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REGULATION OF ANAPHASE PROMOTING COMPLEX COACTIVATORS 

Jonathan Robbins, Ph.D. 

The Rockefeller University 2010 

 

Ubiquitin-mediated proteolytic degradation is fundamental to eukaryotic cell 

cycle progression.  From late mitosis through early G1, the Anaphase Promoting 

Complex (APC) is essential for cell-cycle relevant proteolytic degradation, and its 

activity is targeted to appropriate substrates by the evolutionarily conserved coactivators 

Cdc20 and Cdh1.  After an initial wave of APC-Cdc20 activity, APC-Cdh1 degrades 

multiple mitotic proteins from mitotic exit through G1; inhibitory phosphorylation of 

Cdh1 by CDK and Polo kinase may allow accumulation of Cdh1 targets in the 

subsequent cell cycle.  I demonstrate lethality of exact endogenous gene replacement of 

CDH1 with the CDK-unphosphorylatable CDH1-m11 allele; neither polo kinase sites nor 

polo interaction motifs are required for Cdh1 regulation.  CDH1-m11 cells arrest in the 

first cycle with replicated DNA;~30% of these cells have bipolar spindles. Construction 

of bipolar spindles in these cells is strikingly sensitive to gene dosage of the 

stoichiometric Cdh1 inhibitor ACM1.  CDH1-m11 cells with bipolar spindles fail to 

progress to anaphase, suggesting that Cdh1 inhibits multiple spindle-regulatory pathways. 

Expression of undegradable mitotic cyclin causes spindle pole body separation (a key 

step in bipolar spindle assembly) in CDH1-m11 cells; thus mitotic cyclins are a 

significant target for Cdh1 with respect to bipolar spindle assembly, and reciprocally, 

cyclin-Cdk activity is the most significant mechanism for Cdh1 inactivation.   



Cdc20 has been proposed to be a Cdh1 target, but regulation of Cdc20 proteolysis 

has been controversial.  My experiments demonstrate that degradation of Cdc20 can be 

dependent on Cdh1 and Cdc20 destruction boxes, but Cdh1- and db-independent modes 

of Cdc20 proteolysis are also effective in limiting Cdc20 levels.   

To better understand the mechanisms by which multisite CDK phosphorylation 

inhibits Cdh1, I employed a novel recombination approach to create a series of partially 

unphosphorylatable CDH1 alleles ablating contiguous sites beginning at either the N or C 

terminus.  Strains lacking N-terminal phosphorylation sites were strictly dependent upon 

ACM1 and S-phase cyclins for viability, and a fraction of cells displayed evidence of 

hyperactive APC-Cdh1, in contrast to a non-overlapping larger set of C-terminal site 

ablations. 
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CHAPTER ONE 

Introduction 

 

Oscillations in CDK activity drive the cell cycle 

The oscillation of cyclin dependent kinase (CDK) activity lies at the heart of the 

cell cycle, serving to coordinate the events of the cell cycle in a temporally appropriate 

manner.  CDK activity is dependent upon CDK binding to a partner cyclin (Draetta et al., 

1989); canonical cyclins are synthesized and destroyed in each cell cycle (Evans et al., 

1983).  This oscillation in CDK activity serves to coordinate budding, DNA replication, 

spindle pole body (SPB) duplication and separation, mitotic spindle assembly, mitotic 

entry, DNA segregation, mitotic spindle disassembly, mitotic exit, and cytokinesis such 

that each occurs once and only once during a cell cycle (Stern and Nurse, 1996).  

Specifically, the cell cycle begins at a low CDK state, during which DNA replication 

origins can be efficiently loaded.  The transcriptional induction of G1 cyclins then allows 

for polarized growth, budding and progression through G1 (Cross and Tinkelenberg, 

1991; Dirick and Nasmyth, 1991; Richardson et al., 1989; Skotheim et al., 2008).  The 

G1 cyclins, which are unstable proteins whose levels fall rapidly after transcriptional 

shutoff (Schneider et al., 1998), activate expression and activity of the B-type cyclins 

Clb5 and Clb6 which are required for replication origin firing and efficient DNA 

replication (Epstein and Cross, 1992; Schwob and Nasmyth, 1993).  These are temporally 

followed by the remaining B-type cyclins which promote mitotic entry, the shutoff of G1 

cyclin transcription, and the switch to isotropic growth (Amon et al., 1993).  To exit from 

mitosis, the CDK activity of the mitotic B-type cyclins must be reduced; this occurs 
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largely by cyclin destruction.  The cell cycle thus progresses by alternating between a 

CDK-driven phase and a destruction driven phase (Figure 1.1).  The resultant low CDK 

state must be maintained to allow for proper loading of replication origins and the 

subsequent transcriptional induction of G1 cyclins so as to start the cell cycle anew 

(Wäsch and Cross, 2002).   

 

The anaphase-promoting complex (APC)  is a ubiquitin ligase responsible for the 

destruction of cyclins 

The APC is in large part responsible for cyclin degradation at the end of mitosis: 

the cell cycle ends in highly efficient and specific protein destruction orchestrated by the 

APC, which mediates the sequential degradation of cyclins and other relevant cell cycle 

proteins and machinery (King et al., 1995; Sudakin et al., 1995).   

The APC is a large ubiquitin E3 ligase comprised of at least 13 proteins, and 

functions in coordination with two homologous mitotic coactivators, Cdc20p and Cdh1 

(Schwab et al., 1997; Thornton et al., 2006; Visintin et al., 1997; Yoon et al., 2002; 

Zachariae et al., 1998b).  The APC and both coactivators are conserved throughout 

eukaryotic evolution.  The core APC catalyzes the transfer of ubiquitin from ubiquitin 

conjugating enzymes (E2s) to substrates, thus marking them for proteasomal destruction 

(Figure 1.2) (Gmachl et al., 2000; Leverson et al., 2000). The APC utilizes two E2s 

sequentially to ubiquitinate substrates: Ubc4 attaches a single ubiquitin which is then 

efficiently converted to a ubiquitin chain via Ubc1 (Rodrigo-Brenni and Morgan, 2007).   

 2



 

 

 

 

 

 

 
 
 
Figure 1.1 Cell cycle progression entails alternating CDK-driven and destruction driven 
phases.  B-type cyclins drive DNA replication and mitotic entry.  Onset of a destructive 
phase clears B-type cyclins, initiates anaphase onset, and allows for mitotic exit. 
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Figure 1.2 The APC ubiquitinates substrates to target them for proteasomal destruction.  
The APC, in coordination with one of two mitotic activators—Cdc20 and Cdh1—is 
responsible for the processive transfer of ubiquitin to substrates.  The proteasome 
degrades substrates that have been marked with a polyubiquitin chain.   
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APC is activated by two temporally separated coactivators, Cdc20 and Cdh1 
 

The APC is active only from anaphase onset through the subsequent G1, although 

the core complex is present throughout the cell cycle.  The conserved coactivators Cdc20 

and Cdh1 provide regulation of timing and specificity.  APC-Cdc20 begins B-type cyclin 

degradation and APC-Cdh1 continues it through mitosis and into the ensuing G1 (Irniger 

and Nasmyth, 1997; Schwab et al., 1997; Shirayama et al., 1999; Wäsch and Cross, 2002; 

Yeong et al., 2000; Zachariae et al., 1998a). 

A major basis for this difference in timing is differential regulation of APC-Cdc20 

and APC-Cdh1 by cyclin-CDK activity.  APC-Cdc20 is active at high CDK levels, with 

Cdc20 binding preferentially to CDK-phosphorylated APC (Kramer et al., 2000; Rudner 

and Murray, 2000).  Cdc20 itself is an unstable protein, accumulating late in the cell 

cycle, followed by mitotic degradation (Prinz et al., 1998; Shirayama et al., 1998; 

Weinstein, 1997).  As B-type cyclin levels decline and the Cdc14 phosphatase (at least in 

budding yeast) is released from a nucleolar sequestration, the balance between CDK 

activity and phosphatase activity shifts such that Cdh1 is dephosphorylated on at least 

some of its 11 CDK sites, which collectively serve to inhibit Cdh1 function (Zachariae et 

al., 1998a).  The second wave of APC-mediated degradation then ensues, dependent on 

dephosphorylated Cdh1.  This activity is responsible for continued mitotic cyclin 

degradation through G1, until Cdh1 inactivation in the succeeding cell cycle (Amon et 

al., 1994). 

In addition to these temporal differences, Cdc20 and Cdh1 likely have 

intrinsically different substrate specificities, although they both contribute to mitotic 

cyclin degradation (Figure 1.3).  Cdc20 promotes Pds1 proteolysis, an anaphase inhibitor 
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that prevents cleavage of cohesin, the protein keeping sister chromatids attached (Cohen-

Fix et al., 1996; Shirayama et al., 1999).  APC-Cdh1 seems ineffective at promoting Pds1 

degradation, but promotes degradation of several spindle proteins and perhaps Cdc20 

itself (Hildebrandt and Hoyt, 2001; Huang et al., 2001; Juang et al., 1997; Schwab et al., 

1997; Shirayama et al., 1998; Woodbury and Morgan, 2007; Zachariae et al., 1998a).  

This ordering is logical: the earlier APC-Cdc20 wave will promote anaphase and initial 

mitotic cyclin proteolysis, promoting APC-Cdh1 activation; APC-Cdh1 then completes 

mitotic cyclin proteolysis, allowing cytokinesis and other events of mitotic exit, removes 

Cdc20 to reset the system to G1, and contributes to spindle disassembly by proteolysis of 

spindle components.  This ordering could help ensure that anaphase precedes cytokinesis 

and spindle disassembly. 

 

Consequences of deleting APC coactivators and core subunits 

 CDC20 is essential for cell viability, and its absence results in an arrest with 

unseparated sister chromatids and high Clb2 levels (Sethi et al., 1991; Shirayama et al., 

1998).  Deletion of the APC-Cdc20 target PDS1 (securin) allows cdc20 cells to undergo 

anaphase (Sethi et al., 1991; Shirayama et al., 1998).  Further deletion of CLB5 results in 

a viable cdc20 pds1 clb5 triple mutant, capable of carrying out all essential cell-cycle 

functions (Shirayama et al., 1999).  This defines two critical targets of Cdc20; 

consistently, both have been reported to be poor APC-Cdh1 substrates (Schwab et al., 

1997; Visintin et al., 1997).  
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Figure 1.3 The APC is responsible for the destruction of B-type cyclins as well as 
spindle regulatory proteins  A APC-Cdc20 targets the S-phase cyclin Clb5 for 
destruction, and APC-Cdh1 targets the major mitotic cyclin Clb2.  APC-Cdh1 is also 
believed to target the remaining mitotic cyclins—Clb1, 3, 4—as well.  B APC-Cdc20 
targets the anaphase inhibitor Pds1 for degradation, resulting in the onset of anaphase.  
After spindle elongation, APC-Cdh1 is responsible for degradation of spindle motor 
proteins such as Cin8, which provide the motor activity for spindle elongation, and 
spindle stabilizing factors including Fin1.  Thus Cdc20 drives the onset of anaphase, and 
subsequent Cdh1 activity contributes to spindle disassembly after separation of sister 
chromatids to opposite poles. 
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In contrast to Cdc20, Cdh1 is not an essential protein.  cdh1 cells exhibit a 

moderate growth defect, a slight delay in disassembling elongated spindles, and retain 

Clb2 throughout the cell cycle (Schwab et al., 1997).   In G1, Cdh1 activity is partially 

redundant with Sic1 and the N-terminal region of Cdc6, which both effectively inhibit 

Clb activity as stoichiometric inhibitors: cells lacking Cdh1, Sic1 and the N-terminal 

region of Cdc6 are not viable, highlighting the essential role of inhibiting Clb activity in 

G1(Archambault et al., 2003).  However, there is no clearly redundant protein involved in 

Cdh1’s role in spindle disassembly and targeting structural substrates, making the 

viability of cdh1 strains somewhat unexpected.   

Remarkably, none of the APC targets need be degraded at all, if an effective 

means to regulate Clb activity is present: apc-null clb5 pds1 10XSIC1 strains 

(overexpressing the Sic1 Clb inhibitor) are viable (Thornton and Toczyski, 2003).  Thus 

the entire cell cycle can be run without any APC-mediated proteolysis.   

 

APC-Cdh1 and mitotic kinases 

Cdh1 was initially cloned as a high copy suppressor of cdc20-1 at the restrictive 

temperature.  In the absence of Cdh1, the mitotic cyclin Clb2 is present throughout the 

cell cycle (Schwab et al., 1997).  Cdh1 overexpression resulted in an arrest with 2C DNA 

content and hyperpolarized buds, and with persistence of the S-phase cyclin Clb5 

(Schwab et al., 1997).  Drosophila fizzy-related (a Cdh1 homolog) is responsible for 

clearing mitotic cyclins.  Fzr overexpression inhibits mitosis and results in DNA 

endoreduplication (Sigrist and Lehner, 1997).  Thus APC-Cdh1 may specifically 

proteolyze mitotic cyclins rather than S-phase cyclins.  Consistent with this, in addition to 
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Clb2, Cdh1 also targets the mitotic cyclin Clb3 (Irniger and Nasmyth, 1997; Zachariae et 

al., 1998a), and presumably Clb1 and Clb4 (close Clb2 and Clb3 homologs).  Clb1,2,3,4 

constitute all of the budding yeast mitotic cyclins. 

