. The additional rising phase after the plateau 

proceeded at a lower rate than the original burst (see Figs 3.5A2 and 3.4A1 for smaller 

and larger magnitudes respectively of this effect) and led to an additional fluorescence 

increase of 30±4% (n=24) over the plateau phase during the remaining stimuli. This 

rising phase is presumably a consequence of the RRP refilling process catching up and 

generating primed vesicles that quickly fuse with the membrane due to the elevated Ca2+ 

prevalent inside the nerve terminals. After the end of stimulation, the slower release rate 

continued, resulting in additional delayed release (amplitude=1.4±0.1X RRP size, 

=360±40 ms, n=24 cells). These kinetics probably reflect the complicated interplay of 

Ca2+ decay, RRP refilling and decreasing exocytosis rates in the synapse after 

stimulation. 

An alternative explanation for the strong depression in exocytosis rates during 

100 Hz bursts might be a decrease in Ca2+ entry due to progressive inactivation of Ca2+ 

channels (Xu and Wu, 2005). We tested this directly using MgGreen AM and found that 

the increase in internal Ca2+ concentration shows no evidence of significant depression 

with increasing numbers of APs at 100 Hz in the range where exocytosis rates drop to 

zero (Fig. 3.3D). Importantly, we applied tetrodotoxin (TTX) to confirm that the Ca2+ 
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signal during 100 Hz stimulation is due to action potentials as opposed to a passive effect 

of the field stimulation (responses in TTX dropped to 0±1% and could be washed off to 

94±2% of the rise before treatment, n=4). This strongly suggests that the saturation of 

stimulus-locked exocytosis during 100 Hz stimulation is due to depletion of vesicles from 

the RRP. 

On average, the RRP size determined from these experiments was 7.3±0.8% of 

the TRP (n=24 cells). Notably, this parameter value was quite variable between cells 

(Fig. 3.3E, range=2.2 to 18.7%). 
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Figure 3.3. Bursts of action potentials at 100 Hz in 4 mM external Ca2+ deplete the RRP 

after exocytosis of approximately 7% of the TRP. (A-C) Responses to different stimuli in 

the same cell (average of 11 synapses). Responses to 20 (A) and 40 Hz (B) come from 

individual trials, response to 100 Hz burst (C) is the average of 4 trials. The plateau 

indicating the depletion of the RRP (C) was detected automatically (see Chapter 2). (D) 

Ca2+ entry at 100 Hz, 4 mM (n= 6 experiments). Values normalized to first AP. (E) RRP 

size determined from 100 Hz bursts in 24 cells (see Chapter 2 for explanation of error 

bars). Box whisker plot shows the median (line), mean (point), 25-75 percentile (box) and 

10-90 percentile (whisker) ranges. 
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3.4 Comparison of methods 

Our estimates of RRP size as determined from 100 Hz bursts (7.3±0.8% of the 

TRP) and from single APs under conditions of large intracellular Ca2+ rises (5.9±0.7% of 

the TRP) were in reasonable agreement. To confirm that our protocols gave self 

consistent results, we designed experiments to estimate RRP size using both methods in 

each cell. From our previous results (Fig. 3.2C) we knew that the response to a single AP 

in 250 M 4-AP with 4 mM external Ca2+ would only be a slight (~7%) underestimate of 

the RRP size determined by fitting a generalized Hill model to the entire release curve. 

Therefore, in each of these experiments we began with the 100 Hz protocol and then 

applied 4-AP to estimate RRP size using single AP responses. Figure 3.4A shows an 

example of a neuron where we used both protocols and obtained a close correspondence 

between the different estimates. This observation was true across many cells (Fig. 3.4B) 

such that the two estimates of RRP size were not significantly different from each other 

(5.1±0.8% vs. 5.5±0.9% for single AP and 100 Hz burst protocol respectively, P=0.23 in 

two tailed paired t-test, n=8). This confirms the validity of our protocols for measuring 

RRP size. 
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Figure 3.4. Different estimates of RRP size are consistent. (A) Example of a neuron 

(average of 30 synapses) where both methods were used to estimate RRP size (n=4 trials 

for (A1), n=5 trials for (A2)). Note that the vertical scale on both graphs is the same. (B) 

RRP size determined from single APs in the presence of 250 M 4-AP and 4 mM 

external Ca2+ agrees with estimates from 100 Hz bursts (n=8 cells). 

 

3.5 Estimation of Pv 

Having confirmed that we had reliable methods to estimate RRP size, we could 

use them to calculate Pv by measuring responses to 1 AP under standard conditions (2 

mM external Ca2+). Figure 3.5A shows results from a single neuron that exemplifies the 

procedure. By measuring the response to a single AP (Fig. 3.5A1) and then dividing it by 

the estimate of RRP size obtained with the 100 Hz protocol (Fig.3.5A2), we estimated Pv 

for that neuron. 

Extending this procedure to many cells, we found Pv =0.10±0.01 (n=32 cells). 

Interestingly, as with RRP size, Pv was quite variable between cells (Fig. 3.5B, 

range=0.01 to 0.25). 
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Figure 3.5. Pv varies over a wide range across cells. (A) Procedure for determining a 

neuron’s Pv requires a measurement of the response to 1 AP (A1, n=20 trial average, 12 

synapses) and an estimate of the RRP size (A2, n=4 trial average). Values within each 

panel are in % of TRP. The trace from A1 was scaled down 10-fold in the inset in A2 to 

be at the same vertical scale as the 100 Hz burst measurement. (B) Pv determined with 

this protocol in 32 cells (see Materials and methods for explanation of error bars). Box 

whisker plot shows the median (line), mean (point), 25-75 percentile (box) and 10-90 

percentile (whisker) ranges 

 

3.6 Discussion 

We present here methods to provide optical measures of Pv and RRP size at 

synapses from neurons expressing vG-pH. Our measurements showed that ~6-7% of all 

the releasable vesicles in a synapse are in a primed state, ready to fuse in response to an 

action potential with 0.10 average probability. 

An unexpected finding when developing protocols to measure the RRP size was 

the lack of strong depression in response to 20 or 40 Hz stimulation under both standard 

(2 mM) and high (4 mM) external Ca2+ conditions. We initially tested these protocols due 

to reports in the literature that use short 20 Hz bursts to deplete the RRP in neurons in 

culture (Murthy and Stevens, 1998; Stevens and Williams, 2007). These reports are based 
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on postsynaptic electrophysiological voltage clamp recordings of relatively young (5-15 

days after plating) hippocampal neurons grown in culture. Early experiments (Murthy 

and Stevens, 1998) measured the amplitude of excitatory post synaptic currents (EPSCs) 

which depressed substantially during 2 s of 20 Hz stimulation. However, the use of EPSC 

amplitude to study depression during a stimulus will only include release that occurs 

synchronously, excluding asynchronous exocytosis which occurs between APs in the 

train, therefore underestimating the total amount of release. It is worth noting that our 

time resolution is such that the optically measured stimulus-locked exocytosis will 

include both synchronous and asynchronous components as defined above. A more recent 

study that takes into account this effect and measures cumulative charge (which will 

include both the synchronous and asynchronous component) shows much less depression 

during a 20 Hz, 80 AP train (Figure 5B in Stevens and Williams, 2007). Work from 

another group using similar methods shows clearer evidence of depression during a 2 s, 

20 Hz train (Figure 1 in Moulder and Mennerick, 2005). However, in experiments 

performed in the presence of the rapidly dissociating AMPA receptor antagonist 

kynurenate (therefore unaffected by AMPA receptor saturation) there was considerably 

less depression (Figure 6B in same paper), suggesting a postsynaptic contribution to the 

phenomenon. Due to the comparatively weak depression in both recent papers, the 

authors had to apply a substantial correction for ongoing refilling of the RRP during 

stimulation to estimate RRP size. Another consideration is that previous experiments 

were often performed at a lower temperature (room temperature was ~22°C in Stevens 

and Williams, 2007) than our 20 & 40 Hz experiments (30°C). Higher temperatures have 

been shown to lower release probability and increase the RRP refilling rate (Pyott and 
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Rosenmund, 2002) predicting less depression in our experiments. Finally, a recent study 

measured responses to 40 APs at 20Hz using synaptophysin-pHluorin 2X and the results 

are similar to those shown here, with little evidence of depression (Supplementary Figure 

2E in Matz et al., 2010). In summary, upon closer inspection our lack of clear depression 

at 20 and 40Hz is not as surprising as it initially seemed to be. 

The estimates we present for Pv (0.10) and RRP size (~6-7% of the TRP) are 

consistent with values reported in the literature for dissociated hippocampal neurons in 

culture. It was shown previously that there are 64±14 vesicles labeled with vG-pH in the 

TRP and that most of the vesicles in the synapse are labeled for the transfection 

conditions and age of cultured neurons used here (Balaji and Ryan, 2007). We therefore 

estimate that, on average, the RRP corresponds to 3-5 vesicles, a number similar to the 

number of docked vesicles observed by electron microscopy in hippocampal synapses in 

culture (4.6±3.0 in Schikorski and Stevens, 1997). Given this number of vesicles in the 

RRP, if each has a Pv of 0.1 this indicates that sparse stimulation with single APs causes 

hippocampal synapses from rat neurons in primary culture to release, on average, 1 

vesicle every 3 APs in standard conditions, (Pr 0.3-0.4 from equation 1.2) which is 

consistent with previous estimates (Murthy et al., 1997; Granseth et al., 2006; Branco et 

al., 2008). The same kind of analysis suggests that under standard conditions 

multivesicular release is infrequent (probability of releasing 2 or more vesicles 0.03-

0.08). However, if Pv is large enough (for example, in the presence of 4-AP) a single 

action potential will cause multiple vesicles present in the RRP to exocytose. At the 

moment, our time resolution is limited to 10 ms so we do not know in detail the temporal 
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coupling between an action potential firing and the exocytosis of several vesicles under 

conditions of high Pv. 

The sigmoidal relationship between Pv and Ca2+ entry, with standard conditions 

situated quite low on the curve highlights how small changes in Ca2+ entry can lead to 

large effects on baseline Pv. These changes in Pv will cause even greater shifts in Pr 

(using our estimate of n=4 vesicles in equation (1.2), Fig. 3.6) illustrating how forms of 

modulation that regulate Ca2+ entry even slightly can sharply modify synaptic efficacy. 

 

 

Figure 3.6. Synapses are in range very responsive to changes in Ca2+. (A) Estimate of Pv 

as a function of intracellular Ca2+ increases in response to 1 AP (from Fig. 3.2.C). (B) 

Using equation 1.2 and an estimate of the RRP size of 4 vesicles we can calculate the 

relation of Pr to increases in intracellular Ca2+. Light blue shading in (A) and (B) 

indicates region where Ca2+ entry can be modulated from 0 to 2-fold of normal, with 

corresponding effects on Pv and Pr. Note the steeper dependence of Pr on Ca2+ around the 

standard conditions region (2 mM extracellular Ca2+). 
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Interestingly, we noted considerable variability in both Pv and RRP size between 

cells (Figs. 3.3E, 3.5B). This was somewhat surprising given that we used a relatively 

homogenous population of neurons cultured from the CA3-CA1 region of the rat 

hippocampus. It is unknown whether this variability is characteristic of this brain region 

or a consequence of the in vitro growth conditions of the neurons. Measuring Pv and RRP 

size in cultured neurons prepared from other brain regions and/or cell types might 

provide some insights into this issue. 

