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FIBRIN FORMATION AND DISSOLUTION IN THE PROGRESSION OF 

AMYLOID-BETA PATHOLOGY IN ALZHEIMER’S DISEASE 

 

Justin Paul, Ph.D. 

The Rockefeller University 2009 

 

Alzheimer’s disease (AD) is a neurodegenerative disorder that leads to profound 

cognitive decline and eventually death.  There are no effective long-term 

treatments or preventative measures available, and as the incidence and 

prevalence of the disease are increasing, new insights and tractable therapeutic 

targets are sorely needed.  Genetic evidence indicates that a major cause of AD 

is the production of the amyloid-β (Aβ) peptide, which is proteolytically derived 

from the amyloid-β precursor protein. The Aβ peptide can oligomerize and be 

deposited as extracellular plaques in the brain and blood vessels, but the 

mechanism of how it leads to neuronal death is not known.  There is increasing 

evidence of a vascular contribution in AD: patients suffer from brain 

hypoperfusion, the cerebral vasculature is damaged, and abnormal hemostasis is 

present.  Circulatory deficiencies could therefore play an important role in the 

pathogenesis of this disease. 

 

We found an increase in blood brain barrier (BBB) permeability and 

neurovascular damage in AD mice, and showed that fibrin deposition potentiates 

these processes.  We then found that Aβ binds to fibrinogen and alters fibrin clot 



formation. Clots formed in the presence of Aβ have an abnormal structure and 

are resistant to degradation by fibrinolytic enzymes.  We also found that ApoE 

isoforms differentially affect the structure of the fibrin clot formed in the presence 

of Aβ, which is consistent with the known genetic interaction between AD and the 

ApoE genotype.  These results suggest that in the presence of Aβ, dysfunctional 

fibrin clots alter thrombosis and hemostasis and exacerbate the BBB damage 

and neuroinflammation, thus promoting the disease process in AD. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Alzheimer’s Disease 

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by 

progressive loss of cognitive function and subsequent death.  It is the leading 

cause of dementia in the US (Cummings and Cole, 2002), affecting 5.2 million 

people and up to 13% of Americans over 65 (Hebert et al., 2003).  Due to an 

aging population, it is estimated that by 2050 the number of individuals affected 

by this disease will triple if no treatments or preventative measures are 

introduced.  

In AD, the dementia is characterized by a deficit in learning and memory 

along with a number of language disturbances (aphasia) and visuospatial 

dysfunction leading to disorientation.  In addition to dementia, individuals with AD 

often suffer from depression, sleep disturbance, wandering, restlessness, and fits 

of physical aggression (Finkel, 2003). Death is on average six years after the 

diagnosis, but cases have been documented as long as 20 years (Morrison and 

Siu, 2000).  The most common cause of death is pneumonia, which is likely a 

result of the increased immobility and swallowing disorders in later stages of the 

disease.  The natural course of this disease often necessitates exhaustive 

supervision, which can account for the high financial costs associated with the 

disease and emotional burden of caregivers.  

Post-mortem, the AD brain contains an abundance of extracellular neuritic 

plaques and intracellular neurofibrillary tangles, which are pathologic hallmarks 

 1



and required for diagnosis (Glenner and Wong, 1984; Cummings and Cole, 

2002). The tangles are paired helical filaments aggregated inside neurons 

resulting from abnormal phophorylation of the microtubule-associated protein tau 

(Ballatore et al., 2007).  Dystrophic neurons surround the plaques, which consist 

of a central core of fibrils made up of amyloid-β (Aβ) peptide (Selkoe, 1998).  

Though plaques and tangles form the diagnostic criteria, other histological 

pathologies are present and could provide insight into the mechanism for AD.  

These include neurovascular pathology as Aβ deposits in the blood vessel walls 

to form cerebral amyloid angiopathy (CAA) (Vinters, 1987; Fischer et al., 1990; 

Ellis et al., 1996), and neuroinflammation as microglia and astrocytes are found 

in neuritic plaques (Akiyama et al., 2000). 

However, Alzheimer’s pathology is not limited to neurons as one of the 

earlier manifestations of the disease is abnormal cerebral vasculature.  This 

neurovascular pathology may accelerate other Aβ-mediated pathologies or affect 

neuronal damage directly (Vinters et al., 1996; Farkas and Luiten, 2001; de la 

Torre, 2004).   

 

1.2 Aβ hypothesis 

One of the most striking features of Alzheimer’s neuropathology is the presence 

and accumulation of the Aβ peptide into neuritic plaques, and research on the Aβ 

peptide has led to several milestones in Alzheimer’s research.  The first is the 

discovery of mutations in the genes for AβPP and presenilin, which co-segregate 

with heritable forms of AD with early onset.  These mutations result in elevated 
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levels of Aβ production and production of the more fibrillogenic Aβ species (Tanzi 

et al., 1996).   

Aβ is derived from the amyloid-β precursor protein (AβPP) through two 

proteolytic events (Figure 1).  First, this type I transmembrane protein is cleaved 

at the N-terminus of Aß by β-secretase (Vassar et al., 1999), followed by γ-

secretase cleavage at the carboxyl terminus.  These two cleavages result in the 

secretion of soluble Aβ peptide and the production of a membrane-bound C-

terminal fragment, referred to as the APP intracellular domain (AICD) (Passer et 

al., 2000; Kimberly et al., 2003).  A non-amyloidogenic pathway exists, but it is 

the β-secretase pathway that generates soluble Aβ. One particular 42 amino acid 

form due to its two additional hydrophobic residues aggregates rapidly to form 

amyloid fibrils (Jarrett et al., 1993).  Soluble multimer formation can cause 

considerable neuronal damage before multimers acquire a β-pleated sheet 

conformation leading to fibril formation and deposition in plaques (Lambert et al., 

1998; Walsh and Selkoe, 2004; Cleary et al., 2005).   

Studies detailing Aβ action have converged on the Aβ hypothesis, which 

states that increased Aβ generation is responsible for the senile plaques and 

dementia observed in AD patients (Hardy and Selkoe, 2002).  This hypothesis is 

supported by the existence of rare early onset familial AD (EOFAD).  These 

forms involve mutations within AßPP and the β-secretase pathway enzymes.  

Using these mutations, transgenic mice have been genetically engineered 

to express AβPP and presenilin genes with these human mutations; these mice 

show AD like pathology and cognitive deficits (Games et al., 1995; Duff et al., 
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1996; Hsiao et al., 1996; Chishti et al., 2001). Clearance of Aβ in these mice by 

immunization attenuates the aggregation and subsequent cognitive pathology 

(Schenk et al., 1999; Janus et al., 2000; DeMattos et al., 2001; Dodart et al., 

2002).  Removing BACE1 from transgenic Tg2576 mice also reduced the Aβ 

load and rescued memory dysfunction (Ohno et al., 2004).  

Many of the AD hallmarks are present in the transgenic mice.  The 

PDAPP mouse model overexpressing human AßPP driven by the platelet-

derived growth factor promoter shows age-dependent deposition of Aβ, 

inflammation, and cognitive deficiencies, with prominent pathology seen at about 

nine to ten months (Games et al., 1995).  Other AD mouse models include the 

Tg2576 mouse (Hsiao et al., 1996) and the TgCRND8 mouse, carrying a double 

mutant form of APP695 (KM670/671NL+V717F) under the control of the PrP 

gene promoter on a mixed background (C57XC3H/C57) (Chishti et al., 2001).  

Aβ deposits are evident in TgCRND8 mice at 3 months of age, with dense core 

plaques and neuritic pathology presenting at 5 months.  Behavioral pathology is 

present at 3 months using the reference memory version of the Morris water 

maze.  Though the mice differ in age of onset and extent of pathology, the major 

drawback of the model is that these transgenic mice overexpressing AβPP do not 

replicate all of the pathology apparent in AD brains. 
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Figure 1. Amyloidogenic processing of β-amyloid precursor protein (APP) by β-
site APP-cleaving enzyme (BACE) and the γ-secretase complex. First, full-length 
APP (left) is processed by BACE, and the large ectodomain is secreted. The 
remaining membrane retained stub (CTFβ) binds to a docking site on the surface 
of the γ-secretase complex and is then transferred to the active site that includes 
transmembrane domains 6 and 7 of presenilin-1 (PS1) or PS2. PS1 and PS2 are 
both activated by presumed autoproteolytic cleavages.  The core complex 
including presenilin and three other essential γ-secretase components, APH1a 
(or APH1b), PEN2 and nicastrin (NCT) is required for γ-secretase activity. The 
two intramembrane aspartate residues in the presenilins (marked with a D) are a 
crucial part of the protease. The γ-secretase cleavage occurs in the middle of the 
membrane and liberates amyloid β-protein (Aβ) and the APP intracellular domain 
(AICD), whose function is unclear.  Intramembrane proteolysis by γ-secretase is 
variable and can occur at least after amino acids 38, 40 and 42.  These sites of 
cleavage are highly relevant for the subsequent aggregation propensity of Aβ. 
Adapted from Haass and Selkoe, Nature Reviews: Molecular Cell Biology 2007. 
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1.3 Vascular hypothesis 

Blood flow to any organ is essential for proper function, but the brain is especially 

susceptible because there are no long term energy stores and no alternative to 

the metabolism of oxygen and glucose (Farkas and Luiten, 2001)..  In AD, there 

is significant evidence that patients suffer from inadequate perfusion.   

First, Aβ may affect the blood directly as can augment blood platelet 

aggregation in vitro, which would increase thrombosis (Kowalska and Badellino, 

1994; Wolozin et al., 1998).  This result is supported by the observed protective 

effect of anti-platelet therapy against AD disease progression (Lim et al., 2000; 

Zhou et al., 2003).  In fact, hypercoagulation in AD is suggested by elevated 

levels of molecules reflecting abnormal hemostasis such as fibrin degradation 

products, von Willebrand factor, and plasminogen activator inhibitor (PAI-1) in the 

blood of AD patients (Mari et al., 1996). In contrast to normal aging individuals, 

AD patients have elevated levels of fibrin degradation products in the blood 

suggesting fibrin is formed and degraded more than normal (Gupta et al., 2005).  

Indeed, markers of thrombosis are independent predictors of dementia in the 

elderly (Barber et al., 2004), and cardiovascular disease is associated with more 

rapid cognitive decline in AD patients (Mielke et al., 2007).   

Second the cerebral vasculature is damaged early in AD (de la Torre, 

2004) and can cause dementia independent of AD (Breteler, 2000).  Consistent 

with this, studies of AD mice show endothelial cells are dysfunctional early, which 

reduces their response to vasodilators (Niwa et al., 2002b) and impairs critical 

regulation of blood flow (Niwa et al., 2002a; Iadecola and Gorelick, 2003).  Blood 
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vessels laden with Aβ have also been shown to be directly toxic to cultured 

neurons (Grammas et al., 2000).  Epidemiology links AD to cardiac disease 

(Breteler et al., 1998) and atherosclerosis correlates with disease pathology in 

sporadic AD (Roher et al., 2003).   

Third, the AD mouse brain is particularly susceptible to injury as middle 

cerebral artery occlusion produced 30-40% larger infarcts than wild type 

littermates (Zhang et al., 1997). Examination of AD brains reveals white matter 

lesions resembling ischemia (Brun and Englund, 1986).  Consistent with the link 

between AD and stroke (Honig et al., 2003), there is a correlation between 

reduced cerebral blood flow and severity of dementia (Farkas and Luiten, 2001).  

But not only the cognitive changes are reflected as this compromised blood flow 

in can lead to the pathologic synaptic changes characteristic of AD (Wen et al., 

2004b; Wen et al., 2004a).   

The cerebral microvasculature is highly specialized to protect the 

homeostasis of the central nervous system (CNS) microenvironment.  One of the 

primary functions of the blood-brain barrier (BBB) is to restrict access to large 

macromolecules, such as fibrin(-ogen) that are normally in circulation.  The BBB 

is known to be compromised in AD patients and mouse models (Mattila et al., 

1994; Farkas and Luiten, 2001; Ujiie et al., 2003; Dickstein et al., 2006), which 

results in fibrin deposition in extravascular space (Fiala et al., 2002), but the 

pathological significance is unknown.  The blood-brain barrier has been proposed 

as a target for treatment strategies (Donahue and Johanson, 2008).  
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1.4 Fibrin 

Fibrin is the protein component of a blood clot.  The inactive precursor fibrinogen 

circulates as a 340 kDa dimer, but when cleaved by the serine protease 

thrombin, fibrinogen dimers polymerize non-covalently to form protofibrils which 

branch to form an insoluble network of fibrils.  This clot network incorporates 

platelets in order to functionally impede blood flow and plug sites of vascular 

injury.  Fibrin is naturally degraded by plasmin.  The serine protease tissue 

plasminogen activator (tPA) converts plasminogen (plg) to plasmin, another 

potent serine protease with a variety of substrates.   

Fibrinogen is normally excluded from the brain parenchyma by the BBB.  

Neurovascular damage can allow fibrinogen access to the central nervous 

system (CNS).  Fibrinogen is present in the brains of AD patients (Fiala et al., 

2002) but the pathologic significance is not known. 

Fibrin deposition increases in the context of deficiency in the tissue 

plasminogen activator/plasmin(ogen) (tPA/plg) protease cascade (Tabrizi et al., 

1999).  Plasminogen-deficient mice accumulate extravascular fibrin and have 

impaired wound healing and high mortality (Bugge et al., 1995), both of which are 

corrected in mice deficient for both plasminogen and fibrinogen (Bugge et al., 

1996).  Reduction of fibrinogen can also be achieved with administration of 

ancrod, a serine protease derived from the venom of the Malayan pit viper 

Agkistrodon rhodostoma.  Ancrod prevents fibrin polymerization, allowing 

degradation by the liver and removal from the circulation (Bell et al., 1978; 

Burkhart et al., 1992).  Ancrod administration has been used to alleviate fibrin(-
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ogen) mediated pathology in the peripheral nervous system (Busso et al., 1998; 

Akassoglou et al., 2000). 

The hippocampus, a region of the brain known for its role in learning and 

memory, can express tPA.  But the activation of plg is regulated by serine 

protease inhibitors (serpins) such as plasminogen activator inhibitor-1 (PAI-1).  In 

mice, PAI-1 is up-regulated in the presence of Aβ (Melchor et al., 2003), which 

agrees with the clinically observed elevation of PAI-1 levels in the cerebrospinal 

fluid (CSF) (Sutton et al., 1994).   

Therefore, in the brains of AD patients and mouse models of the disease, 

clearance of fibrin by the tPA/plasmin system is expected to be reduced as tPA 

activity is diminished (Ledesma et al., 2000; Melchor et al., 2003).  Because 

inflammation is universal in AβPP transgenic mice and can be observed as early 

as 13 weeks of age, (Dudal et al., 2004), early extravasation of fibrinogen might 

initiate or exacerbate the observed neuroinflammation.  An exaggerated fibrin-

induced inflammatory process could inflate the damage to the vasculature thus 

promoting this process of disease progression.  With increased permeability of 

the BBB and diminished activity of fibrinolysis pathway components, the AD brain 

presents a milieu that tends to accumulate fibrin.  

