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REGULATION OF IMMUNOGLOBULIN GENE DIVERSIFICATION BY 

NONCODING RNAs 

 

Grace Teng, Ph.D. 

The Rockefeller University 2009 

 

Small regulatory RNAs supplement the canonical pathways of gene regulation 

through diverse mechanisms of transcriptional, post-transcriptional, and post-translational 

silencing.  These mechanisms range from “classical” RNA interference (RNAi), to gene 

repression by microRNAs (miRNAs), to maintenance of genomic stability by repeat-

associated small RNAs.  Here, I describe the contribution of miRNA-mediated regulation 

to a specific case of gene expression that requires significant somatic alteration of the 

genetic code.   

B lymphocytes perform somatic hypermutation (SHM) and class switch 

recombination (CSR) of the immunoglobulin locus to generate an antibody repertoire 

diverse in both affinity and function.  These somatic diversification processes are 

catalyzed by activation-induced cytidine deaminase (AID), a potent DNA mutator whose 

expression and function are highly regulated.  I show that AID is regulated post-

transcriptionally by a lymphocyte-specific microRNA, miR-155.  I find that miR-155 is 

upregulated in murine B lymphocytes undergoing CSR, and targets a conserved site in 

the 3’untranslated region of the AID mRNA.  Disruption of this target site in vivo results 

in quantitative and temporal deregulation of AID expression, accompanied by functional 

consequences for CSR and affinity maturation.   



 

Thus, miR-155, which is known to play important roles in regulating the germinal 

center reaction, does so in part by directly downmodulating AID expression.  Using a 

novel transgenic approach, I have characterized a single miRNA – target pair that has 

functional implications in adaptive immunity and maintenance of genome integrity.  The 

regulation of AID by miR-155 serves as a striking example of two distinct regulatory 

mechanisms – small RNA regulation and somatic gene diversification – converging to 

generate a physiologically beneficial response.   
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CHAPTER 1:  Introduction 

 

1.1  The origins of molecular biology 

 The roots of modern molecular biology sprang from a 19th century monastery 

garden, as an Austrian monk orchestrated meticulous cross-breedings between pea plants, 

and catalogued the transmission of heritable traits through each botanical generation.  

Gregor Mendel’s macroscopic genetic experiments laid the fundamental basis for our 

current understanding of genes and genetics (Mendel, 1866).  Mendel’s original concept 

of “hereditary particles” has evolved through a series of seminal discoveries – the first 

isolation of DNA from living cells (Miescher, 1869), the recognition that DNA carries 

heritable information (Avery et al., 1944; Hershey and Chase, 1952), the description of 

the DNA double helix structure (Franklin and Gosling, 1953; Watson and Crick, 1953; 

Wilkins et al., 1953).  

 The original model for transmission of genetic information, the Central Dogma of 

biology (Fig. 1), was articulated in varying forms by both Francis Crick and James 

Watson (Crick, 1958, 1970; Watson, 1965).  A modern biologist would mostly likely 

superimpose Crick’s concept of information transmission between DNA-RNA-protein 

with an additional layer of multidirectional communication among the biomolecular trio 

generated through gene function and regulation (Fig. 1).  

 Much of gene function can be attributed to protein, which is understandably more 

chemically diverse (and by inference, more functionally diverse) than either of its nucleic 

acid precursors.  However, an astonishing breadth of RNA function has been revealed 

over the last several decades.  In accordance with the central dogma, RNA does indeed 
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function as an intermediary between the DNA code and its final incarnation as protein.  

The biochemistry and behavior of these messenger RNAs (mRNAs), however, inject 

copious amounts of additional information into the cycle of gene expression.  mRNAs 

can undergo editing, alternative splicing, and other co-transcriptional modifications that 

substantially effect the quality and quantity of the encoded protein.   
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1.2  Noncoding RNAs 

 The information-bearing mRNAs are accompanied by a diverse collection of 

noncoding RNAs (ncRNAs), many of which participate in essential housekeeping 

functions.  Well-characterized ribonucleoprotein complexes containing ncRNAs are key 

components of the gene expression infrastructure – functioning from early steps of 

mRNA maturation, all the way to terminal processes of protein export.  The spliceosome 

includes several small nuclear RNAs (snRNAs) that direct mRNA splicing (Black et al., 

1985; Bringmann et al., 1984; Chabot et al., 1985; Lerner et al., 1980; Rogers and Wall, 

1980).  Subsequent translation of these messages relies on decoding by ribosomal RNA 

(rRNA) and transfer RNA (tRNA) in the context of the ribosome.  Yet another class of 

noncoding species, the small nucleolar RNAs (snoRNAs), guide site-specific chemical 

modifications to rRNA, tRNA, and snRNA (Ganot et al., 1997; Ganot et al., 1999; Jady 

and Kiss, 2001; Kiss-Laszlo et al., 1996; Ni et al., 1997; Omer et al., 2000; Tycowski et 

al., 1998).  The influence of ncRNAs also extends to protein export, as the noncoding 

7SL RNA is an integral component of the signal recognition particle (SRP), which 

regulates translocation of secretory and membrane proteins (Walter and Blobel, 1982).  

Chromosomal architecture also depends on ncRNA function; telomerase maintains 

chromosome ends by using an ncRNA component to template the reverse transcription of 

telomeric repeats (Shippen-Lentz and Blackburn, 1990).  Furthermore, ncRNAs can 

actively function as independent catalytic units (Forster and Symons, 1987a, b; Guerrier-

Takada et al., 1983; Kruger et al., 1982; Kuo et al., 1988; Nielsen et al., 2005; Salehi-

Ashtiani et al., 2006; Saville and Collins, 1990; Teixeira et al., 2004), and as direct 

metabolic sensors in bacteria (riboswitches) (Epshtein et al., 2003; Mandal et al., 2003; 
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Mandal et al., 2004; Sudarsan et al., 2003; Winkler et al., 2002a; Winkler et al., 2002b; 

Winkler et al., 2003).  Collectively, these regulatory ncRNAs form the structural and 

enzymatic backbones of several biological processes.   

 It has become increasingly apparent, however, that ncRNA function may extend 

far beyond housekeeping roles.  Recent examinations of transcriptional landscapes have 

revealed an astounding expanse of transcriptional activity throughout mammalian 

genomes, far exceeding the number of protein-coding units (Birney et al., 2007; Okazaki 

et al., 2002).  These transcriptome maps depict an interlaced system of coding and 

noncoding units yielding a considerable population of unannotated, uncharacterized long 

ncRNAs.  Though some of these noncoding transcripts may indeed represent non-specific 

transcriptional noise (Struhl, 2007), recent studies indicate that both the process and 

products of noncoding transcription are likely to be genuinely functional.   

 Bidirectional promoter activity contributes substantially to this pervasive 

transcription.  In yeast, the long noncoding products of this phenomenon have been 

named Cryptic Unstable Transcripts (CUTs) and Stable Unannotated Transcripts (SUTs) 

(Neil et al., 2009; Wyers et al., 2005; Xu et al., 2009).  These ncRNAs emanate from 

nucleosome-free promoters and 3’ termini of protein-coding units.  Promoter-associated 

CUTs and SUTs arise bidirectionally, giving rise to noncoding transcripts that can 

overlap with neighboring mRNAs in either sense or antisense orientations.  A few case 

studies have shown that individual CUTs can mediate transcriptional silencing of 

proximal genes (Berretta et al., 2008; Bird et al., 2006; Camblong et al., 2007; Hongay et 

al., 2006).  The ubiquity and genic association of these CUTs and SUTs in the yeast 

transcriptome hint at a fundamental mechanism of regulating gene expression.  
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 Mammalian transcriptome profiles follow a strikingly similar pattern, with 

clusters of ncRNAs arising at boundaries of transcribed genes.  Long, unstable 

PROMPTs (Promoter Upstream Transcripts) initiate bidirectionally ~0.5 to 2.5 kilobases 

upstream of transcription start sites (Preker et al., 2008).  The genomic addresses of 

PROMPTs are enriched in markers of active transcription, such as RNA polymerase II 

(Pol II) and acetylated histone H3 lysine 9, but do not associate with transcription 

initiation factors that mark coding loci (Preker et al., 2008).  PROMPTs partially overlap 

with distinct class of bidirectional Promoter-Associated Long RNAs (PALRs) (Kapranov 

et al., 2007).  These PALRs initiate proximal to transcription start sites, with the resulting 

ncRNA often overlapping the first exon and intron of the neighboring coding unit.  

Several investigators have also independently identified short (<200 nucleotides) 

noncoding transcripts (of varying size and stability) associated with the 5’ and 3’ termini 

of genes:  antisense Transcription Start Site Associated RNAs (TSSa-RNAs), antisense 

Nuclear Run-on RNAs (NRO-RNAs), bidirectional Promoter Associated Short RNAs 

(PASRs), and Termini Associated Short RNAs (TASRs) (Core et al., 2008; Kapranov et 

al., 2007; Seila et al., 2008).  The promoter-associated subset of these short ncRNAs 

overlaps with PALRs (though not PROMPTs), suggesting that they may represent 

processed versions of long ncRNAs associated with active transcription.  These recent 

discoveries depict a highly active transcriptional landscape, where induction of discrete 

protein-coding genes is accompanied by a flurry of proximal noncoding transcription.  

This system of pervasive genic and intergenic transcriptional activity, inherently 

bidirectional promoters, and widespread polymerase pausing at promoters is not fully 

understood; but has been proposed to alter DNA accessibility, create negative 
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supercoiling to promote transcription initiation, or to poise pools of Pol II molecules for 

rapid activation of associated genes.   

 Recent bioinformatic searches for conserved long ncRNAs indicate that they 

comprise a small but substantial pool of bona fide functional species that are likely to 

regulate many processes (Guttman et al., 2009).  Only a few orphan examples of such 

regulatory long ncRNAs have been characterized – but from these few case studies, a 

startling diversity of regulatory modes have been uncovered.  

 Several of these regulatory long ncRNAs can be broadly categorized as 

modulators of DNA accessibility, several instances of which have been documented in 

yeast.  Low abundance noncoding transcription through promoters of coding genes can 

remodel the chromatin configuration to favor RNA polymerase access.  This read-

through may arise in the same orientation as the coding gene (for example, the fission 

yeast fbp1 locus) or in an antisense orientation (for example, the budding yeast pho5 

locus) (Hirota et al., 2008; Uhler et al., 2007).  The cascade of chromatin disruption 

traveling towards the promoter appears to facilitate polymerase engagement of the coding 

unit.  A similar case of intergenic transcription is proposed to regulate chromatin opening 

at the human β-globin locus (Gribnau et al., 2000).  

 In contrast, other ncRNAs associated with coding loci promote transcriptional 

repression through a variety of mechanisms.  This may take the form of transcriptional 

interference in cis at promoter regions (Osato et al., 2007).  One example of this takes 

place at the SER3 gene in budding yeast.  Noncoding transcription through the upstream 

regulatory region of this gene (producing a ncRNA called Srg1) inhibits the binding of 

transcriptional activators to the promoter, effectively repressing SER3 expression 
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(Martens et al., 2004).  A noncoding transcript initiating upstream of the human 

dihydrofolate reductase (DHFR) promoter mediates transcriptional repression by a 

different mechanism.  This ncRNA forms a stable triplex with the promoter DNA, and 

also interacts directly with the general transcription factor TFIIB to favor disassociation 

of the preinitiation complex from the promoter (Martianov et al., 2007).  This RNA-

dependent repression was also observed when the ncRNA was experimentally supplied in 

trans, indicating that the RNA itself, and not simply transcription, was functionally 

important.  