Our methods should be widely applicable to study factors that affect Pv and RRP 

size. By design, they cannot be used to study q and are limited to less temporal resolution 

and sensitivity than electrophysiological methods. However, because they  are restricted 

to presynaptic properties they  avoid complications such as receptor saturation and 

desensitization inherent in studying presynaptic properties based on a postsynaptic 

readout (Xu-Friedman and Regehr, 2004). Furthermore, in contrast to 

electrophysiological studies in culture, they are not affected by changes in the number of 

synaptic contacts since measurements come from averages -not sums- across synapses. In 

the chapters that follow we use these methods to examine the role of tomosyn in 

exocytosis (Chapter 4) and extend the techniques to study properties of exocytosis at the 

level of single synapses (Chapter 5). 
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4. TOMOSYN 

 

Having developed methods to measure key presynaptic parameters of synaptic 

vesicle exocytosis (Chapter 3), we turned our attention to tomosyn, a molecule that might 

control Pv and/or n. As described in the introduction to this thesis, tomosyn is a 

particularly interesting candidate for study. It interacts directly with the fusion machinery 

in synaptic vesicles and, in addition, is one of the few proteins known to exercise a 

negative control on synaptic efficacy (Ashery et al., 2009). However, the exact 

mechanisms by which it performs this function are not clear. Thus, we set out to explore 

this in detail using our new methods. 

 

4.1 Knockdown of tomosyn in hippocampal neurons 

To study the effect of tomosyn on exocytosis properties, we used a knockdown 

approach, cotransfecting primary hippocampal neurons in culture with the vG-pH 

reporter and an shRNA targeted against tomosyn-1 (based on Cheviet et al., 2006). This 

reduced tomosyn levels at neuronal somas by an average of 55%, though there was 

considerable variation in knockdown efficacy between individual cells (Fig. 4.1). The 

polyclonal antibody we used to detect tomosyn can also recognize tomosyn-2 (Reinhard 

Jahn, personal communication), yet our shRNA specifically targeted tomosyn-1. 

Therefore, the remaining tomosyn detected by immunostaining might be tomosyn-2, a 

poorly characterized isoform that appears to be somatically and postsynaptically localized 

in CA2 cells of the hippocampus (Barak et al., 2011). Alternatively, we wondered if the 
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shRNA we used was simply inefficient and whether a different shRNA might lead to 

more knockdown. However, our attempts using another previously validated knockdown 

sequence (based on Sakisaka et al., 2004) gave similar results (46±4% knockdown, 

n=38). In what follows, we characterized neurons where tomosyn levels were reduced 

using the knockdown sequence developed by Cheviet et al., 2006. 
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Figure 4.1. shRNA targeting tomosyn-1 leads to partial reduction of tomosyn levels in 

hippocampal neurons. (A) Hippocampal neurons in culture transfected with both vG-pH 

and tomosyn shRNA. Neurons were stained with anti-GFP (green), which recognizes vG-

pH, and anti-tomosyn (red). Note the transfected neuron with a noticeable reduction in 

somatic tomosyn compared to untransfected cells. Scale bar = 10 m. (B) Neurons 

transfected with shRNA targeting tomosyn-1 had reduced levels of tomosyn staining in 

their cell bodies (45±2%, n=90) compared to untransfected neurons (100±1%, n=528) or 

those transfected solely with vG-pH (123±15%, n=12). Different letters above whiskers 

indicate groups that are significantly different (P<0.05) from each other using Kruskal-

Wallis multiple comparisons. 
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4.2 Effects of tomosyn knockdown on synaptic efficacy 

In spite of reducing tomosyn levels only partially, we studied a subset of these 

neurons (tomosyn level=35±6%, n=10, range: 10-72%) with our protocols and noticed 

several interesting effects. Neurons with reduced levels of tomosyn showed larger 

responses to single APs compared to controls (Fig. 4.2A). Using our previously 

developed protocols, we probed whether this change was due to a modification in n or Pv. 

Our results showed that, while RRP size was unchanged (Fig 4.2B), Pv rose significantly 

under both standard (2 mM) and elevated (4 mM) extracellular Ca2+ ion concentrations 

(Figs. 4.2C). We reasoned that if the probability of a primed vesicle fusing in response to 

1AP (Pv) had increased, this might affect short term plasticity properties, as a stimuli 

would lead to a larger depletion of the RRP. Indeed, when we stimulated with 2 APs 

spaced 250ms apart, the paired pulse ratio (PPR) was smaller when tomosyn levels were 

reduced, consistent with a larger depletion of the RRP (Fig. 4.2D). 
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Figure 4.2. Reduction in tomosyn concentration increased Pv and modified short term 

plasticity. (A) Top: Examples of single AP response in individual experiments, averaged 

over 10 trials (n= 19 and 5 synapses for control and tomo-1 shRNA respectively). 

Responses are normalized to the total number of labeled synaptic vesicles, determined by 

NH4Cl application (see Chapter 2.2). Scale bar: 0.25% of NH4Cl, 0.1s. Bottom: Increase 

in the response to 1 AP with reduced tomosyn levels (control: 0.4±0.1%, n=17; tomo-1 

shRNA: 0.55±0.08%, n=10; P=0.04, Mann-Whitney U test). Responses were normalized 

to the total pool of vesicles in the terminal, determined with a brief pulse of solution 

containing NH4Cl, buffered at pH=7.40 (see Chapter 2). (B) No change in the size of the 

RRP in the presence of tomo-1 shRNA (control: 7.5±0.6%, n=38; tomo-1 shRNA: 

7.7±0.6%, n=10; P=0.27, Mann-Whitney U test). (C) Pv increases when tomosyn is 

reduced by shRNA. Pv increased when measured at 2 mM (control: 0.10±0.01, n=40; 

tomo-1 shRNA: 0.16±0.02, n=10; P=0.009, ANOVA) or 4 mM (control: 0.34±0.02, 

n=38; tomo-1 shRNA: 0.46±0.04, n=10; P=0.008, ANOVA) extracellular Ca2+ ion 

concentration. (D) Top: Examples of paired pulse runs in individual experiments, 

averaged across 10 trials each (n=31 synapses for both control and tomo-1 shRNA). Both 

traces are normalized to the response to the first AP. Scale bar: 50% of response to first 

AP, 0.1s. Bottom: Change in short term plasticity as a consequence of tomosyn-1 

knockdown. The ratio of a 2nd AP response to one delivered 250ms prior was reduced in 

the presence of the tomo-1 shRNA (control: 0.77±0.07, n=37; tomo-1 shRNA: 0.45±0.09, 

n=9; P=0.01, Mann-Whitney U test). * indicates P<0.05 in statistical comparison. 
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Figure 4.2 
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Given that responses to single APs were modified when tomosyn was reduced and 

that short term plasticity was affected, we wondered if there would also be effects on 

larger stimuli. Strikingly, the amplitude of the response to 100 APs delivered at 10 Hz 

was not different from control (Fig. 4.3A). If anything, it was lower in the knockdown, 

though the trend was not statistically significant. To further probe the responsiveness to 

large stimuli, we examined exocytosis in response to 1500 APs at 10 Hz, delivered in the 

presence of bafilomycin (Baf). Since Baf is a proton pump inhibitor, the alkalinization of 

a vesicle once it fuses with the membrane will be irreversible and the rise in fluorescence 

during stimulation will reflect only exocytosis (see Figure 3.1B for an example). 

Therefore, fitting this rise to a monoexponential process can be used to extract a time 

constant that will be partially determined by exocytosis properties and partially by vesicle 

reuse. Consistent with results for a 100 APs stimulus, the time constant in response to 

1500 APs at 10 Hz did not differ between knockdown cells and control (Fig. 4.3B). Thus, 

while a reduction in tomosyn concentration leads to a modification of synaptic efficacy at 

the level of individual or paired APs, larger stimuli do not seem to be affected. 
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Figure 4.3. Reduction in tomosyn concentration had no effect on exocytosis in response 

to strong stimuli. (A) Top: Examples of responses to 100 APs at 10 Hz in individual 

experiments (n=16 synapses for both control and tomo-1 shRNA). Scale bar: 5% of 

NH4Cl, 5s. Bottom: Response to 100 APs delivered at 10 Hz. (control: 24±3%, n=13; 

tomo-1 shRNA: 18±3%, n=10; P=0.18, ANOVA) (B) Time constant of exocytosis, 

measured in the presence of Baf, in response to 1500 APs at 10 Hz. (control: 24±2s, 

n=27; tomo-1 shRNA: 25±2s, n=8; P=0.19, Mann-Whitney U test). 

 

4.3 Does PKA phosphorylation of tomosyn play a role in synaptic transmission? 

Tomosyn contains a phosphorylation site for protein kinase A (PKA) that inhibits 

its ability to substitute for synaptobrevin in SNARE complexes (Baba et al., 2005) but at 

the same time may also enhance the -propeller domains’ ability to oligomerize SNARE 

complexes (Sakisaka et al., 2008). On the basis of these reports, we wondered whether 

the effect on exocytosis of increasing the amount of cAMP would be modified with 

reduced levels of tomosyn. In particular, we studied the effects of forskolin, a compound 

known to increase cAMP concentration through its action on adenlyl cyclase (Insel and 

Ostrom, 2003). As expected from previous reports (Kaneko and Takahashi, 2004; Huang 

and Hsu, 2006; Gekel and Neher, 2008), incubation of neurons with forskolin led to 

increased responses to single AP stimuli (Fig. 4.4). However, neurons with reduced levels 
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of tomosyn (tomosyn level=44±10%, n=4, range: 25-62%) did not differ from control in 

their responsiveness to forskolin application. If anything, there was a trend in the 

opposite direction, though it did not reach statistical significance, possibly due to the few 

cells assayed. Thus, the concentration of tomosyn does not seem to be a rate limiting 

factor for the effects of an elevation in cAMP concentration in nerve terminals. 

 

 

Figure 4.4. The effect of forskolin on responses to single APs was not altered in the 

presence of tomosyn-1 shRNA. Forskolin effects are calculated as the ratio of the 

response to 1 AP after forskolin treatment (50 mM, 10min preincubation) to the response 

to 1 AP before treatment (control: 2.1±0.3, n=11; tomo-1 shRNA: 2.9±0.9, n=4; P=0.36, 

Mann-Whitney U test). 
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4.4 Unsuccessful attempt to rescue effects of shRNA 

To rule out that the phenotype of the tomosyn knockdown was a consequence of 

off-target effects of the shRNA (Alvarez et al., 2006) we took a rescue approach. To this 

end, we generated an N-terminal HA tagged version of mouse tomosyn-1 isoform s (HA-

tomo-1) and cotransfected vG-pH, HA-tomo-1 and tomo-1 shRNA. Rat and mouse 

tomosyn-1 are sufficiently different at the RNA level such that the shRNA, designed 

against rat tomosyn-1, does not target our rescue construct. Ideally, a neuron with vG-pH, 

tomo-1 shRNA and HA-tomo-1 should have tomosyn levels indistinguishable from wild 

type. However, our triple transfection strategy did not always lead to successful rescue of 

tomosyn levels. This seems to be a technical limitation of our transfection procedure, and 

has been seen with other rescue constructs in our lab (unpublished observations). To 

avoid skewing our analysis of exocytosis properties, we only included neurons where 

tomosyn levels were at least 75% of adjacent untransfected cells, as determined by post 

hoc staining (9/20 cells were excluded). In this subset of neurons, tomosyn levels were 

near wild type (average =114±11%, n=11, range: 76-193%), and we used these cells as 

our rescue group. 