BBB damage and neurovascular pathology exist in AD tissues in the CNS 

and may exacerbate and accelerate an Aβ-mediated disease process.  Though 

the leaky blood-brain barrier could be initally caused by Aβ (Thomas et al., 1996), 

the opened BBB and potential fibrin(-ogen) deposition in the extravascular space 

may aggravate tissue damage and impede regeneration (Adams et al., 2004).   
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1.5 Apolipoprotein E (ApoE) 

Apolipoprotein E (ApoE) is a 299 amino acid protein (34 kDa) that belongs to a 

family of soluble apolipoproteins. Apolipoprotein (Apo) E has a strong 

epidemiological link to Alzheimer’s disease (AD)(Corder et al., 1993).  There are 

three human isoforms of this protein: ApoE2, E3, and E4.  Individuals carrying 

the ApoE4 allele have a higher risk of developing AD.  However, it is likely that 

ApoE4 is not acting directly through Aβ as ApoE4 is does not increase plaque 

deposition (Altamura et al., 2007).  

In the brain, it is primarily expressed in astrocytes and microglia and, in 

addition to its known lipid transport and removal function, it is also involved in 

synaptogenesis (Mauch et al., 2001), neuronal plasticity, and membrane 

remodeling and repair (reviewed in (Holtzman and Fagan, 1998)). ApoE has 

three common isoforms (ApoE2, ApoE3, and ApoE4) that are products of three 

alleles e2, e3, and e4, where e3 is the most common in the human population. 

These proteins have two functional domains - the receptor binding domain and 

the lipid-binding domain. The three isoforms only differ in two amino acids in the 

receptor binding domain at positions 112 and 158. However, these alterations not 

only affect the receptor binding affinity but also influence the tertiary structure 

and the charge distribution of the whole protein, greatly affecting the interaction 

between the two domains by altering the isoforms’ folding ability and stability 

(reviewed in (Hatters et al., 2006)). This difference in two amino acids modulates 

the functional and structural properties of the ApoE isoforms, which affects their 
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role in pathological conditions (reviewed in (Strittmatter and Bova Hill, 2002; 

Hatters et al., 2006)).   

Inheritance of the different ApoE alleles influences the risk of developing 

AD (Strittmatter and Roses, 1995). Individuals with the e4 allele develop the 

disease earlier and present higher amounts of Aβ plaques than individuals with 

the e3 allele. Therefore, the presence of this allele is considered a risk factor for 

developing AD (Corder et al., 1993). Conversely, the presence of the e2 allele 

may be protective (Corder et al., 1994). This different influence between ApoE 

isoforms in developing AD could be mediated through their effects on Aβ binding 

and metabolism. It has been shown that ApoE interacts (Naslund et al., 1995) 

and colocalizes with Aβ in senile plaques (Wisniewski et al., 1997) and CAA 

vessels (Navarro et al., 2003).   

The physical interaction between ApoE and Aβ is mediated by Aβ 

residues 12-28 (Munson et al., 2000) and ApoE residues 244-272 (Strittmatter 

and Bova Hill, 2002). Although this region is the same in all ApoE isoforms, 

Aβ/ApoE binding is isoform specific (LaDu et al., 1994; Aleshkov et al., 1997). 

Different in vivo approaches have demonstrated that the presence of ApoE 

influences Aβ fibrillogenesis in an allele-dependent manner 

(ApoE4>>ApoE3>ApoE2), acting as a pathological chaperone, and ApoE can 

also affect the clearance of Aβ from the interstitial space in an isoform dependent 

way (ApoE2=ApoE3>ApoE4) (reviewed in (Bales et al., 2002)). Therefore, ApoE 

is playing a dual role in Aβ metabolism. The ultimate success of Aβ clearance 

versus deposition may be decided, among other factors, by the ApoE genotype.  
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To study the influence of the different human ApoE isoforms on Aβ 

burden, mice were generated in which the murine ApoE gene was replaced by 

the different human ApoE isoforms. These mice also have been crossed with 

different AD models. The expression of the human ApoE4 isoform in AD mice 

produced greater Aβ deposition as well as higher Aβ fibrillar staining than mice 

expressing human ApoE3 or ApoE2, confirming the important isoform-specific 

function of ApoE in humans (Holtzman et al., 2000; Fagan et al., 2002).  

CAA (Aβ deposits in the vessels) may develop through improper 

clearance of Aβ as it is normally eliminated along the perivascular pathway.  This 

process declines with age due to changes in the elasticity of brain arteries 

(Weller et al., 2002). This decreased elimination of Aβ is one of the main causes 

of AD. In the case of familial AD, mutations in AβPP and Presenilin 1 and 2 

genes have been shown to increase the production of Aβ that may overwhelm 

the Aβ elimination process, but these only represent a small percentage of all AD 

cases. In sporadic AD, where there is no strong evidence of Aβ overproduction, 

other factors such ApoE genotype may play a very important role (Weller et al., 

2008). It is known that the inheritance of the e4 allele is strongly associated with 

the severity of CAA, while parenchymal Aβ accumulation seems to be 

independent of ApoE genotype (Chalmers et al., 2003). Also, the expression of 

human ApoE4 isoform in the AD mouse provokes an enhancement in the Aβ 

CAA deposits over plaques deposition (Fryer et al., 2005). However, the exact 

reason why this risk is greater with the e4 allele than with the e2 allele is not yet 

known. 
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1.6 Conclusion 

AD represents a disease of unknown origin.  The lack of a defined pathological 

mechanism has impeded development of drugs for this condition, and at present 

there are only five drugs approved which have minor effects on disease 

progression (Doraiswamy, 2006).   Therefore, new approaches are needed 

urgently.  A large body of research, including some from our lab, implicates blood 

circulation as a contributing factor in AD.  We seek to examine in detail the 

effects of Aβ on blood clots and the consequences of these effects on the 

progression of AD.    
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1 Animals  

The AD transgenic mice used, which develop Aβ-associated pathology, include 

the Tg2576 (Hsiao et al., 1996) TgCRND8 (Chishti et al., 2001), and PDAPP 

(Games et al., 1995).  The Tg2576 mice (APP695; K670N, M671L driven by the 

hPrP promoter) are on a C57B6/SJL mixed strain background and develop 

cognitive deficits by nine months of age.  The TgCRND8 mice (APP695; K670N, 

M671L, V717F driven by the hPrP promoter) are on a mixed background 

(C57XC3H/C57) and exhibit defects in memory as early as three months of age 

(provided by Drs. Azhar Chishti and David Westaway, Center for Research in 

Neurodegenerative Disorders, University of Toronto, CA).  The PDAPP mice  

(APP695, 751, 770; V717F driven by the PDGFβ promoter) used in this study 

were backcrossed to C57Bl/6 mice and display memory defects by 8 months 

(provided by Drs. Ronald B. Demattos and Stephen M. Paul, Eli Lilly Research 

Laboratories, Indianapolis, IN).  Mice deficient for plasminogen (Bugge et al., 

1995) and fibrinogen (Suh et al., 1995; Degen et al., 2001), both backcrossed 

onto the C57Bl/6 background, were used for crosses with TgCRND8 and PDAPP 

mice.  Littermates were used in all experiments whenever transgenic mice were 

compared to non-transgenic (wild-type) mice.  Where multiple crosses or strains 

are presented in a single figure, non-transgenic littermates from each cross were 

averaged and presented as one bar for clarity and brevity.  Mice were maintained 
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in the Rockefeller University Laboratory Animal Research Center (LARC) and 

treated in accordance with protocols approved by LARC. 

TgCRND8 transgenic mice (referred to as AD mice throughout) develop 

Aβ-associated pathology.  These AD mice (APP695; K670N, M671L, and V717F 

driven by the human prion protein promoter) are on a mixed background 

(C57XC3H/C57) and exhibit defects in memory as early as three months-of-age 

(provided by A. Chishti and D. Westaway, University of Toronto, Canada). Non-

transgenic (wild type) littermates were used in all experiments where indicated.  

Mice were maintained in The Rockefeller University Laboratory Animal Research 

Center and treated in accordance with IACUC-approved protocols. 

 

2.2 Evans blue extravasation assay  

A solution of 2% Evans blue/PBS was injected (4 ml/kg) via the tail vein.  Six 

hours post-injection, the mice were anesthetized and blood drawn by cardiac 

puncture followed by transcardial perfusion with 0.9% saline-heparin (5U/ml) to 

remove intravascular dye.  One brain hemisphere was frozen for sectioning and 

microscopy studies while the other hemisphere was weighed and homogenized 

in 400 μl of dimethylformamide (DMF) to solubilize the Evans blue.  To extract 

the dye, samples were centrifuged, the supernatant was collected, and analyzed 

for absorbance at 620 nm.  The plasma was diluted 1:100 in DMF and analyzed 

exactly as the brain homogenate.  Evans blue units of extravasation were 

calculated as the A620 of brain homogenate divided by the A620 of plasma.  
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2.3 Evans Blue Fluorescence Profiling  

To visualize the extent of the blood-brain barrier damage, mice were injected via 

tail vein with Evans blue dye.  After six-hours, mice were anesthetized and 

perfused with a solution containing large-fragment 2,000 kDa FITC-conjugated 

dextran dissolved in PBS to outline the intraluminal space (Morris et al., 1999).  

Evans blue fluorescence from 50 μm coronal sections was visualized with a laser 

scanning confocal imaging system (Zeiss LSM 510 confocal system fitted on an 

Axiovert 200 inverted microscope, Bio-Imaging Resource Center at The 

Rockefeller University).  Optical slices were processed by Axiovision confocal 

imaging software and reconstructed images evaluated for Evans blue dye 

present outside the fluorescein delineated intraluminal space.  For views of the 

entire brain hemisphere, a composite of stitched 10X images (8x8) was produced 

during acquisition with a motorized stage.   

 

2.4 ELISA (brain or plasma)  

Brains were perfused, weighed and homogenized in 0.1M Tris pH 7.2/0.2 % 

Triton X-100 with 5 mM EDTA, 100 mM tranexamic acid, and protease inhibitor 

cocktail (Roche).  Protein concentrations were measured by Lowry assay (Bio-

Rad).  Quantification of fibrinogen was performed using a hamster anti-mouse 

fibrinogen capturing antibody, 7E9, provided by Dr. Marketa Jirouskova, The 

Rockefeller University (Jirouskova et al., 2001) and HRP-conjugated rabbit anti-

human fibrinogen detecting antibody (Dako Cytomation, Carpinteria, CA).  Aβ 
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levels were measured by ELISA according to manufacturer’s protocol (Biosource 

International, Camarillo, California). 

 

2.5 Immunostaining and semi-quantitative analysis  

To localize the leakage of Evans blue dye, one brain hemisphere was sectioned 

and fixed with ice-cold ethanol.  To evaluate fibrin(ogen) extravasation and 

deposition, sections from Evans blue dye-treated animals were processed for 

fibrin(ogen) immunoreactivity with a FITC-conjugated anti-fibrinogen antibody 

(Dako Cytomation).  Microglial staining was performed with a biotin-conjugated 

anti-CD11b antibody (1:100) (BD PharMingen, San Diego, CA) visualized with 

FITC- or Rhodamine-conjugated avidin (1:500).  To analyze microvasculature rat 

anti-PECAM-1 antibody (BD PharMingen) was used (1:50) and visualized with a 

FITC-conjugated goat anti-rat (1:1000).  Aβ was detected with a rabbit anti-pan-

Aβ antibody (1:100) (Biosource/QCB, Camarillo, CA).  Apoptotic cells were 

stained with a rabbit anti-active-caspase-3 antibody (1:200) (Cell Signaling 

Technology, Inc., Danvers, MA) 

Coronal sections (from bregma -1.5 to -2.0 mm) were processed and 

stained for the markers listed above.  A composite (3x3) of 10X images was 

stitched together to include hippocampus and cortex during acquisition using a 

laser scanning confocal imaging system equipped with a motorized stage (Zeiss 

LSM 510 confocal system fitted on an Axiovert 200 inverted microscope, Bio-

Imaging Resource Center at The Rockefeller University).  Composite images 

were converted to 1-bit images using ImageJ (National Institutes of Mental 
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Health, http://rsb.info.nih.gov/ij/).  Using this bit-depth, regions including either 

hippocampus, cortex or both were selected by hand as shown in Figures 3 and 4 

and quantified for percent immunofluorescence.   

 

2.6 Fluoro-Jade B staining  

Fluoro-Jade B staining was performed according to the protocol by Schmued and 

Hopkins (2000) and viewed under fluorescence microscopy (Schmued and 

Hopkins, 2000). Briefly, sections were immersed sequentially in 1% NaOH/80% 

alcohol for 2 min, 70% alcohol for 2 min, water for 2 min, 0.06% potassium 

permanganate for 10 min, water for 2 min, and 0.0004% Fluoro-Jade B in 1% 

acetic acid for 20 min, and then rinsed in water three times. The sections were 

then dried, immersed in Histoclear and mounted with neutral DPX polystyrene 

medium. The sections were viewed under blue-green excitation light with a 

fluorescent microscope. 

 

2.7 Ancrod/Tranexamic acid treatments 

To explore whether removal of fibrinogen from the circulation can affect the 

progression of Aβ pathology, we treated transgenic mice with Viprinex (ancrod) 

(provided by Dr. David E. Levy, Neurobiological Technologies, Inc).  Mini osmotic 

pumps were subcutaneously implanted to deliver four units/day of ancrod activity 

over four weeks with replacement at two weeks while a control group received 

saline (DURECT Corp, Cupertino, CA).  To measure the fibrinogen depletion 
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effect of ancrod, plasma samples were obtained weekly by tail prick and 

fibrinogen quantified by ELISA.   

Deficiency in fibrinolysis was accomplished pharmacologically by 

implantation of a mini osmotic pump for delivery of tranexamic acid.  Because the 

drug is also orally active, this dosage was supplemented with tranexamic acid 

dissolved in drinking water at 20 mg/ml.  The total daily dose was estimated to be 

100 mg/day. 

 

2.8 Turbidity and pure fibrin and plasma lysis times 

Clots were formed by mixing purified human fibrinogen (30 μM; Calbiochem) with 

human thrombin (40 nM or 2 U/ml; Sigma) in the presence of Aβ peptides (5 nM - 

5 mM; Anaspec) or vehicle control. Calcium chloride was adjusted to 20 mM.  

Absorbance was measured for 10 minutes at 405 nm.  For formation/degradation 

curves, clots were formed under the same conditions with tPA (140 nM; 

Genentech) and purified human plasminogen (1 μM; Sigma).  

Clots were also formed with citrated normal human plasma (New York Blood 

Center), which was centrifuged at 10,000 x g for 15 min (to obtain platelet-

deficient plasma) and added to Aβ peptides (5 nM - 5 μM; Anaspec), tPA (140 

nM; Genentech) and human thrombin (40 nM or 2 U/ml; Sigma). Calcium 

chloride was adjusted to 20 mM. 