 Short ncRNA inhibitors of the core transcriptional machinery exist throughout 

phylogeny: the bacterial 6S RNA, the murine B2 RNA, and human SINE-derived Alu 

RNAs (Espinoza et al., 2004; Kettenberger et al., 2006; Mariner et al., 2008; Wassarman 

and Storz, 2000).  These RNAs bind directly to the polymerase, in some cases competing 

with promoter DNA for access to the active site.  In addition to ncRNA inhibitors of 

transcriptional initiation, vertebrates also possess an RNA-based system to negate 

transcriptional elongation.  The elongation factor P-TEFb phosphorylates Pol II to 

generate an elongating transcriptional complex.  Elongation is obstructed, however, when 

the noncoding transcript 7SK binds and represses the kinase activity of P-TEFb (Nguyen 

et al., 2001; Yang et al., 2001).   

 Long ncRNAs also control gene expression through secondary interactions with 

transcriptional co-factors.  The murine developmental program illustrates one such 

mechanism of transcriptional regulation in cis.  The Dlx5/6 homeodomain gene cluster 

(involved in limb patterning and neuronal development) gives rise to an intergenic 

ncRNA, Evf-2, which binds another homeodomain protein (Dlx2) to cooperatively 
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activate Dlx5/6 enhancer activity (Feng et al., 2006).  ncRNA-mediated transcriptional 

repression in cis has also been observed in the cellular response to DNA damage.  

Genomic insults induce noncoding transcription upstream of the mammalian CCND1 

locus, which encodes a cell cycle regulator that is repressed upon DNA damage.  This 

site-specific ncRNA tether recruits the RNA-binding protein TLS, which then inhibits 

histone acetyltransferase activity at the downstream CCND1 gene (Wang et al., 2008).  

Noncoding RNAs need not arise from the same genomic location as their regulated 

targets.  For example, the vertebrate heat shock response exhibits one mode of RNA-

induced transcriptional activation.  A long ncRNA called HSR1 induces the trimerization 

of the heat shock transcription factor HSF1, activating its capacity to stimulate expression 

of downstream targets (Shamovsky et al., 2006).  Trans-acting ncRNAs can also function 

as potent transcriptional repressors.  The human Hox genes, which are responsible for 

developmental body patterning, cluster in several discrete genomic loci.  A recently 

discovered intergenic ncRNA, HOTAIR, originates from the HoxC cluster, but targets a 

distal HoxD gene cluster for Polycomb-mediated epigenetic silencing (Rinn et al., 2007).  

These examples of protein-associated regulatory ncRNAs hint at a vast capacity for 

cooperation between RNA- and protein-based mechanisms of gene regulation.   

 The influence of ncRNA also extends beyond transcriptional processes per se.  

The subcellular trafficking of the transcription factor NFAT (nuclear factor of activated T 

cells) serves as a prime example.  Though the molecular details are not clear, the 

noncoding NRON RNA interacts with nuclear importins, and somehow obstructs the 

ability of NFAT to access its transcriptional targets (Willingham et al., 2005).  

Furthermore, the prevalence of sense and antisense transcript pairs suggests that duplexed 
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RNAs may be a common occurrence in mammalian transcriptomes (Katayama et al., 

2005; Okazaki et al., 2002).  One functional example of overlapping noncoding 

transcription has been described for the human Zeb2 mRNA.  An antisense ncRNA 

intersects with the splice site of its sense mRNA partner, preventing RNA splicing and 

translation of a functional ZEB2 protein (Beltran et al., 2008).   

 Some of the best-characterized ncRNAs have been implicated in epigenetic 

programming and imprinting.  Long noncoding RNAs nucleate two distinct mechanisms 

of dosage compensation (adjustment of the male XY versus female XX chromosome 

inequity).  X chromosome inactivation in female cells of placental mammals stems from 

the mutually exclusive expression of two ncRNAs:  Xist (expressed from the inactive X 

chromosome), and its antisense counterpart Tsix (expressed from the active X 

chromosome).  Xist coating of the inactive X chromosome promotes heterochromatic 

silencing through repressive histone modifications and DNA methylation (Borsani et al., 

1991; Brown et al., 1991; Panning et al., 1997; Panning and Jaenisch, 1996).  In contrast, 

dosage compensation in Drosophila takes the opposite route, where the single male X 

chromosome undergoes hypertranscription, mediated by a ribonucleoprotein complex 

containing the ncRNAs roX1 and roX2 (Ilik and Akhtar, 2009).  A handful of imprinted 

gene clusters are also associated with ncRNAs:  H19 (Bartolomei et al., 1991), Nespas 

(Wroe et al., 2000), Air (Sleutels et al., 2002), Kcnq1ot1 (Pandey et al., 2008) – which 

are believed to participate in the epigenetic silencing of their respective loci.   

 Long ncRNAs represent an expansive class of regulatory molecules that touch on 

multiple aspects of gene expression.  Here, I have discussed only a few functional 

examples that speckle the regulatory landscape.  Given the ubiquity of these RNAs in the 
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transcriptome, there are undoubtedly many more examples and mechanisms of ncRNA 

function to be uncovered.  It remains to be seen how (and if) these few characterized 

ncRNAs relate to the extensive populations of yeast CUTs/SUTs or the mammalian 

PROMPTs and PALRs, and if there are indeed broad classes of ncRNAs that act as 

fundamental genomic regulators.   

 

1.3  Small noncoding RNAs and gene silencing 

In any discussion of ncRNAs, one must inevitably mention small ncRNAs, 

several classes of which have been implicated in transcriptional and post-transcriptional 

gene silencing (Fig. 2).  The earliest signs of these silencing mechanisms were observed 

in petunia plants carrying additional transgenic copies of a pigment biosynthesis gene 

(Napoli et al., 1990).  In an unexpected turn of events, these plants produced flowers with 

variegated pigmentation or even complete lack of color, instead of more vividly-colored 

flowers.  This rather anomalous observation, called “co-suppression,” was later 

recognized as the first phenotypic evidence of a gene silencing mechanism that was also 

observed by others in fungi (Romano and Macino, 1992) and nematodes (Guo and 

Kemphues, 1995).   

 The basis of this phenomenon, termed RNA interference (RNAi), was explained 

in the landmark studies of Fire and Mello, who uncovered a double-stranded RNA-

triggered gene silencing mechanism in C. elegans (Fire et al., 1998).  The molecular 

instigators of this silencing were found to be 21-25 nucleotide RNAs complementary to 

genes undergoing RNAi (Hamilton and Baulcombe, 1999).  These small interfering 

RNAs (siRNAs) are processed from exogenous double-stranded RNAs by the RNaseIII-
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type enzyme Dicer (Bernstein et al., 2001; Hammond et al., 2000; Hutvagner et al., 2001; 

Zamore et al., 2000).  Mature siRNAs then integrate into the RNA-induced silencing 

complex (RISC), and guide the RNA cleavage activity of its Argonaute subunit to a 

complementary mRNA target (Hammond et al., 2001; Liu et al., 2004).  These pathways 

of siRNA biogenesis and silencing have been indentified in fungi, plants, protozoans, and 

animals, representing a well-conserved mechanism of post-transcriptional gene 

regulation.   

In parallel, a related class of genomically-encoded small RNAs was discovered in 

C. elegans (Lee et al., 1993; Wightman et al., 1993).  These microRNAs (miRNAs) in 

their mature form are biochemically indistinguishable from siRNAs, and also engage 

many of the same effector agents as siRNAs.  In contrast to siRNAs, however, miRNAs 

arise from the multi-step processing of endogenous primary miRNA (pri-miRNA) 

transcripts that contain one or more hairpin structures each encompassing a mature 

miRNA sequence (Bartel, 2004).  Distinct ribonucleases in the nucleus (Drosha) and 

cytoplasm (Dicer) trim the hairpin structures into small RNA duplexes (Lee et al., 2003), 

followed by incorporation of one strand of the duplex into an Argonaute-containing 

silencing complex (Hutvagner and Zamore, 2002).   

Plant miRNAs function predominantly as siRNAs, binding with full 

complementarity to their cognate mRNAs and targeting them for endonucleolytic 

cleavage (Llave et al., 2002; Rhoades et al., 2002).  Animal miRNAs, in contrast, are 

believed to recognize mRNA target sequences with partial complementarity, and mediate 

silencing through translational repression (Bartel, 2004), as well as mRNA destabilization 

(Mansfield et al., 2004; Yekta et al., 2004).  The functional variation between plants and 
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animals is thought to reflect two independent evolutionary origins for miRNAs (Axtell 

and Bowman, 2008).  

Though the current miRNA registry is by no means comprehensive, miRNAs 

have been identified in most eukaryotic model organisms, with the exception of S. 

cerevisiae (Griffiths-Jones et al., 2008).  In humans, the known miRNAs number in the 

several hundreds, some with evolutionary conservation reaching back to nematodes and 

arthropods (Griffiths-Jones et al., 2008).  An estimated 30% of eukaryotic genes are 

subject to miRNA regulation (Lewis et al., 2003; Yu et al., 2007), implicating this 

mechanism as a substantial means by which organisms modulate their gene expression 

profiles.  

 Small RNA function also extends to chromatin-dependent and transcriptional 

gene silencing.  These modes of gene repression have been observed in plants, which 

employ siRNAs and miRNAs to direct RNA-dependent DNA methylation and repressive 

histone modifications (Bao et al., 2004; Gendrel et al., 2002; Henderson et al., 2006; 

Zilberman et al., 2003).  Kin of siRNAs and miRNAs also maintain heterochromatic 

silencing of repetitive elements in the genomes of unicellular eukaryotes.  Bidirectional 

transcription of centromeric repeats in fission yeast gives rise to heterochromatic small 

RNAs that recruit an Argonaute-containing protein complex called RITS (RNA-induced 

initiation of transcriptional gene silencing) (Reinhart and Bartel, 2002).  RITS-directed 

histone tail methylation then maintains the silent state of centromere (Verdel et al., 2004; 

Volpe et al., 2003; Volpe et al., 2002).   

 The most recently described small RNA subclass stands apart from siRNAs and 

miRNAs in their size, biogenesis, and expression patterns.  These are the Piwi-interacting 
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small RNAs (piRNAs), 25-31 nucleotide species exclusively expressed in metazoan germ 

cells (Hartig et al., 2007; O'Donnell and Boeke, 2007).  Unlike their more diminutive 

small RNA cousins, piRNAs arise in a Dicer-independent fashion, likely from a single 

stranded RNA precursor transcribed from a piRNA gene cluster (Houwing et al., 2007; 

Vagin et al., 2006).  They partner with the Piwi subfamily of Argonaute proteins to 

silence transposons in the male germline via DNA methylation – their only characterized 

function to date (Aravin et al., 2008).  In addition to silencing parasitic genome elements, 

piRNAs likely play additional roles in mice, whose piRNA repertoire includes a 

substantial subclass not complementary to repetitive transposon sequences (Aravin et al., 

2007).   

 The burgeoning literature on small RNA function reflects on the diversity of tasks 

they perform in nearly all clades of life.  They provide protection against endogenous 

selfish genetic elements as well as exogenous sources of double-stranded RNA.  With 

direct relevance to the formal concept of immunity – plants generate siRNAs from 

invading viral genomes as one component of their antiviral immune defenses (Ding and 

Voinnet, 2007).  The necessity of this mechanism, however, has dwindled in evolution 

with the advent of more complex immune systems.  Furthermore, small RNAs modulate 

the flow of information from DNA to protein through transcriptional and post-

transcriptional silencing mechanisms.  Their influence is apparent throughout 

development and physiological function.   
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1.4  Somatic gene alteration in adaptive immunity 

 Rather than a simple on-off switch, gene expression involves a complex network 

of transcriptional, post-transcriptional, and post-translational regulation.  Thus, enormous 

functional flexibility can be generated from a finite set of coding genes (estimated to 

number around 30,000 (Venter et al., 2001)).  However, the immune system provides a 

striking example where the de facto information content of the genome is not sufficient 

for full biological function.  Vertebrates encounter innumerable pathogenic and 

environmental insults throughout their lifetimes, and thus require a recognition system 

capable of identifying these infinitely diverse particles as non-self.  This demand for 

diversity in recognition certainly exceeds the amount of information that can be encoded 

in the entire genome, much less in one specific locus.   