Cdh1 is also responsible for the destruction of Cdc5 (Shirayama et al., 1998), the 

yeast Polo-like kinase involved in mitotic exit and cytokinesis.  Cdc5 localizes to the 

spindle pole bodies (SPBs) and the mother bud neck, and overexpression results in 

hyperpolarized buds with multiple septin rings along these buds, and possible SPB over-

production (Song et al., 2000).  Cdc5 is probably not essential for any processes prior to 

anaphase, since Cdc5 inactivation results in a late anaphase arrest in temperature 

sensitive and engineered drug sensitive cdc5 alleles, as well as by transcriptional shut-off 

(Hartwell et al., 1973; Snead et al., 2007; Song and Lee, 2001).  Cdc5 has been 

implicated in activation of the APC (Charles et al., 1998), but also in inactivation of 

APC-Cdh1 (Crasta et al., 2008). 

 

APC-Cdh1 and the mitotic spindle 

 Cdh1 has been implicated in degrading the spindle-regulatory proteins Ase1, 

Cin8, Cik1, Fin1 and possibly Kip1 (Benanti et al., 2009; Gordon and Roof, 2001; 

Hildebrandt and Hoyt, 2001; Juang et al., 1997; van Hemert et al., 2003).  Cin8 and Kip1 

are plus end kinesins, involved in keeping spindle poles separated (their deletion results 

in spindle pole bodies coming into approximation with one another) (Hoyt et al., 1992).  

Ase1 is a spindle midzone protein, involved in spindle stabilization and elongation 

(Schuyler et al., 2003).  Fin1 is an intermediate-filament-like protein that creates 
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filaments in between the two SPBs (van Hemert et al., 2003), and Cik1 associates with 

the kinesin Kar3 to regulate the mitotic spindle (Benanti et al., 2009). 

Overexpression of unphosphorylated Cdh1 blocks construction of a bipolar 

mitotic spindle (Crasta et al., 2008).  Mitotic spindle construction requires duplication of 

SPBs (functionally equivalent to metazoan centrosomes), followed by disassembly of the 

half-bridge connecting them and separation to opposite poles of the nucleus (Figure 

1.4A).  Subsequently, sister chromatid separation and anaphase spindle elongation 

separates chromosomes into the progeny (See Figure 1.4B, C).  The spindle is then 

disassembled; each cell inherits a single SPB, which starts the cycle anew.  Despite the 

dependence of destruction of many spindle proteins on Cdh1, spindle disassembly is 

delayed but not blocked by cdh1 deletion (Visintin et al., 1997); this delay may decrease 

fidelity of chromosome segregation (Ross and Cohen-Fix, 2003).  Expression of Cdh1-

resistant Ase1 results in  roughly a ten minute delay in spindle disassembly, comparable 

to that of cdh1 cells (Juang et al., 1997; Visintin et al., 1997).   

A proposed explanation for the failure of CDH1-overexpressing cells to construct 

a bipolar spindle lies in the fact that the plus end kinesins Cin8, and possibly Kip1, are 

Cdh1 targets (Crasta et al., 2006; Gordon and Roof, 2001; Hildebrandt and Hoyt, 2001).  

cin8 mutants display chromosomal instability and spindle defects, and cin8 kip1 strains 

are inviable (Hoyt et al., 1992).  Cin8 and Kip1 are implicated in SPB separation, as 

strain with both kip1 and the temperature sensitive allele cin8-3 retain a half-bridge at the 

restrictive temperature (Hoyt et al., 1992).   Mutations in the minus-end directed kinesin 

Kar3, which opposes the forces generated by Cin8 and Kip1, allow for separation of 

spindle pole bodies in the absence of Cin8 and Kip3 (Saunders and Hoyt, 1992).   
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Figure 1.4 Construction and regulation of the mitotic spindle.  A Bipolar spindle 
construction requires initial SPB duplication, followed by SPB separation.  B Schematic 
structure of the short bipolar spindle:  Interpolar microtubules, via motor proteins, push 
the SPBs apart from one another.  Each SPB emanates a kinetochore microtubule to one 
sister chromatids of each pair, pulling each sister chromatid poleward.  The two sister 
chromatids are attached to each other by cohesin; cohesin cleavage results in the 
poleward movement of chromatids.  C  Schematic of pathway regulating anaphase onset.  
Cdc20 activation results in Pds1 (securin) degradation, freeing the enzyme Esp1 
(separase) to cleave Scc1 (a major cohesin subunit), which allows for the poleward 
movement of chromosomes.   
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Additionally, overexpression of Cin8 is sufficient to separate SPBs in the presence of 

overexpressed unregulated Cdh1 (Crasta et al., 2006), suggesting that the aberrant 

degradation of these proteins may account for the ability of unregulated Cdh1 to block 

spindle formation.   

 

Dynamic Cooperation between CDK and APC-Cdh1 activity 

APC-Cdh1 targets both mitotic cyclins and spindle structural components for 

destruction more or less simultaneously.  Additionally, the phosphatase Cdc14, which 

dephosphorylates CDK targets, is released when Cdh1 is active, and Cdc14 likely 

contributes directly to Cdh1 activation via Cdh1 dephosphorylation (Visintin et al., 

1998).  The net result is that dephosphorylation and the degradation of some APC-Cdh1 

substrates are temporally coupled.  Fin1 is a well characterized example of this, wherein 

CDK phosphorylates Fin1 and inhibits its localization to the spindle (Woodbury and 

Morgan, 2007).  Dephosphorylation of Fin1 in anaphase targets it to the spindle, where it 

acts to stabilize the anaphase spindle, and where it is then degraded by APC-Cdh1 during 

spindle disassembly (Woodbury and Morgan, 2007).  CDK phosphorylation has been 

shown to prevent the association and function of other Cdh1 targets at the spindle 

midzone (Khmelinskii et al., 2009), so this coordinated regulation may be a general 

phenomenon.   

 

Substrate Targeting 

 Specific motifs in substrate proteins target them for APC-mediated ubiquitination: 

the  destruction box (consensus RxxL) (King et al., 1996), recognized by Cdc20 and 
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Cdh1; the KEN box, which may be more specific for Cdh1 (Pfleger et al., 2001) (but see 

Burton and Solomon, 2001), and the CRY box Cdh1 recognition sequence (Reis et al., 

2006).  Thus Cdh1 recognizes unique motifs that Cdc20 does not; in contrast, there are no 

known Cdc20-specific targeting sequences, although Cdc20 specific substrates exist.   

APC targeting mechanisms remain unclear.  The core APC has been reported to 

directly engage the destruction box (Yamano et al., 2004).  Alternatively, the N-terminal 

regions of Cdc20 and Cdh1 have been found to directly interact with substrates (Pfleger 

et al., 2001), and the WD40 propeller domain of Cdh1 (located in its C-terminal half) to 

directly interact with the destruction box motif (Kraft et al., 2005).   These studies both 

argue for coactivators conferring substrate specificity on the APC, albeit through 

different mechanisms, as does biochemical evidence of Cdh1-substrate complexes 

(Burton et al., 2005; Schwab et al., 2001).  An intermediate model has also been 

proposed, in which both core APC subunits and coactivators contribute to substrate 

binding (Passmore and Barford, 2005).   

 

Regulation of Cdh1 

Cdh1 possess 11 CDK consensus sites, and phosphorylated Cdh1 has significantly 

reduced ability to interact with the APC (Figure 1.5A) (Jaspersen et al., 1999; Zachariae 

et al., 1998a).  Consistent with this, overexpression of Cdh1-m11, in which the 11 CDK 

consensus phosphorylation sites are mutated to unphosphorylatable alanine residues, 

causes cell cycle arrest with low levels of Cdh1-APC targets (Zachariae et al., 1998a).  

Phosphorylation may also regulate Cdh1 localization: the Msn5 exporter may specifically 

recognized phosphorylated Cdh1 and transport it from the nucleus to the cytoplasm 

 13



(Jaquenoud et al., 2002).  Thus in addition to precluding direct APC interaction, Cdh1 

phosphorylation may also spatially segregate Cdh1 from relevant substrates and the APC 

itself, as APC subunits localized thus far have been nuclear (Huh et al., 2003; Sikorski et 

al., 1993).   

Other mechanisms may control Cdh1 activity.  Cdc5 (Polo kinase) has been 

reported to act in concert with CDK phosphorylation to mediate complete Cdh1 

inhibition (Crasta et al., 2008).  Specifically, Cdc5 has been demonstrated biochemically 

to be capable of phosphorylating Cdh1 on serines 125 and 259 (Figure 1.5B) (Crasta et 

al., 2008).  It has been proposed, through a series of overexpression studies, that 

phosphorylation of Cdh1 on these sites is required for complete Cdh1 inactivation, to 

allow for spindle pole body separation and mitotic spindle assembly.  This Cdc5-

mediated inhibition of Cdh1 is reported to be essential in the absence of the 

stoichiometric inhibitor ACM1 (Crasta et al., 2008) (see below).   

Cdh1 in yeast is stable and present throughout the cell cycle (Prinz et al., 1998; 

Zachariae et al., 1998a).  In contrast, vertebrate Cdh1 levels are cell cycle regulated 

(Kramer et al., 2000); Cdh1 is degraded in S phase by an SCF-complex (Benmaamar and 

Pagano, 2005), and mediates its own degradation in G0/G1 (Listovsky et al., 2004).   

Stoichiometric inhibitors also regulate APC-Cdh1: Acm1 in budding yeast 

(Figure 1.5C), Rca1 in Drosophila, and Emi1 in vertebrates.  Rca1 and Emi1 are F-box 

proteins that are homologous to each other (Reimann et al., 2001).  Acm1 has no obvious 

sequence homology, but is functionally similar; all are unstable cell-cycle regulated 

pseudosubstrate inhibitors of APC-Cdh1 that are transcribed in G1/S.  rca1 flies degrade 

cyclins prematurely and fail to enter mitosis (Grosskortenhaus and Sprenger, 2002).   
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Figure 1.5 Regulatory mechanisms inhibiting Cdh1 activity.  A CDK activity results in 
the phosphorylation of Cdh1 on some or all of 11 putative sites. This phosphorylation 
blocks Cdh1 association with the APC.  G1 and S phase cyclins, and possibly early 
mitotic cyclins, are reported to contribute to this phosphorylation.  B Cdc5 (polo kinase), 
appearing late in mitosis, can phosphorylate Cdh1 on at least two residues, and this is 
reported to block Cdh1 association with the APC.  C The stoichiometric inhibitor Acm1 
is transcribed in G1 and blocks Cdh1 targeting of substrates.    
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Consistently, Emi1 may inhibit APC-Cdh1 so as to stabilize mitotic cyclins in interphase, 

promoting mitosis and preventing rereplication (Di Fiore and Pines, 2007).  acm1 

deletion has no obvious phenotype, although it exhibits modest synthetic interactions 

with deficiency in the Swe1 CDK-regulatory kinase (Martinez et al., 2006).  Acm1 may 

be a Cdh1 target (Enquist-Newman et al., 2008), but has also been reported to be 

destroyed in an APC-independent manner (Hall et al., 2008; Ostapenko et al., 2008).   

 

Regulation by multisite phosphorylation 

The presence of 11 putative CDK sites in Cdh1 is a striking example of multisite 

phosphorylation, a common phenomenon in phosphorylation control (Holt et al., 2009) 

that features prominently among cell-cycle regulated proteins.  Cdh1 can be inhibited by 

phosphorylation of some or all of its 11 CDK sites; how the various sites contribute and 

whether this regulation is a critical regulatory mechanism has been unclear.  By 

overexpression of a series of alleles progressively lacking phosphorylation sites 

beginning with the N-terminus, a seemingly continuous decrease in resultant Clb2 levels 

was found (Zachariae et al., 1998a), suggesting that all tested clusters of sites contribute 

approximately additively.  Cdh1 phosphorylation decreases sharply upon mitotic exit as 

mitotic cyclin levels fall and the phosphatase Cdc14 is released, and then increases 

sharply during progression through G1, based on phosphorylation-dependent gel shifts 

(Zachariae et al., 1998a); these gel shifts have not been correlated to specific 

phosphorylations.  The function and existence of intermediate phosphorylation states of 

Cdh1, whether the different sites are functionally distinct from one another, and how the 
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presence of multiple sites contributes to the regulatory architecture of the APC remains 

unclear.   

A global analysis of CDK substrate phosphorylation sites in budding yeast found 

evidence for large numbers of poorly evolutionarily conserved clusters of 

phosphorylation sites in relatively unstructured regions, likely acting through bulk 

electrostatic effects with some regional specificity (Holt et al., 2009).  Indeed, while a 

high density of N-terminal Cdk sites is conserved throughout eukaryotic evolution, their 

precise location has diverged even in rather closely related yeast species, consistent with 

this bulk electrostatic model.   

Multisite phosphorylation of the Sic1 CDK inhibitor may control Sic1 proteolysis 

by a counting mechanism, whereby phosphorylation of any 5 of 9 candidate Cdk sites 

allows for binding of the SCF activator Cdc4, consequently promoting Sic1 degradation 

and the progression to S phase (Nash et al., 2001).  The apparent precision of this 

mechanism is hard to square with the bulk electrostatic proposal, and the molecular basis 

for this specificity remains unclear. 

 In the case of Sic1, it has been argued that multisite phosphorylation serves both 

to set a delay and establish a threshold for CDK activity (Nash et al., 2001).  Simple 

mathematical models support this; six fast phosphorylations create a sharp transition with 

a temporal delay, whereas single fast phosphorylation lacks the temporal delay and a 

single slow phosphorylation lacks the dynamic range (Deshaies and Ferrell, 2001).   

 It is not known if Cdh1 is regulated in a similar fashion, or whether functional 

distinctions exist between the various phosphorylation sites, which might differentially 

regulate APC interaction and Msn5 interaction. 
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Kinases responsible for Cdh1 inactivation, and regulatory implications 

Numerous kinases have been reported to be involved in the phosphorylation-

driven inactivation of Cdh1.  Initial studies implicated the G1 cyclins in the inactivation 

of what we now know is APC-Cdh1 (Amon et al., 1994); more recent work has argued 

for an additional role for the early expressed B-type cyclins—specifically the S phase 

Clb5 and the mitotic Clb3 and Clb4 cyclins—in Cdh1 inactivation (Huang et al., 2001; 

Yeong et al., 2001).  However, the relative contribution of G1, S-phase, and mitotic 

cyclins is unclear.  Later mitotic cyclins (Clb1,2) may maintain inhibitory Cdh1 

phosphorylation, although this has not been demonstrated directly.   