To check for FXIIIa (transglutaminase) activity and clotting efficiency, purified 

fibrin clots were formed in parallel as described above.  After 10 minutes of clot 

formation, clots were centrifuged 14,000 x g for 10 minutes, and the supernatant 

collected for protein quantification by the Lowry method.  Clots were solubilized 
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in reducing buffer and analyzed under reducing conditions by SDS-PAGE.  

Tranglutaminase-dependent formation of gamma-gamma dimers was detected 

as a 94 kD band.  

To control for enzyme activity, plasmin (50 ug/ml; Sigma) or thrombin (2 U/ml; 

Sigma) was incubated with Aβ42 for 10 minutes and added to Pefachrome PL or 

Pefachrome TH, respectively. Absorbance at 405 nm was measured for 5 

minutes. 

Amyloid solutions were tested for congophilicity using Congo Red dye.  Aβ 5 μM 

was incubated with 1 mM Congo Red for 20 min.  Absorbance spectrum was 

recorded from 400 to 600 nm. 

 

2.9 Ex vivo lysis time and immunoprecipitation  

Mice were sacrificed, and brains were dissected, weighed, and homogenized in 

PBS. Although the fibrin exudates in the AD mouse brain alter the composition of 

the brain matter, protein concentrations were not altered when corrected for wet 

tissue weight.  Homogenized brain tissue (10 μg) from AD mice and their wild 

type littermates was added to recalcified citrated human plasma. 

To deplete extracts of Aβ, 4G8 monoclonal IgG antibody (1-5 μg/ml), which 

recognizes residues 17-24 of Aβ peptide in monomeric and oligomeric form, or 

irrelevant (anti-NeuN) IgG monoclonal antibody (5 μg/ml) was added to extracts 

and incubated overnight at 4°C.  Antibodies were precipitated using GammaBind-

Plus Sepharose beads (GE Healthcare), which were collected by centrifugation 

at 500 x g for 1 minute.  The supernatant was added to recalcified citrated human 

plasma as above. Beads were resuspended in 2x sample buffer and mixed 
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gently before bound material was removed.  Beads were boiled at 100°C for 5 

min to dissociate the immunocomplexes. The beads were then collected by 

centrifugation and the supernatant mixed with Congo Red as before to determine 

depletion of fibrillar Aβ.   

 

2.10 Electron microscopy 

Fibrin clots were formed from purified fibrinogen on glass coverslips. After 20 

minutes, clots were washed with sodium cacodylate buffer and fixed with 2% 

glutaraldehyde. Clots were dehydrated, critical point dried, and sputter-coated 

with gold palladium. Images were obtained using a LEO 1550 scanning electron 

microscope.  

To visualize amyloid fibrils present in congophilic solutions, we used a 

standard negative staining protocol.  Samples were adsorbed onto formvar and 

carbon coated grids (glow discharged for 1 min before use).  The grids were 

transferred onto drops of ddH2O and stained with 2% Uranyl Acetate for 1 min.  

Excess stain was removed with wet filter paper and samples were allowed to air 

dry.  Scanning was performed using  FEI Tecnai D1201 Transmission Electron 

Microscope at 80KV and pictures were taken with Gatan 895 Ultrascan Digital 

camera. 

 

2.11 Confocal image analysis and lysis front retreat rates 

Clots were formed as described above on a glass-bottomed dish with Alexa-488-

fibrinogen (50 ug/ml; Molecular Probes). Images were obtained with an inverted 
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Zeiss Axiovert 200 microscope with Zeiss Plan-Neofluar 63x/1.3 NA oil 

immersion objective (Carl Zeiss, Mannheim, Germany), acquired with LSM 510 v. 

3.2 confocal software (Zeiss), and analyzed with MetaMorph software (Universal 

Imaging).  Some clots contained Congo Red (1 mM) or biotinylated Aβ at the 

same concentrations with AlexaFluor-568-conjugated streptavidin (10 μg/ml; 

Molecular Probes). 

For lysis experiments, tPA was injected into the center of the pre-formed clot (20 

minutes after mixing), and time-lapse image stacks were recorded for five 

minutes as the lysis front retreated from the center.  Images were obtained at 15 

second intervals using an inverted Zeiss Axiovert 200 microscope, acquired with 

LSM 510 v. 3.2 confocal software, and analyzed with MetaMorph software.  Initial 

and final images were overlayed, and the distance between lysis fronts was 

divided by the five minute collection period. Three to four random lysis fronts 

were identified in four separate experiments.  

ApoE isoforms (120 nM; Sigma) were also added to plasma and pure fibrin 

reaction mixtures.  Images were acquired as described above, and cluster 

density was measured in four randomly selected 146 μm x 146 μm fields after 90 

minutes.  Images were thresholded, and the Integrated Morphometry Analysis 

function of MetaMorph was used to quantify the percent image area of objects 

classified by minimum area, shape factor, and fiber breadth. Data is presented as 

mean cluster density +/- SEM.  

An additional morphometric method was used as a control and produced 

identical results.  The thresholded image was used to generate a Euclidean 

distance map, where the intensity value indicates the Euclidean distance, 

measured in pixels, to the nearest white pixel in the original binary image 
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(MetaMorph). The new image is displayed with a pseudocolor look-up table 

(LUT) that illustrates the change in intensity values within the image.  This 

scheme presents thin fibers as low intensity and dense aggregates as high 

intensity.  The Euclidean distance map is therefore used to quantify the areas 

only of high intensity. 

 

2.12 Stereotactic fibrin injections 

To examine the clearance of deposited fibrin in vivo, AD and wild type mice were 

stereotactically injected with a solution containing purified fibrinogen and Evans 

blue, which was used to outline the injection site. Mice were anesthetized with 

500 mg/kg avertin and 0.04 mg/kg atropine and placed in the stereotactic 

injection device. A 2% Evans blue and fibrinogen (1:1) solution (500 nl) was 

injected into the hippocampus (Bregma -2.0mm/1.8mm/1.2mm) of each mouse. 

After one day, mice were perfused, and 20 µm-thick coronal brain sections were 

prepared for immunofluorescence using a FITC-conjugated antibody for 

fibrin(ogen) (Dakocytomation).  During acquisition (LSM 510 v. 3.2 confocal 

software) using an inverted Zeiss Axiovert 200 microscope equipped with a 

motorized stage, a composite (3x4) of 10X images was stitched together to 

include the hippocampus and cortex. Thresholded area percentage from 3-4 

samples from each mouse was recorded using Metamorph.  

To determine the clotting of injected fibrinogen, we checked for D-Dimer.  One 

day after stereotaxic injection of fibrin, brains weighing between 0.15 and 0.20 g 

were dissected and homogenized.  Tissue suspensions were centrifuged at 

14,000 x g for 10 min at 4°C. Protein concentrations were determined by the 

Lowry method.  For Western blot analysis of D-dimer content, 40 µg of 
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supernatant protein was resolved by SDS–PAGE with purified fibrinogen (Sigma) 

as protein standards. Gels were transferred overnight, and membranes were 

stained with a polyclonal HRP-conjugated antibody to fibrinogen (1:1000; 

Dakocytomation) for 2 hours at room temperature and developed by enhanced 

chemiluminescence. 

 

2.13 Examination of thrombosis in Cerebral Amyloid Angiopathy (CAA) 

To examine thrombosis in the presence of amyloid deposition in blood vessels, 

coronal brain sections from non-injected AD mice were stained with FITC-

conjugated fibrin(ogen) antibody (1:1000; Dakocytomation) and costained with 

Congo Red to detect CAA. 

Immunofluorescence images were acquired using an inverted Zeiss Axiovert 200 

microscope equipped with a motorized stage to produce a composite of 10X 

images including the hippocampus and cortex.  Total amyloidosis was obtained 

using Metamorph software as thresholded area percentage from 4 TgCRND8 

mice.  CAA was identified in each image by hand and subtracted from the total 

amyloidosis to obtain plaque area percentage as shown in Figure 38.  

Post-mortem sections of human AD brains were obtained from the University of 

Pennsylvania Alzheimer’s Disease Core Center.  Sections were deparaffinized 

blocked with albumin and stained using a monoclonal antibody that specifically 

recognizes the fibrin II polymer and not fibrinogen, mouse anti-human fibrin II β-

chain monoclonal antibody (clone NYBT2G1, 1:1000) from Accurate Chemical.  

Sections were co-stained with Thioflavin S. 
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2.14 Automated Activated Partial Thromboplastin time 

AD and wild type mouse plasma was obtained by cardiac puncture at time of 

sacrifice. Blood was centrifuged at 4000 x g for five minutes, and plasma was 

collected and added to a reaction mix according to manufacturer’s protocol 

(Biomerieux). Absorbance at 405 nm was measured over a five minute period.  

Western blot analysis was performed to determine plasma fibrinogen 

concentration.  Plasma (1 μL) was resolved using SDS–PAGE under reducing 

conditions.  Gels were transferred, and membranes were treated as described 

above. 

 

2.15 Intravital imaging of thrombosis 

This procedure details the surgical preparation of a mouse for direct observation 

of pial microcirculation in experimental animals for 60 minutes before sacrifice by 

overdose of anesthetic.  We used TgCRND8 transgenic mice with wild type 

littermates of varying age from 13 to 40 weeks weighing 15 to 35 g.  

All animals were anesthetized by IP injection of 500 mg/kg avertin and 0.04 

mg/kg atropine supplemented as necessary and placed in a stereotaxic device.  

A 4-mm circular craniotomy was prepared over the parietal cortex using 5-10 

circular brush strokes with a fine dental drill bit.  The dura mater was peeled 

away and dental acrylic secured a 10 mm plastic ring around the window, which 

was filled with saline to protect the brain surface and prevent drying.  Each 

mouse received a 0.3-ml bolus of a 5% (w/v) solution of 2 MDa fluorescein-

conjugated dextran in PBS, injected into the tail vein to label the blood plasma.   

Perfusion of the brain surface with increasing doses of ferric chloride irritates the 

wall of the vessel and subsequently triggers a clotting cascade that leads to an 
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occlusion.  We recorded thrombosis using real-time video acquisition with a video 

camera fitted to an upright Zeiss Axiovert 200 epi-fluorescence microscope 

(Metavue software).  2-4 mice were used in each group and up to 10 vessels with 

a diameter greater than 20 micrometers were thrombosed per mouse.  After 

imaging, the mice were sacrificed by overdose of avertin.  

This hands-on training is supplemented by online video protocol, which is 

archived in the Journal of Vizualized Experiments: "A Craniotomy Surgery 

Procedure for Chronic Brain Imaging" by Ricardo Mostany and Carlos Portera-

Cailliau, Department of Neurology, University of California, Los Angeles.  

This video can be found online at http://www.jove.com/index/Details.stp?ID=680  

After treatment with 10 % ferric chloride, the cranial window was perfused with 

recombinant tPA (140 nM; Genentech) to activate fibrinolysis.  Clot formation and 

dissolution was observed using time-stamped image stacks.  Clot size was 

traced by hand using Metamorph software to calculate the area of the dark zone 

representing the clot, which had an average pixel intensity below 1500. 

 

2.16 Behavioral analysis 

Behavioral pathology was evaluated using the Y-Maze, a hippocampal learning 

and memory task that analyzes spontaneous exploration of novelty.  The Y-Maze 

consists of three plexiglass arms and a floor covered with bedding. Experiments 

were performed in a sound-attenuated room under soft illumination, and visual 

clues were placed on the walls of the testing room. Each trial consisted of two 

five-minute periods, separated by a two minute intertrial interval in which the 

mouse was placed in its home cage. During the first five-minute period, one of 
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the three arms was blocked by an opaque plexiglass insert; this arm acts as the 

novel arm in the subsequent five-minute testing period. For the second five-

minute period, the plexiglass insert was removed to reveal the novel arm. The 

entire experiment was recorded for analysis. The first two minutes of the testing 

period were analyzed, and time spent in the novel arm was averaged and 

compared between groups.  More time spent in the novel arm compared to the 

other two arms indicates that the mouse remembers this arm is novel and the 

other arms are not.   

 

2.17 Statistical analysis  

All numerical values presented in graphs are mean +/- SEM.  Statistical 

significance was determined using the student’s t-test comparing control to 

experimental groups.  

 27



CHAPTER 3: FIBRIN AGGRAVATES PATHOLOGY 

 

3.1 Fibrin is deposited through a disrupted neurovasculature in transgenic 

mouse models of Alzheimer’s Disease 

When the blood-brain barrier is compromised, macromolecules in circulation can 

accumulate in the brain parenchyma (Yepes et al., 2003).  Because Evans blue 

dye binds to albumin in the blood, extravasation of the dye serves as a marker 

for blood-brain barrier permeability and neurovascular damage.  We compared 

Alzheimer’s mouse models Tg2576, PDAPP and TgCRND8 to non-transgenic 

littermates for defects in the neurovasculature.  Because these mice bear AβPP 

with different familial AD mutations and are driven by different promoters, they 

exhibit differing ages of onset of Aβ-associated pathology.  Therefore, we 

compared extravasation of Evans blue dye in mice at six months and 12 months 

of age. 

As shown in Figure 2-3, brains of all three Alzheimer’s mouse models 

were significantly more permeable to the dye.  Non-transgenic littermates 

showed increased blood-brain barrier permeability as age increased.  However, 

in all three Alzheimer’s mouse models, the brain was significantly more 

permeable to the dye at these ages.  These data are consistent with previously 

observed microvascular damage in the Tg2576 mouse (Dickstein et al., 2006), 

although the TgCRND8 mice show earlier onset.   
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Figure 2. Alzheimer’s mice blood vessels are damaged and the blood-brain 
barrier is defective. (A) Normal endothelial cell from a 6-month wild type mouse. 
(B) Endothelial cell tight junction shown in (A) shown at high magnification. (C-D) 
Two representative images of disrupted and leaky tight junctions in a six-month-
old TgCRND8 mouse. 
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Figure 3. Blood–brain barrier permeability and neurovascular damage is 
increased in three mouse models of AD. (A) Evans blue assay indicates 
increased blood–brain barrier permeability in the Tg2576, PDAPP, and 
TgCRND8 transgenic mice compared with nontransgenic (NTg) littermates. Data 
are given as Evans blue extravasation calculated from A620 of perfused brain 
homogenates and normalized to plasma Evans blue levels. For 6-mo mice, n = 9 
for NTg (three each from Tg2576, PDAPP, and TgCRND8 litters), n = 3 for 
Tg2576, n = 6 for PDAPP, and n = 7 for TgCRND8; for 12-mo mice, n = 9 for 
NTg (three each from Tg2576, PDAPP, and TgCRND8 litters), n = 4 for Tg2576, 
n = 4 for PDAPP, and n = 4 for TgCRND8. Error bars represent the mean ± SEM. 
*, P < 0.05; **, P < 0.001, relative to nontransgenic littermates. (B) Laser-
scanning micrograph of microvasculature in hippocampus of 6-mo TgCRND8 
mouse and NTg littermate injected with Evans blue (red) 6 h before and perfused 
at the time of killing with 2,000-kD dextran (green). Fluorescence intensity across 
a cross section (indicated by white arrow; 100 μm) of a capillary is scanned for 
the distribution of each fluorochrome. 
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To visually observe extravascular deposition of Evans blue, mice treated 

with Evans blue for six hours were perfused with fluorescent dextran at time of 

sacrifice.  This 2,000 KDa dextran is impermeable to both healthy and damaged 

blood vessels, and therefore serves as an outline of intravascular space.  The 

non-transgenic littermate blood-brain barrier retained both dyes within the blood 

vessel as shown in the left panel of Figure 3B.  The damaged TgCRND8 blood 

vessel in the right panel showed diffuse accumulation of Evans blue around the 

contained dextran.  As shown underneath each micrograph, the distribution of 

each fluorochrome can be analyzed for fluorescence intensity across a cross 

section of a capillary, which reveals Evans blue with a broader distribution than 

the dextran in the AD mouse (Benchenane et al., 2005).  Together with the 

quantitative extravasation assay, these comprehensive estimates indicated 

increased blood-brain barrier permeability in the TgCRND8 mouse.   