Surprisingly, none of the single or paired AP exocytosis properties of the rescue 

differed significantly from the knockdown (Fig. 4.5A-D, knockdown vs. rescue 

comparisons all had P>0.1 in cases with differences between groups). For parameters 

where the knockdown group differed from controls, the rescue mimicked the knockdown, 

though control vs. rescue comparisons did not always reach statistical significance at the 

=0.05 level. In addition, rescue cells were less responsive to both 100 AP and 1500 AP 

bursts at 10 Hz than controls, though they did not differ significantly from knockdowns 
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(Fig. 4.5E-F). These results indicate the either the rescue construct used was ineffective 

or that the phenotypes seen in Figures 4.2 and 4.3 are mediated by non-specific effects of 

the shRNA. In any case, the absence of a convincing rescue of the tomosyn-1 knockdown 

renders our conclusions on the effects of tomosyn-1 on exocytosis preliminary. 

 



73 

Figure 4.5. Rescue of tomosyn levels with HA-tagged tomosyn-1 did not revert the 

effects of tomosyn-1 knockdown. Control and tomo-1 shRNA data taken from Figures. 

4.2 and 4.3. (A) Response to 1 AP (control: 0.4±0.1%, n=17; tomo-1 shRNA: 

0.55±0.08%, n=10; rescue: 0.5±0.2%, n=11; P=0.09, Kruskal-Wallis). (B) RRP size 

(control: 7.5±0.6%, n=38; tomo-1 shRNA: 7.7±0.6%, n=10; rescue: 6.3±0.9%, n=10; 

P=0.58, Kruskal-Wallis). (C) Pv at 2 mM (control: 0.10±0.01, n=40; tomo-1 shRNA: 

0.16±0.02, n=10; rescue: 0.15±0.03, n=11; P=0.01, ANOVA) and 4 mM (control: 

0.34±0.02, n=38; tomo-1 shRNA: 0.46±0.04, n=10; rescue: 0.47±0.05, n=11;  P=0.004, 

ANOVA) extracellular Ca2+ ion concentration. (D) PPR at 250ms (control: 0.77±0.07, 

n=37; tomo-1 shRNA: 0.45±0.09, n=9; rescue: 0.7±0.2, n=10; P=0.008, Kruskal-Wallis). 

(E) Response to 10 APs delivered at 10 Hz (control: 24±3%, n=13; tomo-1 shRNA: 

18±3%, n=10; rescue: 15±1%, n=10; P=0.06, ANOVA). (F) Time constant of exocytosis, 

measured in the presence of Baf, in response to 1500 APs at 10 Hz (control: 24±2s, n=27; 

tomo-1 shRNA: 25±2s, n=8; rescue: 36±6s, n=10; P=0.03, Kruskal-Wallis). # and * 

indicate P<0.1 or <0.05 respectively in statistical comparison with control group. 
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Figure 4.5 
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4.5 Discussion 

Our analysis of the function of tomosyn-1 in exocytosis must be qualified by the 

fact that our attempt to rescue the effects of the knockdown was unsuccessful.  

In the worst case scenario, the failed rescue would imply that the effects of the 

knockdown construct are actually not a consequence of the reduction in tomosyn-1 

concentration (Jackson and Linsley, 2010). However, it is equally possible that the rescue 

construct was ineffective and it is worth considering a few alternative scenarios in which 

this is the culprit. We will first discuss why the rescue might have been unsuccessful and 

then examine the knockdown results assuming they are not a consequence of off-target 

interactions of the tomo-1 shRNA. 

The construct used to rescue the knockdown was an N-terminal, HA tagged 

mouse tomosyn-1, isoform s. There are several reasons why it might have been 

ineffective in supplanting the functions of endogenous rat tomosyn-1. 

It is possible that the type of tag used and/or its location on the protein led to 

problems in folding, trafficking or function. The design of our rescue construct was based 

on previous reports that showed effects on exocytosis in bovine chromaffin cells when 

overexpressing mouse tomosyn-1 (isoform s) tagged with GFP or CFP (Yizhar et al., 

2004; Yizhar et al., 2007) on the N-terminus. To minimize potential disruptions of 

tomosyn function, we used a smaller tag (HA, 9 amino acids long) instead of a 

fluorescent protein, though we kept the N-terminal position. Major disruptions in the 

folding of tagged tomosyn-1 seem unlikely because the rescue protein could still be 

identified in immunostaining of neuronal somata. Unfortunately, we could not measure 

clear tomosyn signals at individual presynaptic boutons in control, knockdown or rescue 
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conditions with our antibody. Thus, we cannot rule out the possibility of a trafficking 

defect in HA-tomo-1. It is worth noting that the overexpression results in chromaffin cells 

were obtained under conditions where tomosyn levels were 13-fold above wild type 

(Yizhar et al., 2004). Even if the tagged tomosyn used therein was less efficient in its 

trafficking or function, the sheer amount of protein might be sufficient to lead to 

functional consequences, despite a lower efficacy. To circumvent the potential problems 

inherent in tagging tomosyn-1 we attempted to develop an untagged version of tomosyn 

for rescue. Unfortunately, we could not reliably calibrate the transfection procedure to 

obtain enough cells with tomosyn levels in the wild type range for statistical analysis 

(only 2/15 cells had tomosyn levels in the 75-200% range). 

Another thing to keep in mind is that we attempted to rescue a reduction in rat 

tomosyn-1 with mouse tomosyn-1 isoform s. It is possible that the few amino acid 

differences between mouse and rat tomosyn-1 isoform s are responsible for a reduced 

efficacy of the rescue protein in the context of a rat neuron. This seems unlikely given the 

98% sequence identity between the mouse tomosyn-1 isoform s and the equivalent rat 

tomosyn-1 isoform m. Of the 19 amino acid differences only 7 are non-conservative and 

these are distributed in unstructured loops or between the blades of the -propellers’ 

structure. However, while the sequence difference seems unlikely to cause the lack of 

cross-species rescue, we cannot definitively exclude this possibility. An additional 

consideration is that we rescued with only one splice isoform but tomosyn-1 has three, all 

of which were targeted by our shRNA. While the isoform we used is the most abundant 

one in brain extracts (Yokoyama et al., 1999), that might not be true in the specific subset 

of cells from the hippocampal CA regions we studied in culture. It could be the case that 
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the stoichometry of appropriate isoforms is critical for tomosyn-1 function. While the 

mouse tomosyn-1 isoform used was able to produce effects when overexpressed in a 

bovine chromaffin cell (Yizhar et al., 2004), the same caveat regarding the high 

concentration mentioned above applies to any inferences regarding the cross-species and 

isoform-specific efficacy. 

Despite these possibilities, there is no escaping that any firm conclusions 

regarding the role of tomosyn in synaptic vesicle exocytosis require a demonstration of 

successful rescue of the effects of the knockdown. Thus, the discussion of our results that 

follows is necessarily preliminary and assumes there were no non-specific effects of the 

knockdown. 

An interesting aspect of our results was that reducing tomosyn concentration 

affected only responses to single or paired AP, but not responses to larger bursts. This 

indicates that modifications in single AP responses do not always translate to bigger 

stimuli, highlighting how a neuron could control how it “whispers” independently of how 

it “shouts,” effectively uncoupling different operating regimes. 

As regards the increased responsiveness to single APs, it is worth considering 

what caused the increase in Pv (Fig. 4.2C). As noted in the introduction to this thesis, 

effects on Pv could be due to changes in local Ca2+ or fusion willingness. The latter seems 

a particularly attractive possibility on the basis of what is known about tomosyn. Since 

tomosyn can compete with synaptobrevin to form SNARE complexes, it is possible that 

the average number of SNARE complexes per primed synaptic vesicle increases when 

the amount of tomosyn goes down. Given that fusion willingness is proportional to the 

number of trans-SNARE complexes per vesicle (Mohrmann et al., 2010), this would be a 
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potential mechanism to explain the effects of tomosyn concentration on Pv. The 

oligomerization of cis-SNARE complexes by the -propeller domains could also 

inversely link the availability of SNAREs for fusion-competent complexes and the 

concentration of tomosyn. Additionally, tomosyn’s interaction with synaptotagmin could 

affect fusion willingness or potentially, local Ca2+ through coupling of vesicles to Ca2+ 

channels (Young and Neher, 2009).  

In contrast to our results, previous reports from C. elegans mutants (Gracheva et 

al., 2006; McEwen et al., 2006) and bovine chromaffin cells (Yizhar et al., 2004) 

uncovered only differences in RRP size, but no effects that could be interpreted as 

modifications in Pv. There are many differences between these studies and our own 

including the species, synapse or cell type, concentration range of tomosyn and the assays 

used. As illustrated above and in the introduction changes of both Pv and RRP size can be 

explained in terms of modified SNARE availability. In a simple model, vesicles with at 

least one trans-SNARE complex formed would be fusion competent (van den Bogaart et 

al., 2010) and therefore primed, whereas any change in the number of trans-SNARE 

complexes per vesicle would affect fusion willingness (Mohrmann et al., 2010). 

However, it is not clear in this scenario how changes in SNARE availability in a range 

that affected the number of primed vesicles (those with at least one trans-SNARE 

complex) would not also modify the average number of trans-SNARE complexes per 

vesicles, and thus Pv. Clearly, more experiments are needed to understand these 

discrepancies and refine models of tomosyn function. 

As regards the potential modulation of tomosyn function by PKA, our results 

were inconclusive. We found that there was no difference between control and shRNA 
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transfected neurons, indicating that tomosyn levels in the range explored are not rate-

limiting for the expression of the effects of raising cAMP. Perhaps stronger reductions of 

tomosyn concentrations would uncover an effect. In addition, it is worth pointing out that 

forskolin-induced rises in cAMP not only stimulate PKA but also the alternative target 

Epac, a guanine nucleotide exchange factor for the small G protein Rap. It is unclear 

what fraction of the resulting effects are channeled through the latter pathway in our 

culture system (for other systems see Kaneko and Takahashi, 2004; Huang and Hsu, 

2006; Gekel and Neher, 2008). 

In conclusion, our study, while tentative, adds interesting results to a growing 

body of literature on tomosyn’s role in synaptic transmission. Mainly, we see that subtler 

modifications of tomosyn levels than reported previously can lead to effects on Pv 

without modifying the RRP size. Furthermore, despite our difficulties with the rescue 

construct, these results illustrate the utility of the methods we have developed to study the 

molecular underpinnings of synaptic vesicle exocytosis. 
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5. EXOCYTOSIS PROPERTIES OF SINGLE SYNAPSES 

 

 In the experiments presented so far, we explored average properties across 

ensembles of synapses. However, synapses can behave very differently, even if they 

belong to the same axon (Chapter 1.5). Thus, we wished to go beyond ensemble averages 

and study potential molecular determinants of Pv and n at the level of individual 

synapses. To that end, we set out to expand the applicability of our methods (Chapter 3). 