It is important to know the predominant kinase or kinases responsible for 

inhibitory Cdh1 phosphorylation.  As Cdh1 drives mitotic cyclin degradation, if it is itself 

inactivated by mitotic Clb-CDK activity, this may allow for a positive feedback loop 

architecture governing Cdh1 activity rooted in Cdh1 phosphorylation.  However, while 

Cdh1 targets the mitotic cyclins Clb2 and Clb3 (Zachariae et al., 1998a), and by 

homology most likely Clb1 and Clb4, in contrast the S phase cyclin Clb5 is a poor Cdh1 

substrate.  A physiologically significant role for Clb5 in Cdh1 inactivation would likely 

couple Cdh1 regulation to a Cdc20-Clb5 negative feedback oscillator (Cross, 2003).  

Cdc20 is required for cell-cycle appropriate Clb5 destruction (Shirayama et al., 1999), 

although the SCF has also been reported to degrade it (Bai et al., 1996). Alternatively, as 

SCF and not the APC is responsible for destruction of the S-phase cyclin Clb6 (Jackson 

et al., 2006) and the G1 cyclins, their involvement in Cdh1 inactivation would dictate still 

different circuitry. 
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Interestingly, deletion of CLB5 rescues viability of cdc20 pds1 strains (Shirayama 

et al., 1999); one interpretation of this is that the deletion of CLB5 results in a shift of 

Cdh1 to less phosphorylated and thus less inhibited state that allows for mitotic exit, 

likely through mitotic Clb destruction (Wäsch and Cross, 2002).  The presence of such 

circuitry does not preclude regulatory phosphorylation by G1 or mitotic cyclins, or still 

other kinases, which could contribute in an additive or synergistic fashion.       

 

 Mapping of Cdh1 phosphorylation sites 

 Mass spectroscopy has confirmed extensive phosphorylation of Cdh1 in vivo, 

including both CDK and non-CDK sites (Hall et al., 2004).  These included six CDK 

sites—T12, T157, T173, T176, S239, and S436—as well as possible phosphorylation of 

S16 and S169 (whose peptides had other potentially phosphorylatable residues, and for 

which there was not adequate tandem mass spectrometry data for exact site 

determination).  At least nine other non-CDK phosphorylation sites were also detected 

(Hall et al., 2004).  Most Cdh1 molecules contained between four and five phosphates 

(Hall et al., 2004).   Mass spectroscopy on Cdh1 with either CDK or non-CDK sites 

ablated suggested dependence of non-CDK-site phosphorylation on CDK sites, but not 

the reverse (Hall et al., 2004).  The reported in vitro Cdc5 phosphorylation sites S125 and 

S259 (Crasta et al., 2008) were not detected in vivo (Hall et al., 2004).  The pattern of 

Cdh1 phosphorylation does not appear to change from inactivation in S-phase until the 

end of mitosis (Hall et al., 2004); this may argue against significant CDK inhibition by 

kinases that are expressed beyond S-phase, such as Cdc5.   
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Cdh1 in vertebrate development 

Cdh1 functions as a G1 stabilizer, and in budding yeast, it is required for proper 

pheromone-induced G1 arrest (Schwab et al., 1997).  G1 stabilization may allow Cdh1 to 

function as a developmental regulator in metazoans.  In neurons, Cdh1 targets Id2 

(Inhibitor of Differentiation 2) for destruction, coupling cell cycle exit and 

differentiation/axonal growth (Lasorella et al., 2006).  Cdh1 has been implicated in the 

differentiation of non-neural tissues as well (Li et al., 2007), and thus could couple cell 

cycle exit and differentiation.    

 

Rationale for the present study 

This thesis examines how APC-Cdh1 is regulated, and the consequences of 

misregulating its activity.  All studies are done in the budding yeast Saccharomyces 

cerevisiae, a haploid eukaryote whose cell cycle is well characterized and substantially 

conserved with higher eukaryotes.  Genetic manipulation of S. cerevisiae is extensively 

developed, including homologous recombination that allows for precise alterations of 

endogenous genes.  

Most previous work on Cdh1 has relied heavily on overexpression, resulting in 

conflicts over mechanisms and significance of APC-Cdh1 regulation.  Here we employ 

exact gene replacements and careful cell biological characterization to clarify key 

mechanisms of Cdh1 regulation, and to dissect the consequences of its misregulation. 
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CHAPTER TWO 

Requirements and reasons for effective APC-Cdh1 inhibition 

 

Inhibitory CDK phosphorylation of Cdh1 is essential 

CDH1-m11, which lacks all CDK phosphorylation sites (Figure 2.1), is lethal 

when overexpressed (Zachariae et al., 1998a) but has been reported to allow viability 

when carried on a plasmid under control of its endogenous promoter, suggesting the 

former result to be an artifact of overexpression (Jaquenoud et al., 2002) .  To determine 

rigorously whether CDK-mediated Cdh1 phosphorylation was required for viability at 

endogenous expression levels, we sought to create an exact chromosomal gene 

replacement of CDH1 with CDH1-m11.  We used a recombination-based approach, in 

which two copies of cdh1-m11, each rendered non-functional by insertion of different 

selectable markers at different positions, were arranged in tandem at the endogenous 

locus.  Recombination between the two copies can be selected for, and recombinants 

simply scored for retention of the insertional markers.  CDH1-m11 exact gene 

replacements should lack both markers (Figure 2.2).  No recombinants yielding 

uninterrupted CDH1-m11 were obtained (Figure 2.2).  The critical region for this 

recombination did yield frequent recombinants using a control allele, comprised of two 

similarly interrupted cdh1-m11 alleles in the opposite order.  Recombinants using the 

control allele will all be non-functional due to retention of insertional marker(s).  These 

results suggested that intact CDH1-m11 is severely deleterious as an exact gene 

replacement. 
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Figure 2.1  CDH1 alleles constructed for this chapter.  CDH1-m11 (top) has the eleven 
putative CDK phosphorylation sites mutated to alanines (red dots), such that the resultant 
protein is unphosphorylatable by CDK.  CDH1-pkm (middle) has the two known Cdc5 
(Polo-like kinase) sites mutated to alanine.  CDH1-pbm (bottom) codes for an alanine 
substitution in the first residue of the polo binding box, such that it ablates the polo 
binding box itself while maintaining the neighboring CDK consensus site. 
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Figure 2.2 Cdh1 inhibition requires CDK phosphorylation.  A. Recombination-based 
strategy used to obtain CDH1-m11 as an exact gene replacement (top), and control 
recombination (bottom).  Horizontal bracket indicates region of recombination that 
recreates either CDH1-m11 or the doubly-interrupted control cdh1-m11.  B. Percentage 
of CDH1-m11 or control disrupted cdh1-m11 alleles recovered as determined by 
selectable markers.  Intact CDH1-m11 was not recovered in the presence of a wild type 
APC. 
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CDH1-m11 gene replacement could be deleterious due to unregulated APC 

activation; however, previous studies have suggested an APC-independent mechanism 

for lethality of overexpressed Cdh1-m11 (Thornton et al., 2006).  Cdc23 is an essential 

subunit of the APC; cdc23-1 is hypomorphic for APC-Cdh1 activity even at the 

permissive temperature (Schwab et al., 2001).  In contrast to failure of recovery of 

CDH1-m11 recombinants in a CDC23 background, CDH1-m11 cdc23-1 recombinants 

were readily obtained (Figure 2.2), and confirmed to be exact by mapping and 

sequencing of PCR products from the recombinants.  When we attempted to cross these 

recombinants to CDC23 strains, doubly heterozygous diploids were not obtainable, 

suggesting that CDC23 and CDH1-m11 made a dominantly lethal combination and that 

the lethality of CDH1-m11 is APC dependent. 

 This result enabled us to perform a high copy suppressor screen for CDH1-m11, 

by transforming a wild type strain with a genomic library, crossing the pool of 

transformants to a CDH1-m11 cdc23-1 strain at the permissive temperature, and selecting 

for viable diploids.  High-copy ACM1 was isolated multiple times in independent clones 

from the genomic library, but no other strong positives were obtained.  We found that we 

could readily construct GAL-ACM1 CDH1-m11 strains that were viable on galactose 

medium (GAL-ACM1 on, Acm1 overexpressed) but inviable on glucose medium (GAL-

ACM1 off, only endogenous levels of Acm1 present) (Figure 2.3).  We carried out a high-

copy plasmid suppression screen for viability of such a strain on glucose medium, once 

again obtaining only multiple ACM1 clones.  These results suggest (but do not prove) that 

Acm1 may be the only regulator able to restrain activity of unphosphorylated Cdh1. 
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Figure 2.3 Cdh1 inhibition does not require Cdc5 phosphorylation or Acm1.  A. Tenfold 
serial dilutions performed on strains containing galactose-inducible Acm1 and the 
indicated CDH1 exact gene replacements. B. DIC images of strains from (A) after 8 
hours in glucose.  Note the hyperpolarized growth present only in CDH1-m11 strains.  
Scale bars are 5 microns. 
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Cdc5 phosphorylation of Cdh1 is not required for cell viability 

 Cdc5 has been reported to act in concert with CDK phosphorylation to mediate 

complete Cdh1 inhibition (Crasta et al., 2008).  Cdc5 can phosphorylate Cdh1 on serines 

125 and 259 (Crasta et al., 2008).  It has been proposed that phosphorylation of Cdh1 on 

these sites is required for complete Cdh1 inactivation, to allow for spindle pole body 

separation and mitotic spindle assembly.  Furthermore, Cdc5-mediated inhibition of Cdh1 

was reported to be essential in the absence of ACM1 (Crasta et al., 2008).  However, 

these experiments were all carried out under conditions of overexpression.  Therefore, we 

created an exact gene replacement ablating these two known sites of Cdc5 

phosphorylation (‘CDH1-pkm’) (Figure 2.1).  We initially introduced this gene 

replacement into a cdc23-1 background (see above), and confirmed the structure of the 

CDH1-pkm allele by sequencing of PCR products.  We then crossed this allele into a 

CDC23 GAL-ACM1 background.  The resulting CDH1-pkm GAL-ACM1 CDC23 strains 

were not dependent on ACM1 overexpression for viability, as evidenced by complete 

viability upon shutoff of GAL-ACM1 (Figure 2.3), and Mendelian recovery of fully viable 

CDH1-pkm CDC23 segregants lacking GAL-ACM1 (data not shown). 

 It has been argued that endogenous Acm1 restrains Cdh1 in the absence of Cdc5 

phosphorylation (Crasta et al., 2008). However, CDH1-pkm acm1 strains were viable 

with no obvious growth or morphological defects.  Efficient degradation of the major 

mitotic cyclin Clb2 is Cdh1-dependent (Schwab et al., 1997; Visintin et al., 1997), and 

CDH1-pkm acm1 strains accumulate and destroy Clb2 with normal kinetics  (Figure 2.4).  

It was reported that the lethality of Cdh1 lacking Cdc5 phosphorylation sites was the 

result of an inability to separate SPBs.  However, we observed wild-type proportions of  
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Figure 2.4 Clb2 oscillation is not altered in CDH1-pkm cells.  A Time course of cells of 
the indicated genotype released from an α-factor block, and immunoblotted against Clb2.  
B Quantification of Clb2 levels from strains in A, normalized to Pgk1.   
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cells with separated and unseparated SPBs in asynchronous cultures of CDH1-pkm acm1 

strains (Figure 2.5). 

These results rule out any significant role in Cdh1 inhibition for Cdc5 

phosphorylation of S125 and S259, the only known Cdc5 sites in Cdh1.  However, there 

could be other unidentified Cdc5 sites.  While phosphorylation of S125 and S259 was not 

detected in a mass spectrometry survey, phosphorylation of numerous other non-CDK 

sites was observed (Hall et al., 2004). Cdc5-dependent phosphorylation of diverse targets 

requires polo box binding motifs (PBBs) in the substrate.  PBBs have the consensus 

sequence S-pS/pT-P, with the required phosphorylation frequently created by proline-

directed CDK activity (Elia et al., 2003).  There are four such sites in Cdh1, which were 

collectively demonstrated to promote binding of Cdc5 to CDK-phosphorylated 

Cdh1(Crasta et al., 2008).  Therefore, we constructed a CDH1 allele in which the initial 

serines in the four PBBs were mutated to alanines (Figure 2.1).  This manipulation is 

predicted to block Cdc5 binding but not CDK phosphorylation (since the initial S is not 

part of the CDK consensus S/T-P).  This allele, CDH1-pbm, thus may uncouple CDK 

from Cdc5 phosphorylation.  Previous experiments eliminated the PBB by mutating the 

CDK sites themselves, which makes results ambiguous as to whether Cdc5 or CDK is the 

relevant kinase being prevented from phosphorylating Cdh1 (Crasta et al., 2008).   

Using the same strategy as described above for CDH1-pkm, we constructed an 

exact gene replacement of CDH1 with CDH1-pbm, and found that this allele had no 

discernible cell-cycle phenotype and no dependence on ACM1 for viability (Figure 2.3). 