To gain insight into blood vessel health, mice brain sections were stained 

for platelet/endothelial cell adhesion molecule-1 (PECAM-1).  Images of perfused 

and stained microvasculature were obtained from the cortex of TgCRND8 mice 

and non-transgenic littermates at six months of age (Fig. 10).  Healthy 

endothelial cells constitutively express this surface marker (Baldwin et al., 1994), 

but sections of TgCRND8 brains showed diminished signal intensity and vessels 

appeared tortuous and fragmented. 

Because the AD mouse blood-brain barrier was permeable to albumin-

bound Evans blue dye, we hypothesized that fibrinogen could gain access to the 

brain’s extravascular space.  Given this, and because tPA activity is reduced in 
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the AD mouse brain (Melchor et al., 2003), we reasoned that fibrin could deposit 

and accumulate over the lifespan of the mouse.  Perfused TgCRND8 brains 

contained elevated levels of fibrin(ogen) as determined by ELISA.  Three to nine-

month old mice showed that Aβ accumulated in an age-dependent manner, and 

fibrin(ogen) levels correlated with soluble Aβ1-40 and Aβ1-42 levels as 

measured by ELISA from the same tissue homogenates (Fig. 4). 
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Figure 4. Fibrinogen accumulates through the damaged neurovasculature. (A) 
Fibrin(ogen) deposition parallels age-dependent Aß accumulation. TgCRND8 
cortex and hippocampus were isolated, and homogenates were assayed each for 
fibrinogen and Aß1-40 by ELISA. Each point represents one TgCRND8 mouse. 
Correlation coefficients are indicated. (B) The same cortex and hippocampus 
homogenates were assayed each for fibrinogen and Aß1-42 by ELISA. 
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3.2 Neuroinflammation and microvascular injury are diminished by 

pharmacologic depletion of fibrinogen 

Since fibrin is a pro-inflammatory molecule and could aggravate pathology upon 

exiting the vasculature (Akassoglou et al., 2000; Adams et al., 2004), we asked if 

fibrinogen depletion might reduce the inflammation in AβPP transgenic mice.  

TgCRND8 mice are appropriate because of the early onset of neurovascular 

dysfunction and neuroinflammation, as seen by microgliosis at 13 weeks (Dudal 

et al., 2004).  We therefore reduced circulating fibrinogen levels using a 

recombinant form of the Malayan pit viper protease ancrod.  Ancrod is a 

thrombin-like protease that cleaves fibrin and prevents its polymerization, 

allowing degradation by the liver and removal from circulation (Bell et al., 1978; 

Burkhart et al., 1992).  TgCRND8 mice were treated with either ancrod or saline 

for four weeks prior to sacrifice at six months of age.  Fibrinogen levels were 

reduced by 50-75% in circulation by ancrod.  Accordingly, sections of perfused 

brains after ancrod treatment showed diminished fibrin immunoreactivity (Fig. 5).   

Perfused sections of transgenic brains from each treatment group were 

stained with CD11b, an integrin receptor present on microglia, and inflammatory 

foci were visualized.  The total area of inflammatory foci can be quantified within 

the regions of interest as shown in Figure 6.  Areas of inflammation were 

compared between ancrod and saline.  Ancrod treatment reduced the area of 

inflammation by ~64% (Fig. 6, p=0.00001).  In saline-treated mice, microglia 

were identified by their amoeboid morphology.  As shown in Figure 7, these 

aggregated microglia formed inflammatory foci, and appeared to concentrate 
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around plaques with reduced number after fibrinogen-depletion.  Because ancrod 

is a protease and could be acting directly on Aβ levels, we quantified levels of 

plasma Aβ1-40, and cortical Aβ, neither of which were significantly different in 

ancrod-treated mice (Fig. 6), indicating that depletion of fibrinogen rather than 

deposited Aβ is responsible for the reduced microgliosis.  

As inflammation can contribute to blood-brain barrier permeability, we 

assayed ancrod-treated mice for Evans blue extravasation and found a reduction 

when compared to saline-treated mice (Fig. 8).  This attenuation of vascular 

damage prompted analysis of the microvasculature from both cortex and 

hippocampus.  Identical areas of the brain (Fig. 9) were quantified for vascular 

density as percent image area (Fig. 9), and indicated that ancrod treatment 

partially prevents blood vessel loss. 
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Figure 5. Fibrin(ogen) deposition and vascular damage are modified by 
manipulation of fibrinogen levels and fibrinolysis. (A) Representative images of 
perfused brains from each treatment group stained for fibrin(ogen). Images were 
tiled together using a motorized stage on a confocal microscope. (B) High-
magnification images of fibrin(ogen) deposition (green) with Aß plaques (red). 
Bar, 20 µm. 
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Figure 6. Fibrinogen depletion and inhibition of fibrinolysis in the 6-mo TgCRND8 
mouse have opposite effects on neuroinflammation. (A) Representative 
immunofluorescent images of brains colabeled for Aß (left) and CD11b, a marker 
for activated microglia, either resident in the brain or peripherally derived (right). 
Regions of interest are outlined to demark the cortical region quantified in each 
image. Images show increased density of inflammatory foci in the cortex of 
plasmin-inhibited transgenic mice, whereas fibrinogen-depleted transgenics show 
decreased density relative to age-matched saline-treated TgCRND8 mice. Bar, 
200 µm. (B) Analysis of total Aß staining within marked regions of interest in the 
cortex; the differences were not significant (P > 0.05). (C) Analysis of CD11b 
staining shows increased inflammation density in the cortex of plasmin-inhibited 
transgenic mice, whereas fibrinogen-depleted transgenics show a decrease. 
Error bars present the mean ± SEM of four images for each of five ancrod-, four 
tranex-, and two saline-treated mice. *, P < 0.05; **, P < 0.001, relative to saline-
treated mice. 
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Figure 7. Fibrinogen depletion and inhibition of fibrinolysis in the 6-mo TgCRND8 
mouse have opposite effects on inflammatory foci. High-magnification images of 
microglia (green) and Aß plaques (red) in each treatment group. Bar, 50 µm. 
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Figure 8. Fibrin(ogen) deposition and vascular damage are modified by 
manipulation of fibrinogen levels and fibrinolysis. Evans blue extravasation from 
ancrod-, saline-, and tranexamic acid–treated 6-mo TgCRND8 mice. Data are 
represented as mean ± SEM of each treatment group, where n = 3 for each 
group. *, P < 0.05, relative to saline-treated mice. Fibrinogen depletion with 
ancrod reduces vascular damage, whereas plasmin inhibition enhances 
permeability.  
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Figure 9. Fibrinogen depletion and inhibition of fibrinolysis in the TgCRND8 
mouse have opposite effects on neurovascular damage. (A) Neurovasculature in 
ancrod-, saline-, and tranexamic acid–treated TgCRND8 mice. Images of brains 
labeled for PECAM-1 (black) are shown with higher magnification images of the 
regions shown in red to the right. Regions defining cortex (orange) and 
hippocampus (blue) were used for quantification of vascular density. The images 
show decreased vascular density in the cortex (cx) and hippocampus (hp) of 
plasmin-inhibited transgenic mice, whereas fibrinogen-depleted transgenics show 
increased vascular density over age-matched saline-treated TgCRND8 mice at 6 
mo. (B) Semiquantitative analysis of PECAM-1 staining in the cortex and 
hippocampus shows decreased vascular density in plasmin-inhibited transgenic 
mice, whereas fibrinogen-depleted transgenics show an increase. Bars represent 
the percentage of image area reported as the mean ± SEM of four images of the 
cortex and hippocampus of four mice in each treatment group. *, P < 0.05; **, P < 
0.001, relative to saline-treated mice. 
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Figure 10. Representative examples of immunofluorescent images of brains 
labeled for PECAM-1 in TgCRND8 and nontransgenic (NTg) littermates, 
quantified by percentage of image area. **, P < 0.001 relative to NTg littermates. 

 41



 
3.3 Neurovascular pathology is promoted by pharmacologic inhibition of 

fibrinolysis 

To complement fibrinogen depletion experiments, we tested whether absence of 

plasmin-mediated clearance of fibrin accelerates pathology.  We treated 

TgCRND8 mice with a plasmin inhibitor, tranexamic acid, for four weeks prior to 

sacrifice at six months of age alongside littermates treated with saline or ancrod.  

Inflammatory foci were again visualized using microglia staining with CD11b (Fig. 

6).  Plasmin inhibition by tranexamic acid treatment significantly increased 

microgliosis in treated mice as compared to control mice (p=0.014, Fig. 6).   

We also reasoned that the inhibition of plasmin-mediated clearance of 

fibrin and subsequent inflammation could aggravate neurovascular damage in 

TgCRND8 mice.  We observed that administration of tranexamic acid increases 

damage to the blood-brain barrier (Fig. 8).  Decreased blood-brain barrier 

integrity after four-week tranexamic acid treatment prompted analysis of the 

microvasculature.  Tranexamic acid-treated TgCRND8 mice showed a reduction 

in microvascular density and vessels appeared damaged (Fig. 9). 

With the increased pathology observed in the tranexamic acid-treated 

animals, we asked if inflammation and Aβ were sufficient to promote 

neurodegeneration.  Active caspase-3 staining did not reveal apoptotic cells in 

treatment or control groups.  Samples also were negative for neurodegeneration 

by Fluoro-Jade B staining (unpublished data). 
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3.4 Neurovascular pathology in the transgenic mouse model is modulated 

by genetic deficiency in plasminogen or fibrinogen 

We crossed transgenic AD mice to mice deficient for fibrinogen (fib-/-) in order to 

obtain TgCRND8;fib+/- mice bearing only one functional copy of the fibrinogen 

gene.  Additionally, because accumulated fibrin in the extravascular space can 

cause damage, we asked if a reduction in plasminogen levels on a background 

of the AβPP transgene could promote neurovascular pathology.  Similar to the 

fibrinogen cross, we generated TgCRND8;plg+/- mice and compared them to 

TgCRND8 littermates.  We examined the N1 generation from mice crossed to 

TgCRND8 mice because pathology presents at an earlier age than PDAPP and 

Tg2576.  Heterozygosity for plasminogen deficiency in TgCRND8 mice produced 

a significant increase in Evans blue extravasation (Fig. 11, p=0.042).  

Conversely, TgCRND8;fib+/- mice showed reduced neurovascular pathology at 

six months (p=0.003).  Plg+/- and fib+/- controls showed little permeability to the 

dye, suggesting that a product of the AβPP transgene is necessary for 

neurovascular pathology.  To control for the possible effects of different genetic 

backgrounds on the production and metabolism of the AβPP transgene, PDAPP 

mice were backcrossed more than 10 generations onto the C57Bl/6 background 

before crossing with plg-/- mice, which share the C57 background.  The results 

shown in Figure 12 indicate increased blood-brain barrier pathology in 

PDAPP;plg+/- mice when compared to PDAPP littermates, consistent with the 

results shown in Figure 11. 
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Figure 11. Genetic plasminogen and fibrinogen deficiency modulate defects in 
the AD mouse blood–brain barrier. 6-mo-old AD mice deficient for plasminogen 
(TgCRND8;plg+/–) and fibrinogen (TgCRND8;fib+/–) were assayed for Evans 
blue extravasation alongside TgCRND8 littermates. TgCRND8;plg+/– mice 
showed increased blood–brain barrier permeability, whereas TgCRND8;fib+/– 
mice showed a decrease. Data are given as Evans blue extravasation calculated 
from A620 of perfused brain homogenates and normalized to plasma Evans blue 
levels. n = 8 for NTg; n = 8 for TgCRND8; and n = 3 for TgCRND8;plg+/–, 
TgCRND8;fib+/–, fib+/–, and plg+/– mice. Bars represent the mean ± SEM. **, P 
< 0.001, relative to nontransgenics; (dagger) P < 0.05, relative to TgCRND8. 
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Figure 12. Heterozygous genetic deficiency for plasminogen and early 
neurovascular damage. PDAPP;plg+/- mice are consistent with changes 
observed in TgCRND8;plg+/- mice, as indicated by increased Evans blue 
extravasation at 12 mo of age relative to PDAPP littermates. Data are 
represented as mean ± SEM, where n = 4 for both PDAPP and PDAPP;plg+/- 
mice and compared to data from Fig. 5. *, P < 0.05 relative to PDAPP littermates. 
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Because Evans blue dye is fluorescent, the entire hemisphere can be visualized 

for dye extravasation to determine which areas of the brain are most affected.  

Images of cerebral hemispheres of each genotype were compared (Fig. 13).  The 

cortex and hippocampus were affected with the highest levels of neurovascular 

damage consistent with the observation that hippocampus and cortex show the 

most Aβ deposition.  The data indicated that the removal of one copy of the 

plasminogen gene accelerates the loss of microvascular integrity in TgCRND8 

mice, while reduction of one copy of the fibrinogen gene slowed pathogenesis.  

At 3 months of age, mice homozygous for plasminogen deficiency showed blood-

brain barrier damage (Fig. 14), but did not show significant neuroinflammation.  

Since these mice died early, it cannot be determined if the inflammation would 

have developed to levels comparable to older AD mice.  Nonetheless, this finding 

indicates presence of Aβ exaggerates fibrin-related neuroinflammation. 