 

5.1 General measurement considerations 

To obtain reliable estimates of Pv and n at individual synapses, we had to 

overcome two main challenges: statistical fluctuations and measurement noise. 

The first issue to consider when measuring responses from individual synapses is 

that potentially large statistical fluctuations are expected from a binomial process with a 

relatively low Pv and n. Our experiments consist of several trials where the stimulus is a 

single AP. These responses are averaged for each synapse and compared to the 

corresponding estimate of n, giving a measure of Pv. If we assume that a binomial 

process with parameters Pv and n fully describes the behavior of a synapse during this 

kind of experiment, we can ask how much the measured Pv will fluctuate around the real 

Pv. The relative size of those fluctuations will depend on Pv, n, and the number of trials in 

the experiment. The expected CV in an estimate of Pv will be (see Appendix for 

derivation): 

.nk.P
)P(1CV

v

v    (5.1) 
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Note that these fluctuations are unavoidable and would be present even if using an 

idealized detection system without any noise. The only option to minimize their effect is 

to perform as many trials as possible. For example, an experiment to estimate Pv in single 

synapses with an expected CV of 15% would require 100 trials, assuming Pv=0.1 and 

n=4 (our averages under standard conditions, see Chapter 3). Obtaining such a large 

number of measurements is problematic because it requires long experiments and total 

cumulative exposures to laser illumination that tend to be detrimental to cell health. By 

extension, it is doubly difficult to execute a baseline measurement, follow it with a 

pharmacological application and measure the effect of that intervention. Furthermore, 

because our calculation only illustrates the CV of an average synapse, we expect many 

measurements -in lower Pv synapses- to be subject to larger fluctuations. For all of these 

reasons, we chose to increase the concentration of extracellular Ca2+ ions to 4 mM. Based 

on Figure 3.2C, this will raise Pv to 0.35. Using equation 5.1, to measure Pv with an 

expected CV of 15% under these conditions requires only 21 trials. This allows shorter 

experiments where maintaining cell viability is not as challenging. While we are aware 

that this increase in extracellular Ca2+ ion reduces the applicability of our conclusions, we 

consider it a necessary tradeoff in order to obtain reliable measurements of Pv at single 

synapses. 

The second challenge when attempting to estimate Pv and n at individual boutons 

was the systematic noise in our measurements. To reduce this noise as much as possible 

one approach was the same as already mentioned to minimize statistical fluctuations: 

averaging the results of many trials in each experiment. In addition, we restricted our 

high temporal resolution imaging only to runs where it was essential. Thus, we only 
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imaged with 10ms temporal resolution when we used our 100 Hz burst method to 

estimate RRP size. Conversely, to estimate the size of responses to single APs we used 

longer integration times (25 ms). This gave us more precision, at the expense of slower 

imaging rates in those trials. Finally, we minimized illumination of transfected neurons to 

small temporal windows, with little exposure before and after the stimuli, in an attempt to 

reduce bleaching and photodamage. 

After several preliminary tests, we optimized a protocol which allowed us to 

measure Pv and n at individual boutons, minimizing experimental noise and statistical 

fluctuations yet consistently ensuring cell viability. The structure of our experiments was 

very simple. We started by briefly exposing cells to 50 mM NH4Cl at pH 7.40. This 

alkalinized the pH of cellular compartments, unquenched all pHluorin molecules present 

and allowed us to visualize every transfected bouton in a given field. Following that 

stimulus, we interleaved 30 single AP runs and 12 trials designed to measure RRP size 

(20 APs at 100 Hz). These runs served as a baseline to estimate Pv and n. After obtaining 

these baseline values, we applied one of a few different pharmacological interventions 

(see below) and measured the resulting effect on single AP responses in 30 independent 

trials. We ended each experiment with an NH4Cl application to ensure boutons had not 

moved, split, merged or fallen out of focus over the course of the experiment. In total, we 

measured Pv and n at 624 individual synapses in 33 experiments from 10 independent 

culture sets. 
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5.2 Data quality and filtering 

 We used this data set as a starting point and began by applying some basic quality 

control procedures to ensure synapses had appropriately high signal to noise, were stable 

throughout the experiment and provided a reliable estimate of n. Each synapse had to 

fulfill each of the following criteria to be included in any subsequent analysis: 

Quality of signal 

Signal to noise of 1 AP average response > 4 

SE of pharmacological treatment effect < 0.3 

Stability of signal 

Linear fit of 1 AP responses as a function of time does not show significant slope (at 

significance level =0.01) 

Linear fit of synchronous response to 20 APs (delivered in 100 Hz bursts) as a function of 

time does not show significant slope (at significance level  =0.01) 

RRP size determination 

We only accepted cases where the slope of F vs. AP number for the points in the RRP 

plateau was at most 50% the slope of the F vs. APs 1-3, as explained in Chapter 2. 

We found that these criteria eliminated synapses with obvious problems (such as 

instability or poor signal to noise) and left us with a high quality data set. A total of 421 

synapses (67%) passed all criteria and formed the basis for further analysis. Figure 5.1 

shows data from a representative experiment. 
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Figure 5.1. Pv and RRP size can be measured precisely at many individual boutons in 

parallel. (A) Field of boutons in a representative experiment. The image is the difference 

in fluorescence before and after the application of 50 mM NH4Cl and is smoothed for 

presentation purposes only. The arrow marks the synapse shown in detail in the rest of 

the figure. Scale bar = 5 m. (B1) Cumulative exocytosis in response to 20 APs at 100 Hz 

for the indicated synapse (n=12 trials). The orange line indicates the RRP size. The light 

orange shading indicates the region where a plateau was detected using our methods (see 

Chapter 3), along with the SE in the RRP size. (B2) Exocytosis in response to a single 

action potential. The thick red line indicates an average over 30 trials. The thin red lines 

show the SE of this average. The vertical scale is the same as in (B1) and is aligned with 

that panel for convenience. (C) Responses to single APs (red) or 20 APs at 100 Hz 

(black, stimulus-locked exocytosis only) for the indicated synapse. Note the stability in 

the response throughout almost 2 hours of imaging. (D) and (E) RRP size and Pv 

respectively for 27 synapses in this experiment that passed our filtering criteria. For 

details on the calculation of the error bars see Chapter 2. Each point corresponds to an 

individual synapse. Synapses are ordered in both panels according to their single AP 

responses (as % of TP) from highest (left) to lowest (right). The synapse marked in blue 

is the one analyzed in (B1), (B2) and (C). 
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Figure 5.1 

  



86 

For each synapse, we calculated the SEs in the estimates of Pv and RRP size using 

conventional error propagation techniques (see Chapter 2). The number of trials in our 

experimental design was sufficient to determine Pv and RRP size with reasonable 

precision at individual synapses. In the case of RRP size, the median SE -expressed as % 

of the total number of vesicles- was 0.4% (range=0.1-3.7%). The median %SE -relative 

to RRP size- was 9% (range=4-18%). In the case of Pv, the median SE was 0.06 

(range=0.02-0.19). The median %SE -relative to Pv- was 15% (range=5-40%). 

Before proceeding further we examined whether the filtering might bias our data 

in any way. Even before the filtering criteria were applied, we noted a skew towards 

more responsive synapses than those included in previous experiments, evidenced by a 

higher Pv (0.416±0.008) compared to our previous average at 4 mM extracellular Ca2+ 

ion concentration (0.35, from Fig. 3.2C). We speculate this is due to an implicit bias 

towards selecting more responsive boutons for single synapse experiments. In addition, 

after filtering we were left with an even more responsive subset of synapses (Pv 

=0.453±0.008). This is unsurprising given that the filtering criteria include a signal to 

noise cutoff, which will be correlated with Pv. We also wondered whether our filtering 

might select a non-random subset of synapses in terms of responses to the various 

pharmacological interventions outlined below. This was not the case as the effect of 

different treatments did not differ between excluded and non-excluded synapses (P>0.05 

in Mann Whitney U tests for each intervention). Overall, our experiments to study single 

synapse properties came from a more responsive population of boutons than those in 

other chapters of this thesis. 
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To check whether our results were consistent with those in Chapter 3, we 

estimated how many vesicles were present in the RRP. To that end we assumed that all 

synaptic vesicles were labeled and that, on average, there were 64 vesicles in the 

releasable pool of vesicles (Balaji and Ryan, 2007). Furthermore, we assumed that that 

the releasable pool of vesicles constituted 60% of the total pool of labeled vesicles 

(Fernandez-Alfonso and Ryan, 2008). Combining these assumptions we estimated that, 

on average, there would be 106 labeled vesicles in each synapse. Comparing this to the 

average size of the fluorescence response to a brief alkalinizing pulse of NH4Cl (see 

above) we estimated the fluorescence of an individual labeled synaptic vesicle. This 

parameter allowed us to calculate n for each synapse (~4) which was in excellent 

agreement with our own results (see Chapter 3) and the number of docked vesicles 

observed by electron microscopy in hippocampal synapses in culture (Schikorski and 

Stevens, 1997). Using our estimates of Pv and n in equation 5.1 the median expected CV 

of Pv measurements -due solely to statistical fluctuations- was 11% (range=3-31%). 

 

5.3 Individual synapses vary considerably in Pv and n 

Confident that we had robust measures of Pv and n at individual boutons, we 

studied the variability in these basic exocytosis parameters between synapses. 

Interestingly, we found a large degree of variability in both Pv and n (Fig. 5.2). Overall 

the average CV was 38% for Pv and 68% for RRP size. Furthermore, a considerable 

amount of this variability was present in synapses from the same experiment. The 

average CV of Pv within each experiment was 29% (range: 14 to 47%) and 44% for RRP 

size (range: 25 to 81%). The variability in n was not a consequence of our normalization 
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to the size of the total pool of vesicles within each synapse as the CVs were still large 

even when we considered raw F values of RRP size (CVall=62%; CVwithin=38%; 

range=20-56%). It is important to note that we could not initially rule out that synapses 

included in our experiments belonged to axons from different somas. Thus, variation 

between synapses might be due to differences between the neurons that give rise to 

various subsets of boutons in any given imaged field. To directly obtain estimates of the 

variability between synapses made by the same axon we took two approaches, detailed 

below. 

First, we used retrospective immunostaining for vG-pH to trace the entire axonal 

arbor in a subset of our experiments. In most cases (6/9) several transfected somas gave 

rise to axons that intercrossed in the imaged region such that we could not 

unambiguously determine that all synapses under study came from just one neuron. 

However, in three experiments retrospective tracing of processes proved that all imaged 

synapses were indeed formed by the same axon. The CV of Pv in those experiments was 

18% (n=14 synapses), 21% (10 synapses) and 22% (n=24 synapses). On the other hand, 

the CV of RRP size was 40%, 49%, and 51% respectively. This analysis suggests that a 

large amount of variability is present in Pv and n, even between synapses made by the 

same axon. However, the small number of observations warrants some caution in 

drawing conclusions from these results. 