 The innate immune system induces an immediate and non-specific inflammatory 

response based on recognition of conserved pathogenic motifs such as bacterial 

lipoproteins and viral double stranded DNA.  Specialized cells such as macrophages and 

dendritic cells recognize these invariant motifs via Toll-like receptors (TLRs), triggering 

cytokine and chemokine production and recruitment of additional effector cells.  The 

innate response then gives way to the adaptive response, which hinges on the generation 

of cellular receptors adapted to recognize specific epitopes.  These specialized 

recognition capacities can then be propagated for immunological memory.  B 

lymphocytes manufacture one of these key receptors – the immunoglobulins (Ig), also 

known as antibodies.   

 The requisite diversity of the Ig repertoire is generated in stages, the first of which 

occurs in an antigen-independent manner to create a pre-existing pool of B lymphocytes, 
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each bearing a distinct Ig.  In accordance with Burnet’s clonal selection theory (Burnet, 

1957; Talmage, 1957), antigen-dependent selection then promotes the expansion and 

maintenance of one particular Ig-bearing lymphocyte.   

Over the last half century, the molecular basis of Ig repertoire diversification has 

proven to stem from several elaborate gene rearrangements during B lymphocyte 

development.  The modular architecture of the Ig molecule reveals several opportunities 

for generating both recognition and functional diversity.  Two heavy chain and two light 

chain polypeptides complex into a characteristic Y-shaped configuration. The N-terminal 

prongs of the Y (Variable, or V region) specify the antigen-recognizing capacity, whereas 

the C-terminal stem (Constant, or C region) specifies the effector functions of the 

molecule (Fig. 3).  To achieve the required functional diversity at both the V and C 

regions, the Ig gene locus, occupying some several megabases, undergoes impressive 

molecular acrobatics to facilitate somatic gene alterations during B lymphocyte 

development.  
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 As hematopoietic stem cells commit to the B lineage in the bone marrow, they 

activate transcriptional regulators (E2A, EBF, Pax5) that control the expression of genes 

involved in Ig locus rearrangement (Matthias and Rolink, 2005).  Committed pro-B 

lymphocytes perform the first step of Ig gene diversification when they assemble their Ig 

heavy chain V region genes.  This process, called V(D)J recombination, involves the 

sequential joining of three gene modules – Variable (V), Diversity (D), and Joining (J) – 

to reconstitute a functional V region segment (Fig. 4) (Early et al., 1980; Early et al., 

1979; Maki et al., 1980; Sakano et al., 1981).  Developing T lymphocytes in the thymus 

also undergo an analogous process of V(D)J recombination at the T-cell receptor locus to 

diversify the Variable regions of their cell-surface receptors (Chien et al., 1984; Kavaler 

et al., 1984).  Requiring three-dimensional folding of the DNA, the appropriate V, D, or J 

segments are aligned according to flanking palindromic motifs called recombination 

signal sequences (RSS) (Akira et al., 1987; Sakano et al., 1981; Tonegawa, 1983).  The 

DNA is then recognized and cleaved by the molecular engines of the V(D)J recombinase 

– the Rag1 and Rag2 proteins (McBlane et al., 1995; Schatz and Baltimore, 1988; Schatz 

et al., 1989; van Gent et al., 1995).  Non-homologous end-joining (NHEJ) machinery 

subsequently ligates the appropriate DNA ends (Gao et al., 1998; Grawunder et al., 1998; 

Li et al., 1995; Moshous et al., 2001; Taccioli et al., 1993).   

Productive (i.e. in-frame) V(D)JH recombination allows for the expression of an Ig 

heavy chain, which associates with a surrogate light chain to form the pre-B-cell receptor 

(pre-BCR) (Nishimoto et al., 1991).  As pre-B lymphocytes, these progenitor cells 

perform a second round of recombination at the Ig light chain locus, giving rise to fully 

complexed Ig protein (Reth et al., 1987).  Productive rearrangements result in  



19 



20 

downregulation of the V(D)J recombination machinery to ensure allelic exclusion 

(Grawunder et al., 1995).  Signaling mediated by surface-expressed Ig on immature B 

lymphocytes will then direct cell maturation, eventually leading to the emergence of 

mature B lymphocytes from the bone marrow.  

A mature B lymphocyte that has undergone V(D)J recombination is then distinct 

from all others at three levels:  1) the random choice of V, D, and J from an extensive 

pool of germline gene segments, 2) the combination of rearranged heavy and light chains, 

and 3) junctional insertions and deletions which occur during rearrangement.  Together, 

this combinatorial and junctional diversity can produce a repertoire of distinct Ig variable 

region specificities in excess of 107.     

Chickens and rabbits employ a slightly different means to diversify Ig specificity 

prior to antigen stimulation.  V(D)J recombination in these animals has limited 

diversification potential, as the Ig heavy and light chain loci harbor few functional V 

region segments.  Furthermore, most of the rearranged V regions preferentially choose 

the same VH gene segment (Knight and Becker, 1990).  Instead, a substantial number of 

nonfunctional V- and J-like pseudogenes are exploited to generate variation through gene 

conversion.  Nucleotides from these pseudogenes are used as templates for sequence 

conversions in the functional, rearranged V region gene (Becker and Knight, 1990; 

Carlson et al., 1990; Reynaud et al., 1985; Reynaud et al., 1987; Reynaud et al., 1989; 

Thompson and Neiman, 1987).  Though V region pseudogenes exist in mouse and human 

genomes, GC does not appear to contribute significantly to primary Ig diversification in 

mammals. 
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  Upon expression of a functional Ig surface receptor, B lymphocytes exit the bone 

marrow and circulate through the bloodstream to the peripheral lymphoid organs, such as 

the spleen, lymph nodes, and Peyer’s Patches of the gut.  These organs collect antigens 

from the mucosal tracts, extracellular fluids, and blood, and present them for sampling by 

the cells of the adaptive immune system.  The germinal centers of these organs provide 

the microenvironments where mature B lymphocytes undergo antigen-dependent 

secondary diversification.  The affinity of the newly assembled V region for its cognate 

antigen is optimized through somatic hypermutation (SHM) of the V region gene (Fig. 4).  

B lymphocytes expressing mutated Igs with high affinity for an antigen preferentially 

receive the strongest survival signals, and are thus selected for propagation into clonal 

populations of Ig-secreting plasma cells and memory B cells.  This SHM-dependent 

process is referred to as affinity maturation.  Secondary diversification also influences the 

effector function associated with a particular Ig.  All B lymphocytes initially express the 

IgM isotype, encoded by the Cµ constant region exons.  Class switch recombination 

(CSR) allows for any assembled V region to be expressed in conjunction with alternative 

C exons to produce other Ig isotypes (IgG, IgE, IgA) with different effector functions.  

This switching is achieved through deletional recombination at the C region locus (Fig. 

4).  The two processes of SHM and CSR cooperate to produce functionally optimized Igs 

with high affinity towards their cognate antigens, and with effector function appropriate 

for the stimulating antigen.   

The three mechanistically dissimilar processes of GC, SHM, and CSR share a 

common molecular trigger – conversion of cytidine to uracil by activation induced 

cytidine deaminase (AID) (Fig. 5) (Arakawa et al., 2002; Muramatsu et al., 2000; 
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Muramatsu et al., 1999).  This enzyme was first identified by Honjo and colleagues, who 

designated it as a novel member of the APOBEC family of polynucleotide cytidine 

deaminases (Muramatsu et al., 1999).  Noting the sequence homology between AID and 

its well-characterized relative, APOBEC1 (an RNA deaminase), it was initially proposed 

that AID edited and activated the mRNA of an SHM- or CSR-catalyzing factor.  Though 

we cannot formally exclude the possibility of AID-mediated RNA editing, the majority of 

experimental observations are consistent with a model of DNA deamination induced by 

AID.  From this DNA-centric perspective of AID function, Ig diversification can be 

understood as the differential processing of AID-dependent lesions in DNA by non-

canonical repair pathways to generate either sequence conversions (GC), point mutations 

(SHM), or DNA recombination (CSR).    
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1.5  Somatic hypermutation, a closer look 

 Joshua Lederberg first proposed that that “genic diversity of the precursors of 

antibody-forming cells arises from a high rate of spontaneous mutation” in 1959, 

predating the breakthrough finding of AID by several decades (Lederberg, 1959).  

Observed mutations at the V region, however, arise at a rate of 10-3 / base pair / 

generation, several orders of magnitude above the rate of spontaneous mutation 

(Lederberg, 1959).  After the discovery of AID, it became clear that AID-mediated 

deamination was responsible for the active mutation and affinity maturation of V regions.   

 Point mutations introduced into the V region are spatially limited to a 1-2 kilobase 

range beginning about 150 base pairs downstream of the Ig V promoter.  Mutation 

frequency also decreases with increasing distance from the promoter (Rada and Milstein, 

2001).  The footprint of mutation coincides strikingly with the footprint of transcription, 

and indeed, SHM has been shown to be intimately linked to transcription (Bachl et al., 

2001; Fukita et al., 1998).  Active transcription bubbles are believed to generate the 

preferred single-stranded DNA substrates for AID deamination.  Storb and colleagues 

posit that a mutator factor (presumably AID) associates with an RNA polymerase II 

transcriptional complex, and deposits mutations as it tracks along the transcribed gene 

(Longerich et al., 2005; Peters and Storb, 1996).  The promoter-distal boundary of 

mutation could then be defined by stochastic dissociation of the mutator from the 

transcriptional complex.  While the concurrence of hypermutation and robust 

transcription is undeniable, the latter is not sufficient.  With a few exceptions (Liu et al., 

2008; Odegard and Schatz, 2006; Pasqualucci et al., 2001), non-Ig genes are not 

hypermutated even when highly transcribed.  An Ig-specific targeting mechanism must 
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exist, but the means of this targeting (Ig-targeted protein co-factors, Ig gene cis-elements, 

differential chromatin accessibility) remains unknown.   

 SHM affects all four bases in DNA, with transition mutations predominant over 

transversions (Golding et al., 1987).  Primary sequence can bias the placement of 

mutations, but in a very limited fashion.  Mutated Cs often associate with canonical AID 

hotspot motifs: WRCY (where W = A/T, R = A/G, and Y = C/T), or its complement 

RGYW (Rogozin and Kolchanov, 1992).  However, these so-called hotspots are not 

absolute determinants of mutability, since not all mutated Cs lie in hotspots.  Strand 

placement can also affect mutability – while C:G base pairs mutate at equal frequencies 

regardless of strand placement (template versus non-template), A:T base pairs mutate 

preferentially when the A is placed in the template strand (34).  This A:T strand polarity 

is not understood, but may stem from asymmetric function of subsequent repair enzymes.   

 AID-mediated conversion of C to U is in itself mutagenic, as simple replication 

over the site (with recognition of U as T) yields transition mutations.  Secondary 

processing of the initiating U:G DNA lesion, however, must occur to generate the full 

spectrum of mutations.  The current paradigm for SHM holds that error-prone versions of  

base excision repair (BER) and mismatch repair (MMR) broadens the range of mutations 

at C:G base pairs and A:T base pairs, respectively (Fig. 6).   

 Uracils occasionally appear in DNA due to stochastic deamination of cytidine or 

misincorporation during replication (Krokan et al., 2002).  Base excision repair (BER) 

removes the unwelcome base using a uracil DNA glycosylase such as UNG, and allows 

for faithful repair of the lesion.  Hypermutating B cells, however, skew the BER pathway 

to facilitate mutation at C:G base pairs.  UNG-mediated cleavage of the uracil base from  
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the DNA backbone creates an abasic site (Di Noia and Neuberger, 2002; Imai et al., 

2003; Rada et al., 2002).  Translesion polymerases then replicate over this non-instructive 

site to generate both transition and transversion mutations (Delbos et al., 2007; Delbos et 

al., 2005; Jansen et al., 2006; Masuda et al., 2005; Zeng et al., 2004).  There is also 

evidence for a complementary pathway of abasic site processing mediated by the 

Mre11/Rad50/Nbs1 (MRN) complex (Larson et al., 2005; Yabuki et al., 2005). 