Overall, our results from endogenous expression levels of Cdh1 do not support a 

significant cell-cycle role for Cdc5-dependent phosphorylation of Cdh1, at endogenous  
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Figure 2.5 Bipolar spindle assembly is not altered in CDH1-pkm cells. A CDH1-pkm 
strains form morphologically normal long and short spindles, images from fixed cells 
from an asynchronous population B Percentage of asynchronous CDH1 and CDH1-pkm 
cells with separated SPBs.  
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expression levels, in sharp contrast to the essentiality of CDK-dependent phosphorylation 

of Cdh1.  We cannot formally exclude the possibility that there are other sites of Cdc5 

phosphorylation and/or other non-consensus PBBs; however previous biochemical work 

argues against this (Crasta et al., 2008).   

 

CDH1-m11 at the endogenous locus results in first-cell-cycle arrest with replicated 

DNA, hyperpolarized bud growth, low levels of Cdh1 target proteins, and a 

heterogeneous spindle pole body phenotype 

To determine the lethal phenotype of cells expressing Cdh1-m11 (CDK-

unphosphorylatable) at endogenous levels, we arrested GALL-HA-ACM1 CDH1-m11 

cells (GALL is a weakened version of the GAL1 promoter (Mumberg et al., 1994)) in G1 

using α-factor in galactose medium.  We transferred the cells to glucose medium to turn 

off the GALL promoter and deplete HA-Acm1, and then released the α-factor block. By 

immunoblot, HA-Acm1 was greatly reduced in α-factor as expected (Enquist-Newman et 

al., 2008; Hall et al., 2008; Ostapenko et al., 2008), and undetectable after glucose 

incubation.  Both CDH1-m11 and CDH1 control cells released synchronously and with 

comparable kinetics from the α-factor block, as indicated by bud emergence and 

expression of Clb5 (Figure 2.6).  Clb5 is an early-expressed B-type cyclin that promotes 

DNA replication, and that is not sensitive to Cdh1 (Figure 2.6B); consistent with timely 

Clb5 accumulation, kinetics of DNA replication in CDH1-m11 and CDH1 cells were 

indistinguishable (Fig 2.6C).  Clb5 levels then declined, remaining at approximately a 

quarter of peak in the arrested CDH1-m11 cells.   
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Figure 2.6 CDH1-m11 results in a first-cycle arrest.  A CDH1-m11 or CDH1 cells (both 
GALL-HA-ACM1) were arrested in G1 with α-factor, depleted of HA-Acm1, and 
synchronously released.  Fluorescence microscopy of Myo-mCherry (red) marking the 
bud neck, and Tub1-CFP (cyan) were taken at the indicated timepoints after release from 
α-factor.  CDH1-m11 cells multiply bud as indicated by multiple Myo1 rings.  Tubulin 
signal varies in appearance from a point to a short bar, but elongated spindles are not 
observed.  Scale bar is 5 microns.  B Immunoblots of cells as in (A) detecting the 
indicated proteins.  Pgk1 is a loading control.  ‘afG’ cells are in α-factor prior to glucose 
introduction. C Bulk DNA flow cytometry of cells as in (A). 
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In contrast, accumulation of the later-expressed mitotic cyclin Clb2 was 

significantly reduced in CDH1-m11 cells, with about a 15-fold reduction in peak Clb2 

levels compared to CDH1 controls.  This is consistent with effective Cdh1 deregulation 

by the CDK site mutations, since Clb2 is a known Cdh1 target.  Clb2 expression drives a 

switch from polarized to isotropic bud growth, and this is blocked in CDH1-m11 cells 

(Figure 2.6A).  Accumulation of Cdc5, another known Cdh1 target, was similarly 

reduced in CDH1-m11 cells.  Interestingly, the timing of initial accumulation of both 

Clb2 and Cdc5 was similar in CDH1 and CDH1-m11 cells.  

CDH1-m11 cells do not undergo anaphase or cytokinesis.  They continue 

polarized bud growth, and rebud as evidenced by accumulation of fluorescent Myo1-

mCherry (a bud site marker) at a novel location along the initial hyperpolarized bud 

(Figure 2.6A) and/or by a new bud.  Spindle morphogenesis appeared defective: 

Tub1(beta-tubulin)-CFP revealed a range of morphologies from single dots to short bars 

was detected (Figure 2.6A).    

To more accurately examine spindle morphogenesis, we used SPC42-CFP and 

TUB1-GFP to label the spindle pole body and microtubules.  In these double-labeled 

cells, an intact bipolar spindle will appear as two distinct blue Spc42-CFP signals 

connected by a bridge of green Tub1-GFP (Spc42-CFP and Tub1-GFP fluorescent 

signals were sufficiently spectrally separated to make this determination).  Such spindles 

were almost uniformly observed in CDH1 controls; at 60 minutes after release over 80% 

of cells had clearly separated SPBs.  In contrast, 70% of CDH1-m11 cells had a single 

focus of Spc42-CFP signal (Figure 2.7).  We expect, from previous work, that this single 

Spc42 signal represents duplicated but unseparated SPBs (Crasta et al., 2008; Fitch et al., 
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1992).  Consistent results were obtained with SPC42-CFP alone, as well as with SPC29-

YFP and untagged SPC42, suggesting that the tags did not significantly affect the results.   

30% of CDH1-m11 cells contained short bipolar spindles that did not progress 

through anaphase.  We considered several mechanisms that could account for anaphase 

failure.  If the spindles are aberrant in structure or kinetochore attachment this could 

trigger the spindle assembly checkpoint to prevent anaphase.  However, deletion of the 

critical checkpoint component MAD2 had no effect on spindle assembly or function in 

CDH1-m11 cells (Figure 2.8). 

A failure of cohesin cleavage not dependent upon checkpoint activation could 

also explain failure of anaphase.  Cdh1 has been reported to target Cdc20 for destruction 

in vivo.  Cdc20 promotes anaphase by degradation of the separase inhibitor Pds1, 

allowing cleavage of the cohesin complex subunit Scc1; sister chromatids can then 

separate upon loss of cohesion.  Failure to accumulate sufficient Cdc20, if it results in an 

inability to clear Pds1, could account for persistent short bipolar spindles.  We find that 

CDH1-m11 cells fail to accumulate Cdc20 (Figure 2.9A).   

If failure to accumulate Cdc20 accounts for anaphase failure, then Pds1 should 

remain at high levels in CDH1-m11 cells.  Indeed, we find that Pds1 remains present at 

near-peak levels at the CDH1-m11 induced block (Figure 2.9B).  Thus Pds1 

accumulation and consequent failure of cohesin cleavage could account for anaphase 

failure.  Consistent with this idea, scc1-73, a temperature sensitive allele of a cohesin 

complex subunit, promotes increased spacing between SPBs at the restrictive temperature 

in CDH1-m11 cells, indicating that inability to cleave cohesin contributes to the short 

bipolar spindle phenotype (Figure 2.10).   
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Figure 2.7 CDH1-m11 cells have a variable spindle pole body phenotype. A 
Fluorescence microscopy for Spc42-CFP (cyan) Tub1-GFP (green) and Myo1-mCherry 
(red); 30% of CDH1-m11 cells form bipolar spindles, as indicated by two separate Spc42 
dots connected by intervening tubulin-GFP.  Strains were treated as in Figure 2, images 
taken 180 minutes after release.  Scale bar: 5 microns. B Percentage of cells from (A) 
with separated spindle pole bodies at the indicated time points. 
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Figure 2.8  Maintenance of short bipolar spindles in CDH1-m11 cells is not dependent 
on MAD2 A Micrographs of mad2 CDH1-m11 or mad2 CDH1 strains 120 minutes after 
release from α-factor.  Scale bars are 5 microns. B  Percentage of cells from (A) with 
separated spindle pole bodies at the indicated time points.  Anaphase spindles were not 
observed. 
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Figure 2.9 CDH1-m11 cells accumulate Pds1 but not Cdc20 A Immunoblots against 
strains synchronously released from α-factor with endogenously tagged Cdc20 and either 
CDH1 or CD1-m11, and right, quantification of normalized Myc-Cdc20 levels from 
immunoblots.  B Left: immunoblots against strains synchronously released from α-factor 
with endogenously tagged Pds1 and either CDH1 or CDH1-m11; right, quantification of 
Myc-Pds1 levels standardized to Pgk1 loading control.  
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Figure 2.10 CDH1-m11 cells lengthen their spindles upon cohesin inactivation.  A 
Average distance between SPBs in CDH1-m11 SCC1 and CDH1-m11 scc1-73 cells at the 
restrictive temperature, two hours after α-factor release.  B. Histogram of the length 
distribution of spindles in the cells from (A). C Fluorescence microscopy of strains from 
(A) observing the SPB protein Spc29-YFP (yellow) and nuclear Histone2B-mCherry 
(red). 
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Cdc20 was reported to promote Pds1 proteolysis much more effectively than 

mitotic cyclin proteolysis, and Cdh1 was reported to have the opposite specificity 

(Visintin et al., 1997).  Our results are consistent with this idea, since Pds1 persists in the 

face of unregulated Cdh1-m11.  Surprisingly, Pds1 is efficiently targeted by purified 

APC-Cdh1 in vitro (Rodrigo-Brenni and Morgan, 2007; Thornton et al., 2006), 

suggesting some additional level of control of proteolysis in vivo.   

We noted grossly abnormal nuclear morphology, as monitored with histone H2B-

mCherry, in CDH1-m11 cells, whether or not they contained a bipolar spindle (Figure 

2.12).  Time-lapse microscopy shows H2B-mCherry signal ‘meandering’ along the 

hyperpolarized bud and the mother cell body.  Microscopic observations of fixed cells 

with labeled SPBs and tubulin suggested that this aberrant nuclear migration may be 

dependent on astral microtubules, since extended mCherry signal frequently coincided 

with long microtubules that were not terminated with an SPB (Figure 2.11).  We do not 

know the reason for this phenotype, which has not been described previously to our 

knowledge.  

 

Spindle Pole Body separation in CDH1-m11 cells is dependent on endogenous ACM1 

 The heterogeneous spindle pole body phenotype of CDH1-m11 cells suggested 

the possibility that the level of APC-Cdh1 activity in these cells is close to a threshold for 

spindle morphogenesis.  We reasoned that endogenous Acm1 might titrate a sufficient 

level of Cdh1-m11 to keep the system near this threshold.  Consistent with this idea, 

CDH1-m11 acm1 cells completely failed to separate spindle pole bodies: <1% of cells, 

compared to ~30% in ACM1 cells (Figure 2.12A, B). 
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Figure 2.11 CDH1-m11 results in aberrant nuclear division in the absence of SPB 
separation.  A Micrographs of fixed CDH1-m11 or CDH1 cells 3 hours after release from 
α-factor, Htb2-mCherry (red) and Myo1-GFP (green)  Scale bars are 5 microns.  B 
Frames from time lapse microscopy of the same strain at the indicated times after release 
from α-factor imaged for Histone-mCherry.  Note the ability to divide Histone-mCherry 
asymmetrically, as well as the subsequent fusion of the two connected nuclear blobs. C 
CDH1-m11 strains with Spc29-YFP marking the spindle pole body as well as Tub1-CFP 
and Htb2-mCherry were released from α-factor, with the depicted images taken 3 hours 
after release.  Aberrant nuclear morphology with unseparated spindle pole bodies are 
apparent.  Adjusted CFP-channel contrast (bottom) reveals microtubule structures 
possibly responsible for aberrant nuclear migration and/or division.  Scale bars are 5 
microns. 
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Figure 2.12 The CDH1-m11 strain spindle pole body phenotype is modulated by 
endogenous ACM1. A Fluorescence microscopy of indicated genotypes performed as in 
Figure 2.7.  In CDH1-m11 acm1 cells, tubulin can be seen emanating from SPBs, but 
separated SPBs are not observed. 2XACM1 CDH1-m11 cells separate spindle pole bodies 
and form bipolar spindles.  B Percentage of synchronized acm1∆, wild type (1X ACM1), 
and 2X ACM1 cells displaying separated spindle pole bodies at indicated timepoints. C 
Clb2 levels for indicated genotypes at 60 minutes after release from α-factor, 
standardized to Pgk1 loading control. D Tenfold dilution assay for ACM1 allelic series of 
strains, as in (A); note that less than 1% of 2XACM1 CDH1-m11 cells form colonies. 
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If Cdh1-m11 is near a threshold for inhibition by Acm1, then increasing ACM1 gene 

dosage should strongly increase APC-Cdh1 inhibition.  To test this, we integrated a 

genomic segment containing ACM1 at the URA3 locus in a GALL-ACM1 CDH1-m11 

background.  We assessed ACM1 copy number by quantitative PCR, and found clones 

with two, three or five copies of ACM1 (including the endogenous locus).  Five copies of 

ACM1 fully rescued viability of CDH1-m11 cells, consistent with the high-copy plasmid 

suppression results described above.  However, 2 or 3 copies were essentially insufficient 

for rescue (approximately three to four logs drop in viability upon shutoff of GAL-ACM1 

expression) (Figure 2.12D).  

Despite lack of rescue of overall viability, 2X ACM1 CDH1-m11 GALL-ACM1 

cells were almost all able to form a short bipolar spindle upon GALL-ACM1 shutoff 

(Figure 2.12A, B).  Strikingly, these cells nevertheless almost quantitatively failed to 

progress to anaphase.    