Second, in some cases we were able to determine unambiguously that small 

groups of adjacent boutons belonged to the same axonal branch. Close inspection of 

images taken during some experiments clearly showed isolated lengths of axon with 

groups of three or more boutons, arranged en passant. In total, this analysis revealed 72 
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synapses grouped in 19 axonal branches in 15 experiments. We calculated the CV in Pv 

and n across boutons in each axonal branch (subsequently averaging across branches in 

experiments with more than one group of boutons that fulfilled the criteria). The average 

CV in Pv (across experiments) between boutons of the same axonal branch was 30%. 

This indicates that variability in Pv between synapses in an experiment (CV=29%, see 

above) is present even among boutons on the same axonal branch. Similar conclusions 

can be drawn from an analysis of the variability in n. The average CV in n (across 

experiments) between boutons of the same axonal branch was 41% (compared to 

CV=44% between all boutons in an experiment). Therefore, there is considerable 

variability in both Pv and n between synapses made by the same axon. We wondered 

what might explain this large variability in Pv and n at the molecular level and explore a 

few possibilities in the following sections. 
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Figure 5.2. Large variation in Pv and RRP size between individual synapses. (A1) 

Histogram of Pv across all synapses. (A2) Color map of Pv values in all synapses 

included in our analysis. Each row in this plot represents a single experiment and each 

dot within that row a single synapse from that experiment. Synapses are colored 

according to their Pv with cold colors representing low Pv values and warm colors 

representing high Pv values. The inset shows the Pv color scale. Synapses within each 

experiment are ranked according to their average response to a single AP (as % of the 

TP) from left (highest) to right (lowest). Experiments are ordered according to their 

average synaptic response to a single AP from top (highest) to bottom (lowest). The 

asterisk highlights the experiment shown in Figure 5.1 and the arrow indicates the 

synapse shown in more detail in Figures 5.1B-C. (A3) The CVs in Pv values for each 

experiment are shown aligned with the corresponding row in (A2). The average CV in Pv 

across experiments is shown as a red triangle in the scale bar. Three experiments where 

all synapses belonged to the same axon are shown in blue. (B1-3) Histogram, color map 

and CVs within each experiment of RRP size, analogous to (A1-3). Synapses in (B2) are 

ordered identically to (A2) so a dot in the equivalent position on the color maps 

represents the same synapse, while equivalent rows represent the same experiment. Note 

that the scaling of colors coding RRP sizes is logarithmic. 
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Figure 5.2 
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5.4 An exploration of molecular determinants of variability in Pv and n 

5.4.1 Ca
2+

 channel subtypes 

An intriguing hypothesis is that different Ca2+ channel subtypes are associated 

with synapses of different efficacies. A preliminary report attempted to test this in young 

neurons grown in autaptic cultures and came to the conclusion that there was no 

correlation between synaptic efficacy and the distribution of P/Q or N type Ca2+ channels, 

despite apparent variation in the contribution of those Ca2+ channel subtypes to 

neurotransmitter release across synapses (Reid et al., 1997). However, that study used a 

relatively crude measure of Pr, based on the progressive reduction of postsynaptic 

responses in the presence of the activity dependent blocker MK-801. Critically, Pr was 

not measured directly at individual synapses. Instead, heterogeneity among synapses was 

inferred from the need to fit two exponentials to the decay of responses during 

stimulation in the presence of the blocker. Subsequently, the authors assumed that this 

reflected the existence of two populations of synapses with high and low responsiveness. 

Based on our results (Figs. 5.2A1, B1), there is no evidence for two clusters of synapses 

with clearly separated Pv or n (or Pr, not shown), a key assumption in their analysis. 

Finally, the study was restricted to young –arguably immature- neurons (one to two 

weeks old) grown in autaptic cultures. Given the many caveats involved in this report, we 

do not consider the hypothesis that different Ca2+ channel subtypes are associated with 

synapses of varying efficacy has been tested properly. In what follows, we use our 

techniques to attack this question directly, by measuring Pv and n at individual synapses 

and correlating those parameters with the effects of P/Q or N-type Ca2+ channel blockers 

at each bouton. 
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Before addressing the hypothesis, we wished to determine the relative 

contributions of N and P/Q type Ca2+ channels to exocytosis in response to 1 AP. Using 

the methods developed in Chapter 3, we found that -agatoxin IVA (a specific blocker of 

P/Q type Ca2+ channels) caused a 43±8% decrease in single AP exocytosis (n=12 

experiments). Conversely, selectively blocking N type Ca2+ channels with -conotoxin 

GVIA caused an 82±7% reduction in exocytosis (n=10 experiments). The larger effect on 

exocytosis of blocking N-type Ca2+ channels could be due to the presence of more of 

those channels, a larger current per channel, or to closer coupling between that channel 

type and primed vesicles. To test the last of these possibilities, we measured the effects of 

-agatoxin IVA and -conotoxin GVIA on Ca2+ entry in response to a single AP. 

Blocking P/Q type Ca2+ channels reduced Ca2+ entry by 19±2% (n=4 experiments) 

whereas blocking N-type Ca2+ channels caused a 42±2% decrease (n=5 experiments). If 

the coupling of each Ca2+ channel subtype to vesicles were the same, we would expect 

the reduction in Ca2+ entry caused by either toxin to cause a decrease in exocytosis 

predictable by the curve that relates exocytosis and Ca2+ entry under control conditions 

(Fig. 3.2C). However, if N type channels were closer to vesicles, there should be a larger 

decrease in exocytosis for a given reduction in Ca2+ than expected from the control curve. 

Thus, plotting the exocytosis and Ca2+ entry data in the presence of toxins and comparing 

it to the control curve is a test of whether the coupling between Ca2+ channels and primed 

vesicles differs according to subtype. In fact, the data obtained in the presence of either 

toxin agrees well with our control curve relating exocytosis and Ca2+ entry (Fig. 5.3). 

This is indicates there is no difference in coupling between P/Q and N Ca2+ channel 

subtypes. Therefore, the larger contribution of N-type Ca2+ channels to exocytosis might 
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be due to larger numbers of active channels in the presynaptic membrane or a higher 

current per channel. 

 

 

Figure 5.3. P/Q and N-type Ca2+ channels do not differ in their coupling to primed 

synaptic vesicles. Exocytosis as a function of the relative Ca2+ entry in response to 1 AP. 

The model and data without toxins is from the corresponding region in Figure 3.2C. Ca2+ 

entry is normalized to the increase in Ca2+ in response to 1 AP with 2 mM extracellular 

Ca2+, as in Figure 3.2C. For convenience. the exocytosis axis has been normalized to the 

expected exocytosis for 1 AP at 4 mM extracellular Ca2+. Note the good agreement 

between the model and the data in the presence of toxins. (A subset of the toxin 

experiments where performed by Mike Hoppa). 
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Once we had determined the relative importance of N and P/Q-type Ca2+ channels 

for exocytosis, we tested the hypothesis that each Ca2+ channel subtype is associated with 

synapses of different efficacies. To that end, in a subset of the experiments designed to 

measure properties at single synapses, we applied toxins specific to each Ca2+ channel 

subtype after measuring basal Pv and n. We reasoned that if Ca2+ channel subtypes were 

differentially distributed across synapses with different efficacies, there would be a 

correlation between the effect of the toxins on single AP responses and Pv. On the other 

hand, a priori we did not expect a correlation between the effect of toxins and RRP size. 

Blocking N-type Ca2+ channels led to a larger decrease in single AP responses 

(90+/-1%, n=104 synapses in 8 experiments, Figs. 5.4.A.1 and B) than blocking P/Q type 

Ca2+ channels (43+/-3% n=104 synapses in 9 experiments, Figs 5.4A2 and B), as 

expected from the data in Figure 5.3. Interestingly, there was a larger range of effects 

across synapses when we blocked P/Q type channels (Fig. 5.4B, CVP/Qeffect=64% 

compared to CVNeffect=15%, compare also Figs. 5.5A and 5.6A). We explore possible 

implications of these observations in the discussion. 

As expected, we did not find a clear correlation between the effect of either toxin 

and RRP size (Figs. 5.5C1-2 and 5.6C1-2). Similarly, we did not find any correlation 

between the effect of toxin and Pv (Figs. 5.5B1-2 and 5.6B1-2). Our results indicate that 

Ca2+ channel subtypes are not differentially distributed on boutons with different synaptic 

efficacies. 
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Figure 5.4. Block of P/Q-type Ca2+ channels leads to weaker and more variable decrease 

of exocytosis than block of N type Ca2+ channels. (A) Representative single synapse 

responses to 1 AP stimulus before and after the application of toxins that block Ca2+ 

channel subtypes. (A1) Response to 1 AP before (black) and after (red) applying -

agatoxin IVA (effect of toxin=45±12%). (A2) Response to 1 AP before (black) and after 

(magenta) applying of -conotoxin GVIA (effect of toxin=81±11%). Each trace in (A1) 

and (A2) is an average of 30 trials with the thinner lines representing the SEs. Traces are 

normalized to the size of the response before applying the corresponding toxin and shown 

on the same scale. Scale bar: 0.2s and 20% of pre-toxin response. (B) Effect of P/Q and 

N-type Ca2+ channel blockers across all synapses. The effect of a toxin is defined as the 

percentage decrease in single AP responses. 
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Figure 5.5. P/Q-type Ca2+ channel distribution is independent of Pv and n. (A) The effect 

of -agatoxin IVA on exocytosis in response to a single AP. Different colors represent 

individual experiments, while each dot shows the effect of the blocker on a single 

synapse (with its SE). Experiments are ordered according to their responses to an 

individual AP from highest (left) to lowest (right). Within an experiment, synapses are 

also sorted from most (left) to least responsive (right). (B1-2) Effect of a P/Q blocker is 

independent of Pv. (B1) Each dot is a synapse and the coloring scheme is the same as in 

(A). Lines represent best fits for each experiment, colored accordingly. (B2) Correlation 

coefficients of the effect of P/Q block with Pv for each experiment were not significantly 

different from 0 (two tailed t-test against null hypothesis =0, P=0.27). Each dot 

represents the value of the correlation coefficient for 1 experiment, with colors consistent 

with the rest of the figure. If the correlation coefficient was significantly different from 0 

for a given experiment (P<0.05), we replaced the dot with a triangle (see Chapter 2 for 

calculation of the P-value). The gray line represents the average correlation coefficient 

across experiments. (C1-2) Effect of a P/Q blocker is independent of RRP size. Coloring 

and symbols are analogous to (B1) and (B2). Correlation coefficients of the effect of P/Q 

block with RRP size for each experiment were not significantly different from 0 (two 

tailed t-test against null hypothesis =0, P=0.67). 
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Figure 5.5 
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Figure 5.6. N-type Ca2+ channel distribution is independent of Pv and n. (A) The effect 

of -conotoxin GVIA on exocytosis in response to a single AP. Different colors 

represent individual experiments, while each dot shows the effect of the blocker on a 

single synapse (with its SE). Experiments are ordered according to their responses to an 

individual AP from highest (left) to lowest (right). Within an experiment, synapses are 

also sorted from most (left) to least responsive (right). (B1-2) Effect of an N blocker is 

independent of Pv. (B1) Each dot is a synapse and the coloring scheme is the same as in 

(A). Lines represent best fits for each experiment, colored accordingly. (B2) Correlation 

coefficients of the effect of N block with Pv for each experiment were not significantly 

different from 0 (two tailed t-test against null hypothesis =0, P=0.40). Each dot 

represents the value of the correlation coefficient for 1 experiment, with colors consistent 

with the rest of the figure. If the correlation coefficient was significantly different from 0 

for a given experiment (P<0.05), we replaced the dot with a triangle (see Chapter 2 for 

calculation of the P-value). The gray line represents the average correlation coefficient 

across experiments. (C1-2) Effect of an N blocker is independent of RRP size. Coloring 

and symbols are analogous to (B1) and (B2). Correlation coefficients of the effect of N 

block with RRP size for each experiment were not significantly different from 0 (two 

tailed t-test against null hypothesis =0, P=0.67). 
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Figure 5.6 
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5.4.2 Ca
2+

 channel and synaptic vesicle coupling 

Another possible source of variability in Pv is the distance between primed 

synaptic vesicles and the Ca2+ channels in the active zone. Given the highly nonlinear 

dependence of exocytosis on the local intracellular Ca2+ concentration, even small 

differences in positioning are expected to have large effects (Meinrenken et al., 2003). 