 AID-mediated cytidine deamination also creates a U:G mismatch that can engage 

the MMR machinery (Wilson et al., 2005).  Mismatch recognition by the MSH2/MS6 

heterodimer is followed by exonucleolytic gap formation and error-prone synthesis to 

generate mutations distal to the initial uracil lesion.  Genetic studies in mice tend to 

support this idea of subverted MMR as a major source of mutations at A:T pairs 

(Bardwell et al., 2004; Delbos et al., 2007; Delbos et al., 2005; Martomo et al., 2004; 

Martomo et al., 2005; Phung et al., 1998; Rada et al., 1998; Wiesendanger et al., 2000; 

Winter et al., 1998; Zan et al., 2001; Zan et al., 2005).  

 Cooperatively, error-prone BER and MMR generate a diverse spectrum of 

mutation at the V region gene.  How these two repair pathways (usually high fidelity) 

detour into the realm of mutagenesis is not well understood.  A recent study proposes that 

the switch between error-free and error-prone synthesis depends on AID activity, where 

Rad6/Rad18-mediated recognition of AID-induced DNA lesions triggers the 

monoubiquitination of proliferating cell nuclear antigen (PCNA), which then 

preferentially recruits error-prone polymerases (Bachl et al., 2006).   
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1.6  Class switch recombination, a closer look 

 In the Ig heavy chain locus, several C region modules lie downstream of the V 

region.  With the exception of Cδ, each set of C region exons is preceded by a repetitive 

G/C-rich DNA element, the switch (S) region.  Nonhomologous recombination between 

two S regions provides the basis of CSR.  The mechanism of CSR exhibits some 

superficial similarities to SHM, namely, transcription dependence, AID dependence, and 

engagement of BER and MMR machinery.   

 At the constant regions, transcription is required in a noncoding capacity.  These 

transcripts initiate from cytokine-inducible, isotype-specific promoters located a few 

kilobases upstream of each S region (Berton et al., 1989; Esser and Radbruch, 1989; 

Gerondakis, 1990; Lebman et al., 1990; Lutzker et al., 1988; Rothman et al., 1990b; 

Stavnezer-Nordgren and Sirlin, 1986; Xu and Stavnezer, 1990) (Fig. 7).  These “germline 

transcripts” do not code for protein, yet appear to play a necessary, but unknown role in 

promoting CSR (Wakatsuki and Strober, 1993; Xu et al., 1993; Zhang et al., 1993).  Two 

additional observations further suggest that RNA-dependent mechanisms may regulate 

the accessibility or targeting of the C regions:  1) splicing of the germline transcripts may 

be necessary for the subsequent DNA recombination (Hein et al., 1998; Lorenz et al., 

1995), and 2) antisense transcription accompanies the sense germline transcription 

(Chowdhury et al., 2008; Perlot et al., 2008). The full significance of these observations 

is not yet clear.  

 Transcription may be key to generating the preferred single stranded DNA 

substrate for AID.  DNA-RNA hybrids, or R-loops, can form upon transcription of G/C-

rich elements such as S regions, thus exposing an unpaired DNA strand for AID 
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deamination (Daniels and Lieber, 1995; Mizuta et al., 2003; Yu et al., 2003).  Though 

AID-dependent point mutations are detected in S regions after CSR (Schrader et al., 

2003), mutagenesis is far from the endpoint of CSR.  Following AID catalysis at S 

regions, CSR proceeds through three stages:  generation of double-stranded DNA breaks 

(DSBs), sensing and synapsis of said DNA breaks, and DNA end-joining (Fig. 7).   

 As in the V regions, AID-induced uracils in both strands of S region DNA are 

recognized and removed by BER to create abasic sites (Rada et al., 2002; Schrader et al., 

2005).  These sites can then be processed by apurinic/apyrimidinic endonucleases (APE) 

to form single-stranded nicks (Guikema et al., 2007).  Two nicks on opposite DNA 

strands, if in close proximity, can destabilize the DNA duplex such that staggered double-

stranded breaks form.  MMR catalyzes an alternative, but minor pathway of DSB 

formation (Bardwell et al., 2004; Ehrenstein and Neuberger, 1999; Ehrenstein et al., 

2001; Li et al., 2004; Martin et al., 2003; Martomo et al., 2004; Schrader et al., 1999; 

Schrader et al., 2007; Stavnezer and Schrader, 2006).  In preparation for end-joining, the 

staggered DNA ends are believed to undergo blunting by either exonucleolytic resection 

of overhangs or short-patch DNA synthesis by error prone polymerases.   

 The broken DNA ends attract canonical DNA-damage sensors such as 

phosphorylated histone H2AX (γH2AX) (Petersen et al., 2001; Reina-San-Martin et al., 

2003), p53 binding protein 1 (53BP1) (Manis et al., 2004; Ward et al., 2004), ataxia 

telangiectasia mutated protein (ATM) (Lumsden et al., 2004; Reina-San-Martin et al., 

2004), and the MRN complex (Difilippantonio et al., 2005; Reina-San-Martin et al., 

2005).  The γH2AX-initiated accumulation of these factors effectively 
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forms a protein scaffold to synapse broken ends from two different S regions that can lie 

up to a hundred kilobases apart. 

The final phase of CSR involves ligation of the synapsed DNA ends.  Given the 

limited homology between different S regions, it is unsurprising that components of the 

nonhomologous end joining (NHEJ) pathway are important for CSR.  Known NHEJ 

factors such as the DNA end-binding complex Ku70/Ku80 (Casellas et al., 1998; Manis 

et al., 1998), DNA-PKcs (Manis et al., 2002), XRCC4 (Soulas-Sprauel et al., 2007; Yan 

et al., 2007) and DNA LigIV (Yan et al., 2007) facilitate efficient CSR.  Mice deficient in 

NHEJ, however, retain some CSR capacity, suggesting the existence of an alternative end 

joining pathway (Han and Yu, 2008; Yan et al., 2007).  Thus in the context of the Ig 

constant region, the composite efforts of DNA deamination, BER, MMR, and end joining 

can link any Ig antigen specificity (defined by the V region) to one of several Ig effector 

functions (defined by the C region).   

 

1.7  Regulation of AID 

 In the ten years since the first identification of AID, our understanding of the 

molecular mechanisms behind Ig gene diversification has expanded immensely.  

Biochemical modification of DNA in B lymphocytes, coupled with slightly off-kilter 

DNA repair mechanisms, yield a diverse cell population that can induce potent cellular 

and molecular defenses based on the recognition of very specific antigenic epitopes.  The 

implications for health are undeniable, as a number of human immunodeficiencies can be 

traced to genetic defects in SHM or CSR components.  For example, mutations in the 

human AICDA or UNG genes lead to hyper-IgM syndrome, characterized by lack of CSR 
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(and sometimes SHM), excessive accumulation of IgM in the serum, and heightened 

susceptibility to infection (Kavli et al., 2005; Revy et al., 2000).   

 Though AID-mediated lymphocyte maturation produces great immunological 

benefits, there are potential hazards to promiscuous AID activity.  Ig gene diversification 

proceeds through highly genotoxic molecular intermediates:  mutations and single 

stranded DNA breaks in SHM, and double stranded DNA breaks in CSR.  Indeed, AID 

does induce oncogenic translocations between the IgH locus and the proto-oncogene c-

myc (Ramiro et al., 2004; Robbiani et al., 2008).  Given such deleterious repercussions on 

genomic integrity, multiple mechanisms are in place to limit AID expression and activity.   

 With a few exceptions (Endo et al., 2008; Komori et al., 2008; Matsumoto et al., 

2007; Pauklin et al., 2009), AID is preferentially expressed in B lymphocytes.  A network 

of essential B lymphocyte transcription factors and cytokine-responsive transcription 

factors demarcate the cell-specificity of AID expression (Dedeoglu et al., 2004; Gonda et 

al., 2003; Park et al., 2009; Sayegh et al., 2003).  A relatively lethargic rate of AID 

catalysis places an intrinsic limit on activity.  In vitro kinetic experiments demonstrate 

that an AID molecule binds to a synthetic single-stranded bubble substrate with 

nanomolar affinity, with the enzymatic consequence of only one deamination every four 

minutes (Larijani et al., 2007).  Such a long-lived AID-substrate complex would be 

consistent with inferences of AID processivity (Larijani et al., 2007; Pham et al., 2003; 

Shen and Storb, 2004) and observations of AID haploinsufficiency (Sernandez et al., 

2008; Takizawa et al., 2008).  

 These fundamental limits on AID expression and activity are supplemented by 

post-translational regulatory mechanisms.  A C-terminal nuclear export signal ensures 
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that AID protein is primarily sequestered in the cytoplasm, thus limiting the amount of 

deamination activity that can access transcriptional substrates in the nucleus (Ito et al., 

2004; McBride et al., 2004).  The protein is further regulated by phosphorylation, which 

does not alter AID catalytic activity, but may instead create docking sites for downstream 

factors involved in SHM or CSR (Basu et al., 2005; Basu et al., 2007; Basu et al., 2008; 

McBride et al., 2006; McBride et al., 2008; Pasqualucci et al., 2006; Vuong et al., 2009).  

AID ubiquitination has also been described, though it remains unclear if this modification 

regulates proteasomal degradation of AID or its interaction with co-factors (Aoufouchi et 

al., 2008).  AID-interacting proteins are proposed to play roles in inter-locus (Ig versus 

non-Ig genes) and intra-locus (V versus C region) targeting, locus-specific assembly of 

multi-protein complexes that differentially promote SHM or CSR (Chaudhuri et al., 

2004; Conticello et al., 2008; MacDuff et al., 2006), or even negative regulation of AID 

to prevent ectopic mutation of non-Ig loci and lymphomagenesis (McBride et al., 2004; 

Ta et al., 2003).   

This combinatorial demarcation of functional boundaries for AID serves as an 

excellent example of the complex information flow generated through gene expression 

and regulation.  I have expanded on this molecular network of AID “supervisors”, with 

the identification of a new contributor to AID regulation:  microRNA-155 (Teng et al., 

2008).   
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CHAPTER 2:  microRNA-155 is a negative regulator of AID 

 

2.1  mIR-155 is upregulated in B lymphocytes undergoing class switch recombination 

 Animal miRNAs predominantly function as fine-tuners of gene expression with 

the capacity for coordinate regulation of groups of genes.  My objective was to identify 

miRNAs that regulate CSR in this manner.  Thus I profiled the miRNA expression 

patterns in naïve and class-switching B lymphocytes by small RNA cloning and 

sequencing.  These data have been catalogued in the smiRNAdb database of tissue-

specific mammalian miRNA expression profiles (Landgraf et al., 2007).  Of the 123 

miRNAs that were cloned from these samples (data not shown), I identified one, miR-

155, that was upregulated after stimulation (Fig. 8a).  By my analysis, this was the sole 

miRNA upregulated in class switching B lymphocytes.  Furthermore, miR-155 was 

upregulated not only in primary splenic B cells treated with LPS and IL-4 (which induce 

switching from IgM to IgG1), but also in CH12-F3 cells, a murine B cell line which 

switches from IgM to IgA after treatment with anti-CD40, IL-4, and TGF-β (Fig. 8b). 