 

3.5 Fibrinogen depletion protects against the deleterious effects of plasmin 

inhibition 

Suppressing plasmin activity with tranexamic acid leads to increased blood-brain 

barrier breakdown and inflammation, as shown in Figures 6-8.  As fibrin and 

fibrinogen are the primary targets of plasmin proteolysis, this treatment also led 

to increased fibrin(ogen) deposition (Fig. 5).  However, because plasmin is a 

potent protease that could have many substrates, we investigated whether the 

vascular damage and inflammation were due to fibrin(ogen) accumulation or 

some other effect of plasmin inhibition.  Therefore, we implanted pumps with 
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either saline or ancrod in two groups of mice for a pretreatment period of one 

week.  After pretreatment, both fibrinogen-depleted and control groups received 

tranexamic acid to inhibit plasmin activity for one week.  All mice were assayed 

for blood-brain barrier damage and inflammation as before.  As expected, 

plasmin inhibition increased Evans blue extravasation and microglial staining in 

the control group.  By comparison, the fibrinogen-depleted group showed 

significantly less pathology (Fig. 15).  Levels for fibrinogen-depleted mice were 

similar to untreated mice (Fig. 3) suggesting that fibrinogen depletion protected 

mice from the increased vascular damage and inflammation induced by plasmin 

inhibition.  This result indicates that fibrin(ogen) deposition is a critical pathologic 

consequence of reduced plasmin activity in the brains of AD mice. 
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Figure 13. Localization of vascular pathology in AD mice deficient for fibrinogen 
or fibrinolysis. (A–F) Composite images of cerebral hemispheres of 6-mo-old 
mice perfused with Evans blue for 6 h. TgCRND8;fib+/– (D) and 
TgCRND8;plg+/– (F) mice are compared with TgCRND8 mice (E) and fib+/– (A), 
NTg (B), and plg+/– (C) controls. Pathologic dye accumulation is most apparent 
in the cortex (cx), hippocampus (hp), and thalamus (th). 
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Figure 14. Complete genetic plasminogen deficiency produces early 
neurovascular damage without neuroinflammation. Plasminogen-null (plg-/-) mice 
were assayed for Evans blue extravasation at 3 mo of age. Data are represented 
as mean ± SEM, where n = 4 for plg-/- and compared to data from Fig. 1 A; **, P 
< 0.001 relative to wild types. Plg-/- mice showed increased blood-brain barrier 
permeability comparable to transgenic mouse treated with a plasmin inhibitor. 
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Figure 15. Ancrod treatment protects AD mice from increased pathology induced 
by tranexamic acid. (A) Two groups of 6-mo TgCRND8 mice were treated as 
indicated. (B) Evans blue extravasation. (C) Analysis of CD11b staining for 
microglia, either resident in the brain or peripherally derived. In both cases, 
pretreatment with ancrod reduced the effect of tranexamic acid. Error bars 
present the mean ± SEM of four images for each of four ancrod- and four saline-
treated mice. **, P < 0.001. 
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CHAPTER 4: Aβ ALTERS FIBRIN CLOTS 

4.1 AD mouse brains cannot clear fibrin efficiently 

Fibrin(ogen) accumulates in the brains of AD patients (Fiala et al., 2002) and AD 

mice that are transgenic for human AβPP (Paul et al., 2007).  Since one possible 

reason for the fibrin(ogen) accumulation in mice was a higher level of fibrinogen 

in the blood, we measured fibrinogen levels in wild type and AD mice and found 

no difference (Fig 25).   Another possibility was increased persistence of 

fibrin(ogen) in AD mice.  Therefore, we determined if these mice had increased 

stability of fibrinogen injected into the brain.  Six-month old AD mice and their 

wild type littermates were injected with purified human fibrinogen into the 

hippocampus and sacrificed the following day.  Though injected with the same 

amount of fibrinogen, AD mouse brains contained more exogenous fibrin(ogen) 

than their wild type littermates (Fig. 16 a-c).  Areas of fibrin(ogen) deposition 

conincided with amyloid deposits (Fig. 16 d-g).  Conversion of at least a portion 

of injected fibrinogen to fibrin was demonstrated by detection of D-dimer in brain 

homogenates (Fig. 26), indicating that the injected fibrinogen was polymerized 

and cross-linked by transglutaminase before proteolytic cleavage.  Therefore, 

injected fibrinogen was converted to fibrin in the AD mouse hippocampus, and 

this fibrin persisted longer in the AD mouse brain compared to wild type.  

Persistent fibrin(ogen) could be due to increased formation or decreased 

clearance (Sutton et al., 1994; Melchor et al., 2003).  To examine this effect 

further, cortical homogenates were prepared from 26-week-old AD mice and wild 

type littermates, by which time the cortex has high levels of Aβ.  These 

homogenates were added to normal human plasma in vitro in the presence of 

excess thrombin and tPA.  As thrombin converts fibrinogen to a fibrin network, 
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the newly formed fibers scatter light and the solution increases in turbidity. As 

fibers are formed, they become substrates for tPA-activated plasmin, and the 

equilibrium shifts from formation to dissolution, reducing the turbidity as the clot is 

dissolved.  Turbidity increased similarly in both groups during the initial clot 

formation phase (Fig. 17a), suggesting there was no direct effect on thrombin.  

However, the wild type samples initiated fibrinolysis earlier and dissolved the clot 

with greater overall efficiency.  The AD cortex achieved a greater maximum 

turbidity and completed dissolution at later time points (Fig. 17b). Using 

streptokinase, the AD cortex again showed a reduced lysis of fibrin (Fig. 17c-d), 

indicating that Aβ did not interfere with the tPA /plasminogen or tPA/fibrin 

interactions.  Also, this result showed that increased PAI-1 was not responsible 

since streptokinase is not inhibited by PAI-1.   In contrast to cortical extracts, 

cerebellar AD mouse brain homogenates, which at this age contain low levels of 

Aβ (Chishti et al., 2001), had no effect on the degradation of fibrin clots (Fig. 18a-

b).    

To determine if Aβ was responsible for these effects, we depleted it from 

cortical homogenates by immunoprecipitation with an anti-Aβ antibody.  We 

found that the Aβ-immunodepleted homogenates no longer bound Congo Red 

dye while the precipitated solution was congophilic.  Fibrin clearance times in the 

presence of cortical extracts from AD mice brains were substantially reduced 

after Aβ depletion (Fig. 18c-d). However, depletion of Aβ did not completely 

restore normal degradation times.  This result suggests that the removal was 

incomplete or that there are additional factors in the AD mouse brain contributing 

to the formation/dissolution equilibrium.  Taken together, these findings suggest 

that Aβ may be causing alteration of the fibrin clot, which is retarding its 

clearance. 
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Figure 16: AD mouse brains do not clear fibrin(ogen) efficiently due to increased 
Aβ load.  (a) Immunofluorescent detection of fibrin(ogen) in the hippocampus of a 
wild type mouse one day following stereotaxic injection with fibrinogen. Scale bar 
is 1 mm.  (b) Detection of fibrin(ogen) in equivalent brain region of an AD mouse 
one day post-injection.  (c) Fibrin(ogen) area units were calculated for mice in 
each group using the area of fibrin(ogen) staining divided by the area of co-
injected Evans blue dye. Fibrin(ogen) colocalizes with amyloid after stereotactice 
injection (d-g). Sections of AD mouse brains injected with Evans blue (f) and 
fibrinogen one-day prior to sacrifice were stained for Thioflavin S (d) and 
polyclonal anti-fibrinogen antibody (e).  Amyloid deposits near the site of injection 
showed fibrin(ogen) staining as shown in the merged image (g).  
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Figure 17: AD mouse brains do not clear fibrin efficiently due to increased Aβ 
load. (a) Formation and degradation of clots in the presence of brain extracts. 
Clotting of normal human plasma was initiated with thrombin in the presence of 
brain extract from the cortex of AD mice (red) or wild type littermates (black) with 
excess tPA. (b) Total lysis time for ex vivo extract assay in (a) determined from 
initiation to complete dissolution for wild type and AD mice. (c) 
Formation/degradation assay in the presence of cortex extracts of AD mice (red) 
or wild type littermates (black) with streptokinase (SK) added to normal human 
plasma clots.  (d) Total lysis time for wild type and AD mouse brain extracts in 
(c). All curves are representative assays. 
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Figure 18: AD mouse brains do not clear fibrin efficiently due to increased Aβ 
load. (a) Formation/ degradation assay in the presence of cerebellum extracts of 
AD mice (red) or wild type littermates (black) with tPA added.  (b) Total lysis time 
for wild type and mouse cerebellar extracts with tPA in (a).  (c) 
Formation/degradation curves of AD mouse brain homogenates depleted of Aβ 
with 5 μg/ml of 4G8 antibody (blue) or 5 μg/ml of irrelevant IgG (black dashed).  
Other controls included low concentration of 4G8 (green) and no antibody in AD 
(red) or wild type (black).  (d) Total lysis times for immunodepletion experiments 
in (c). * p<0.001, AD mice compared to wild type; control Ab compared to 4G8.  
All curves are representative assays. 
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4.2 Purified Aβ impairs fibrinolysis 

To further simplify our analysis, we performed clot formation/degradation 

experiments with purified human fibrinogen and tPA in the presence or absence 

of various forms of Aβ.    In the presence of congophilic Aβ42, the thrombin-

catalyzed fibrin clot was formed normally in the initial phase of the curve (Fig. 

19a), but its dissolution was delayed (Fig. 19b).  One possible explanation for this 

result is that congophilic Aβ42 may affect the known interaction of tPA and 

plasminogen (Hoylaerts et al., 1982), reducing the fibrinolytic potential.  To 

examine this possibility, the experiment was repeated using streptokinase rather 

than tPA since its activation of plasminogen does not require proteolytic 

cleavage.  Clot lysis by streptokinase was also delayed in the presence of Aβ, 

suggesting a fundamental difference in clot structure in the presence of this 

peptide (data not shown).  It could be that Aβ promoted Factor XIIIa 

(transglutaminase) activity, since increasing cross-linking could strengthen the 

fibrin clot and reduce lysis speed.  However, there was no difference in gamma-

gamma crosslinking (D-Dimer) in the presence or absence of Aβ as determined 

by analysis of fibrin degradation products (data not shown).  Thus, the actions of 

Aβ42 on clotting are likely due to direct molecular interactions with clotted fibrin 

or fibrinogen. 

Aβ42 has been shown to stimulate tPA activation of plasminogen without 

increasing proteolytic activity (Kranenburg et al., 2002).  This effect would be 

inconsistent with delayed fibrinolysis.  Therefore, the effect of Aβ on fibrinolysis 

had greater observable impact than the stimulation of plasminogen activation. 

Also, although tPA activation of plasminogen is enhanced in the presence of Aβ, 
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there was no direct enhancement of tPA proteolytic activity as determined by 

colorimetric enzymatic assays.  Additionally, there were no effects of congophilic 

Aβ42 on thrombin or plasmin (Fig. 27). 

To test this effect in the presence of all of the components involved in 

hemostasis, we clotted recalcified human plasma in the presence of tPA (Fig. 

19c).  Similar to the pure fibrin clots, fibrinolysis was delayed in the presence of 

congophilic Aβ42 (Fig. 19d).  To observe the degradation process alone, we 

added tPA to a clot previously formed from recalcified platelet-deficient plasma 

and observed fibrinogen degradation using confocal time-lapse image acquisition 

(Fig. 20a)(Collet et al., 2000).  The lysis front retreated as the clot was degraded 

by plasmin, and the retreat rate was calculated. In the presence of congophilic 

Aβ42, lysis was delayed and retreat of the lysis front was slowed (graph in Fig. 

20b).  

Because Aβ misfolds to form ordered fibrillar aggregates, we determined if 

protein folding played a role in these results.  Congo Red is a dye that recognizes 

fibrillar amyloid plaques in AD postmortem tissue, due to its sensitivity to the anti-

parallel β-pleated sheet conformation.  Upon binding, the absorbance spectrum 

of the dye changes, producing a red shift (Klunk et al., 1999).  Purified Aβ did not 

exhibit a red shift immediately after reconstitution.  After mixing the solution 

overnight at room temperature to promote nucleation and growth of Aβ oligomers 

(Chauhan et al., 2001), peptides in the solution were enriched in β-sheets and 

thus became congophilic.  We confirmed the presence of fibrils in the congophilic 

Aβ42 samples used in this study with electron microscopy (Fig. 37).  Non-

congophilic solutions of Aβ did not produce the effects on lysis time in fibrin clots, 

while congophilic Aβ solutions affected lysis rates (Fig. 19a-d).  Therefore, 
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oligomerization and β-pleated sheet structure are necessary to observe the 

effects on fibrin polymerization. 

To separate possible effects of Aβ on clot formation and dissolution, we 

next tested the effect of Aβ on fibrin only during the formation phase.  The 

presence of Aβ42 during thrombin-induced clot formation from pure fibrinogen 

produced a dose-dependent decrease in the normal rise in turbidity (Fig. 20b).  

The decreased turbidity could reflect incomplete clotting.  However, in both the 

presence and absence of Aβ, all the fibrinogen was removed from solution and 

incorporated into the clot (data not shown), indicating complete clotting in both 

cases.  Therefore, the lower turbidity suggested that the fibrin clot formed in the 

presence of Aβ was structurally abnormal. Structurally altered clots can be 

resistant to fibrinolysis (Collet et al., 2000; Sugo et al., 2006), which could explain 

the persistence of fibrin in the presence of Aβ.   
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Figure 19: Aβ alters the development of fibrin clot turbidity and slows 
degradation. (a) Combined fibrin formation/degradation assay.  Clotting of 
purified fibrinogen was initiated with thrombin in the presence of tPA and human 
plasminogen. Control (vehicle), black; Aβ42 500 nM, red. (b) 
Formation/degradation time for pure fibrin clots determined from initiation to 
complete dissolution.  Ctrl = control; 42c = congophilic Aβ42 500 nM; 42n = non-
congophilic Aβ42 500 nM; scr = scrambled Aβ42 peptide; 40 = Aβ40 500 nM. (c) 
Human plasma formation/degradation assay. Clotting of plasma was initiated 
with thrombin in the presence of tPA.  Control, black; Aβ42 500 nM, red.  (d) 
Formation/degradation time for human plasma clots determined from initiation to 
complete dissolution.  Ctrl = control; 42c = congophilic Aβ42 500 nM; 42n = non-
congophilic Aβ42 500 nM; scr = scrambled Aβ42 peptide ; 40 = Aβ40 500 nM. All 
curves are representative assays of 5 experiments. 
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Figure 20: Aβ alters the development of fibrin clot turbidity and slows 
degradation. (a) Lysis front retreat rate determined from 5 minute time-lapse 
confocal acquisitions from clots formed from plasma with fluorescent fibrinogen 
incorporated into the clot. After addition of tPA, red shows the edge of a clot 
formed in the presence of congophilic Aβ42 at 0 minutes and green shows the 
edge at 5 minutes.  The data for 4 experiments of control (vehicle) and 
congophilic Aβ42 were quantified as the speed the edge retreated in μm/min. * p 
<0.001. Scale bar = 36.5 μm. (b) Progress of turbidity upon clot initiation by 
adding human thrombin to fibrinogen at time 0.  Control (vehicle), black; Aβ42 5 
nM, green; Aβ42 500 nM, blue; Aβ42 5000 nM, red. All curves are representative 
assays of 5 experiments. 
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4.3 Structural deformation of fibrin in the presence of Aβ 

This decreased turbidity (Fig. 20b) prompted examination of the clot’s structure.  

We acquired images from native hydrated fibrin using confocal microscopy.  

Images using a fluorescent fibrinogen conjugate showed that the pure fibrin clots 

formed in the presence of congophilic Aβ42 are structurally altered with fibrils 

arranged in a non-homogeneous network. Areas of normal clotting were 

interrupted by irregular regions of clustering in the Aβ42-influenced fibrin (Fig. 