To probe the distance between Ca2+ channels and primed vesicles, we applied  

EGTA-AM (100 M, 90 s pulse), a medium affinity Ca2+ buffer. Our reasoning was that 

EGTA would reduce the size of responses to single APs, and the reduction would be a 

measure directly correlated with the distance between vesicles and channels (Adler et al., 

1991; Borst and Sakmann, 1996). Thus, if this distance is an important variable 

explaining the differences in Pv across individual synapses, there will be an inverse 

correlation between Pv and the effect of EGTA. Conversely, there is no reason to expect a 

correlation between the effect of EGTA and RRP size. 

In fact, while there was considerable variation in the effect of EGTA (Fig. 5.7A) 

we did not find a consistent trend when plotting the effect of EGTA as a function of Pv 

across many experiments (Fig 5.7B1-2, n=130 synapses in 10 experiments). While some 

cases did show a negative correlation, this was not consistent over all experiments. As 

expected, there was no clear correlation between the effect of EGTA and RRP size (Fig 

5.7C1-2). This suggests that while distance between synaptic vesicles and Ca2+ channels 

may be an important factor, it is unlikely to account for the differences in Pv among 

synapses in our experiments. 
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Figure 5.7. Vesicle to channel distance is not a major determinant of Pv in our 

experiments (A) The effect of EGTA on exocytosis in response to a single AP. Different 

colors represent individual experiments, while each dot shows the effect of the blocker on 

a single synapse with its SE. Experiments are ordered according to their responses to an 

individual AP from highest (left) to lowest (right). Within an experiment, synapses are 

also sorted from most (left) to least responsive (right). (B1-2) Effect of EGTA is 

independent of Pv. (B1) Each dot is a synapse and the coloring scheme is the same as in 

(A). Lines represent best fits for each experiment, colored accordingly. (B2) Correlation 

coefficients of the effect of EGTA with Pv for each experiment were not significantly 

different from 0 (one tailed t-test against null hypothesis =0, P=0.19). Each dot 

represents the value of the correlation coefficient for 1 experiment, with colors consistent 

with the rest of the figure. If the correlation coefficient was significantly different from 0 

for a given experiment (P<0.05), we replaced the dot with a triangle (see Chapter 2 for 

calculation of the P-value). The gray line represents the average correlation coefficient 

across experiments. (C1-2) Effect of EGTA is independent of RRP size. Coloring and 

symbols are analogous to (B1) and (B2). Correlation coefficients of the effect of EGTA 

with RRP size for each experiment were not significantly different from 0 (two tailed t-

test against null hypothesis =0, P=0.94). 
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Figure 5.7 
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5.5 Malleability of synapses – the cAMP pathway 

Having explored possible determinants of synaptic properties under basal 

conditions, we turned our attention to ways in which these properties can be modified. In 

particular, we wondered whether this malleability might vary across a population of 

synapses in interesting ways. 

One way of altering synaptic strength is to increase intracellular concentrations of 

cAMP. This activates protein kinase A (PKA) and Epac, the guanine nucleotide exchange 

factor for the small G protein Rap, leading to increased Pv and/or n in many different 

neuronal preparations (Trudeau et al., 1996; Chen and Regehr, 1997; Trudeau et al., 

1998; Sakaba and Neher, 2001a; Kaneko and Takahashi, 2004; Huang and Hsu, 2006; 

Gekel and Neher, 2008). To explore this pathway to synaptic potentiation in our system, 

we used forskolin, a well characterized activator of adenylyl cyclase (Insel and Ostrom, 

2003). As expected, applying forskolin (50 M) lead to higher single action potential 

responses. At standard Ca2+ concentrations (2 mM), single AP responses increased 

(+120%, n=8 experiments, P=0.004, t-test against a null hypothesis of no effect) due to 

effects on both Pv (+85%) and n (+21%). At the higher external Ca2+ concentration used 

in this chapter (4 mM) there is a smaller rise in single AP responses (35%, n=12 

experiments, P=0.02, t-test against a null hypothesis of no effect), due to increases in both 

Pv (+19%) and RRP size (+17%). 

We wondered whether the responsiveness of individual synapses to forskolin 

would be negatively correlated with their initial Pv, particularly given that the treatment 

had smaller effects with higher extracellular Ca2+. To test this, we measured n and Pv at 

single synapses, subsequently applied forskolin and estimated its effect on single AP 
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responses. The effect of forskolin was very variable across synapses (Fig. 5.8A) but we 

consistently observed a negative correlation between the effect of forskolin and initial Pv 

(Figs. 5.8B1-2). Conversely, there was no correlation between the effect of forskolin and 

RRP size (Figs. 5.8C1-2). Therefore, synapses with lower basal Pv showed larger 

responses to the forskolin treatment. 
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Figure 5.8. The effect of forskolin on exocytosis in response to a single action potential 

is negatively correlated with Pv (A) Effect of forskolin on exocytosis in response to a 

single AP. Different colors represent individual experiments, while each dot shows the 

effect of the blocker on a single synapse with its SE. Experiments are ordered according 

to their responses to an individual AP from highest (left) to lowest (right). Within an 

experiment, synapses are also sorted from most (left) to least responsive (right). (B1-2) 

Effect of forskolin is negatively correlated with Pv. (B1) Each dot is a synapse and the 

coloring scheme is the same as in (A). Lines represent best fits for each experiment, 

colored accordingly. (B2) There is a negative correlation between the effect of forskolin 

and Pv (two tailed t-test against null hypothesis =0, P=0.0004). Each dot represents the 

value of the correlation coefficient for 1 experiment, with colors consistent with the rest 

of the figure. If the correlation coefficient was significantly different from 0 for a given 

experiment (P<0.05), we replaced the dot with a triangle (see Chapter 2 for calculation of 

the P-value). The gray line represents the average correlation coefficient across 

experiments. (C1-2) Effect of forskolin is independent of RRP size. Coloring and 

symbols are analogous to (B1) and (B2). Correlation coefficients of the effect of forskolin 

with RRP size for each experiment were not significantly different from 0 (two tailed t-

test against null hypothesis =0, P=0.24). 
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Figure 5.8 
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To investigate this correlation in more detail we used a few simple models. A first 

step to study the effect of an activator on boutons with varying initial Pv is a model 

explaining why those synapses are different in the first place. Recalling the relationship 

between Ca2+ entry and exocytosis (Fig. 3.2C), there are two simple explanations that can 

account for Pv variation across boutons (Fig. 5.9). The first option is that primed vesicles 

have different fusogenicities across different synapses (Fig. 5.9A). Alternatively, boutons 

might vary in the relative entry of Ca2+ ions in response to 1 AP (Fig. 5.9B). As regards 

forskolin, its effect on Pv could similarly be due to an increase in either fusogenicity of 

primed vesicles, or the amount of Ca2+ that enters a synapse in response to an AP. 

 

 

Figure 5.9. Two scenarios that could account for different Pv between synapses. (A) 

Synapses that differ in the average fusogenicity of vesicles in the RRP (parameter K from 

equation 2.1 is lower in synapse 2). For the same amount of Ca2+ entry in response to 1 

AP, these synapses have different Pv. (B) Synapses whose primed vesicles are equally 

likely to fuse but that differ in the amount of Ca2+ entry in response to 1 AP. This will 

lead to different Pv between synapses. 

 



109 

To explore these models we took both a graphical and an analytical approach. 

First, we graphed a hypothetical scenario with two synapses in which initial Pv varied due 

to differential fusogenicity of primed vesicles and forskolin caused a uniform increase in 

Ca2+ entry. For simplicity, in this graphical analysis we ignored any effects of forskolin 

on RRP size. Under these conditions, forskolin will cause a larger increase in the 

response to an AP in the synapse with lower initial Pv (Fig. 5.10). We emphasize that in 

this scenario forskolin causes the same increase in Ca2+ entry in both boutons. The 

differential effect on single AP responses arises as a result of the shape of the Pv vs. Ca2+ 

entry curve and the initial position on that curve of a single AP at 4 mM in both synapses. 

Other scenarios where variations in Pv or the effects of forskolin are due to different 

combinations of fusogenicity and Ca2+ entry can also be explored graphically and give 

similar results (not shown). The addition of effects on RRP size does not modify this 

basic conclusion. 
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Figure 5.10. Synapses with low initial Pv will potentiate more in the presence of 

forskolin. We assumed a pair of synapses with differing initial Pv due to different 

fusogenicities of primed vesicles (as in Fig. 5.9A). We modeled the effect of forskolin as 

a uniform rise in the relative Ca2+ entry in response to 1 AP. This leads to increases in Pv 

in both synapses. However, the effect is larger in the synapses with lower initial Pv. 

 

Having gained some intuition from a graphical exploration of various scenarios, 

we explicitly derived analytical models that are based on the same general scheme (see 

Appendix). The important point gleaned from these models is that even with uniform 

effects of forskolin on either fusogenicity, Ca2+ entry or RRP size across all boutons, the 

effect on single AP responses will be larger for synapses with lower initial Pv. Thus, the 

negative correlation between the effect of forskolin and Pv does not necessarily imply 

that forskolin affects some boutons (e.g., those with low Pv) more than others. So far, we 

have discussed these models generally, but how well do they actually explain our data? 

To test whether our simple models could account for the correlation between the 

effect of forskolin and Pv we fit them to our data. We illustrate our results with model A 

(see Appendix), in which forskolin causes a uniform increase in Ca2+ entry during a 
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single action potential across synapses. Fits to model B, in which forskolin causes a 

uniform increase in fusogenicity of primed vesicles across synapses gave equivalent 

results (not shown). While model A predicts a negative correlation between the effect of 

forskolin and initial Pv, it does not capture the central trend of the data very well (Fig. 