Thus, miR-155 expression is induced during CSR in manner that is not isotype-specific.  

miR-155 is well conserved in the animal lineage, having been identified in sea 

squirts, fish, frogs, and mammals (Griffiths-Jones et al., 2008).  In humans and mice, 

miR-155 is prominently expressed in many hematopoeitic cell types (Landgraf et al., 

2007), and several complementary studies over the last few years have implicated miR-

155 as a key protagonist in diverse immune processes.  However, the details of miR-155 

function in immunity (i.e. its direct targets) had not been described at the time of this 

work.   
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 The gene encoding this microRNA was first identified as a preferential retroviral 

integration site in chicken lymphomas (Clurman and Hayward, 1989).  This novel proto-

oncogenic locus was dubbed bic, for B cell integration cluster (Clurman and Hayward, 

1989).  Retroviral activation of bic was correlated with myc activation and tumor 

metastasis.  Homologs of bic were later identified in mouse and human (Tam, 2001), but 

the functional significance of bic remained unknown for some time, as the gene lacked 

conserved open reading frames.  The most conspicuously conserved feature in the Bic 

RNA was a predicted double-stranded foldback motif, which would later be recognized 

as the precursor hairpin encoding miR-155 (Eis et al., 2005; Tam, 2001).   

Similar associations between Bic/miR-155 expression and certain human B cell 

cancers began to emerge:  Bic/miR-155 is highly overexpressed in lymphomas of 

activated-B cell origin, including Hodgkin’s lymphoma (Kluiver et al., 2005; van den 

Berg et al., 2003) and diffuse large cell B-cell lymphoma (Eis et al., 2005; Kluiver et al., 

2005).  These correlational observations were complemented by the work of Croce and 

colleagues, who created transgenic mice overexpressing miR-155 in B cells (Costinean et 

al., 2006).  These mice developed pre-B cell lymphoproliferative disorders, which later 

progressed to full B cell lymphomas.  These oncogenic effects are not exclusive to the 

lymphoid lineage, as elevated miR-155 expression is also detected in the bone marrow of 

patients suffering from acute myeloid leukemia (O'Connell et al., 2008).  Overexpression 

of miR-155 in hematopoeitic stem cells in the mouse resulted in gross expansion of 

myeloid lineages in the bone marrow and peripheral blood at the expense of erythroid and 

lymphoid populations.  Together, these results reveal the dark side of miR-155 function – 

tandem downregulation of gene set, leading to hyperproliferation and disease.   
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 Despite the oncogenic hazards of deranged miR-155 expression, this microRNA 

has clear utility in the context of healthy innate and adaptive immune systems.  Those 

who first described Bic observed low expression of Bic in hematopoeitic and lymphoid 

organs of healthy chickens, suggesting some kind of inherent function outside of 

oncogenesis (Tam et al., 1997).  As the miRNA field came to prominence, several groups 

noticed that mature miR-155 was induced upon activation of murine myeloid and 

lymphoid cell types (Haasch et al., 2002; O'Connell et al., 2007; Rodriguez et al., 2007; 

Teng et al., 2008; Thai et al., 2007; Tili et al., 2007).  Mice deficient in miR-155 show 

clear defects in Ig production and maturation, exhibiting reduced overall titers of serum 

Ig, and specifically, decreased titers of high-affinity and class-switched hapten-specific Ig 

(Rodriguez et al., 2007; Thai et al., 2007; Vigorito et al., 2007b).  These B-lymphocyte 

defects, along with faulty antigen presentation by dendritic cells and disturbed T 

lymphocyte maturation, contributed to the complex immunodeficiency exhibited by the 

miR-155-deficient animal, which was unable to generate immunological memory, and 

could not protect itself from repeated infections with the same pathogen (Rodriguez et al., 

2007).  Transcriptome profiling revealed that approximately 60 putative miR-155 target 

genes were upregulated in these mice compared to wild type counterparts (Vigorito et al., 

2007b).  At the time of this work, however, none of these potential targets had been 

specifically characterized with respect to miR-155 regulation and Ig maturation.   

 

2.2  miR-155 targets the 3’UTR of AID mRNA 

 Since I had observed miR-155 induction in class-switching B lymphocytes, my  

next objective was to understand how miR-155 contributes to Ig diversification.  I applied 
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several miRNA target prediction algorithms (PicTar (Krek et al., 2005), miRanda 

(Griffiths-Jones et al., 2006; John et al., 2004), and TargetScan (Grimson et al., 2007; 

Lewis et al., 2003)) to identify putative targets of miR-155 with relevance to either SHM 

or CSR.  These prediction algorithms tend to return copious lists of putative miRNA 

targets, but AID was consistently predicted as one such target.  Furthermore, the stringent 

prediction criteria of the TargetScan algorithm (Grimson et al., 2007) identified miR-155 

as the sole miRNA target site in the AID 3’UTR.  The 3’UTRs of AID mRNA diverge 

substantially in sequence and length between various species (Fig. 8c).  However, they 

coincide strikingly at an 8 nucleotide motif corresponding to the predicted miR-155 target 

site seed region.  To test the possibility of post-transcriptional AID regulation by miR-

155, I created reporter constructs containing the 3’UTR of AID downstream of a firefly 

luciferase reporter gene (Luc-UTR), along with variants harboring deletion (Luc-del-

UTR) or mutation (Luc-mut-UTR) of the miR-155 target site (Fig. 8d).  These constructs 

were transiently transfected into CH12-F3 cells stimulated to undergo CSR (and hence 

induced to express endogenous miR-155).  I observed repression of luciferase activity by 

~50% in cells transfected with Luc-UTR compared to cells transfected with a luciferase-

only construct (Fig. 8e).  This repression was alleviated upon disruption of the miR-155 

target site by deletion or mutation.  These data indicate that the single target site in the 

3’UTR of the AID mRNA renders it susceptible to repression by physiological levels of 

miR-155 expressed during CSR.   
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2.3  Mutation of the AID miR-155 target site results in deregulated AID expression 

and increased CSR 

 To study the behavior of in vivo AID expression in response to miR-155, I took 

advantage of a recently generated transgenic AID-GFP indicator mouse strain (Crouch et 

al., 2007). These mice carry a 75 kilobase-long BAC that contains the entire AID locus as 

well as its two adjacent gene loci (Mfap5 and Apobec1). The AID locus in this BAC has 

been modified such that the gene encoding GFP is inserted immediately downstream of 

the coding portion of the final AID exon (Fig. 9a).  The transgenic AID-GFP fusion 

protein expressed from this BAC was previously shown to replicate endogenous patterns 

of AID expression (Crouch et al., 2007).  The AID-GFP protein also retains catalytic 

activity, as it can rescue in vitro CSR in AID-/- B lymphocytes (data not shown).  Based 

on this published AID-GFP BAC, I created a second transgenic construct in which the 

miR-155 target site seed region was mutated to disrupt binding to miR-155 (AID-GFP-

Mut) (Fig. 9a). This second construct was used to generate five independent founder lines 

carrying the AID-GFP-Mut BAC transgene. 

 Splenic B lymphocytes from progeny of these transgenic founders were analyzed 

for AID-GFP expression in response to in vitro stimulation with IL-4 and LPS.  The 

dynamics of AID-GFP expression differed considerably between the AID-GFP control 

and AID-GFP-Mut mice.  The controls exhibited a gradual increase of low intensity AID-

GFP fluorescence with time of stimulation (as also observed in (Crouch et al., 2007)), 

mirroring the expression profile of endogenous AID.  In contrast, cells from AID-GFP-

Mut mice showed a rapid induction of AID-GFP, peaking early around day 3, then 

reaching a plateau (Fig. 9b).  The median intensity of AID-GFP fluorescence was also 
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higher in the AID-GFP-Mut mice, suggesting more abundant AID-GFP protein, 

compared to controls (data not shown).  Similar trends were also observed for AID-GFP 

mRNA, suggesting that miR-155 could regulate AID mRNA stability and protein 

translation (Fig. 9c).  My results demonstrate that in vivo disruption of the AID miR-155 

target perturbs the quantitative and temporal expression characteristics of AID. 

 These disparities were not due to position effects due to differential integration of 

each BAC transgene since large BACs are not susceptible to overexpression due to 

random insertion in active expression sites (Gong et al., 2003; Hatten and Heintz, 2005).  

Furthermore, I screened multiple independent AID-GFP-Mut founder lines, and also 

controlled for copy number variation by comparing animals with similar transgene copy 

numbers – in all instances yielding identical results (data not shown).  

 To assess the functional consequences of miR-155 target site disruption, the AID-

GFP control and AID-GFP-Mut mice were bred onto an AID-/- background to extinguish 

the contribution of endogenous AID.  I first compared in vitro CSR efficiency by 

stimulating splenic B lymphocytes from these mice using LPS (to induce CSR to IgG3), 

LPS and IL-4 (to induce CSR to IgG1), or LPS and IFNγ (to induce CSR to IgG2a).  

AID-/- B cells perform negligible in vitro CSR (data not shown). I observed increased 

CSR in the AID-GFP-Mut mice compared to AID-GFP control or wild type mice (Fig. 

9d).  This was the case regardless of whether these BAC transgenics were deficient or 

heterozygous for AID in the endogenous locus (Fig. 9d). These results indicate that miR-

155 directly regulates AID expression in stimulated B lymphocytes. 
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2.4  Mutation of the miR-155 target site leads to local but not global deregulation of 

AID in vivo 

 To study in vivo effects of disrupting the AID miR-155 target site, the transgenic 

mice were immunized intraperitoneally with nitrophenol conjugated to chicken gamma 

globulin (NP-CGG). The NP hapten induces a well-characterized immune response in 

peripheral lymphoid germinal centers (GC), where activated lymphocytes undergo Ig 

diversification (Cumano and Rajewsky, 1985; Furukawa et al., 1999; Taketani et al., 

1995).  Eighteen to 21 days after immunization, I evaluated AID-GFP expression by flow 

cytometry in various B lymphocyte subsets.  Mutation of the miR-155 target site did not 

disrupt global transcriptional control of AID: immature CD93+ B lymphocytes in the 

bone marrow, along with thymic and peripheral CD4+ or CD8+ T lymphocytes were 

devoid of AID-GFP (Fig. 10).  However, AID-GFP was detected in B cell populations 

associated with activation.  GC B lymphocytes (CD95+ B220+) from spleen and intestinal 

Peyer’s patches expressed AID-GFP in both the control and AID-GFP-Mut mice.  The 

latter, however, showed far more intense GFP fluorescence, indicating a similar 

overabundance of AID-GFP during the GC reaction, as observed during in vitro CSR 

(Fig. 11a).   

 After completing the GC reaction, activated B lymphocytes exit into the periphery 

and differentiate into plasma or memory cells.  These post-GC B lymphocytes cease to 

express AID (Crouch et al., 2007).  Accordingly, the AID-GFP control mice did not 

express AID-GFP in B cells in the peripheral blood (Fig. 11b).  In contrast, a GFP+ 

population of B cells was consistently detected in the blood of immunized AID-GFP-Mut 

mice (Fig. 11b).  These appeared to be a heterogeneous population of B lymphocytes  
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(B220int-hi), which were mostly IgG1+ but also included IgM+ and IgD+ non-switched 

cells.  This B lymphocyte population did not appear to arise ectopically as a consequence 

of AID-GFP overexpression, as a similar B220int (though GFP–) population was also 

present in the AID-GFP controls.  Thus, disruption of the AID miR-155 target site allows 

for improper persistence of AID-GFP expression beyond the GC compartment.  These 

results confirm once again that the phenotypes I observed cannot be explained by BAC 

copy number variation, which could be expected to increase protein expression but 

cannot lead to persistent expression in cells where the gene of interest is normally shut 

off.  My data strongly support the idea that miR-155 controls AID expression levels and 

specifically, plays a pivotal role in extinguishing AID expression in post-GC B cell 

populations. 

 

2.5  Loss of miR-155 regulation of AID results in impaired affinity maturation 

 To determine the functional impact of defective AID downregulation, I compared 

affinity maturation of NP-binding IgG1 in sera collected at 8 days and 19 or 21 days after 

immunization.  The ELISA capture substrate was NP conjugated to BSA in different 

ratios to detect high-affinity (NP3-BSA) and total (NP30-BSA) immunoglobulins (Ig) 

specific for NP.  Affinity maturation was measured as the NP3:NP30 -binding ratio.  As 

expected, I observed an increase in the proportion of high-affinity Ig from day 8 to 

day19/21 in control AID-GFP mice.  However, affinity maturation was significantly 

impaired in AID-GFP-Mut animals (Fig. 12).  