These results suggest that multiple events in spindle morphogenesis and function 

are inhibited by Cdh1-m11, since failure of short spindle formation could be 

quantitatively uncoupled from subsequent anaphase failure by increase ACM1 gene 

dosage.  It is likely that graded increases in Acm1 levels are accompanied by graded 

inhibition of Cdh1-m11, as Clb2 levels in CDH1-m11 strains correlates with ACM1 copy 

number (Figure 2.12C).  This suggests that different events regulated by Cdh1 have 

distinct thresholds for inhibition, presumably due to different sensitivity of Cdh1 

proteolysis targets. 
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Restoring levels of the Cdh1 target kinesin Cin8 does not restore spindle pole body 

separation in CDH1-m11 cells 

Previous work suggested that failure to produce a bipolar spindle without restraint 

of Cdh1 activity was due specifically to degradation of plus-end kinesins Cin8 and Kip1, 

since a short bipolar spindle could be obtained by overexpression of undegradable Cin8 

in the absence of Cdc28 activity, (which is required for inhibition of  APC-Cdh1) (Crasta 

et al., 2006).  We sought to test this idea more directly, with endogenous levels of 

expression of both Cdh1-m11 and undegradable Cin8.  We used the CIN8-alaKEN allele 

(Hildebrandt and Hoyt, 2001), in which the KEN box required for Cdh1-mediated Cin8 

degradation was mutated to AAA.  Myc-tagged alleles of either CIN8 or CIN8-alaKEN 

were placed at the endogenous locus (with an untagged CIN8 allele downstream) in 

CDH1-m11 GAL-ACM1 strains.  By Western blot, Myc-Cin8 was readily detected in 

wild-type cells and was found at lower levels in CDH1-m11 cells after GAL-ACM1 

shutoff compared to CDH1 controls; Myc-Cin8-alaKEN was detected in comparable 

levels in both backgrounds (Figure 2.13C).  These results are expected since the KEN 

mutation prevents Cdh1-dependent proteolysis of Cin8  (Hildebrandt and Hoyt, 2001).  

Consistently, we found similar results using the CIN8-KED mutation to inactivate the 

Cin8 KEN box (Hildebrandt and Hoyt, 2001).  Thus, reduction of Cin8 in CDH1-m11 

cells is specifically due to Cdh1-Cin8 interaction via the Cin8 KEN box.  

Despite restoration of Cin8 protein levels by the alaKEN mutation, MYC-CIN8-

alaKEN had essentially no effect on the terminal spindle phenotype of Cdh1-m11 cells 

compared to MYC-CIN8 or CIN8 controls (Figure 2.13A, B).  The Myc tag on Cin8 was 

shown previously to be fully compatible with Cin8 function (Hildebrandt and Hoyt, 
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2001).  Therefore, restoration of Cin8 at physiological levels to Cdh1-m11 cells is not 

sufficient to allow bipolar spindle formation, strongly suggesting the existence of other 

Cdh1 targets that are required for bipolar spindle formation.  Previous results suggesting 

that restoring Cin8 might be sufficient for bipolar spindle formation (Crasta et al., 2006) 

could be explained by the idea that overexpressed Cin8 could exert a strong pulling or 

polymerizing force between the two SPBs, or could be due to a lack of equivalence 

between the hypomorphic CDC28 allele and complete failure of Cdh1 phosphorylation.   

 

Consequences of restoring mitotic cyclins to a Cdh1-m11 block 

The Cdh1-m11 arrest is associated with destruction of cell cycle regulators 

(mitotic cyclins, Cdc5) as well as spindle components (see above).  Mitotic cyclins 

modulate numerous cell cycle processes.  Some cell cycle defects in CDH1-m11 cells 

could be due specifically and solely to mitotic cyclin proteolysis.  To test this, we placed 

Clb2-kd, an undegradable version of Clb2 lacking both KEN and destruction boxes and 

therefore immune to APC-mediated proteolysis (Wäsch and Cross, 2002) under the 

control of the MET3 promoter, and turned on expression by methionine deprivation in 

synchronized CDH1-m11 cells, after they were released from α-factor and allowed to 

bud.  Strikingly, the presence of CLB2-kd in CDH1-m11 cells largely eliminated the 

CDH1-m11 hyperpolarized bud growth phenotype (Figure 2.14, 15).  Cdc5 protein does 

not reappear after Clb2-kd expression, suggesting that APC-Cdh1-m11 remains active in 

the presence of undegradable Clb2.   

In addition, Clb2-kd had striking though variable effects on SPB and tubulin 

morphology.  The majority of CDH1-m11 cells in which Clb2-kd was expressed had at  
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Figure 2.13 Cdh1-resistant CIN8 does not promote bipolar spindle assembly in CDH1-
m11 cells A  Fluorescence microscopy of cells with MYC-CIN8 or Cdh1-resistant MYC-
CIN8-ak (coding for Myc-Cin8-alaKEN, with KEN box residues mutated to alanine),  60 
minutes after release from α-factor block.  Scale bars are 5 microns. B Quantification of 
SPB separation of cells from A at indicated timepoints from α-factor release.  C 
Immunoblots of released cells.  Clb2 and exogenous HA-Acm1 are degraded normally.  
Cin8-ak is resistant to Cdh1-m11 mediated proteolysis.   
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Figure 2.14 Restoration of mitotic cyclin Clb2 promotes bipolar spindle pole body 
separation in CDH1-m11 cells. A MET3pr-Clb2-kd cells, with either CDH1 or CDH1-
m11, were synchronized in α-factor, released, and Clb2-kd induced 60 minutes after 
release; images were obtained 180 minutes after α-factor release.  Scale bars: 5 microns.  
B Clb2 immunoblot for cells in A.  Clb2 antibody detects both endogenous Clb2 and 
Clb2-kd.  Pgk1 serves as a loading control.  C Quantification of cells with separated 
SPBs from (A).   
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Figure 2.15 Restoration of mitotic cyclin Clb2 restores isotropic growth in CDH1-m11 
cells. Single-cell time-lapse microscopy of strains of the indicated genotypes (all exact 
gene replacements), with minutes after release from α-factor indicated. 
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least two foci of SPC42-CFP signal, instead of the single signal predominantly observed 

in controls without Clb2-kd (Figure 2.14).  This effect was detectable when Clb2-kd 

levels were similar to those attained with Clb2-kd expressed from the endogenous locus, 

(this level was attained transiently, 30 minutes after induction; fully induced Clb2-kd 

levels from the MET3 promoter plateau at approximately threefold the level of Clb2-kd 

under its endogenous promoter).   

Spc42-CFP foci in CDH1-m11 MET3-CLB2-kd cells were sometimes associated 

with intervening Tub1-GFP signal, as in a normal metaphase spindle; in other cells, little 

or no polymerized tubulin could be detected.  Various other abnormal structures were 

observed, including multiple (three or more) Spc42-CFP foci.  The total signal intensity 

of Spc42-CFP foci in these cells at 180 minutes after release was approximately half that 

of either CDH1-m11 cells not expressing Clb2-kd or the same cells prior to Clb2-kd 

induction.  This suggests that duplicated SPBs separate in response to Clb2-kd 

expression, resulting in two foci, that each with a level of Spc42 comparable to a normal 

SPB (Figure 2.16).  Therefore, failure of SPB separation in CDH1-m11 cells might be 

specifically due to Cdh1-mediated degradation of Clb2 and other mitotic cyclins.  

Nevertheless, reintroduction of Clb2 into CDH1-m11 cells by this method results in 

severe disruption of normal spindle morphogenesis in most cells, perhaps due to 

alterations in microtubule dynamics (Higuchi and Uhlmann, 2005).  Normal spindle 

morphogenesis requires not only mitotic cyclin stabilization but also stabilization of other 

proteins, likely including spindle morphogenesis proteins such as Cin8, Ase1 and Fin1; 

we have not tested the effects simultaneous stabilization of multiple APC-Cdh1 

substrates in CDH1-m11 cells. 
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Figure 2.16 CLB2-kd induction in CDH1-m11 cells approximately halves the intensity of 
fluorescent SPB foci.  SPB intensity, assessed by an automated analysis, of the CFP-
channel images from the experiment described and depicted in Figure 2.14, for indicated 
time points. At least 200 cells were analyzed and averaged for each data point.  
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As noted above, Clb2-kd under the MET3 promoter was not much overexpressed 

in this experiment compared to the level of Clb2-kd expressed from the endogenous 

locus.  Consistent with this, comparable effects on cell polarity and spindle 

morphogenesis were obtained in CDH1-m11 cells bearing an exact endogenous gene 

replacement of CLB2 with CLB2-kd using single cell time-lapse analysis (Figure 2.15); 

however, these cells were partially defective in the α-factor block-release protocol, 

precluding clear quantification of bulk cultures. 

Thus, restoration of a physiological level of mitotic cyclins to strains with 

constitutively active APC-Cdh1 results in restoration of near-normal bud morphology, 

and also results in SPB separation.  Mitotic cyclin degradation is not responsible for all 

spindle phenotypes of CDH1-m11 cells, though, because spindle structure and 

microtubule dynamics likely are profoundly perturbed due to persistent APC-Cdh1 

activity even in the presence of stable mitotic cyclins. 

 

Discussion 

CDK phosphorylation is essential to restrain lethal activities of Cdh1 

Cdh1 is highly active in destruction of many important proteins, so multiple 

mechanisms of Cdh1 regulation might be expected.  CDK-mediated phosphorylation of 

Cdh1 inhibits Cdh1-APC interaction, and also promotes export of Cdh1 from the nucleus.  

The Acm1 protein is a stoichiometric Cdh1 inhibitor, most likely blocking access of even 

unphosphorylated Cdh1 to the APC.  Finally, Cdc5 (polo kinase) has been proposed to 

phosphorylate and inhibit Cdh1. 
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Here, we address the relative functional significance of CDK phosphorylation, 

Acm1 binding, and Cdc5 phosphorylation in control of Cdh1, at endogenous expression 

levels, using exact gene replacement.  We find that CDK phosphorylation is essential.  

Acm1 is not essential for effective Cdh1 regulation, but Acm1 binding contributes a 

buffering capacity.  We cannot detect a contribution of Cdc5 phosphorylation to Cdh1 

regulation by the assays we have used.   

The essentiality of CDK phosphorylation for Cdh1 regulation could be due to a 

phosphorylation requirement for blockage of Cdh1-APC interaction, for Msn5 interaction 

and nuclear export, or both.  Our experiments do not distinguish between these 

possibilities, although nuclear export is unlikely to be required for Cdh1 inhibition, as 

Msn5 is not essential. 

Our results show the benefits of exact gene replacement for accurate analysis.  

Overexpression of wild-type Cdh1 is lethal at sufficient levels, so lethality of any 

overexpressed mutant form of Cdh1 is necessarily ambiguous with respect to normal cell 

physiology.  A previous mention of viability of CDH1-m11 when present on a low-copy 

plasmid with the endogenous promoter (Jaquenoud et al., 2002) is on its face inconsistent 

with our results; however, we have found that including a 5’ untranslated fragment 

extending even into the next gene (ERP6) as a promoter for CDH1 on a low-copy 

plasmid is insufficient for effective complementation of cdh1 defects.  Plasmid-borne 

genes could potentially be underexpressed due to a truncated promoter or unknown 

effects of vector context; they clearly also can be overexpressed due to copy number or 

other effects.  Even stable integration of translocated copies of genes has the potential to 

mislead since such approaches invariably introduce unnatural neighboring sequences 
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(vector or chromosomal) that could affect expression.  In gene replacement (‘knock-in’) 

studies in animals, it has been recognized that removal of vector and marker sequences is 

required for unambiguous results (Wang et al., 1999)  

CDH1-m11 as an exact gene replacement yields a tight first-cycle arrest with 

uniform bud morphology and replicated DNA; this result identifies CDK phosphorylation 

as a critical physiological Cdh1 regulator.  In contrast to results with CDH1-m11 

overexpressors, the spindle phenotype of CDH1-m11 cells is heterogeneous; this result 

may have interesting consequences for the role of Acm1 (see below). 

Heterozygous CDH1-m11/CDH1 GAL-ACM1 diploids, while inviable upon 

shutoff of GAL-ACM1, nevertheless undergo efficient meiosis and sporulation without 

ACM1 overexpression.  This may be due to alternate Cdh1 inhibitory mechanisms that 

functions during the meiotic cell cycle; for example, the meiotic kinase Ime2 is capable 

of inhibiting Cdh1 on an alternate set of phosphorylatable residues (Holt et al., 2007). 

 

Cdh1 interferes with spindle morphogenesis at multiple steps 

While the most prominent spindle defect in CDH1-m11 cells is failure to make a 

short bipolar spindle, a significant minority of these cells do make a short spindle, as do 

almost all CDH1-m11 2X ACM1 cells.  CDH1-m11 cells with a short spindle (with or 

without doubled ACM1 gene dosage) nevertheless fail to undergo anaphase.  Our results 

suggest that this is likely due to failure of Pds1 proteolysis and resulting failure of 

cohesin cleavage. 

The failure of Pds1 proteolysis may be the consequence of severely depleted 

Cdc20 levels in CDH1-m11 cells.  APC-Cdh1 is required for efficient Cdc20 degradation 
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(Huang et al., 2001; Shirayama et al., 1998), although Cdc20 may also be degraded in an 

APC-independent manner (Goh et al., 2000).  We tested whether mutation of the two 

identified Cdc20 destruction boxes (Shirayama et al., 1998) would restore spindle 

morphogenesis to CDH1-m11 cells, with negative results; however, removing these two 

Cdc20 destruction boxes has a relatively minor effect on cell-cycle-regulated Cdc20 

accumulation (Prinz et al., 1998). Cdc20 may contain additional unidentified sequences 

targeting it for Cdh1-dependent degradation.  In a following chapter, we examine Cdh1- 

and destruction box-dependence of Cdc20 degradation. 

Cdh1-m11 might also alter CDC20 transcription.  Other factors contributing to 

anaphase failure in spindle-bearing CDH1-m11 cells could include proteolysis of other 

motor proteins or spindle components due to Cdh1-m11 activity; activation of the spindle 

checkpoint does not appear responsible. 

We have tested the hypothesis that one missing component for spindle 

morphogenesis is the mitotic cyclin Clb2, since mitotic cyclins are required for spindle 

morphogenesis (Fitch et al., 1992).  Indeed, introducing undegradable Clb2 into CDH1-

m11 cells results in apparent spindle pole body separation, with a proportion of cells 

displaying anaphase spindle-length separations.  This is not a complete explanation, 

though, since introducing undegradable Clb2 into CDH1-m11 cells resulted in disrupted 

or absent spindle morphology despite SPB separation in most cells.   