21a-b). Immunostaining of fibrin in the presence of Aβ without using labelled 

fibrinogen produced identical aggregates (data not shown).  Aggregates stained 

positive with Congo Red (Fig. 21c-d), suggesting they were formed only in the 

presence of fibrillar forms of Aβ.  Neither fibrin fluorescence nor Congo Red-

positive Aβ aggregates were observed when thrombin was omitted from the 

reaction mix (data not shown).   

To further investigate this conclusion, we used biotinylated Aβ in the clotting 

reaction and then stained with fluorophore-conjugated streptavidin.  Aβ peptide 

alone did not produce aggregates since streptavidin-conjugated fluorescence 

and staining for Aβ was only observed in the aggregates, confirming that the 

peptide was confined to these areas (data not shown).  The size of the 

aggregates ranged from two to 40 μm in diameter, and the average size and 

number increased over time (Fig. 22a-b). During lysis of clots, aggregates often 

detached from the lysis front and dissolved slowly (Supplementary Videos).  

Degradation-resistant aggregates staining positive for Congo Red remained after 

surrounding fibrin had been degraded (Fig. 23c-d).  Cluster formation and 

delayed lysis were not detected in control clots or those formed in the presence 

of non-congophilic or scrambled Aβ42 peptide.  Fibrin clots formed in the 
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presence of Aβ40 did not contain aggregates.  Interestingly, the destabilizing 

Dutch (E22Q) and Arctic (E22G) mutations in Aβ40, which enhance 

fibrillogenesis, promoted cluster formation similar to Aβ42 (Fig. 22c-d). Adding 

equal amounts of Aβ42 to collagen did not introduce any irregularities into the 

network of collagen fibrils (Fig. 28), suggesting that fibrin may be uniquely 

susceptible to Aβ.   

Scanning electron microscopy (SEM) images of purified fibrin also showed 

aggregate formation in the presence of Aβ (Fig. 23a-b). Because SEM images 

were obtained from clots that were fixed and post-processed, fibrils appeared 

tangled and up to 10 times thinner than in normal hydrated clots. Aβ fibrils can 

aggregate platelets (Kowalska and Badellino, 1994), but these aggregates were 

formed in Aβ-influenced clots using platelet-deficient plasma and purified 

fibrinogen (Fig. 28a-b).  As purified fibrinogen contains no platelets, the 

aggregates were not aggregates of platelets in this case.  

Given the effects of Aβ on clot structure and given that the genotype of the 

blood protein ApoE influences the development of AD (Corder et al., 1993), we 

examined whether the various isoforms of ApoE could influence the fibrin 

network organization in the presence of Aβ.  ApoE2, ApoE3, and ApoE4 had 

similar effects when added to pure fibrin clots.  Alone, each ApoE isoform 

increased the turbidity of pure fibrin clots, but had minimal effects on clot 

structure (data not shown). However, when added in combination with Aβ42, clot 

structures showed isoform-specific differences. Aggregate formation was 

comparable between Aβ42-influenced clots formed with or without ApoE4 (Fig. 

24), and the clots showed similar plasmin lysis where aggregates detached from 

the lysis front and were difficult to degrade.  However, both ApoE2 and ApoE3 
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showed reduced cluster formation in the presence of Aβ (Fig 24).  AD 

epidemiology suggests the ApoE2 is protective, ApoE3 has an intermediate 

effect, and the less common ApoE4 has a gene-dosage effect to increase the 

risk of developing the disease earlier.  These data suggest the increased risk 

could be due to a loss-of-function to stabilize and facilitate normal clot formation 

in the presence of Aβ.  
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Figure 21: Aβ alters clot structure.  (a) Confocal image (inverted gray levels) of 
control (vehicle) fibrin clot using fluorescent fibrinogen at low magnification. (b) 
Aβ42-influenced clot (500 nM) at low magnification. Scale bar = 36.5 μm. (c) 
Image of fluorescent fibrin (pseudocolored green) forming network with 
aggregates in the presence of Aβ.  (d) Image of congo red fluorescence 
(pseudocolored red) in the same field as in (c). 
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Figure 22: Aβ alters clot structure over time. (a)  Confocal image (inverted gray 
levels) of fibrin clot showing aggregates acquired 15 minutes after addition of 
thrombin.  (b) Confocal image of the fibrin clot shown in (a) showing aggregates 
after 90 minutes. Scale bar = 8.75 μm. (c) Aβ40-influenced (500 nM) clot at low 
magnification. (d) Aβ40-Dutch (E22Q)-influenced clot (500 nM) at low 
magnification. Scale bar = 36.5 μm.  
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Figure 23: Aβ alters clot structure by SEM. (a) Scanning elecron micrograph 
(SEM) obtained from control clot formed from pure fibrinogen and thrombin. (b) 
SEM of fibrin formed in the presence of Aβ42 (500 nM). Scale bar = 1.25 μm, 
and inset is 1 μm x 1 μm. (c) Confocal image of green-fluorescent fibrin(ogen) 
aggregated in the presence of congophilic Aβ42 remains after fibrinolysis was 
completed and surrounding network is dissolved. (d) Congo Red stains the 
remaining aggregate shown in (c). 

 66



 

 

 

 

Figure 24: ApoE2 and ApoE3 attenuate the effect of Aβ on blood clot structure. 
(a-c) Confocal images (inverted gray levels) of fibrin clot showing aggregates 
formed from platelet-deficient human plasma and thrombin in the presence of 
fluorescent-conjugated fibrinogen, Aβ42 (500 nM) and (a) excess ApoE2 (50μM), 
(b)  ApoE3 (50 μM), or (c) ApoE4 (50 μM). Scale bar = 36.5 μm.  (d)  Percent 
density of aggregates in clots formed after 90 minutes. * indicates p <0.001. 
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Figure 25. Western blots of plasma samples show that circulating fibrinogen is 
similar in AD and wild type mice (n=3 per group). Activated partial thromboplastin 
time curves for AD and wild type mice.  AD mouse blood is not hypercoagulable 
as clotting time and turbidity values are similar.  
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Figure 26: Presence of D-Dimer indicates conversion of fibrinogen to fibrin upon 
injection into AD mouse brains. Lane 1 represents wild type. Lane 2 represents 
pure fibrinogen.  Lane 3 shows detectable levels of fibrin degradation products 
are present in the homogenized AD mouse brain after injection with fibrinogen.  
Without injection, these products are only detectable by ELISA. 

 69



 

 

 

 

 

 

 

Figure 27: Enzyme activity assays using purified enzymes and colorimetric 
substrates.  Plasmin (a), tPA (b), and thrombin (c) show no difference in activity 
in the absence (black boxes) or presence of (red circles) Aβ42 (500 nM). 
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Figure 28: Aβ affects purified fibrin clots. (a)  Confocal image acquired 90 
minutes after addition of thrombin to pure fibrinogen (inverted gray levels), 
showing no aggregates are formed in the absence of Aβ. Image is 35 μm x 35 
μm.  (b) Confocal image of fibrin clot showing aggregates in the presence of Aβ 
after 90 minutes.  (c) Collagen fibrils imaged using gold colloid and reflectance 
confocal imaging.  No aggregates are formed in the absence (c) or presence (d) 
of Aβ. Image is 35 μm x 35 μm.  

 
  

 71



4.4 AD mouse and human cerebrovasculature contain fibrin(ogen) deposits 

Next, we determined if the classical role of fibrinogen in hemostasis might be 

challenged within the cerebral vasculature.  Blood vessels in the brain serve as 

an interface for interaction between fibrinogen and Aβ as excess brain-derived 

Aβ is actively drained through the vasculature (Shibata et al., 2000).  We 

examine fibrin(ogen) deposition at this interface by co-staining perfused AD 

mouse brains for amyloid and fibrin(ogen).  We found fibrin(ogen) deposited in 

the amyloid-laden vessels of AD mice (Fig. 29), consistent with fibrin deposits 

resistant to degradation. We counted the number of Congo Red positive vessels 

(CAA), which stained positive for fibrin(ogen) and found that 85%  of amyloid 

vessels contained fibrin(ogen) deposits.  We also counted the number of 

fibrin(ogen) immunoreactive vessels that also stained positive with Congo Red.  

Only 9% of apparently thrombosed vessels were positive for amyloid (Fig. 30).  

Therefore, the AD mouse cerebral vasculature is likely a prothrombotic 

environment but doesn’t require fibrillarized Aβ for this to take place.  We also 

examined the effects of pharmacologic depletion of fibrinogen in AD mice on the 

distribution of amyloid to plaques or to vessels.  We found a decrease in vascular 

amyloid relative to saline treated groups, while plaque levels remained similar 

(Fig. 38).  Inhibition of plasmin with tranexamic acid produced the opposite effect 

to increase CAA in treated AD mice. 

To determine the clinical significance and further characterize the 

fibrin(ogen) deposition, we used a monoclonal antibody that recognizes fibrin but 

not fibrinogen to stain post-mortem brain samples of human AD.  We found that 

Thioflavin colocalized with fibrin immunoreactivity, though there were many 

instances of fibrin stained blood vessels in the absence of amyloid (Fig. 31).   
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Figure 29. Intravascular Fibrin(ogen) deposition. Fibrin deposits are detected in 
vessels laden with congophilic Aβ. Perfused AD mice at 52 weeks-of-age have 
deposits of fibrin(ogen), (green) at sites of cerebral amyloid angiopathy detected 
by Congo Red fluorescence (red). Scale bar is 50 μm.  Fibrin(ogen) deposits are 
detected in the cortex with longitudinal sections (a-c) as well as transverse 
sections (d-f). Fibrin(ogen) deposits are detected in the hipocampus with 
longitudinal sections (g-i) as well as transverse sections (j-l). 
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Figure 30. Distribution of intravascular fibrin(ogen) deposits. The distribution of 
fibrin(ogen) deposits and cerebral amyloid angiopathy in 12-month AD mice was 
imaged and colocalization quantified.  (a) Of all fibrin(ogen) stained vessels 
identified in the cortex and hippocampus, 9% were positive for Congo Red 
fluorescence. (b) Of all vessels staining positive for amyloid, 85% contained 
fibrin(ogen) deposits.   
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Figure 31. Intravascular fibrin deposition in humans. Post-mortem sections of 
patients diagnosed with AD were stained with a monoclonal antibody recognizing 
fibrin but not fibrinogen.  Blood vessels in the cortex staining positive with clotted 
fibrin deposits (a) stained positive for Thioflavin S reflecting amyloidosis (b) as 
shown in the overlay (c). 
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4.5 AD mouse cerebral blood hemostasis is dysfunctional 

To determine the significance of this fibrin accumulation in the brains of AD mice, 

we examined the relationship between cognitive performance in the Y-maze and 

individual characteristics of each mouse such as age, Aβ immunoreactivity, and 

fibrin deposition.  Age showed poor correlation (r2=0.412) with cognitive decline, 

while Aβ and fibrin correlated with cognition to a similar degree (r2=0.688 and 

0.730, respectively) (Fig. 36).   

As Aβ peptides had strong effects on the turbidity and structure of the clots 

in vitro we wanted to better understand the in vivo effects on thrombosis and 

hemostasis.  We devised an intravital system for viewing thrombosis in real time 

using epi-fluorescence (Fig. 32).  AD and wild type mouse brains were exposed 

by craniotomy and blood flow was recorded using injected fluorescent-

conjugated dextran to label blood flow.  We then perfused the surface of the 

brain with the dura peeled back with ferric chloride.  Thrombosis was exhibited by 

the appearance of an enlarging shadow superimposed on normal blood flow.  

Typically smaller clots appeared on the sides of vessels and grew over time until 

complete occlusion (Supplemental movies).   

We counted the number of visibly occluded large vessels (>20 μm) over 

time for both AD and wild type mice.  AD mice often thrombosed spontaneously 

even before the addition of ferric chloride, and lower doses were needed to 

occlude similar sized vessels (Fig. 33).  To determine the rates of fibrinolysis, we 

formed clots with 10% ferric chloride in each mouse and then perfused the brains 

with tPA.  Clot lysis is observed as the shrinking and eventual disappearance of 

the shadow over the fluorescent labelled blood flow (Supplemental movies).  The 

size of the shadow was measured at one-minute time points.  Clots formed in AD 
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mice remained of similar size for more than 5 minutes, while wild type mouse 

clots lysed quickly, often dissolving within 30 seconds (Figs. 34 and 35).   

These measures suggest the AD mouse brain is an environment conducive 

to thrombosis.  However, these results were not limited to thrombosis since we 

observed frequent uncontrolled hemorrhage after perfusion of clots with tPA 

(Supplemental movie).  This effect was not observed in wild type littermates.  

These events can be explained by a weakened vessel wall due to smooth 

muscle loss and endothelial damage in CAA.  The results are consistent with 

numerous studies linking CAA to intracerebral hemorrhage after treatment with a 

thrombolytic agent (Ramsay et al., 1990; Pendlebury et al., 1991; Winkler et al., 