 To ascertain if the observed affinity maturation defect resulted from AID-GFP 

overexpression in GCs, I analyzed the mutation load at Ig loci in CD95+ GC B  
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lymphocytes.  After sequencing the VH186.2 gene segment, which is selected for during 

the Ig response against NP (Cumano and Rajewsky, 1985) (to assess the mutation profile 

under selection) and the JH4 intron (to assess the mutation profile in the absence of 

selection pressure), I found that the frequencies and overall patterns of mutation did not 

differ substantially between AID-GFP and AID-GFP-Mut mice (Table 1). Thus, I 

considered two possibilities:  either the repair mechanisms that process AID-mediated 

lesions are not overwhelmed by higher lesion loads, or excess AID was not specifically 

targeted to the Ig locus.   

 Aside from the Ig genes, a number of other genes, including the oncogene Bcl6, 

have been shown to hypermutate in germinal centers (Pasqualucci et al., 2001; Shen et 

al., 1998).  I reasoned that excess AID mutational activity, if not targeted to the Ig genes, 

could instead be targeted to these other non-Ig loci.  To test this hypothesis, I cloned and 

sequenced Bcl6 from GC B lymphocytes of NP-immunized AID-GFP and AID-GFP-Mut 

mice.  I found that Bcl6 from AID-GFP GC B cells was mutated with a frequency of 0.17 

x 10-3 per base (similar to reported Bcl6 mutation frequency in murine GC B cells from 

Peyer’s Patches (Muto et al., 2006) (Table 1).  In contrast, Bcl6 from AID-GFP-Mut GC 

B lymphocytes mutated about three times as frequently (0.46 x 10-3 per base) (Table 1).  

This observation supports the hypothesis that excess AID activity within the GC is 

distributed to non-Ig targets for hypermutation, suggesting that loss of miR-155-mediated 

downregulation of AID could result in higher rates of AID-dependent translocation or 

lymphomagenesis.   
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Table 1.   In vivo mutation frequencies in AID-GFP and AID-GFP-Mut mice 

 

Genotypea VH186.2 JH4 intron Bcl6 
AID-GFP 31.8 6.8 0.17 
 (394/12,400)b (79/11,600) (7/41,600)c 
    
AID-GFP-Mut 30.7 5.5 0.46 
 (800/26,000) (101/18,400) (18/39,000) 
aMutation data are pooled from two animals 
b(number of point mutations / total nucleotides sequenced) 
cChi square test, P=0.0306 
 

Mutation frequencies x 10–3 per base (accumulated number of mutations in a given region 

divided by the total number of nucleotides sequenced from that region) are shown for 

VH186.2, JH4 intron, and Bcl6 from splenic GC B cells in NP-immunized AID-GFP and 

AID-GFP-Mut mice.   

 



52 

 

 

 

 

 

Table 2. Clonal variability in post-GC B lymphocytes of AID-GFP and AID-GFP-Mut 

mice 

 

Genotypea # unique clones / total Intraclonal mutation 
frequency x 10-3 

%W33L or Y99Gd 

AID-GFP 9/50c 0.55 (11/20,000)b 63 
    
AID-GFP-Mut 36/80c 0.87 (34/39,000) 18 
aMutation data represent unique clones pooled from four animals 
b(number of point mutations / total nucleotides sequenced) 
cFisher’s exact test for the indicated data sets, P=0.043 
dW33L and Y99G are substitutions associated with high affinity 
 

 

Clonal variability is expressed in terms of clonal mutations in the JH4 intron and amino 

acid substitutions associated with NP antibody affinity maturation. 
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  However, these data did not explain the loss of affinity maturation observed in the 

AID-GFP-Mut mice.  I then asked if continued mutation outside of the GC (due to 

persistent AID-GFP expression in post-GC B cells) could account for this phenotype.  To 

test this possibility, I cloned and sequenced the JH4 intron from post-GC lymphocytes  

from peripheral blood of AID-GFP and AID-GFP-Mut mice.  I found that B lymphocytes 

from the blood of AID-GFP mice comprised a small number of highly related and 

affinity-matured clones, with some intraclonal heterogeneity (Table 2).  This is not 

surprising, as post-GC B cell clones in the blood have undergone stringent positive 

selection for those producing high-affinity Ig.  In contrast, I found a higher number of 

unique post-GC B lymphocyte clones in the blood of AID-GFP-Mut animals.  Because 

these clones were so heterogeneous, I could not conclusively ascertain if the mutational 

load per unique clone was higher in comparison to those from the blood of AID-GFP 

mice (i.e., whether these cells were continually mutating their JH4 intron).  However, in 

agreement with the serum data, these clones did not appear to have acquired the amino 

acid substitutions associated with high affinity NP antibodies (notably the W33L 

substitution or the Y99G substitution (Furukawa et al., 1999)).  Two non-mutually 

exclusive explanations could account for these results:  1) selection remains intact in the 

GC to allow for emergence of high affinity B lymphocyte clones, but continued mutation 

in the outside of the GC diminishes the affinity of the previously-selected clones, or 2) 

overabundant AID expression in the GC somehow disturbs the process of selection, and 

allows the escape of low affinity Igs from the GC.   
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2.6  Discussion 

Although hundreds of miRNAs are present in the mammalian genome, genetic 

studies addressing their physiological roles are at an early stage.  Here, I address the 

function of miR-155 in the context of antibody diversification by identifying this 

particular miRNA as upregulated in B cells undergoing CSR, by bioinformatically 

identifying AID as a putative target, and by genetically mutating the target sequence in 

the 3’UTR of the AID mRNA to allow the resulting mRNA to escape miR-155 control.  

These experiments were the first to identify a target of a miRNA in vivo, not by 

manipulating expression of the miRNA itself, but rather, by genetically disrupting the 

association between a miRNA and its target.   

 Most miRNA-targeted mRNAs contain multiple predicted target sites for several 

different miRNAs.  Deletion of just one of these targeting miRNAs can result in target 

upregulation in a dose-dependent manner, leading to the hypothesis that multiple 

microRNAs synergistically fine-tune the expression of a single target gene (Xiao et al., 

2007).  There is also a remarkable degree of regulatory cooperativity between closely-

spaced microRNA target sites (Grimson et al., 2007).  Surprisingly, stringent target site 

predictions for the AID 3’UTR identify only a single miRNA target site complementary 

to miR-155.  Mutating the seed region of this site leads to dramatic RNA and protein 

overabundance and disruption of proper temporal downregulation.  My observations are 

consistent with the miR-155-/- mouse phenotype [reported by two independent groups as 

my own work was in progress (Rodriguez et al., 2007; Thai et al., 2007)], which also 

featured increased AID expression (though to a lesser degree than observed in my 

transgenic mouse model) (Vigorito et al., 2007a).  The behavior of the transgenic AID-



55 

GFP-Mut RNA and protein strongly supports a model in which miR-155 directly 

downregulates AID expression.  In this particular case, AID protein amounts and activity 

are already limited by haploinsufficiency combined with multi-factorial regulation.  

Superimpose this regulatory network with a “subtle” suppressor such as miR-155, and the 

effects of a single miRNA could be far more substantial than anticipated.  One could 

imagine a very fine tipping point between AID expression and repression, and 

temporally, miR-155 could provide the regulatory impetus that biases the system towards 

extinguishment, ensuring an optimal immune response.   

 Ablating miR-155 control of AID expression led to increased RNA and protein 

expression in switching cells, which underwent significantly higher levels of CSR.  The 

de-repressed AID-GFP protein in germinal center lymphocytes, however, did not produce 

elevated SHM frequency in the Ig locus, instead causing increased hypermutation of a 

non-Ig locus, Bcl6.  This is consistent with previous work by Honjo and colleagues (Muto 

et al., 2006), who likewise showed that transgenic AID overexpression does not lead to 

an increase in SHM.  One can infer from these combined results that: 1) there are 

fundamental differences in targeting of AID to the V region genes versus the C region 

genes, and 2) SHM may involve a limiting factor that shields potential deamination 

targets in the Ig locus from excess AID activity.   

 Excess AID is likely to increase the rates of chromosomal translocations 

associated with errant hypermutation (Dorsett et al., 2008; Ramiro et al., 2006; Ramiro et 

al., 2004).  In the absence of miR-155 control, AID overexpression may be causal for B 

cell lymphomagenesis.  Indeed, Kluiver et al. have recently documented a lack of miR-

155 expression in primary cases of B cell Burkitt lymphomas, which constitutively 
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express AID (Kluiver et al., 2006).  

In addition to overabundance of AID, I have shown that lack of miR-155 control 

leads to persistence of AID expression in post-germinal center B cells, effectively 

marking a unique subset of circulating B cells as recent emigrants from the germinal 

center.  I also find that persistent AID expression is associated with specific defects in 

affinity maturation.  It is possible that persistent AID expression supports ongoing 

mutation in the Ig locus well after cells exit the germinal center with an affinity-matured 

antigen receptor, effectively destroying the properly selected Ig repertoire.  However, one 

might expect to observe a much larger increase in clonal heterogeneity in peripheral B 

cell populations, if this were the case.  Alternatively, my observation of multiple low-

affinity B cell clones in the blood of AID-GFP-Mut animals could suggest a defect in 

positive selection of properly matured B cells.  Though the mechanisms of positive 

selection and affinity maturation are not well understood, it is thought that B lymphocytes 

cycle between the dark zone of the germinal center, where mutation occurs, to the light 

zone, where their newly minted receptors are substrates for positive selection.  

Eventually, B cells bearing high-affinity Igs are thought to emerge after multiple rounds 

of recycling through the germinal center.  My data would support a scenario where B 

cells overexpressing AID may not be allowed to “recycle” into a germinal center for 

proper affinity maturation.  This would require some mechanism for cellular sensing of 

AID expression that would form a feedback loop between proper AID extinction and GC 

cycling.  Particularly if AID forms long-lived complexes on its transcribed DNA 

substrates, one could imagine that funneling of free-floating DNA repair factors onto an 

assembling stable AID mutasome could provide one means of stochiometric “counting” 
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of AID molecules.  Coupling of DNA repair to cell cycle and cell proliferation perhaps 

then informs the choice between continued GC recycling and competition for GC exit.  

Alternatively, thresholds of DNA damage at non-Ig targets of AID mutagenesis could 

serve as proxy read-outs of AID activity.  Perhaps these cycling lymphocytes can only 

tolerate so much collateral damage (whether in the form of generalized DNA damage or 

functional effects specific to mutation of these non-Ig loci) before they are shunted 

towards GC exit.  In either of these scenarios, excess AID activity could overwhelm the 

ability of the system to accurately recognize and release high affinity B lymphocytes.  

This, however, remains pure speculation as little is presently known about the cellular 

and molecular parameters governing the mechanism of proper selection and affinity 

maturation. 

The complex immunodeficiency of the miR-155 deficient mouse highlights the 

immense contribution of miR-155 to various aspects of vertebrate immunity (Rodriguez 

et al., 2007; Thai et al., 2007).  These mice exhibited modest increase in AID expression, 

decreased in vivo CSR to IgG1, and impaired affinity maturation – likely reflecting the 

composite deregulation of at least sixty miR-155-responsive mRNA targets (Vigorito et 

al., 2007a).  In contrast to global ablation of miR-155 regulation, I have described the 

specific disruption of a single miR-155 – s  target interaction.  In our transgenic mouse 

model, I observed robust deregulation of AID-GFP expression, increased in vitro CSR, 

and impaired affinity maturation – some of which may not be apparent in the context of 

total miR-155 deficiency.  Of the deregulated mRNA targets in the miR-155-/- mouse, 

only two have been examined in any detail with respect to miR-155 regulation:  AID, and 

the transcription factor Pu.1 (Vigorito et al., 2007a).  The challenge in coming years will 
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be to validate the entire suite of predicted targets, and integrate this knowledge to 

understand how a single miRNA can coordinate an intricate immune response.   