It has been proposed, based on overexpression studies, that Cdh1-dependent 

degradation of plus-end-directed motors, especially Cin8, could explain the requirement 

to inhibit Cdh1 for bipolar spindle morphogenesis.  Our results, at endogenous expression 

levels, fail to confirm this hypothesis.  Cin8 is indeed efficiently degraded in CDH1-m11 
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cells, and introducing the undegradable Cin8-KED or Cin8-alaKEN blocks this 

degradation as expected (Hildebrandt and Hoyt, 2001).  Nevertheless, undegradable Cin8 

was completely ineffective at restoring bipolar spindle formation to CDH1-m11 cells.  

Cin8 degradation may nevertheless contribute to failure of spindle formation in these 

cells, since plus-end-directed motors are required for this process.  One possible 

explanation is that the Cdh1 target Ase1 controls the physiological localization of Cin8; 

Ase1 proteolysis may prevent proper targeting of the stabilized Cin8 to the mitotic 

spindle (Khmelinskii et al., 2009). 

 

Acm1 as a physiological buffer 

Curiously, endogenous levels of ACM1 allow bipolar spindle formation in a 

minority of CDH1-m11 cells, since deletion of ACM1 eliminates these spindles; in 

contrast, doubling ACM1 copy number results in bipolar spindle formation in nearly all 

CDH1-m11 cells.  Thus Acm1 appears to be rather accurately titrated to a level just 

insufficient to inactivate completely unphosphorylated Cdh1, when both proteins are 

expressed at endogenous levels.  It is interesting to consider possible dynamic 

consequences of this effect.  Acm1 levels are tightly cell-cycle-regulated by changes in 

transcription and protein stability.   Acm1 levels higher than those in wild-type cells 

might sporadically allow premature bipolar spindle formation, before full inactivation of 

Cdh1 by complete CDK phosphorylation (since available evidence suggests that partial 

phosphorylation results in partial Cdh1 activity (Zachariae et al., 1998a)).  Lower levels 

than wild-type, in contrast, could put a demand on the system for much more efficient 

and quantitative Cdh1 phosphorylation than would otherwise be required.  
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These considerations cannot imply an essential role for regulation of Acm1 levels, 

since both strong overexpression and deletion are tolerated with little or no overt 

phenotype.  Subtle effects of ACM1 deletion or overexpression on fidelity of 

chromosome transmission have not been examined to our knowledge; perhaps even 

occasional chromosome mis-segregation has provided a sufficient selection to titrate 

Acm1 levels appropriately. 

 

Substrate Specificity of Cdh1 

The APC coactivators Cdc20 and Cdh1 target an overlapping set of proteins for 

proteasomal destruction; this substrate specificity likely contributes to the orderly 

progression through anaphase and exit from mitosis.  The mechanism by which this 

specificity is achieved remains contested.  As Cdh1 activity is effectively inhibited until 

late anaphase, it has been unclear whether failure of overexpressed Cdh1 to degrade 

targets such as Pds1 was the consequence of true substrate specificity or merely efficient 

pre-anaphase inhibition of Cdh1 activity.  The ability of purified APC-Cdh1 to efficiently 

ubiquitinate Pds1 (Thornton et al., 2006) argued for the latter case.  The arrest of CDH1-

m11 strains, in which Cdc20 does not accumulate, allows for a clean analysis of the 

proteolytic consequences of unrestrained Cdh1 activity in the context of an otherwise 

normal cell cycle.  Here we find that APC-Cdh1 is highly effective at clearing Clb2, 

Cdc5 and Cdc20, but far less capable of clearing Pds1 and Clb5.  This suggests that, in 

vivo, some physiological mechanism exists preventing Cdh1 from efficiently clearing 

Pds1.  Possibilities include direct biochemical regulation not recapitulated in the purified 

system, or activation of transcriptional circuitry sufficient to replenish the depleted 
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proteins.  This is possible, since CDH1-m11 cells likely have unrestrained SBF activity, 

resulting in accumulation of SBF transcriptional targets such as the G1 cyclin Cln2 

(Cross et al., 2002); PDS1 is in the SBF regulon (Spellman et al., 1998), which is 

inactivated by the Cdh1 target Clb2 (Amon et al., 1993).  Further, Clb2 promotes its own 

transcription as well as that of CDC20 (Amon et al., 1993; Zhu et al., 2000).  Such 

transcriptional circuitry could help ensure the proper order and function of APC 

coactivators; delayed inactivation of Cdh1 during a normal cell cycle could result in 

greater transcription of the G1 and S-phase cyclins that serve to inactive Cdh1, while 

inhibiting anaphase through Pds1 synthesis. 

 

Clb2-Cdh1 mutual antagonism 

In the case of spindle morphogenesis, Cdh1 acts at various thresholds, and most 

likely acts on multiple targets, to prevent final successful anaphase.  Mitotic cyclins are 

capable of restoring a separated spindle pole body phenotype in the context of CDH1-

m11; however these do not predominantly appear to be physiologically normal spindles, 

as evidenced by abnormal tubulin fluorescence and the frequent occurrence of more than 

two SPB foci.  This suggests that balance between Cdh1 and Clb2 permits specific steps 

such as spindle pole body separation to occur, with multiple other interactions and 

couplings present to orchestrate specific aspects of spindle physiology, including tubulin 

dynamics and spindle maintenance.  Complex dynamics have been described at the 

spindle midzone regulated by both APC-Cdh1 targets and net CDK phosphorylation 

(Fridman et al., 2009; Higuchi and Uhlmann, 2005; Khmelinskii et al., 2009)  In contrast, 

the hyperpolarized bud growth phenotype characteristic of CDH1-m11 cells is likely a 
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simple and direct consequence of removal of the mitotic cyclin Clb2, since its restoration 

to CDH1-m11 cells eliminates hyperpolarized bud growth in favor of isotropic growth.  

This presumably occurs either because Clb2 directly promotes isotropic growth, or 

because Clb2 inhibits expression of genes such as the G1 cyclin CLN2 that are directly 

driving polarized bud growth (Amon et al., 1994; Lew and Reed, 1993)   

 

The add-back approach 

Our strategy in this study, to first deregulate Cdh1 at the endogenous level, and 

then to add back single Cdh1 targets by introducing undegradable alleles expressed at 

endogenous levels, allows accurate dissection of the mechanism of action of even a 

highly pleiotropic regulator such as Cdh1.  In the case of bud morphogenesis, the 

situation is simple: the hyperpolarized bud phenotype is essentially due to a single target, 

Clb2.  Spindle morphogenesis is clearly much more complicated, but nevertheless, we are 

able to implicate mitotic cyclins as major regulators sufficient for significant spindle 

morphogenesis in the absence of other Cdh1 targets.  It may be possible through 

restoration of Cdh1-resistant targets such as Clb3 and Ase1 to permit mitosis in the face 

of constitutive APC-Cdh1 activity, thus defining a (not necessarily unique) set of 

essential Cdh1 targets.  More generally, with appropriate variations, this strategy should 

be applicable to dissection of the action of other complex regulators.   
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CHAPTER THREE 

Dissection of Cdh1 multisite phosphorylation 

 

Recombinational strategy to create partially phosphorylatable alleles of CDH1 

A variant on the recombinational strategy used to introduce CDH1-m11 into the 

chromosome (Chapter 2) was designed to introduce exact untagged chromosomal gene 

replacements of CDH1 alleles mutated for varying subsets of phosphorylation sites.  

Specifically, an allele pair comprised of cdh1-m11 and cdh1, each rendered non-

functional by insertion of different selectable markers at different positions, were 

arranged in tandem at the endogenous locus in both possible orientations (Figure 3.1).  

The URA3 gene is placed between the two cdh1 copies, so that FOA-selected ‘popout’ 

homologous recombination will result in the isolation of CDK phosphorylation site 

mutants, ablating contiguous sites beginning at either the N or C terminus of CDH1 

dependent on whether the 5' or 3' allele was the CDK-unphosphorylatable CDH1-m11 

(Figure 3.1A).  

 

Isolation of partially phosphorylatable CDH1 alleles  

In a wild-type background, the yield of recombinants ablating the N-terminal sites 

was reduced compared to expectations from physical distance (Figure 3.1B).  

Recombination occurs readily within this same interval to recreate a wild type CDH1 

allele.  Similarly, recombination is in direct proportion to physical distance if the tandem 

alleles are constructed so all possible products are interrupted (see Figure 2.2).  The  
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Figure 3.1 Recombinational approach to obtain CDH1 partial phosphorylation mutants. 
A Recombination based strategy used to obtain N-terminal (top) and C-terminal (bottom) 
partially phosphorylatable alleles as an exact gene replacements.  Horizontal bracket 
indicates region of recombination that results in an uninterrupted exact gene replacement.  
B Percentage of recombinations of the loci from (A) occurring within the region marked 
by the horizontal bracket, determined by loss of selectable markers.  CDH1 strain were as 
in (A) except the locus contained two tandem wild type CDH1 alleles.    
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distributional shift away from functional alleles was weaker for the C-terminally ablated 

sites, providing an initial suggestion that the N-terminal sites are particularly important in 

regulating CDH1 activity (Figure 3.1B).   

Further, sequencing of viable recovered N-terminal mutants showed that all 

clones had less than four phosphorylation sites ablated.  Given the proximity of the fourth 

site to the TRP1 marker, the expectation from the physical distance is that most N-

terminal recombinants should have at least four sites ablated.  However, clones with 

fewer than the expected minimal three sites were frequent, likely from gene conversion 

since in some cases the wild-type sites were interspersed between mutant sites.  Such 

events are presumably rare, and likely reflect selection against N-terminal mutations.   

Recovered viable C-terminal mutants revealed little or no such bias.  This suggested that 

the N-terminal sites have a greater weight in inhibiting Cdh1 activity, with N-terminal 

mutations being highly deleterious.  

Exact gene replacement with the lethal CDK-unphosphorylatable CDH1-m11 

allele was obtained in a cdc23-1 background hypomorphic for the APC (see Chapter 2).  

Therefore, we repeated the construction of partially phosphorylatable CDH1 alleles in a 

cdc23-1 background.  Recombinant CDH1 alleles were obtained at frequencies higher 

than those in CDC23 strains, although still reduced as compared to physical distance or 

the control recombination.  The reason for this is unclear, although poorer homology 

owing to the mutations ablating the phosphorylation sites on one of the alleles may be 

contributory.  The ratio of N-terminal mutants obtained in a cdc23-1 background is 

roughly threefold higher than with a wild type APC, whereas C-terminal mutants are 

nearly at parity (Figure 3.2A).  Sequencing revealed N-terminal mutations ranging from 3 
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to 11 sites, and C terminal mutations ranging from 0 to 8 sites (Figure 3.2B).  As with 

CDH1-m11, this argues that the decreased recovery of some of these strains in a CDC23 

background was the consequence of aberrant APC activation.  

 

Inviability of CDH1 mutants defective for N-terminal phosphorylation sites is APC 

dependent and suppressible by conditional ACM1 overexpression 

The CDH1 alleles obtained in cdc23-1 cells (see Figure 3.2B) were crossed into a 

CDC23 GAL1pr-3FLAG-ACM1 (‘GAL-ACM1’) background, so that the effects of these 

alleles in the context of a wild type APC could be observed (see Chapter 2).  Viability of 

strains with partially phosphorylatable CDH1 alleles was assessed by shutoff of ACM1 

expression (Figure 3.3A).  In the N-terminal series, CDH1-4N was the least 

phosphorylatable construct compatible with viability, whereas none of the C-terminal 

mutations including the maximal CDH1-8C noticeably impaired colony formation.  The 

morphology of these cells at six hours after GAL-ACM1 shutoff was assessed by DIC 

microscopy (Figure 3.3B).  Viable strains were predominantly morphologically normal; 

inviable strains displayed hyperpolarized growth similar to that found in CDH1-m11 

strains (see Chapter 2). 

We analyzed growth rates, Clb2 levels, and DNA content for viable CDH1 mutant 

cells in the absence of ACM1 overexpression.  The N terminal mutants CDH1-3N and 

CDH1-4N strains had lower cycling Clb2 levels, and slightly longer doubling times; C-

terminal mutant cells were similar to wild-type (Figure 3.4A, B).  DNA content, assessed 

by FACS, was comparable among strains with the various CDH1 alleles (Figure 3.4C).   
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Figure 3.2   The hypomorphic APC subunit allele cdc23-1 allows for isolation of a wide 
range of partially phosphorylatable CDH1 recombinants.  A cdc23-1, which is permissive 
for CDH1-m11 (see Chapter 2), increases the recovery of N-terminally but not C-
terminally mutated CDH1 alleles relative to CDC23 strains.  B CDH1 phosphorylation 
site mutant alleles obtained in a cdc23-1 background.  Circles represent putative CDK 
sites.  Horizontal bars indicate regions of CDH1 whose CDK sites have been mutated to 
alanines. 
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Figure 3.3 CDK regulation of CDH1 does not work by a strict counting mechanism. A 
Tenfold dilutions of the indicated alleles of CDH1 (exact gene replacements) all with 
GAL-ACM1 were grown in galactose medium and plated onto glucose or galactose-
containg plates.  B Strains from (A) were grown in galactose, shifted to glucose media for 
six hours (GAL-ACM1 off), and DIC images taken.  Scale bars are 5 microns. 
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Figure 3.4 Phenotype of CDH1 alleles compatible with viability A Strains with the 
indicated CDH1 alleles (those resulting in strains viable in the absence of ACM1 
overexpression), were grown to log phase in glucose and Clb2 levels determined by 
western blot, using Pgk1 as a loading control (left). Graph on right quantifies immunoblot 
intensity, column names indicate the specific CDH1 allele. B Growth rates of the strains 
from (A) were measured C FACS to assess DNA content was performed on the strains in 
(A)  
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N-terminal mutants display synthetic interactions with S-phase cyclins 
 

The kinase(s) responsible for inactivating Cdh1 in late G1/S phase remain 

unclear, and arguments have been made for Clb3, 4, 5 and G1 cyclins playing a 

significant role in the inactivation of APC-Cdh1 (see Introduction).  We first sought to 

test for genetic evidence of S-phase cyclin contribution to Cdh1 inactivation.  We 

introduced the various partially phosphorylatable alleles into a clb5 clb6 GAL-ACM1 

background, and then tested for viability upon GAL-ACM1 shutoff.  The logic of this 

approach is that if Clb5/6 are uniquely responsible for phosphorylating some site(s), then 

the absence of Clb5/6 should phenocopy the lack of those sites.  For example, if Clb5/6 

uniquely phosphorylate the C-terminal sites, then the CDH1-4N mutant should cause 

inviability in a clb5,6 background because it is equivalent (with respect to Cdh1 

phosphorylation) to the completely unphosphorylatable and lethal CDH1-m11.   