5.11, compare the binned data points and the model curve). Furthermore, most of the data 

from single synapses resides considerably outside the boundaries of what the model 

predicts, and these differences are not due to systematic errors in Pv or our estimates of 

the effect of forskolin. Further highlighting the heterogeneity, even groups of synapses 

with initially similar Pv responded very differently to forskolin. This suggests that 

individual synapses are differentially malleable by activation of the cAMP pathway. 
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Figure 5.11. Forskolin effects are more variable than expected from model. Effect of 

forskolin as a function of initial Pv. Data are the same as in Figure 5.8B1, but with the 

corresponding error bars for Pv and the effect of forskolin. The best fit to Model A (see 

Appendix) indicates a uniform Ca2+ rise ( =0.20±0.03) and no effect on RRP size 

( =1.0±0.1). For a clearer representation of the central trend of the data, individual 

synapses were binned (15 synapses per bin). Note that while the model correctly predicts 

a negative correlation, it neither fits the central trend in detail nor accounts for the large 

variability between synapses with similar Pv. 
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5.6 Discussion 

In this chapter, we extended the techniques developed in Chapter 3 to study Pv 

and n to the level of individual presynaptic terminals. Our method is robust, and allows 

precise estimates of both parameters in individual synapses. An interesting result from 

our measurements is that there is great variability between synapses in their baseline Pv 

and n, even when comparing synapses made by the same axonal branch. This variability 

could not be explained by the differential distribution of Ca2+ channel subtypes or the 

varying distances between those channels and primed synaptic vesicles. Additionally, 

modulation of synapses by activation of cAMP-dependent pathways is highly variable 

between individual presynaptic terminals. 

The large amount of variability in both Pv and n between synapses made by the 

same axonal branch suggests that each synapse’s microenvironment - not its axonal 

origin - is critical in determining its exocytosis properties. Critical players in determining 

that microenvironment might be local dendritic activity (Branco et al., 2008) and GABA 

levels (Laviv et al., 2010). 

The synapses in our study were more sensitive to block of N than P/Q-type Ca2+ 

channels. In principle, there are several potential explanations for this differential 

sensitivity. P/Q-type channels might be fewer, have lower unitary currents or reside 

farther away from primed synaptic vesicles compared to N-type channels. We can rule 

out the last possibility on the basis of the data in Figure 5.3. The lack of difference in 

coupling between Ca2+ channel subtypes agrees with previous reports in hippocampal 

neurons (Wu and Saggau, 1995; Reid et al., 1998). This leaves differing numbers of 

channels or currents per channel as possible explanations of our results. Regrettably, 



114 

there are currently no methods available to directly count the number of active Ca2+ 

channels at a small hippocampal synapse or to measure the current of an individual 

channel in that context. To our knowledge, there are no studies that have disentangled 

these two effects to estimate the relative numbers of N and P/Q-type channels in 

hippocampal synapses where both subtypes are present. On the other hand, unitary Ca2+ 

channel currents have been measured outside the context of the synapse and do not seem 

to differ significantly between N and P/Q-type channels (Meir et al., 1999). 

An intriguing observation was the lower variance across synapses in the effect of 

an N-type inhibitor on single AP exocytosis, compared to a P/Q-type inhibitor. It is 

possible that some of this might be due to a ceiling effect, given that reductions in single 

AP responses by blocking N-type channels are close to the 100% bound. If this accounted 

for the entire difference in variance across synapses in the effects of P/Q and N-type 

blockers, we would expect experiments with similar average effects of the channel 

blocker to have similar CVs in that effect among their synapses. By chance, there were 

two experiments (one with either blocker) where the average reduction in single action 

potential responses was the same (72%). Interestingly, the CV of the toxin effect across 

synapses was higher in the experiment with the P/Q compared to the N-type blocker 

(CVP/Q=27%, 17 synapses vs. CVN=13%, 13 synapses). While this does not rule out the 

possibility of a ceiling effect, it suggests that it cannot account fully explain the 

difference in variance between the effects of a P/Q and N-type blocker. In what follows 

we speculate that this difference would be expected under certain scenarios where 

synapses have more active N than P/Q-type Ca2+ channels. 
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What would the effects of a lower number of P/Q than N-type Ca2+ channels be 

on the variance across synapses of the effect of specific toxins? There are two relevant 

points to consider. The first is how channels are trafficked to the active zone. The second 

is how those channels distribute within the active zone with respect to primed synaptic 

vesicles. 

If we assume that the trafficking of Ca2+ channels to synapses is a random process 

with a lower mean number of channels per synapse for subtype P/Q compared to N we 

can use the Poisson distribution to estimate the variance in the number of channels 

between synapses. The coefficient of variation in the number of channels per synapse will 

be 

i

i
N

CV
1     (5.2) 

with Ni=mean number of Ca2+ channel subtype i per synapse 

This implies a higher coefficient of variation in the number of P/Q type channels across 

synapses, since NP/Q < NN. Note that the effect is more pronounced for smaller numbers 

of Ca2+ channels ( 10 or less, Fig. 5.12). Thus, assuming we are within the relevant range 

of Ca2+ channel numbers, this could explain why the effect on exocytosis of a P/Q type 

blocker is both smaller and more variable than that of an N type blocker. 
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Figure 5.12. Modeling the effects of Ca2+ channel numbers. Left axis: the effect of 

channel numbers on the CV in vesicle-channel distance, assuming random distribution of 

channels in the active zone. Right axis: the CV in channel number assuming trafficking 

of channels to active zones is a random process. 

 

As regards the placement of channels within the active zone, we attempted to gain 

some insights by assuming they are distributed randomly and that there are fewer P/Q 

than N-type channels. Distributing a small number of channels at random within an active 

zone will lead to larger variability across synapses in the distances between those 

channels and vesicles than if there were more channels (see Figure 5.12 and Appendix for 

details on modeling). The effect of increased variance in the coupling is particularly 

strong if the number of P/Q-type channels is low ( 5 or less). While the distance between 

vesicles and channels has a complicated relation with Pv, this could still explain why the 
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effect of a P/Q-type blocker is both smaller and more variable than that of an N-type 

blocker. 

There are several caveats with the analysis presented above. First, we do not have 

a quantitative model for how much a ceiling effect in N-type block would reduce the 

variance in the effect of -conotoxin GVIA on single AP exocytosis across synapses. 

Furthermore, we do not know whether a Poisson process can be used to describe 

trafficking or whether the channels are distributed randomly in the active zone. 

Additionally, it is unclear whether the number of channels is in the range where the 

previous assumptions lead to larger variances across synapses of the effect on exocytosis 

of blocking P/Q-type channels. As regards the issue of channel numbers, a recent study 

on synapses between inhibitory basket cells and granule cells (which exclusively use 

P/Q-type channels) in the dentate gyrus of hippocampal slices came to the conclusion that 

there were 3-5 channels in the vicinity of each primed vesicle (Bucurenciu et al., 2010). If 

we assume the total number of channels per vesicle in our preparation is similar, this 

would suggest, on average, between 12-20 channels per active zone. If we additionally 

assume that there are no differences in unitary currents between the subtypes, we can use 

the average effects on Ca2+ entry of blocking P/Q (19%) and N-type (42%) channels to 

estimate the number of channels. To that end, we need to make one additional assumption 

regarding the total accounting of Ca2+ channels present in the synapse. As the summed 

block in Ca2+ entry for N and P/Q-type channels is not 100%, there are two possibilities. 

Either other channel subtypes are present and contribute to exocytosis or part of the Ca2+ 

entry measured with our methods is too far from primed vesicles to influence release. In 

the first case, that would mean there are 5-8 N-type,  2-4 P/Q-type and 5-8 undefined 
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Ca2+ channels in the active zone. In the second case, that would mean there are 8-14 N-

type and 4-6 P/Q type Ca2+ channels in an active zone (with 8-13 channels farther away, 

not influencing exocytosis). This would place the number of channels close to or within 

the range where the effects of random trafficking and distribution are most relevant to the 

variance in exocytosis block. However, we highlight again that the assumptions involved 

in reaching that conclusion are currently very speculative. A final point regarding our 

models is that while both scenarios could account for our results, neither explains why 

there are more N-type Ca2+ channels in the first place or what would limit the number of 

channels to relatively low absolute numbers. 

In contrast to the preceding discussion, we do not know of any scenario where a 

smaller unitary current for P/Q-type channels would lead directly to a higher variance 

from synapse to synapse in the effect of a toxin that blocks those channels. While it is 

certainly possible that this is occurring, there would have to be an independent 

explanation for why the variance in the effect of a P/Q-type blocker on exocytosis is 

larger than for an N-type blocker. 

Our results ruled out the hypothesis that different Ca2+ channel subtypes are 

associated with synapses of different efficacies. There was no clear relation between a 

synapse’s initial Pv and the type of Ca2+ channels present. Thus, the relative mix of N and 

P/Q-type Ca2+ channels present at a presynaptic terminal does not affect synaptic 

strength. 

We did not find convincing evidence that the distance between synaptic vesicles 

and Ca2+ channels contributed to the variance in Pv. This conclusion must be taken with 

some caution as the effect of EGTA is an indirect measure of vesicle-channel distance. 
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Small differences in loading times (across experiments), the concentration of intracellular 

esterases (across synapses) or intracellular Ca2+ buffer concentrations (across synapses) 

make it a crude way to compare vesicle-channel distances between individual presynaptic 

terminals. In fact, several experiments showed a slight negative correlation between the 

effect of EGTA and Pv (Figs 5.7B1-2). However, overall this trend did not reach 

statistical significance. Alternatively, it is possible that this parameter does not vary 

greatly across synapses or that with high levels of extracellular Ca2+ it is not as influential 

in determining local Ca2+ at primed synaptic vesicles. 

As discussed above, neither the type of Ca2+ channels present nor their distance to 

primed vesicles explained the variance in exocytosis parameters between synapses. This 

leaves open the key question of what the molecular determinants of that variance might 

be. In the future, it will be interesting to test other potential explanations for this 

heterogeneity. As detailed in Chapter 1, in principle there are several ways to influence 

Pv and n but it is unclear which are used under normal conditions and whether there are a 

few dominant mechanisms to set these important parameters. One possibility that can be 

assayed with tools that are currently available is to what extent there is variability in the 

relative amount of Ca2+ entry on a synapse per synapse basis and whether it might be 

enough, in principle, to account for the variability in Pv. Note that if there are 12-20 Ca2+ 

channels per active zone and they are trafficked randomly we expect a CV in channel 

number of around 25% (Fig. 5.12). If we put this together with the basic relationship 

between exocytosis and Ca2+ (Fig. 3.2C) we expect that 25% CV in channel numbers to 

translate to considerable variability in Pv (see Fig. 3.6 for a graphical version of this 

argument). Of course, an ideal experiment would be to measure Ca2+ entry and 
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exocytosis properties in the same set of synapses. Regrettably, useful reporters of Ca2+ 

entry at the single action potential level have spectra that overlap with that of vG-pH. 

However, the lab has recently developed a red shifted pH-sensitive fluorescent protein 

(Sung-Hyun Kim, personal communication). With appropriate optimization, a 

combination of Ca2+ and exocytosis reporters might allow the simultaneous measurement 

of Pv, n, and Ca2+ entry at individual synapses. 