As a central catalyst for immunoglobulin diversification, AID is regulated by 

networked transcription factors, intracellular trafficking, and protein modifications.  I 

have described an additional miRNA-mediated pathway of AID regulation, which 

controls AID expression in germinal center B cells and ensures proper extinction of AID 

expression as cells affinity mature and exit the secondary lymphoid organs. Thus, miR-

155 plays an important role in the molecular restraint of AID, an enzyme that confers 

great immunological benefit, but must be tightly regulated to limit its mutagenic and 

oncogenic potential.  

The AID miR-155 target site, a relatively miniscule regulatory motif, has been 

evolutionarily maintained amidst a sea of highly divergent 3’UTR sequence – all the way 

from bony fishes to humans.  The conservation of this site almost parallels the 

phylogenetic origins of AID itself, which dates to cartilaginous fishes (Conticello et al., 

2005).  This suggests an ancient, but stringently selected role for miR-155 in regulating 

AID expression.  Recent deep sequencing approaches in simple non-bilaterian animals 

reveal that miRNA function extends deep into animal phylogeny, serving as a primordial 

mechanism of post-transcriptional gene regulation (Grimson et al., 2008).  Conjecturally, 

AID’s first appearance in the evolutionary record was likely followed by the rapid 

acquisition of a regulatory miR-155 target site.  As the immunoglobulin genes co-evolved 

sequence motifs amenable to AID deamination (Jolly et al., 1996; Kepler, 1997; Wagner 

et al., 1995), sequentially giving rise to SHM, then CSR, the reach of miR-155 regulation 

eventually extended to adaptive immunity.   
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Control of miR-155 expression itself is an important factor, given the substantial 

impact of miR-155 function on human health.  Reportedly, AP-1 and NF-κB binding 

sites provide transcriptional control over Bic, but the definitive set of transcriptional 

regulatory factors for the gene is not known (O'Connell et al., 2007; Yin et al., 2008a; 

Yin et al., 2008b).  Bic RNA undergoes co-transcriptional processing (splicing and 

differential polyadenylation), which may also exert as-yet undefined effects on miR-155 

expression (Tam, 2001).  In addition, miR-155 is intriguing from a general perspective of 

miRNA biogenesis, as defects in processing of mature miR-155 from Bic have been 

observed in certain B cell lines (Kluiver et al., 2007).  This may indicate the existence of 

general control mechanisms for miRNA biogenesis that are differentially manipulated in 

healthy and diseased cell states.   

Case-by-case validation of individual miRNA targets, while enormously 

informative, must be supplemented with “big picture” perspectives of miRNA function.  

Bioinformatic approaches have driven, and should continue to drive this outlook on 

miRNA biology, as diverse data sets from target prediction algorithms, miRNA 

expression atlases, and tissue-specific transcriptome or proteome profiles become 

accessible in cross-referenced form.  As a representative example, miR-155 expression is 

relevant to native immune responses, as well as diverse types of cancers (Eis et al., 2005; 

Gironella et al., 2007; Kluiver et al., 2005; van den Berg et al., 2003; Volinia et al., 2006) 

and viral infection (Gottwein et al., 2007; Skalsky et al., 2007).  Comparisons between 

miR-155 specific sets of co-regulated gene could be incredibly useful in understanding 

the expression patterns that determine the balance between healthy and pathological 

function.   
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When the first miRNAs were characterized in nematodes, none could have 

predicted that tiny chains of ribonucleotides could exert such significant influence over 

gene expression throughout evolution and throughout the living world.  We now 

understand that miRNAs establish intricate webs of regulation, where single targets are 

often combinatorially targeted by multiple miRNAs, and conversely, most miRNAs 

regulate multiple targets (Lim et al., 2005).  With the emergence of complex 

physiological systems in higher organisms, ancient mechanisms of miRNA regulation 

have networked with newer mechanisms of transcriptional, post-transcriptional, and post-

translational regulation to create nuanced temporal and spatial patterns of gene 

expression in diverse cell types.  Here I have presented a specific example where one 

miRNA contributes substantially to immunoglobulin gene diversification and adaptive 

immunity.   
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CHAPTER 3:  Noncoding RNAs in cis 

 

 In addition to the undoubtedly extensive network of miRNA control during Ig 

diversification, there are tantalizing hints that long ncRNAs may also influence CSR in 

cis.  As the unrearranged (or germline) constant region genes become activated for DNA 

recombination, they undergo premature noncoding transcription (Fig. 13a).  The sterile 

read-through initiates from the Ig heavy chain enhancer (Eµ) for the Cµ region, or from 

independent promoters located in each of the downstream C regions; then traverses a 

noncoding exon (I), the S region, and the C region exons.  The transcript subsequently 

undergoes splicing to remove the intronic S region and the C region introns.  Site-specific 

germline transcription (GLT) invariably precedes the induction of CSR to a particular 

constant region (Gerondakis, 1990; Lebman et al., 1990; Lutzker and Alt, 1988; Lutzker 

et al., 1988; Radcliffe et al., 1990; Rothman et al., 1990a; Rothman et al., 1990b; 

Stavnezer et al., 1988; Xu and Stavnezer, 1990).  Stop codons litter all three reading 

frames of the I exons, so the transcripts are unlikely to retain any protein-coding capacity.  

Furthermore, B lymphocytes harboring a heterologous sequence in place of the I exon 

can still potentiate CSR (Harriman et al., 1996; Qiu et al., 1999).  However, mutation or 

deletion of the germline promoters leads to CSR defects, indicating that either the process 

of transcription, or the noncoding RNA itself is functionally important (Bottaro et al., 

1998; Jung et al., 1993; Zhang et al., 1993).   

  One aspect of GLT function may relate to creation of accessible single-stranded 

DNA substrates for AID, whether in the context of a transcriptional bubble, or a 

transcription-independent R-loop:  G-rich RNA hybridized to its cognate DNA.  The 
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G/C-rich S regions are supremely amenable to the formation of such structures, and 

indeed, there is some evidence of R-loops arising in mammalian S regions (Daniels and 

Lieber, 1995; Mizuta et al., 2003; Reaban and Griffin, 1990; Reaban et al., 1994; Yu et 

al., 2003).  The G/C-poor S regions of Xenopus, however, are still capable of mediating 

CSR, suggesting that R-loop dependent mechanisms of regulating substrate accessibility 

may have manifested recently in evolution.  Thus, the magnitude of R-loop contribution 

in CSR is uncertain.   It is unknown how an in vivo R-loop at the S region would be 

resolved, and if this model would be consistent with the kinetics of GLT splicing (since 

the S region is excised as an intron, and presumably degraded rapidly).  In addition, the 

C-rich strand of the S region, incapable of forming an R-loop, would require a distinct 

mechanism to generate single-strandedness.   

 Alternate functions for GLT may be proposed based on its known characteristics.  

Given that S region DNA is highly repetitive and palindromic, an RNA transcribed from 

the S region, regardless of transience, would likely harbor secondary structures such as 

double stranded stem-loops.  A possibility I considered was the production of small guide 

RNAs from the pre-spliced GLT.  Conceivably, double stranded RNA motifs could be 

recognized and processed by RNAi machinery to generate sequence specific guides that 

recruit downstream protein effectors for CSR.  As I scanned my small RNA cloning data 

from class switching B lymphocytes, I found no evidence to support this hypothesis (data 

not shown).  I cannot, however, exclude the possibility of S-region derived small RNAs 

outside of the canonical siRNA size range.   
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  To query the general transcriptional accessibility of the unrearranged C regions, I 

assayed for transcripts arising from both strands.  Surprisingly, low abundance antisense 

transcripts accompanied sense GLT, initiating from heterogeneous start sites (Fig. 13b).  

These unpublished observations agree quite well with those reported by Alt and 

colleagues (Perlot et al., 2008).  A similar process of intergenic antisense transcription 

also occurs in the upstream variable regions prior to V(D)J recombination, and has been 

proposed to facilitate DNA recombination by modulating chromatin accessibility 

(Bolland et al., 2004).  Currently, I can only speculate on the functional significance of 

this bidirectional transcription.  The 5’ heterogeneity and the low abundance of the 

antisense transcripts relative to their sense counterparts suggest that:  1) antisense 

transcription depends on prior sense transcription, 2) the antisense transcript may not 

reflect an active promoter-driven process of transcription, 3) the antisense transcript may 

be highly unstable, rapidly degraded, or rapidly processed to disallow accumulation.  One 

can imagine functional scenarios consistent with a transiently available antisense species.  

Rapid annealing of sense and antisense RNA could form a duplex to be processed into 

guide RNAs in an RNAi-independent fashion.  Alternatively, duplexing between the two 

transcripts, followed by degradation could provide a means of regulating sense GLT 

abundance.  This would be important in the case of a quantitative relationship between 

CSR and GLT – which so far, is not clear.  Finally, bidirectional transcription may be 

relevant from the perspective of locus mechanics.  Perhaps convergence of two RNA 

polymerases travelling in opposite directions could create transcriptionally paused S 

region substrates amenable for AID activity.   
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 Clearly, many questions have yet to be resolved on the issue of germline 

transcription, regardless of orientation.  The temporal extent to which this phenomenon 

precedes functional CSR suggests some sort of preparatory significance, perhaps with 

implications for targeting of AID activity or double strand break repair activity.  The role 

of RNA processing, in particular, remains a mystery.  In vivo experiments have 

previously demonstrated that genetic ablation of I exon splice donor sites can severely 

hinder CSR (Hein et al., 1998; Lorenz et al., 1995).  The co-transcriptional processing of 

nascent GLTs – capping, splicing, and polyadenylation – may function outside of direct 

RNA maturation, and instead allow for secondary recruitment of downstream factors.  

For example, the RNA polyadenylation complex has recently been shown to interact with 

DNA repair factors such as Ku70 and DNA-PK, which are key to end joining in CSR 

(Shi et al., 2009).  One could imagine similar role for the spliceosome, an enormous 

multi-protein complex that includes many subunits not directly involved in RNA splicing 

(Zhou et al., 2002).  Thus, early noncoding transcription prior to CSR could pre-assemble 

proteins involved in DNA break repair or end joining at the Ig locus.  Alternatively, the 

GLT itself may potentially attract protein partners independently of co-transcriptional 

RNA processing, acting as a recruitment platform for RNA-binding proteins and 

associated factors that could promote locus accessibility or downstream reactions in CSR.  

Byproducts of splicing could also be functionally important in this context.  Occasional 

examples of highly stable introns have been reported (Clement et al., 2001; Clement et 

al., 1999), so with regard to the Ig locus, a long-lived intronic S region RNA could form a 

highly structured guide RNA, or even support stable R-loop formation at the S region 

DNA.  I am currently investigating several of these testable hypotheses.   
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 In recent years, extended noncoding transcription has been observed on a 

genome-wide scale, with signs of evolutionary conservation (Guttman et al., 2009).  

Computationally, these sites tend to cluster with genes involved in transcriptional 

regulation, and are unlikely to represent transcriptional noise.  Widespread bidirectional 

transcription has also been identified, representing at least two distinct phenomena.  The 

mammalian transcriptome includes copious numbers of coordinated sense and antisense 

transcript pairs (Chen et al., 2004; Katayama et al., 2005; Kiyosawa et al., 2003; Yelin et 

al., 2003), where antisense interference may generally regulate abundance of the sense 

strand.  Recently, a separate observation of diverging bidirectional transcription has been 

made at promoters of active genes (Core et al., 2008; He et al., 2008; Preker et al., 2008; 

Seila et al., 2008; Xu et al., 2009), and is proposed to influence promoter regulation and 

accessibility.  Germline transcription appears to incorporate aspects from each of these 

newly described processes, which may inform our conception of how GLT contributes to 

CSR.  Given the unexpected ubiquity of long ncRNAs in the mammalian transcriptome, I 

expect that GLT may indeed serve as one representative example of how long ncRNAs 

can modulate gene accessibility, targeting, or regulation.  
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CHAPTER 4:  Perspective 

 

Here I have described examples of RNA-mediated regulation of the 

immunoglobulin gene locus – modulated by noncoding RNAs, both large and small.  Far 

from mere relics of an archaic RNA world, regulatory ncRNAs have proven to extend 

RNA function past simple information transfer between DNA and protein.  These RNAs 

show exquisite specificity, as they scan the transcriptome in a sequence-dependent 

manner; as well as functional cooperativity, as they collaborate with RNA-dependent and 

RNA-independent regulatory mechanisms.  One can easily recognize how RNA, as a 

primordial bio-polymer, would embody all the necessary qualities – genetic storage, 

catalytic activity, and regulatory activity – to maintain and propagate organic life in the 

RNA world (Gilbert, 1986; Woese, 1967).   