CDH1-4N strains were inviable in the absence of CLB5/6, whereas there was no 

obvious loss of viability of CDH1-7C cells (Figure 3.5), consistent with the hypothesis 

above.  When tested with individual cyclin deletions, the predominant synthetic 

interaction was with CLB5; clb6 CDH1-4N strains were viable independent of Acm1 

overexpression (Figure 3.5).  This argues genetically for an interaction between CLB5 

and CDH1, possibly a direct one in which Clb5 phosphorylation serves to inhibit Cdh1 

activity, and in the absence of the N-terminal 4 sites, C-terminal Clb5-dependent 

phosphorylation of Cdh1 becomes essential.  This suggests that Clb5 is particularly 

important for phosphorylation of some or all of the remaining 7 C-terminal sites to 

effectively restrain APC-Cdh1 activity (although other interpretations are possible), and 

that Clb5/6 cannot be uniquely required for phosphorylation of the N-terminal 4 sites. 
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Figure 3.5 Synthetic interactions between S-phase cyclins and CDH1 phosphorylation 
mutants. CDH1-4N but not CDH1-7C strains are dependent upon CLB5 for viability.  
Tenfold dilutions of strains of the indicated genotypes, all with GAL-ACM1 were spotted 
onto glucose or galactose plates.  

 65



Preliminarily, inviable cells in this experiment display the typical high Cdh1 

activity phenotype with hyperpolarized growth characteristic of CDH1-m11 exact gene 

replacement.  clb5 clb6 CDH1 strains display modestly hyperpolarized growth relative to 

wild type (data not shown); this may be due a decrease in the ability to inhibit APC-Cdh1 

activity on the N-terminal sites and/or a delay in the inactivation of the G1 regulon 

(which is Clb-CDK dependent). 

In contrast, CDH1-4N clb3 clb4 and CDH1-7C clb3 clb4 strains were found to be 

viable (data not shown), suggesting that Clb5/6 may be more significant in Cdh1 

inhibition than Clb3/4.  This could be consistent with the earlier expression of Clb5/6 

than Clb3/4, or could reflect intrinsic substrate preference of Clb5/6 for Cdh1.  It could 

also reflect the ability of Cdh1 to proteolyze Clb3/4 but not Clb5/6, so that Clb5/6 are 

‘immune starters’ for Cdh1 inactivation.   

 

Acm1 is essential to block activity of partially phosphorylated Cdh1  

Three regulatory mechanisms have thus far been described for CDK-coupled 

inhibition of Cdh1 activity: CDK phosphorylation directly inhibiting the biochemical 

interaction of Cdh1 with the APC, CDK causing the nuclear export of Cdh1 by the Msn5 

transporter, and lastly binding of Cdh1 to Acm1, which precludes APC interaction; this 

mechanism interacts with CDK activity not through Cdh1 phosphorylation but rather 

through regulated degradation and localization of the Cdh1 inhibitor Acm1 (Enquist-

Newman et al., 2008; Hall et al., 2008; Martinez et al., 2006).  To test whether blocking 

specific phosphorylation sites in Cdh1 revealed specific interactions with these pathways, 

the various alleles were placed in an acm1 MSN5, ACM1 msn5, or acm1 msn5 

 66



backgrounds.  Deletion of ACM1 alone results in no obvious phenotype (Martinez et al., 

2006); msn5 deletion has pleiotropic effects owing to its role in nuclear transport, but 

MSN5 is not essential (Akada et al., 1996; Kaffman et al., 1998).  acm1 msn5 cells are 

viable and morphologically normal. 

ACM1 becomes essential in the context of N-terminal phosphorylation site 

ablations (Figure 3.6A).  CDH1-4N cells were inviable in the absence of ACM1, while 

CDH1-7C acm1 cells were fully viable.  Deletion of MSN5 was found to act as an 

enhancer of several acm1 CDH1-phosphomutant phenotypes (see Figure 3.7), but was 

not itself synthetically lethal with any partially phosphorylatable CDH1 allele.   

These results suggest a regulatory hierarchy, with CDK phosphorylation of N-

terminal sites and then C-terminal Cdh1 sites, Acm1 inhibition and Msn5-dependent 

nuclear export in decreasing order of importance. 

 

Genetic interactions between the Four N-terminal Cdh1 sites and ACM1 

The synthetic lethality between CDH1-4N and acm1 led us to analyze the first 

four sites in greater detail.  No single site was essential in the absence of ACM1 and/or 

MSN5 (Figure 3.6B). Combinations of mutations of the N-terminal 4 sites varied from 

strict dependence upon endogenous ACM1, to full viability even in an acm1 msn5 

background (Figure 3.7).  Some were viable in an acm1 but not an acm1 msn5 

background, indicating an ancillary or potential role for Msn5 regulation.  Each 

individual site had phenotypic consequences to its mutation in some assay, implying that 

these 4 potential sites can all actually be phosphorylated, with regulatory consequences.  

S42 appears to be the most significant, and T12 the least, of these 4 sites. 
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Figure 3.6 Strains lacking N-terminal phosphorylation sites of CDH1 are dependent upon 
ACM1 for viability, but no individual site is essential A CDH1-4N but not CDH1-7C 
strains are dependent upon ACM1 for viability. Tenfold dilutions of strains of the 
indicated genotypes, all with GAL-ACM1, were spotted onto glucose or galactose plates. 
B acm1 strains are not dependent upon phosphorlyation on any single specific site for 
viability.  Tenfold dilutions of strains of the indicated genotypes, all with GAL-ACM1, 
were spotted onto glucose or galactose plates. 
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Figure 3.7 Synthetic interactions of the first four CDH1 phosphorylation sites with acm1 
and msn5.  Assessed by tenfold dilution assays in GAL-ACM1 containing strains. CDH1 
allele plated is indicated in left column.  Table qualitatively summarizes the synthetic 
lethalities, with CDH1 genotype on the x axis. ‘+’ is fully viable, ‘+/-’ is intermediate 
ability to form colonies, and ‘–’ is strictly inviable on glucose. 
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Analysis of strains with partially unphosphorylatable Cdh1 by time lapse 

microscopy  

The dependence of partial site mutants on normally dispensable regulatory 

machinery suggested that strains with these mutations might exhibit sporadic severe cell 

cycle problems, despite the absence of a severe bulk culture phenotype.  The logic of this 

idea is that fully phosphorylatable Cdh1 is protected with high redundancy, and 

occasional failure of complete phosphorylation could be compensated by high Acm1; 

conversely, occasional low Acm1 levels would be benign because of usually efficient 

Cdh1 phosphorylation.  The partially phosphorylatable versions have lost one of these 

safety mechanisms and so might reveal defects stochastically within a culture. 

To test this, we employed time-lapse quantitative fluorescent microscopy, using 

the nuclear marker HTB2-mCherry as well as a functional GFP-Clb2 fusion protein, 

which is degraded by Cdh1.  In all strains, most cell cycles were normal, with progression 

through mitosis and accumulation and removal of Clb2 occurring with normal dynamics.  

Approximately 3% of wild type CDH1 and 5% of CDH1-7C strains displayed abnormal 

mitoses, invariably of the form of a delay at a stage with a bilobed nucleus and relatively 

high Clb2-GFP, most of which eventually completed anaphase during the imaged period.  

Previous experience with such sporadic blocks in time-lapse microscopy of wild-type 

cells suggests that they are due to DNA damage, possibly induced by illumination for 

GFP detection (Bean et al., 2006). 

CDH1-4N strains had a significantly higher frequency (24%) of aberrant cell 

cycles.  These were heterogeneous, including arrests of the type noted above and also 

sequential aberrant mitoses (including abortive mitoses without nuclear division, mitoses 
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with very low accumulation of Clb2, and multibudded mitoses with nuclei passing 

through three cell bodies (see Figure 3.8B for example)).  

 

Discussion 

Recombinational construction of an exact gene replacement series of mutants 

 We describe a novel approach to creating a series of exact gene replacements, 

useful for the creation and analysis of intermediately modified forms of genes with 

numerous known modifications. It allows for the inference of modifications that are 

selected against, as well as efficient recovery of a diversity of viable mutants.  In our 

case, eleven intermediately phosphorylatable alleles of CDH1 were created by 

homologous recombination.  The nature of this allelic construction precludes the 

possibility of altered gene function owing to the presence of alternate exogenous 

sequences, selection markers, flanking vector sequences, or an otherwise modified 

chromosomal milieu, and is thus advantageous for the reasons discussed for the CDH1-

m11 exact gene replacement.   

 

Cdh1 inhibition cannot be reduced to counting phosphorylations 

Multisite phosphorylation in the stoichiometric B-type cyclin inhibitor Sic1 

appears to work by a strict counting mechanism, whereby six site need to be 

phosphorylated to be targeted for degradation by SCF-Cdc4 (Nash et al., 2001).  Given 

the prevalence of multisite phosphorylation, it is important to determine if this conclusion 

is general.  In Sic1, there is a clear distinction in efficiency and strength of the different 

phosphorylation sites, but this does not alter the general requirement for six sites (Nash et 
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al., 2001; Petroski and Deshaies, 2003; Verma et al., 1997).  Cdh1 functionally overlaps 

with Sic1, in that it opposes mitotic B-type cyclins from late anaphase through the 

subsequent G1.  However, our evidence argues against a counting mechanism regulating 

Cdh1 activity, since ablation of 8 C-terminal sites is viable without any discernible 

phenotype, whereas ablation of 3 or 4 N-terminal sites results in a discernible phenotype, 

and ablation of 7 is incompatible with viability. One obvious concern would be that the 

‘phosphorylation sites’ ablated are not actual kinase substrates in vivo, and thus of little 

physiologic relevance.  However, previous mass spectroscopic date places five of the six 

conclusively demonstrated phosphorylated sites among the 8 C-terminal sites that are not 

essential (Hall et al., 2004), and our genetic data clearly imply that all of the N-terminal 

sites are also phosphorylated (see above).   

 

No single CDK site on Cdh1 is essential 

Previous studies of the phosphorylation sites of Cdh1 have been restricted to a 

single allelic series ablating phosphorylation sites starting from the N-terminus, placed 

under a partial GAL promoter.  It was not possible to infer from this result whether one 

particular site beyond the first site is in fact essential to prevent the activation of Cdh1.  

Here, we find that there is not any one specific site that necessarily must be 

phosphorylated by CDK, as both the CDH1-4N and CDH1-8C alleles are viable in the 

presence of a fully functional APC.  There are also not any two adjacent sites which 

necessarily must be phosphorylated for viability, which could be relevant for some 

models of local high charge (Holt et al., 2009; Strickfaden et al., 2007). 
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Figure 3.8 Single cell time lapse imaging of CDH1 mutants A Phase images of 
microcolonies formed by cells of the indicated genotypes.  Note CDH1-4N strain ability 
to form both morphologically normal and aberrant cells, a property not found in CDH1 or 
CDH1-7C. B  Aberrant mitoses in CDH1-4N cells.  Time lapse imaging of GFP-Clb2 
(green) and Histone-mCherry (red) marking the nucleus.  Yellow arrow points to a 
hyperpolarized cell which initially fails to undergo nuclear divison, and subsequently 
rebuds and divides its nucleus between three cell bodies. 
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N-terminal and C-terminal Phosphorylation sites are functionally distinct  

 Ablation of three or four N-terminal sites resulted in lowered cycling Clb2 levels 

and slightly slowed growth.  CDH1-4N cells were dependent upon endogenous ACM1 for 

viability, and CDH1-4N acm1 cells arrest similarly to CDH1-m11 ACM1 cells.  

Additionally, a minority of CDH1-4N cells demonstrated characteristics consistent with 

an inability to restrain APC-Cdh1 activity, including hyperpolarized growth, low GFP-

Clb2 accumulation, and aberrant nuclear separation, similar to that seen in CDH1-m11 

strains but not in CDH1 or CDH1-8C strains.   

 

Implications for specific CDK inhibition of APC-Cdh1 activity 

The G1 cyclins Cln1,2,3, and the early-expressed B-type cyclins Clb5, and Clb3/4 

have been reported to be responsible for inhibitory phosphorylation of Cdh1.  We 

explored the possibility that ablation of a subset of contiguous sites would result in the 

remaining sites dependent upon a specific class of cyclins for inhibitory phosphorylation.  

Consistent with an important role for Clb5 in inactivating Cdh1, CDH1-4N strains are 

dependent upon CLB5 for viability.  CLB6 has weaker genetic interactions, consistent 

with a less central role in CDH1 inhibition.  We do not find strong synthetic interactions 

between the tested CDH1 alleles and the early mitotic cyclins CLB3 and CLB4.  Genetic 

tests with G1 cyclins have not yet been performed. 