2002; McCarron and Nicoll, 2004). 
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Figure 32. Intravital visualization of thrombus formation in the mouse brain. 
Fluorescein-labeled dextran was injected, and a cranial window was prepared. 
Images show vessels before (A,C) and after (B,D) clot formation.  Thrombi were 
formed (B) after injecting Rose Bengal and inducing photo-injury by a 
multiphoton confocal microscope, or (D) by topical application of FeCl3 and 
visualizing with a widefield microscope. Arrows indicate where thrombi were 
formed after the application of the laser (B) or the FeCl3 solution (D).  
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Figure 33. Time to brain blood vessel occlusion in AD and WT mice.  Blood flow 
was observed in blood vessels of size >20 μm after topical application of ferric 
chloride at incremental doses of 2.5% (first blue dotted line at 5 min), 10% 
(second blue dotted line at 20 min), and 20% (third blue dotted line at 40 min).  
The number of occluded vessels was recorded in AD mice (red) and wild type 
littermates (black) over time and plotted.  AD mice show occlusion earlier and 
with lower doses of ferric chloride. 
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Figure 34. Altered thrombosis and fibrinolysis in AD mice. (a) Fluorescent labeled 
blood flow is interrupted with dark zones representing clot formation in cerebral 
arteries (arrows).  Scale bar is 50 um.  (b) Time series of clot dissolution after 
tPA treatment of a preformed clot in an AD mouse. (c) Time series of clot 
dissolution after tPA treatment of a preformed clot in a wild type mouse. 
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Figure 35. Altered thrombosis and fibrinolysis in AD mice. Clot size 
determinations over time post tPA treatment of preformed clots in AD and wild 
type mice. * p<0.001, AD mice compared to wild type. 
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Figure 36: Correlation between behavior and biochemical analyses.  Behavior 
was measured as the percentage of time each mouse spent in the novel arm 
during the first two minutes of the Y maze memory test.  Diffuse Aβ and fibrin 
were measured using threshold area percentage analysis after immunostaining.  
Correlations between age, cognitive impairment, diffuse Aβ, and fibrin deposition 
were made.  The strongest correlations to behavioral pathology are found with 
(a) diffuse Aβ (r2 = -0.68) and (b) fibrin deposition (r2 = -0.73), both of which are 
related to vascular damage.  Correlation of histological pathology and behavior 
did not differ greatly between the hippocampus and cortex in any case.  There 
was low correlation (r2 = -0.41) between behavioral pathology and age (not 
shown). 
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Figure 37. Fibrinogen may influence Aβ aggregation.  We incubated pure 
fibrinogen with pure Aβ42 overnight and mixed with Thioflavin T to examine β-
sheet content of the mixture.  (a) Though fibrinogen does not form fibrils alone, 
when mixed with Aβ the observed fibrillization reflected in fluorescence units is 
doubled.  Transmission electron microscopy also reveals denser, more compact 
fibrils formed when Aβ and fibrinogen are mixed (b) than Aβ alone (c). 
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Figure 38. Fibrin levels modulate CAA but not plaques. AD mice were 
defibrinogenated with ancrod, plasmin inhibited with tranexamic acid, or treated 
with saline and analyzed for distribution of amyloidosis in the hippocampus and 
cortex after four weeks of treatment.  While all groups showed similar area 
density of plaques, ancrod-treated showed less CAA and plasmin-inhibited mice 
showed increased CAA using 4 images from 4 mice in each group.  Bars 
represent mean +/- SEM * p<0.05 Students t-test comparing CAA from saline to 
ancrod and from saline to tranex. 
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Figure 39. Interaction of Aβ42 and fibrinogen in vitro. Biotinylated Aβ42 (Aβ42) 
was incubated with (A) fibrinogen (FBG), (B) laminin (LM), or (C) fibronectin 
(FNCT) as described, and pull down assays were carried out using Streptavidin-
sepharose. (A) A Western blot was performed in non-reducing conditions using 
an antibody against fibrinogen. (B,C) In the case of laminin and fibronectin, gels 
were run in reducing conditions since the reduced forms of both proteins were 
more easily detected than the non-reduced forms (900 kDa for laminin, 440 kDa 
for fibronectin). 500 ng of FBG, LM, and FNCT were loaded on each 
corresponding gel as a positive control ((+) control). 
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CHAPTER 5: DISCUSSION 

 

5.1 Neurovascular dysfunction in the AβPP transgenic mouse 

The Tg2576 mouse has deficits in vascular integrity shown by blood-brain barrier 

damage (Ujiie et al., 2003; Kumar-Singh et al., 2005), decreased blood flow and 

increased susceptibility to ischemia (Zhang et al., 1997).  In addition, vascular 

density is reduced in these animals as measured by glucose transporter type 1 

GLUT-1 beginning at 12 months (Kouznetsova et al., 2006).  Subsequently, it 

was shown that the blood-brain barrier compromise is rescued in the Tg2576 

mouse with passive Aβ1-40 peptide immunization (Dickstein et al., 2006). The 

present study explores the contribution of fibrin(ogen) to neurovascular damage 

as part of the amyloid-β disease process and broadens the knowledge of 

vascular deficits to other AβPP-transgenic mouse models.   

The Aβ peptide causes endothelial and smooth muscle cell dysfunction 

and cell death in vitro thus disrupting two major components of the blood-brain 

barrier (Haass et al., 1992; Thomas et al., 1996; Blanc et al., 1997; Hase et al., 

1997; Sutton et al., 1997; Thomas et al., 1997; Melchor and Van Nostrand, 2000; 

Zlokovic, 2008).  Therefore the initial insult to the microvasculature likely arises 

from increased Aβ levels.  Cerebral amyloid angiopathy (CAA) is a hallmark of 

Alzheimer’s disease and it is be important to consider the specific vascular 

amyloid burden in these mice. 

However, the neurovascular damage in the plasminogen-deficient mouse 

suggests decreased fibrinolysis might promote the damage to blood vessels and 
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subsequent fibrin deposition.  Because neuroinflammation was low in the 

plasminogen-deficient mouse, fibrin(ogen) deposition alone is not sufficient for 

observed pathology and Aβ is necessary to initiate the inflammatory process.   

 

5.2 Alzheimer’s Disease and the tPA/plasmin fibrinolytic system 

TPA/plasmin fibrinolytic activity is regulated by serine protease inhibitors 

(serpins) such as plasminogen activator inhibitor-1 (PAI-1).  In mice, PAI-1 is up-

regulated in the presence of Aβ, which agrees with the clinically observed 

elevation of PAI-1 levels in the cerebrospinal fluid of AD patients (Sutton et al., 

1994; Sutton et al., 1997; Melchor et al., 2003),  and decreased plasmin activity 

in the AD brain (Ledesma et al., 2000).   

The tPA/plasmin system is down-regulated in AD, in accord with 

reductions in other naturally occuring Aβ-degrading proteases (Ledesma et al., 

2000; Selkoe, 2001; Leissring et al., 2003).  The direct consequences of this 

general lack of protease activity might be the diminished clearance of Aβ peptide 

(Selkoe, 2001).  The present study proposes that decreases in clearance of 

fibrin(ogen) can also contribute to the progression of Aβ pathology. 

It is important to consider the effects of the loss of a single copy of the 

plasminogen gene.  Heterozygosity decreases the fibrinolytic activity to 55% of 

normal in pooled plasma obtained from wild type mice according to clot lysis 

assays (Ploplis et al., 1995).  We did not attempt to generate TgCRND8;plg-/- 

mice since plg-/- mice develop several thrombotic complications that could 

complicate the CNS pathology.  Additionally plg-/- mice exhibit early mortality, 
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which would preclude comparison at later ages.  TgCRND8;fib-/- mice are also 

difficult to generate due to breeding restrictions and limited survival (Degen et al., 

2001).   

These genetic constraints are addressed with the experiments using 

pharmacologic reduction of fibrinolysis and fibrinogen depletion by ancrod.  The 

convergence of the results of both genetic and pharmacologic approaches forms 

solid evidence that manipulation of fibrin levels in Alzheimer’s mouse models 

modulates inflammation and vascular integrity.   

 

5.3 Fibrinogen and inflammation 

Fibrinogen has several active roles in normal and abnormal physiology including 

cellular responses in clotting and inflammation that are mediated by fibrinogen 

receptors.  Of interest in the present study are the integrin receptors expressed 

on leukocytes, monocytes, and macrophage/microglia.  Three notable 

inflammatory integrins are α5β1, αvβ3, and αMβ2 (Mac-1 or CD11b/CD18) 

(Ugarova and Yakubenko, 2001).  Binding of the fibrinogen dimer to microglial 

αMβ2/CD11b elicits activation of the NF-κB pathway causing increased 

expression of cytokine genes (Perez et al., 1999; Flick et al., 2004).   

The involvement of inflammation has been studied in Alzheimer’s disease.  

Clinical and epidemiological data concerning anti-inflammatory medications are 

provocative and require further studies to determine their potential in controlling 

disease progression (McGeer et al., 1996; Koistinaho and Koistinaho, 2005).  

The present study suggests that fibrin may be an upstream effector of 
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neuroinflammation and the damaging effect of decreased fibrinolysis on the 

neurovasculature is intriguing.  Fibrin-induced microgliosis could be toxic to 

endothelial cells as microglia have been shown to increase cell death in primary 

endothelial cells after oxygen-glucose deprivation, which can be reduced by 

inhibiting microglial activation with minocycline (Yenari et al., 2006).   

How inflammation may contribute to neurodegeneration in AD is still 

largely unknown.  As blood vessels from AD brains are directly toxic to neurons 

(Grammas et al., 2000), we asked if the compromised neurovasculature and 

inflammation in these experimental mice could promote neurodegeneration.  

Although we did not observe neuronal death, studies involving older TgCRND8 

mice with enhanced inflammation and vascular damage may reveal detectable 

levels of neurodegeneration. 

As fibrinogen is polymerized after activation by thrombin, it is important to 

note that thrombin injection into the rat cortex induces microgliosis (Lee da et al., 

2006).  Additionally, in human patients with advanced AD, plasma prothrombin 

can be found in the extravascular space (Zipser et al., 2006), which provides an 

environment where fibrin is likely to deposit.  

Once polymerized in the parenchyma, fibrin is covalently cross-linked by 

tissue-resident transglutaminase factor XIII (Furie and Furie, 1988).  Cross-linked 

fibrin is stabilized by covalent bonds between gamma chains.  Because the 

capturing antibody used in the ELISA recognizes the gamma chain specifically 

(Jirouskova et al., 2001), crosslinked fibrin would not be detected and the ELISA 

results likely underestimate the total fibrin deposition.  However, the 
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immunofluorescence uses a polyclonal antibody, which detects all forms of 

fibrin(ogen).  Similarly, Triton-soluble Aβ levels likely underestimate the total Aβ 

burden.  However, Aβ levels measured by ELISA correlate with plaque burdens 

observed with immunofluorescence.  Both soluble and insoluble fibrin activates 

microglia via the CD11b receptor and contributes to the observed inflammation in 

AβPP transgenic mice and AD patients.  

This study begins to outline a role for fibrin in the neuroinflammation seen 

in Alzheimer’s disease.  These results also indicate a role for fibrin deposition in 

accelerating the neurovascular damage observed in these mouse models and 

perhaps in reducing the brain’s reparative capacity.  Extravascular fibrin(ogen) 

functioning as a restraint to mechanisms of tissue repair has been shown in the 

peripheral nervous system (Akassoglou et al., 2002).  The present study also 

demonstrates this effect on the progression of disease in mouse models of 

Alzheimer’s disease.  Therefore, fibrin and the mechanisms involved in its 

clearance may present novel therapeutic targets in slowing the progression of 

Alzheimer’s disease. 

 

5.4 Fibrin clot structure is altered 

Fibrin, the major protein component of a blood clot, promotes inflammation and 

vascular damage in AD mouse models.  Fibrin accumulates in AD brains due to 

influx through a damaged blood-brain barrier (Paul et al., 2007) and inhibition of 

tissue plasminogen activator (tPA)/plasmin fibrinolytic activity (Melchor et al., 

2003).  Normally, fibrinogen is excluded from the brain and circulates in the blood 
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at micromolar concentrations where Aβ peptides are nearly undetectable.  This 

compartmentalization is lost in the AD brain, and damaged vasculature causes 

leakage of fibrinogen into the brain (Fiala et al., 2002; Finehout et al., 2007).  As 

AD pathology progresses, concentrations of Aβ increase dramatically, which can 

affect the structure of fibrin (Merkle et al., 1996). We sought to study the 

consequences of the co-existence of Aβ peptide and fibrinogen on the formation 

and dissolution of fibrin. 

Protein misfolding and aggregation is a hallmark of several 

neurodegenerative disorders. The common mechanism involves a misfolded 

protein serving as a template to influence the three-dimensional structure of other 

homologous proteins. Amyloid-induced alterations in clot structure represent an 

example of a misfolded protein disrupting the physical structure and mechanical 

properties of a different protein.  Propagation of a metastable conformation from 

one protein to another homologous protein is defined as conformational 

autocatalysis.  Here we introduce “conformational heterocatalysis” as the 

transmission of an abnormal structure from one protein to a different protein. The 

influence of misfolded Aβ on fibrin clots provides a simple model of this 

phenomenon. 

Persistent fibrin in the brain could be contributing to cognitive decline 

intravascularly or extravascularly.  The intravascular effects could be complicated 

as the balance between hemorrhage and thrombosis is delicate, and the 

abnormalities in the clots formed in the presence of Aβ could promote the 

occurrence of thrombosis or hemorrhage.  Therefore, the physical and 
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mechanical properties of clots formed in the presence of Aβ are under 

investigation.  Fibrin clots are viscoelastic materials, meaning they possess the 

physical and mechanical characteristics of viscous fluids and elastic materials 

simultaneously (Weisel, 2007).  Determining the contribution of the viscous and 

elastic component to the material can lend some insight as to how the clot 

behaves when the stress of circulating blood is applied. Although the slowed 

fibrinolysis and heterogeneity of the Aβ-influenced clots could promote 

thrombosis, the weakened network dynamics could promote hemorrhage.  The 

abnormalities may render the clots unstable and prone to bleeding when formed 

along the walls of blood vessels laden with amyloid (Van Broeckhoven et al., 

1990; Winkler et al., 2002). 

Mature solutions of Aβ42 promote formation of protease-resistant clumps 

of fibrin.  This difference in clot structure could lead to more persistent fibrin 

aggregates in AD brains and could explain the tendency for plaques to 

accumulate fibrin and maintain high levels of inflammation in the brain 

parenchyma (Paul et al., 2007).  Removal of fibrin with ancrod can reduce 

inflammation (Paul et al., 2007) and may improve learning and memory.  It will 

also be important to determine if there are intravascular effects of Aβ42, resulting 

in an imbalance in hemostasis.  Excess brain-derived Aβ is actively drained 

through the blood vessels (Shibata et al., 2000).  As fibrillogenic mutations of 

Aβ40 slow its elimination from the brain through vascular drainage pathways 

(Monro et al., 2002), Aβ accumulates in and around blood vessels.  These sites 

may be locally enriched for Aβ oligomers, which can lead to local thrombosis. To 
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support this, we found that amyloid-laden blood vessels in the brains of perfused 

AD mice contained fibrin.   

In contrast to normal aging individuals, AD patients have elevated levels of 

fibrin degradation products in the blood, suggesting fibrin is formed and degraded 

more than under normal conditions (Gupta et al., 2005).  Indeed, markers of 

thrombosis are independent predictors of dementia in the elderly (Barber et al., 

2004), and cardiovascular disease is associated with more rapid cognitive 

decline in AD patients (Mielke et al., 2007).  Also, fibrin clotting may slowly 

remove Aβ42 from the circulation as it is incorporated into clots (Matsubara et al., 

2002), which is consistent with decreasing levels of plasma Aβ42 during 

progression of AD (Mayeux et al., 2003).   It should be noted that thrombosis can 

produce areas of ischemia, which has been shown to induce tauopathy (Wen et 

al., 2004b; Wen et al., 2004a) and increase expression of β-amyloid cleaving 

enzyme, leading to production of more Aβ (Zhang et al., 2007) and therefore 

amplifying AD pathology.  

However, the effects of amyloid deposits in the cerebral vasculature are 

not limited to thrombosis as amyloid-laden blood vessels are also at risk for 

hemorrhage (Van Broeckhoven et al., 1990; Winkler et al., 2002). Therefore, how 

fibrin behaves in circulation in the AD brain is likely multifaceted and the 

abnormalities in the clots formed in the presence of Aβ could predispose the AD 

brain to hemorrhagic or thrombotic events.  The clots formed along the walls of 

blood vessels laden with amyloid are less stiff, which may account for the 

hemorrhagic events.  Contrarily, the slowed fibrinolysis and heterogeneity may 
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produce thromboembolism.  Alterations in cerebral blood flow have long been 

implicated in AD, this work provides a foundation for the biochemical processes 

underlying this disruption and therapeutic targets involved. 