 These interconnected stories of noncoding RNA regulation in Ig diversification 

testify to a simple truth reiterated endlessly in the scientific literature:  a genome is more 

than the sum of its parts.  As coded information passes linearly from gene to functional 

protein, that information can undergo astonishing amounts of editing – whether in the 

form of somatic DNA alterations (as in Ig diversification), direct regulation by protein 

co-factors (for example, deamination of Ig DNA by AID), direct regulation by noncoding 

RNAs (such as Ig germline transcripts), or secondary regulation (for example, miR-155-

mediated repression of AID).  As these cycles of gene expression and regulation 

propagate in every cell type, in every organism, one can appreciate the awesome 

complexity that has developed through the evolutionary continuum from the very first 

self-replicating biological molecules all the way to sentient life.   
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CHAPTER 5:  Materials and Methods 

 

B lymphocyte isolation and cell culture.  

CD43– naïve splenic B lymphocytes were purified by magnetic separation (MACS, 

Miltenyi Biotec). Cells were maintained at 0.5 - 1 x 106 /ml in standard culture medium, 

and were treated with 5 ng/mL IL-4 (Sigma) and 25 µg/mL LPS (Sigma) to induce CSR 

to IgG1; 25 µg /mL LPS to induce CSR to IgG3; or 25 µg/mL LPS and 0.5 µg/mL IFNγ 

(Sigma) to induce CSR to IgG2a. CH12-F3 cells were maintained in standard culture 

medium, and were treated with 5 ng/mL IL-4, 0.2 µg/mL anti-CD40 (eBioscience), and 

0.1 ng/mL TGF-β (R&D Systems) to induce CSR to IgA. Cell cultures were sampled at 

various time points for FACS analysis or preparation of RNA. 

 

RNA isolation and small RNA cloning.  

Total RNA was prepared with Trizol (Invitrogen), and 21-23 nucleotide RNAs were 

isolated, cloned, sequenced, and catalogued as previously described (Landgraf et al., 

2007).  

 

RNA blots.  

Total RNA (10-20 µg) was run on a 15% TBE-Urea Criterion gel (Bio-rad), and 

transferred to Hybond N+ nylon membrane (Amersham Biosciences) by semi-dry 

blotting. Membranes were UV-crosslinked and dried. A miR-155 probe (5’-

ACCCCTATCACAATTAGCATTAA) was prepared by T4 polynucleotide kinase 

labeling with γ32P-ATP. Blots were hybridized in Denhardt’s solution or QuickHyb 
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(Stratagene) at 50 ºC, and were washed twice with Wash Solution I (5% SDS, 5x SSC), 

and twice with Wash Solution II (1% SDS, 1x SSC). 

 

Luciferase assays.  

Reporter constructs were modified from the pRL-TK plasmid (Promega). The renilla 

luciferase gene was replaced by firefly luciferase (fLuc) to create the Luc construct. The 

3’UTR of the AID mRNA was cloned directly downstream of fLuc to create the Luc-

UTR plasmid. This was then altered by Quikchange PCR (Stratagene) to create the Luc-

UTR-Del and Luc-UTR Mut constructs. CH12-F3 cells were co-transfected with a 

reporter construct and pRL-TK by Amaxa nucleofection, and were stimulated for CSR as 

above. Cells were lysed 48 hours after transfection and the Dual Luciferase Reporter 

Assay System (Promega) was used to measure firefly and renilla luciferase activities. 

 

CSR rescue by AID-GFP.  

Replication-deficient retroviruses were generated by transfection of 293T cells with 

either AID-GFP-pQCXIP or pQCXIP alone, along with pCL-Eco packaging plasmid. 

Viral stocks were used to transduce naïve splenic B lymphocytes from AID-/- mice, which 

had been stimulated in culture with IL-4 and LPS. 

 

Transgenic mice.  

The AID-GFP-Mut BAC was modified from the AID-GFP BAC used to create the 

previously described AID-GFP reporter mouse (Crouch et al., 2007) (copy number 

ranging from 1-10). Mutation of the miR-155 target site was achieved by homologous 
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recombination in bacteria as described previously (Misulovin et al., 2001). Briefly, the 

AID miR-155 target site plus ~1 kb flanking sequence on either side (for homologous 

recombination) was amplified by PCR from BAC RP24-68I7 (Genbank AC158651) 

using the following primers:  5'-GGCGCGCCGGTAAGTCTGCCTGTCTGTCTGCC 

and 5'-GCGGCCGCGCGTCATTTCCTTGCCACGG.  The PCR product was cloned into 

TOPO-pCR4 (Invitrogen). Point mutations in the miR-155 target site were introduced by 

Quikchange PCR (Stratagene).  The sequence was again amplified with the same primers 

as above, and cloned into shuttle vector pLD53.SC.AEB (which also contains the RecA 

and SacB genes).  After propagation in PIR2 bacteria (Invitrogen), the construct was 

electroporated into bacteria carrying the previously-described modified BAC RP24-68I7 

containing the AID-GFP locus (Crouch et al., 2007).  Cointegrates were selected for in 

liquid culture in the presence of ampicillin (for the insert-containing shuttle vector) and 

chloramphenicol (for the BAC), during which RecA-mediated recombination occurred 

between the BAC and homologous sequences inserted into the shuttle vector.  Cultures 

were plated on chloramphenicol, and the desired recombination event (introduction of the 

modified miR-155 target site into BAC and deletion of the shuttle vector sequence) was 

ensured by treating duplicate plates with UV illumination and sucrose to ensure the loss 

of the shuttle-vector-encoded RecA and SacB, respectively.  Integrity of the newly-

generated AID-GFP-Mut locus was confirmed by sequencing.  Generation of the AID-

GFP-Mut transgenic founder mice (copy number ranging from 5-20) was performed by 

the Rockefeller University Transgenic Services Laboratory, using standard methods.  

Transgene copy numbers were estimated by comparison to copy number standards in 

Southern analysis.  Animals were housed and studied in accordance with institutional 
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guidelines. 

 

Quantitative PCR. 

cDNA was generated from DNAse-I-treated RNA, and AID-GFP expression was 

monitored by quantitative PCR (5’- GACTTGCGAGATGCATTTCGTATG and 5’- 

GCTGAACTTGTGGCCGTTTAC).  cDNA samples were normalized by also amplifying 

Ku70 (5’- TGCCCTTTACTGAGAAGGTGAC and 5’- 

TGCTGCAGGACTGGATTCTC).   

 

Immunization and ELISA.  

Mice were immunized with 100 µg alum-precipitated NP-CGG (Biosearch Technologies) 

by intraperitoneal injection. Serum was prepared from peripheral blood collected by 

retro-orbital bleed at various time points. Serum dilutions were incubated in NP3-BSA or 

NP30-BSA -coated wells of microtiter plates, and NP-specific Ig were detected by ELISA 

using reagents from Southern Biotechnologies Clonotyping System-HRP. Affinity 

maturation was calculated as the ratio of NP3-binding (high affinity anti-NP Ig) to NP30-

binding (total anti-NP Ig). 

 

FACS analysis.  

Cell suspensions from bone marrow, spleen, Peyer’s patches, thymus, and peripheral 

blood were prepared and stained for FACS using standard procedures. The following 

reagents were used to stain cells for FACS analysis (all are from BD Biosciences except 

where indicated): CD93-PE (eBioscience), IgM-APC (Jackson Immunoresearch), CD95-
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PE-Cy7, B220-PerCP, B220-APC, IgG1-biotin, IgM-biotin, IgD-biotin (eBioscience), 

CD8-PerCP, CD4-APC, NP-PE (Biosearch Technologies), Streptavidin-PerCP. 

 

Mutational analysis.  

Genomic DNA was prepared from sorted splenic germinal center B cells and white blood 

cells from peripheral blood. The following were PCR-amplified with PfuTURBO 

polymerase (Stratagene): JH4 intron (5'-AGCCTGACATCTGAGGAC and 5'-

TAGTGTGGAACATTCCTCAC, annealing temperature 55 ºC for 35 cycles; followed 

by a nested reaction 5'-CTGACATCTGAGGACTCTGC and 5'-

GCTGTCACAGAGGTGGTCCTG, annealing temperature 58 ºC for 35 cycles);  

VH186.2 (5'- TCTTTACAGTTACTGAGCACACAGGAC and 5'- 

GGGTCTAGAGGTGTCCCTAGTCCTTCATGACC, annealing temperature 50 ºC for 

35 cycles; followed by a nested reaction 5'-CAGTAGCAGGCTTGAGGTCTGGAC and 

5'- GGGTCTAGAGGTGTCCCTAGTCCTTCATGACC, annealing temperature 64 ºC 

for 35 cycles); bcl-6 (5'-GGCCGGACACCAGGTGATTAT and 5'- 

AGGGAGGGAACTACCGCTGAG, annealing temperature 68 ºC for 35 cycles).  

PCR products were blunt-end cloned into pSC-B (Stratagene), and sequenced using a 

standard T3 primer. 

 

Strand-Specific RT-PCR. 

Total RNA was prepared from splenic B cells using Trizol (Invitrogen) and treated with 

DNAse I (Promega).  The One-Step RT-PCR kit (Qiagen) was used to assay for strand 

specific transcripts, where only one primer was added to the reverse transcription 
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reaction, followed by addition of the second primer for the PCR amplification rounds.  

The primers used were:  µ1F – 5’-GCATTTACAGTGACTTTGTTCATG, µ1R – 5’-

CAGCAGCCTGGTCTCAGAC, µ4F – 5’-GGAACAAGGTTGAGAGCCC, µ4R – 5’-

CAGCTCACCCCAACACAGC, µ6F – 5’-GGCTGGGTGAGCTGGAG, µ6R – 5’-

GCTCAGCCCCGTTCATTC, µ8F – 5’-CAGTCCTTCCCAAATGTCTTC, µ8R – 5’-

GGTATTCATCTGAACCTTCAAG; γ1F – 5’-CTGCTTTCACAGCTTCCACATG, γ1R 

– 5’-CCATGCCAAACACATTCCTCAG, γ4F – 5’-CCACTCTTCCATTTGTCCTTG, 

γ4R – 5’-GGAGACCAGGCTGAGCAG, γ5F – 5’-CTGCGTCTATTCAGCCTTGAC, 

γ5R – 5’-GCCTTGGGAGCCAGAACAG, γ8F – 5’-CCAAACTAACTCCATGGTGAC, 

γ8R – 5’-GTCCACCTTGGTGCTGCTG. 

 

5’ RACE PCR. 

5’-end mapping of antisense transcripts was carried out using a 5’RACE PCR kit 

(Invitrogen), using primers listed above, and the following additional primers:  µ1Fn – 

5’-GCCTTACTATTAAGACTTTGACATT, µ4Fn – 5’-

GCGAGGCTCTAAAAAGCAT, µ6Fn – 5’-GAGCTGAGCTGAGGTGAAC, µ8Fn – 

5’-CCCCTGTCTGATAAGAATCTG; γ2Fn – 5’-CCTGAGCCCCGAGGATATC, γ5Fn 

– 5’-CCAAGGGATAGACATGTAAGC, γ8Fn – 5’-CCTGGGATGCCTGGTCAAG.   
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