Our experiments with forskolin led to interesting insights into the effects of 

positive modulation of synapses. Our simple models suggest that any intervention that 

raises Pv uniformly across synapses will lead to a negative correlation between the 

potentiation of single action potential exocytosis and initial Pv. Interestingly, while the 

model explained the general trend in the data, there was a great deal of variability that 

was unexplained. The most likely explanation is that the effects of forskolin are not 

homogenous across boutons. Single synapses could vary in the concentration of adenylyl 

cyclase, in the extent to which this enzyme can be activated, in the coupling to 

downstream effectors or the potency of those downstream pathways in modulating Pv or 

n. Whether any of these variables is, in turn, correlated with or determined by Pv is an 

interesting question that remains open. 

Overall, our study of individual synapse properties highlights the large amount of 

variability present in both basal exocytosis parameters and the degree to which those 

parameters can be modulated, even for synapses that belong to the same axon. While we 

cannot rule out that this variability is an artifact of our culture conditions, several 

examples in more intact preparations suggest it is representative of what actually occurs 

in vivo (see Chapter 1). If this variability is indeed a defining feature of hippocampal 
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neurons -or neurons in general- it is interesting to speculate whether it is simply a 

byproduct of cellular processes that use relatively few molecules (Ribrault et al., 2011) or 

whether, in addition, it has some adaptive value for neural circuit function (Branco and 

Staras, 2009). 
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6. FINAL DISCUSSION 

 

In this thesis we have developed methods to study two basic properties of 

synaptic vesicle exocytosis (Chapter 3). First, we were able to measure the size of the 

primed pool of synaptic vesicles (n), a subset of all vesicles in a presynaptic terminal that 

are immediately available for neurotransmitter release upon arrival of an action potential. 

Second, we estimated the probability that each vesicle in that privileged pool would fuse 

with the membrane in response to an action potential (Pv). Our optical method is, by 

design, exclusively presynaptic. This provides a new way to study these parameters that 

is not affected by postsynaptic complications present in electrophysiological studies such 

as neurotransmitter receptor desensitization, saturation or diffusion. Furthermore, it is not 

affected by changes in the number of synaptic contacts since measurements come from 

averages -not sums- across synapses. Our estimates of Pv (0.1) and n (4 vesicles) across 

different cells agree well with previous measures and suggest synapses are in a range 

where modulations of Ca2+ entry can have dramatic effects. In addition, there is 

considerable variation in these properties between cells. The significance of this finding 

is unknown. 

The techniques we have developed are compatible with a wide array of standard 

molecular biology tools available for cultured neurons and thus represent a simple way to 

investigate the molecular underpinnings of synaptic vesicle exocytosis. Our study of 

tomosyn’s role in this process is merely one example of the potential of the method 

(Chapter 4). While our attempts to determine this molecule’s function in exocytosis were 

hampered by the lack of a successful rescue construct, we were still able to obtain 
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potentially interesting insights. Whereas large changes in the levels of tomosyn have been 

reported to lead to modifications in n, the subtler modulations of concentration we tested 

herein altered only Pv, leaving n unperturbed. Thus, variations in tomosyn levels might 

contribute to setting Pv across neurons and perhaps even synapses. 

Taking advantage of the fact that imaging can be performed across many synapses 

in parallel, our technique was extended to study the properties of single presynaptic 

terminals (Chapter 5). Interestingly, we found a striking degree of variability in Pv and n 

among individual synapses, even if those synapses were on the same axonal branch. We 

tested whether the complement of Ca2+ channel subtypes present at each synapse might 

differentiate them, but neither the fraction of P/Q nor N-type Ca2+ channels was 

correlated with Pv or n. Furthermore, we did not find evidence that synapses with higher 

Pv had primed synaptic vesicles closer to Ca2+ channels. Thus, our results rule out two 

possible explanations for the molecular underpinnings of the variability in Pv and n 

among synapses. Many other hypotheses remain to be tested. Our results from individual 

synapses also tentatively suggest few Ca2+ channels ( 10) are present in the active zone. 

In addition to varying in parameters that determine their baseline efficiency, 

synapses also differ in the extent to which those properties can be modified. In particular, 

we found that activation of the cAMP pathway led to larger response increases in 

synapses with lower initial Pv. Simple modeling suggested this inverse correlation is to be 

expected of any positive modulator of Ca2+ entry or vesicle fusogenicity. This general 

trend was overlaid on a great degree of synapse to synapse heterogeneity suggesting the 

cAMP pathway and its effectors are differentially coupled to the exocytosis machinery 

across synapses. 
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Overall, our experiments found a large degree of variability among individual 

synapses, highlighting two open questions in neuroscience. First, what determines 

synapse to synapse variability at the molecular level? Second, what are the consequences 

of this variability for neural network function? We hope the techniques we have 

developed will aid in the search for answers to those questions. 
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A. APPENDIX 

 

A.1 Derivation of equation 5.1 

We define: 

Xi= number of vesicles that fuse in response to 1 AP in trial i, 

where Xi is binomially distributed for every i, with parameters Pv and n.  

Therefore: 

Avg(Xi)= Pv.n 

Var(Xi)= Pv.n.(1- Pv) 

for every i. 

 Additionally: 

Y = average number of vesicles that fuse in response to a single AP in k trials 

Y=k
-1.(X1+X2+…+Xk) 

To get an idea of the fluctuation in estimates of Pv, we will study the coefficient of 

variation (CV) of Y, as a function of k, Pv and n: 

Avg(Y)= Pv.n 

Var(Y)=k
-1. Pv.n.(1- Pv) 

Therefore: 

.nk.P
)P(1CV(Y)

v

v    (5.A.1) 
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A.2 Models of forskolin effects on Pv and n 

Our models are based on equation 2.1, which is reproduced below with a more 

convenient notation: 

aa

a

Kd

d
nQ .    (5.A.2) 

where 

Q  = exocytosis in response to a single AP 

n   = RRP size 

d   = Ca2+ entry in response to a single AP 

K  = parameter inversely related to fusogenicity 

a   = cooperativity 

We define 

f   = effect of forskolin 

with 

1
pre

forsk

Q

Q
f    (5.A.3) 

We wish to find 

)(
prevPff    (5.A.4) 

In all models we assume forskolin has an effect (  on RRP size, therefore: 

pre

forsk

n

n
  with > 1 (5.A.5) 

We also assume that the cooperativity parameter is constant, and not affected by forskolin (a 

=3.4, see Fig. 3.2C). 
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Thus: 

1
).(
).(

a

forsk

a

forsk

a

pre

a

pre

a

pre

a

forsk

Kdd

Kdd
f    (5.A.6) 

Using (5.A.6) as a starting point, we consider four models which have different assumptions with 

respect to the underlying causes of initial Pv variation and the effect of forskolin on Pv. 

 

A.2.1  Model A.1 

We assume initial Pv differences between synapses are due to differences in fusogenicity 

(K). In that case, we can estimate K from the Pv of each synapse. From (5.A.2): 

a

v

v

P

P
dK

1

1.     (5.A.7) 

In addition, we assume forskolin raises Pv by increasing Ca2+ entry (by ) and does not affect 

fusogenicity: 

)1.(preforsk dd , with > 0    (5.A.8) 

and   KKK preforsk     (5.A.9) 

Combining (5.A.6), (5.A.7), (5.A.8) and (5.A.9): 

1
1)1)1((

)1(
a

v

a

pre
P

f     (5.A.10) 

This equation predicts the effect of forskolin on single action potential responses (f) as a function 

of initial Pv. We fit it to our data to find the best estimates of forskolin’s effects on Ca2+ entry ( ) 

and RRP size ( ) in Figure 5.11. 
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A.2.2  Model A.2 

We assume initial Pv differences between synapses are due to differences in Ca2+ entry 

(d). In that case, we can estimate d from the Pv of each synapse. From (5.A.2): 

a

v

v

P

P
Kd

1

1
.     (5.A.11) 

In addition, as in model A.1, we assume forskolin raises Pv by increasing Ca2+ entry and does not 

affect fusogenicity. 

Combining (5.A.6), (5.A.8), (5.A.9) and (5.A.11): 

1
1)1)1((

)1(
a

v

a

pre
P

f     (5.A.12) 

Thus, the relation between the effect of forskolin on single action potential responses and Pv is 

identical to model A.1. This indicates that the important point in determining the relation is the 

effect of forskolin, and not the mechanism underlying the initial variation in Pv values. 

  



129 

A.2.3  Model B.1 

We assume initial Pv differences between synapses are due to differences in fusogenicity, 

as in model A.1. As for the effects of forskolin on Pv, we assume it decreases K (by ) and does 

not affect Ca2+ entry: 

)1.(preforsk KK , with < 0    (5.A.13) 

and   ddd preforsk     (5.A.14) 

 Combining (5.A.6), (5.A.7), (5.A.13) and (5.A.14): 

1
)1())1(1(

1
aa

v pre
P

f     (5.A.15) 

This equation predicts the effect of forskolin on single action potential responses as a function of 

initial Pv. We fit it to our data to find the best estimates of forskolin’s effects on fusogenicity and 

RRP size and found a very similar curve to that shown in Figure 5.11 (  = -0.29 ± 0.02;  = 1 ± 

0.1). 
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A.2.4  Model B.2 

We assume initial Pv differences between synapses are due to differences in Ca2+ entry, 

as in model A.2. For forskolin, we assume it decreases K (by ) and does not affect Ca2+ entry, 

as in model B.1. 

Combining (5.A.6), (5.A.11), (5.A.13) and (5.A.14): 

1
)1())1(1(

1
aa

v pre
P

f     (5.A.16) 

As expected from the fact that the effects of forskolin were modeled identically to model B.1, the 

relation between the effect of forskolin on single action potential responses and Pv is identical to 

that model. 

 

A.3 Model of random distribution of Ca
2+

 channels in the active zone 

We assume that each active zone is a two-dimensional 1 by 1 square. Therefore, the 

position of any object in that region is determined by 2 numbers between 0 and 1 representing 

the horizontal and vertical position respectively. To randomly place an object within an active 

zone, we assign two random numbers between 0 and 1, and this pair will represent the position 

of that object. We treat both channels and vesicles as point objects that do not crowd each other 

out and insert both randomly in the active zone in all our simulations. For simplicity, we assume 

there are 4 synaptic vesicles in the RRP (the average across our experiments) and do not vary 

this number across synapses. In different simulations, we vary the number of Ca2+ channels 

present. 

Once Ca2+ channels and vesicles are placed in the active zone, for each Ca2+ channel we 

calculate its distance to each synaptic vesicle as: 
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Where (xi,yi) and (xj,yj) represent the position of channel i and vesicle j in the active zone. 

 We average these distances for every channel-vesicle combination to obtain the average distance 

of that channel to a synaptic vesicle. For active zones with more than one Ca2+ channel we 

average these distances across channels to obtain the average channel to vesicle distance for that 

active zone. Thus, once we have defined the number of Ca2+ channels in an active zone, placed 

synaptic vesicles and channels at random, we obtain the average vesicle to channel distance 

within that synapse. This constitutes one run of our model. We ran this model 1000 times for 

each number of Ca2+ channels we were interested in (1-20). For each number of Ca2+ channels 

explored, we calculated the average vesicle-channel distance and the standard deviation of that 

distance across the 1000 simulated synapses. Finally, we obtained the coefficient of variation of 

that distance across simulated synapses. This was plotted as a function of the number of Ca2+ 

channels (Fig. 5.12). 
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