The delicate balance of free flowing blood to perfuse healthy tissue and 

clotted blood to stop bleeding in damaged tissue relies on many factors.  The 

cerebral vasculature in mice transgenic for human AβPP is predisposed to both 

thrombosis and hemorrhage.  These results are supported by the ability of Aβ to 

deform fibrin clots.  However, there are several factors which could also explain 

defects both thrombosis and hemostasis.  Blood vessels in AD mice 

hyperreactive and hyperconstrictive leading to reduced cerebral blood flow.  Aβ is 

toxic to smooth muscle cells, which may render a vessel prone to rupture with 

even the slightest force.   

 

5.5 Variable forms of Aβ and cerebral blood flow 

Several characteristics of AβPP and Aβ peptide suggest it may be involved in 

blood flow and hemostasis (Hardy, 2007).  The AßPP protein, is a type I integral 

membrane glycoprotein encoded by a gene on chromosome 21 (Kang et al., 

1987; Tanzi et al., 1987). Full-length AβPP is translated from three alternatively 

spliced mRNA isoforms.  The normal physiological function of AβPP protein is 

largely unknown although two of the three isoforms contain an insert, which is 

homologous to Kunitz-type protease inhibitors (KPI) (Van Nostrand et al., 1989), 

which may be relevant.   
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The 39-43 amino-acid long peptide fragments of AβPP are generated 

through several proteolytic cleavage pathways (Haass et al., 1992). Therefore, 

Aβ can exist in several different forms, the relative concentration of which 

changes depending on the stage of the disease (Wang et al., 1999).  Some of 

the peptide fragments do not spontaneously form amyloid fibrils.  But the 

amyloidogenic pathway involves two critical proteases.  The β-site AβPP cleaving 

enzyme (BACE-1) cleaves Aβ at the amino-terminus of Aβ, while the presenilin 

protein complex is necessary for carboxy-terminal cleavage (Vassar et al., 1999; 

Kimberly et al., 2003).  

Fragments of varying length and location within the Aβ peptide may be 

responsible for interaction with fibrinogen, ApoE  (Aβ12-28) (Strittmatter et al., 

1993), and another hemostasis-relevant molecules, heparin (Aβ12-17) (Brunden 

et al., 1993).  Mutant forms of the Aβ peptides that are present in familial forms of 

AD which have dramatic aberrations in hemostasis including Gln22-Aβ(1-40)-

Dutch (Levy et al., 1990), Asn23-Aβ(1-40)-Iowa (Grabowski et al., 2001), Lys22-

Aβ(1-40)-Italian (Miravalle et al., 2000), and Gly22-Aβ(1-40)-Arctic (Nilsberth et 

al., 2001).  These mutations often alter fibril formation kinetics and cause disease 

with earlier onset AD and vascular damage (Meinhardt et al., 2007). 

 

5.6 Apo E 

Apo E is a lipid carrying protein synthesized primarily by the liver and circulates 

in the blood.  This protein is also expressed in the brain (Lefranc et al., 1996; 

Lindh et al., 1997; Skoog et al., 1997), and differences in ApoE genotype are the 
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strongest genetic link to sporadic forms of AD (Corder et al., 1993). Given the 

effects of Aβ on clot structure, we examined whether the various alleles of ApoE 

could influence the fibrin network organization in the presence of Aβ.  ApoE2, 

ApoE3, and ApoE4 had similar effects when added to pure fibrin clots.  Alone, 

each ApoE isoform increased the turbidity of pure fibrin clots, but had minimal 

effects on clot structure.  However, when added in combination with Aβ42, clot 

structures showed isoform-specific differences. Aggregate formation was 

comparable between Aβ42-influenced clots formed with or without ApoE4 and 

the clots showed similar plasmin lysis where aggregates detached from the lysis 

front and were difficult to degrade.  However, both ApoE2 and ApoE3 showed 

reduced CFA formation in the presence of Aβ. 

Although the molecular differences are known, little is known about how 

these ApoE isoforms interact with other proteins to affect AD in the presence of 

Aβ.  The ApoE molecule contains two distinct domains: the amino-terminal 22 kD 

receptor-binding region and the carboxy-terminal 10 kD lipid-binding region. The 

22 kD amino-terminal fragment contains the allelic differences, and thrombin 

actively cleaves ApoE to release the 22 kD regions.  Protein stability may play a 

role as the 22 kD region of ApoE4 fragment is less stable than the E2 and E3 

forms (Morrow et al., 2002).  It could be that this instability accounts for the 

inability of Apo E4 to normalize clot structure.   

AD epidemiology suggests the ApoE2 is protective, while ApoE3 has no 

effect, and the less common ApoE4 has a gene-dosage effect to increase the 

risk of developing the disease earlier.  In AD, ApoE4 affects amyloid deposition in 
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blood vessels as cerebral amyloid angiopathy (CAA) increases in frequency and 

severity with the E4 allele (Premkumar et al., 1996).  ApoE4 has multiple 

neuropathological associations including impaired glucose metabolism (Small et 

al., 1995), head trauma severity (Teasdale et al., 1997; Friedman et al., 1999; 

Crawford et al., 2002), and dementia with stroke (Slooter et al., 1997).  ApoE4 is 

known to bind Aβ and, by an unknown mechanism, promote deposition of fibrillar 

Aβ plaques in blood vessels (Holtzman et al., 2000; Fryer et al., 2005). 

 

5.7 Plasmin cleaves fibrin and Aβ 

Although deficiency in plasminogen alone is not enough to precipitate a defect in 

cerebral vasculature, plg-deficient mice crossed to hypercholesterolemic ApoE-

deficient mice show aggravated blood vessel pathology and fibrin deposition in 

atherosclerotic plaques (Xiao et al., 1997).  These atherosclerotic plaques are 

more prevalent and exaggerated over mutants bearing only the ApoE deficiency, 

suggesting that intact fibrinolysis is necessary to protect against vascular 

damage. 

The senile plaques are thought to accumulate in the brains of AD patients 

because of an overproduction of Aβ and lack of its clearance.  Aβ can be cleared 

through the blood vessels or degraded by proteolytic enzymes (Selkoe, 2001).  

Neprilysin is involved in the clearance of Aβ as treatment with inhibitors of the 

enzyme leads to reduced Aβ degradation (Iwata et al., 2000).  Complementing 

this pharmacologic approach with targeted genetics, mice deficient for another 

implicated Aβ clearance factor, endothelin converting enzyme, accumulated 
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more Aβ than control mice (Eckman et al., 2003).  Insulin degrading enzyme 

(IDE) also plays a role in this clearance (Vekrellis et al., 2000) and mice deficient 

for IDE  likewise show more Aβ pathology (Miller et al., 2003). Conversely, mice 

overexpressing neprilysin or IDE show decreased Aβ levels (Leissring et al., 

2003).   

Although primarily known for its role in degradation of fibrin, the enzyme 

plasmin is also partly responsible for clearance of Aβ in the AD brain (Van 

Nostrand and Porter, 1999; Tucker et al., 2000b; Tucker et al., 2000a).  Although 

Aβ increases tPA expression in neuronal cultures (Tucker et al., 2000b) and 

aggregated Aβ stimulates tPA activity (Kingston et al., 1995), the plasmin system 

is not effective at Aβ clearance in AD (Ledesma et al., 2000) because PAI-1 

levels are elevated in AD brains (Sutton et al., 1994).  These interactions are 

further complicated by another plasminogen activator, the urokinase 

plasminogen activator (uPA), which inhibits Aβ neurotoxicity (Tucker et al., 2002), 

and Aβ can stimulate the uPA and uPA receptor in cerebrovascular smooth 

muscle cells (Davis et al., 2003).   

Plasminogen activators are serine proteases primarily known for their role 

to cleave plasminogen producing the active form plasmin, a broad-spectrum 

protease capable of degrading a variety of proteins and protein aggregates 

(Vassalli et al., 1991).  The two major plasminogen activators are tissue-type 

plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA).  

Each one compensates for the other as mice deficient for either one of these 

activators alone are viable and fertile with normal life spans (Carmeliet et al., 
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1994), while elimination of both mechanisms results in a phenotype similar to 

plasminogen deficient animals marked by profound wasting, high mortality, 

spontaneous ulceration, rectal prolapse, and severe thrombosis (Bugge et al., 

1995; Ploplis et al., 1995).    

The brain expresses tPA in the hippocampus, amygdala, hypothalamus, 

and cerebellum.  The role of this molecule is complex as there is evidence of 

necessary and deleterious functions (Carroll et al., 1993; Sappino et al., 1993; 

Seeds et al., 1999; Pawlak and Strickland, 2002; Salles and Strickland, 2002; 

Seeds et al., 2003; Yepes et al., 2003).  As tPA expression in the hippocampus is 

critical for normal learning and memory (Qian et al., 1993).  There is a link 

between tPA and neurodegeneration (Tsirka et al., 1995; Tsirka et al., 1996; 

Chen and Strickland, 1997), and dysfunction in tPA/plasmin fibrinolysis may 

contribute to this link in AD. 

The tPA/plasmin system is tightly regulated by serine protease inhibitors 

(serpins).  The protein plasminogen activator inhibitor-1 (PAI-1) and neuroserpin 

block tPA activity while plasmin is blocked by alpha-2 antiplasmin.  Serpins like 

PAI-1 first form a reversible Michaelis complex which progresses to an 

irreversible inhibitory acyl-enzyme complex and cleavage of the reactive center 

loop of the serpin resulting in structural deformation of the protease (Lawrence et 

al., 1995; Ye et al., 2001).  Fine tuning of plasmin’s proteolytic activity is 

important in the delicate balance of hemostasis and thrombosis and it may be 

more important to determine if there are intravascular effects of Aβ42 resulting in 

an imbalance in this system (Breteler et al., 1998). 
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5.8 Toward a therapy for AD 

The amyloid hypothesis does not explain the poor correlation between the 

number of Aβ plaques and the degree of cognitive impairment (Lue et al., 1999).  

However, these measures are often complicated by the classification of plaques 

and Aβ species present in the AD brain (Dickson, 1997).  Plaques are quite 

variable in size and morphology and range from diffuse to fibrillar.  Fibrillar 

plaques contain Aβ rich in β-sheet structure, which can be detected with dyes 

specific for this structure such as Congo Red.  Fibrillar plaques are also more 

often described as “senile plaques” and are surrounded by inflammation and 

dystrophic neurites (Wilcock et al., 2006).  This synaptic deformation likely 

contributes to the cognitive decline but other forms of Aβ have been shown to 

affect normal synapse function.  Aβ Oligomers are soluble but can induce 

synaptic dysfunction (Haass and Selkoe, 2007).  It could be that oligomers 

diffuse from plaques and damage in remote regions of the brain.   

As AD is a neurodegenerative disorder, it is important to determine the 

mechanism behind cell death.  Aβ is generally regarded as neurotoxic in its 

fibrillar amyloid form (Pike et al., 1993).  The Aβ peptide is normally soluble but 

aggregates after the accumulation of β-pleated sheets in the peptide’s secondary 

structure.  Additionally, though the larger 10 nm fibrils are essentially confined to 

the plaques, smaller forms of aggregation such as the amyloid-β derived 

diffusible ligands (ADDLs) and other protofibrillar species are now known to be 

toxic to neurons as well (Lambert et al., 1998; Walsh et al., 2002; Gong et al., 

2003). 
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The strongest pathological correlation to degree of dementia is synaptic 

changes associated with neurofibrillary tangles (NFTs) (Ballatore et al., 2007).  

However, unlike Aβ, NFTs are not specific to Alzheimer’s disease and can be 

found in Frontotemporal dementia and Pick’s dementia.  Given that tangles are 

found in other dementias, it may be that Aβ and other processes contribute to the 

formation of NFTs, which are necessary to cause recognizable dementia (Hardy 

et al., 1998).  Consistent with this, Aβ levels were found to be elevated before 

significant NFTs were detected (Naslund et al., 2000). 

It should be noted that thrombosis can produce areas of ischemia, which 

has been shown to induce tauopathy (Wen et al., 2004b; Wen et al., 2004a) and 

increase expression of β-amyloid cleaving enzyme, leading to production of more 

Aβ (Zhang et al., 2007) and therefore amplifying AD pathology. 

 

5.9 Implications and future research on Aβ and fibrin 

Aβ associates with fibrinogen in vivo and in vitro, which alters the structure of the 

fibrin clot that is formed.  Since this interaction may have implications for AD 

pathogenesis, it is critical to obtain a better understanding of the biochemical 

details.  It will be important to which domains of fibrinogen are involved in this 

interaction by analyzing the binding of Aβ to fibrin degradation products and also 

regions of the Aβ peptide bind fibrinogen.  

It will also be important to understand the basic aspects of the interaction, 

including binding strength and kinetics by SPR, immobilizing Aβ (Shuvaev and 

Siest, 1996) and fibrinogen (Geer et al., 2007).  
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Given the distribution of fibrin deposition in the mouse brain, it will be 

important to quantitatively asses the involvement of the Aβ/fibrinogen interaction 

as well as the distribution and extent of the interaction in different regions of 

human AD post-mortem brain tissue using rigorous morphometric imaging and 

analysis.  This would provide a detailed explanation of where and how these 

proteins interact and may provide insight into how this interaction might be 

inhibited. 

The formation of degradation-resistant fibrin clots in vitro in the presence 

of Aβ is specifically modified by the isoform of ApoE.  ApoE2 and ApoE3 

normalize the clot structure to resemble clot formation in the absence of Aβ, 

whereas ApoE4 has no effect.  

Interestingly, when AD mice are deficient for the murine ApoE gene Aβ 

deposition is dramatically reduced and the disease onset is delayed.  These 

results suggest that ApoE has an important role in Aβ pathology (reviewed in 

(Bales et al., 2002; Brendza et al., 2002)).  Also, when replacing the mouse ApoE 

gene with the human gene, onset is delayed.  (Holtzman et al., 2000; Brendza et 

al., 2002; Fagan et al., 2002; Fryer et al., 2005). The murine ApoE gene only 

differs by 30% to human ApoE gene, but in vivo they have different functional 

properties. Thus targeted replacement mice have been generated to study the 

human isoforms without the complication of the mouse ApoE genotype.  

Therefore, AD mice such as the TgCRND8 should be crossed with human 

ApoE2 (Sullivan et al., 1998), ApoE3 (Sullivan et al., 1997), and ApoE4 (Knouff 

et al., 1999) targeted replacement mice.  Mice generated from this cross would 
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allow examination of the influence of each individual human ApoE isoform on the 

Aβ-fibrinogen interaction in vivo.  The results from these experiments may shed 

light on how the interaction between Aβ and fibrinogen along with the ApoE 

genotype influences the susceptibility and severity of AD. 

 

The most important therapeutic outcome in dementia is the improvement of 

cognition.  It is possible that in the presence of Aβ, malformed fibrin clots result in 

blocked blood flow or hemorrhage, both of which would contribute to the 

cognitive decline.  Given the ability of Apo E to modify this pathology, this work 

could form the basis for interventions targeting this abnormality.  
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