 

Nuclear Export of Cdh1 may play an ancillary role in regulation  

 CDK phosphorylation both blocks biochemical association of Cdh1 with the APC 

and promotes its nuclear export, which may sequester it from nuclear targets.  Different 
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sites could be responsible for these two actions.  This idea results in the following genetic 

prediction: if mutation of some Cdh1 sites resulted in constitutive APC activation, but 

Msn5 interacted with a different set of sites for nuclear export, and this export was 

sufficient to restrain Cdh1, then deleting MSN5 and mutating these sites in combination 

should be lethal.  To test this we crossed all partially phosphorylatable Cdh1 alleles to an 

msn5 strain, and found that none of them were dependent on MSN5 for viability.  This 

argues against nuclear export being a critical regulator of Cdh1 activity.  We were thus 

not able to find a partially phosphorylatable allele of Cdh1 which was critically 

dependent upon Msn5, suggesting that there was no partially phosphorylatable allele 

created that was exportable from the nucleus but which would otherwise constitutively 

activate the APC.  This result does not support the ability of Msn5-dependent transport to 

strongly restrain Cdh1 activity, although we obviously did not test all 211 combinations of 

sites, and it also could be that identical sites are responsible for regulating interaction 

with both the APC and Msn5.  Still, Msn5 nuclear export can contribute to Cdh1 

inhibition, as shown by an MSN5 requirement in acm1 strains mutated for some Cdh1 

CDK sites.  Further experiments are planned to test this directly (see future directions). 

 

General implications for regulation by multisite phosphorylation 

 Here we present an analysis of the relative contributions of subsets of 

phosphorylation sites for the core cell cycle regulator Cdh1.  S-phase cyclins and ACM1 

are essential for the viability of cells carrying specific CDK-unphosphorylatable CDH1 

alleles as exact gene replacements.  We infer the sites to be partially redundant, but 

phosphorylation of at least some (non-unique) subset of the sites is essential.  We do not 
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find evidence for a strict counting mechanism, as has been seen with Sic1 (Deshaies and 

Ferrell, 2001), nor clearly separable functions as evident in Pho4 (Komeili and O'Shea, 

1999).  Rather, we seem to find differing phosphorylation sites to have marginal effects 

of differing magnitudes.  It could be that parsing out the contributions of individual 

site(s) to Msn5 interaction or APC interaction would reveal a more specific pattern than 

can be seen so far just examining mutant viability in wild-type or compromised 

backgrounds.  It could also be that much of the effect of Cdh1 phosphorylation comes 

from bulk electrostatic effects with some regional specificity, a proposed pattern in many 

cases of multisite phosphorylation (Holt et al., 2009). 

 

Future Directions 

This work offers insights into the regulation of Cdh1 by multisite 

phosphorylation, but much remains to be done.   

Testing for synthetic interactions with G1 cyclin deletions may offer insights into 

the regulatory architecture of Cdh1.  The cln1 cln2 double mutant is viable, and often 

display defects owing to lack of G1 cyclins such as failure to bud (Skotheim et al., 2008),  

If G1 cyclins are solely responsible for the inhibitory phosphorylation of Cdh1 on a 

genetically separable subset of CDK sites, in the presence of CDH1 allele possessing 

only these sites it is possible that a cln1 cln2 mutant, with lowered G1 cyclin activity, will 

result in unrestrained Cdh1 activity preventing adequate accumulation of mitotic cyclins.   

 One implication of the present study is that nuclear export by Msn5 is not a 

critical regulator of Cdh1 activity.  The construction of GFP-tagged partially 

phosphorylatable alleles will allow for direct assessment of localization and possibly the 
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determination of sites responsible for nuclear localization; subsequent work could 

determine if any such site(s) are also required for regulation of direct Cdh1-APC 

interaction.   

A more detailed characterization of the arrest phenotype of cells lacking greater 

than 4 N-terminal phosphorylation sites—specifically CDH1-7N, 9N, and 10N—will 

reveal whether these alleles result in arrests with graded levels of Clb2, or whether either 

cyclins or Cdh1 ultimately prevails.  The prevalence, activity and significance of partially 

phosphorylated Cdh1 species during the cell cycle is not known, and the behavior of 

these alleles may offer insights into the nature of such species.  If all less 

phosphorylatable alleles result in similarly low Clb2 levels, the implication is that a 

marginal phosphorylation event may result in a sharp transition in APC-Cdh1 activity—

that is, in the absence of complete inhibitory phosphorylation, APC-Cdh1 may simply be 

fully on.  If graded decreases in Clb2 levels are found, this may be suggestive of either 

graded APC-Cdh1 activity in individual cells or stochastic but binary APC-Cdh1 activity 

in a bulk population.  Such stochastic switch-like APC activity has been observed with 

fzr, the Drosophila CDH1 homolog: analysis of increasingly weak alleles revealed a 

corresponding increase in the fraction of epidermal cells displaying unscheduled high 

level reaccumulation of mitotic cyclins; this result contrasts with the linear expectation of 

steadily increasing intermediate levels, and is suggestive of a dynamic relationship.  

Quantitative single cell time lapse microscopy will allow us to look for bistability by 

measuring GFP-Clb2 levels in individual arrested cells with partially phosphorylatable 

CDH1.  If APC-Cdh1 activity is strictly bistable, and all alleles incompatible with 

viability are constitutively active, then both the terminal GFP-Clb2 level, and the 
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progression to that level, ought to be the same in the context of the various alleles.  In the 

case of stochastic inactivation, it is possible that the fraction of cells with high level GFP-

Clb2 will correlate with the number of remaining phosphorylatable residues on Cdh1; the 

mechanism for such a high CDK level arrest in this context would have to be determined.  

Alternatively, if APC-Cdh1 activity is graded in individual cells, then intermediate levels 

of GFP-Clb2 may be observable which are sufficient to maintain phosphorylation of 

remaining Cdh1 sites so as to sustain graded APC activity, but insufficient for proper 

mitotic progression. 

Time lapse microscopy will also allow us to infer the APC dynamics of single 

cells with partially phosphorylatable CDH1 alleles.  This has been done preliminarily: 

sporadic cytologically aberrant mitoses were observed in CDH1-4N cells, frequently 

associated with very low Clb2-GFP levels.  Precise measurements may allow for an 

assessment of whether individual cells either have delayed APC-Cdh1 inactivation in late 

G1 or premature activation during mitotic exit as indicated by shifts in the GFP-Clb2 

trace; such a result would be consistent with APC-Cdh1 switch-like behavior, in which 

removal of potential phosphorylation sites biases the switch to the ‘on’ position.  It is also 

conceivable that timing will be essentially unaltered but peak GFP-Clb2 levels damped, 

which would imply a graded activity of partially phosphorylated Cdh1.  In this way, the 

analysis of single cells may allow for inferences into the regulatory architecture of Cdh1 

multisite phosphorylation.   
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CHAPTER FOUR 

Regulated degradation of the APC coactivator Cdc20 

 

Temporal separation of APC-Cdc20 and APC-Cdh1 activity is thought to promote 

ordering of degradation of APC substrates (see Introduction).  Not only must Cdh1 

activity be restrained until mitotic exit (see Chapter 2), but it is likely that Cdc20 must be 

inactivated for the subsequent cell cycle.  Inability to inactivate Cdc20 would impede 

securin accumulation, impairing separase regulation, and constitutive Cdc20 could also 

block accumulation of the major S-phase cyclin Clb5. 

Three mechanisms are known to contribute to Cdc20 inactivation: the 

dephosphorylation of the APC (Kramer et al., 2000; Rudner and Murray, 2000), 

transcriptional shutoff (Prinz et al., 1998), and the destruction of Cdc20 itself (Prinz et 

al., 1998; Shirayama et al., 1998; Weinstein, 1997).  The following is an attempt to 

clarify the literature with regards to the regulated destruction of Cdc20.   

 

Destruction boxes of Cdc20 both contribute to its degradation 

 Cdc20 has two destruction boxes thought to target it for destruction (Shirayama et 

al., 1998).  It has been argued based on the stabilization of overexpressed alleles deleted 

for the region containing destruction boxes that both destruction boxes contribute to 

Cdc20 degradation in G1 (Prinz et al., 1998; Shirayama et al., 1998).   One study also 

found residual APC-dependent but destruction-box independent Cdc20 instability 

throughout the entire cell cycle (Prinz et al., 1998). Another study argued that 

degradation of Cdc20 was dependent only on the first destruction box (Goh et al., 2000), 

 79



and was cell-cycle-regulated (highest in G1), but was independent of APC activity.  

These substantially contradictory results hamper understanding of this potentially 

important regulatory event. 

We sought to test the consequences of removing Cdc20 destruction boxes on 

protein stability through the ablation of either each destruction box individually, or both 

simultaneously, in the context of the endogenous locus and promoter.  This is in contrast 

to all previous work on Cdc20 destruction box function, which was carried out with 

overexpression.  An 18-myc tag was placed at the N-terminus so that protein levels could 

be followed, and the destruction box consensus site RxxL was mutated to AxxA so as to 

prevent APC engagement of the destruction box without possible inadvertent 

consequences from deletions, as were used in much previous work (Figure 4.1).  CDC20-

db1 ablates the first destruction box, CDC20-db2 the second, and CDC20-db3 both.  

These alleles were fully functional, as they replaced the endogenous copy of CDC20, 

which is an essential gene.  Additionally, they were also viable in the absence of CDH1, a 

genetic background known to be sensitive to hypoactive APC-Cdc20 (Cross, 2003).  

Cells were synchronized in α-factor and released, with Myc-Cdc20 accumulation 

monitored by western blotting against Myc (Figure 4.2).  Both destruction boxes 

contributed to Cdc20 degradation, and the effects of mutating both of them were 

significantly greater than the mutation of either one alone.  

Cdc20 protein levels remained cell cycle regulated even with mutated destruction 

boxes.  The Cdc20 destruction boxes were required for clearance of Cdc20 in α-factor 

blocked cells (most clearly seen with the double db mutant Cdc20-db3).  Cdc20-db3 

reproducibly declined shortly after release from the α-factor block, followed by a rise to a  
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Figure 4.1 Schematic of Cdc20 and destruction box mutants.  Two destruction boxes are 
found in the N-terminus (DB1 and DB2), with DB1 neighboring a potential CDK site of 
unknown function.  The alanine substitutions ablating these destruction boxes in the 
CDC20-db alleles are indicated below. 
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Figure 4.2 Destruction boxes contribute to, but are not solely responsible for, the 
destruction of Cdc20. Strains bearing 18MYC-tagged CDC20 with either destruction box 
1 (db1), destruction box 2 (db2), or both destruction boxes (db3) ablated were 
synchronized with α-factor and released.  Immunoblots against Myc are shown, with 
Pgk1 serving as a loading control. 
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higher peak level around the time of mitosis.  (A similar effect was detectable with wild-

type Cdc20, despite the extremely low initial levels which presumably resulted from 

efficient destruction-box-dependent proteolysis.)  CDC20 transcription is low at α-factor 

arrest, and only increases late in the cell cycle (Spellman et al., 1998); thus, the decline in 

Cdc20 levels shortly after release from the α-factor block is probably not the consequence 

of transcriptional downregulation.  Rather, Cdc20 appears to be actively destroyed by 

some process as cells progress through G1 into S.  This degradation is destruction box-

independent, and is unlikely to be APC-Cdh1 mediated, as Cdh1 activity is very high in 

α-factor-blocked cells and declines upon release.   

To allow for direct comparison of Cdc20 levels from the α-factor release, 

identical time points were loaded on the same gel to avoid gel-to-gel variability in 

intensity.  The destruction box dependent degradation in α-factor was confirmed (Figure 

4.3A).  Interestingly, the destruction boxes had no effect on Cdc20 at 40 minutes and 80 

minutes after release; at 120 minutes post-release destruction box-dependent degradation 

became apparent based on higher Cdc20 levels in the absence of destruction boxes. 

 Overexpression of CDC20 lacking destruction boxes has been reported to 

interfere with S-phase progression (presumably mediated through sustained APC-Cdc20 

ubiquitination of the S-phase cyclin Clb5)   (Huang et al., 2001).  However, with CDC20-

db3 expressed at endogenous levels we observe no S-phase or division delay (Figure 

4.3B), so this reported effect is likely a consequence of overexpression.  
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Figure 4.3 Ablation of destruction boxes particularly stabilizes Cdc20 in α-factor, but 
does not affect DNA replication kinetics. A Samples from Figure 4.2 for each CDC20 
allele at indicated timepoints were loaded next to one another on the same gel and blotted 
against.  B FACS analysis of DNA content from samples taken in parallel with those 
from Figure 4.2.  No differences are discernible with respect to progression through S-
phase, or at other points, amongst the different CDC20 alleles. 

 84



Overexpression of CDH1 fails to clear Cdc20 

 APC-Cdh1 activity has been reported to restrain Cdc20 accumulation until early 

S-phase (Huang et al., 2001). We found Cdc20 to be nearly completely removed in α-

factor-blocked cells, but this removal was only partially destruction-box dependent.  α-

factor-blocked cells contain high APC-Cdh1 activity, which could account for Cdc20 

clearance in these cells.  Therefore, we tested whether Cdh1 overexpression in cycling 

cells is able to clear Cdc20 expressed from the endogenous locus.  Overexpressed CDH1 

had little effect on Cdc20 levels, and while CDH1-m11 was able to reduce the level of 

Cdc20, this effect was incomplete even after two hours of CDH1-m11 induction (Figure 

4.4).  This time of induction of GAL-CDH1-m11 results in massive overexpression of 

Cdh1-m11 (Zachariae 1998a; data not shown).  This indicates that Cdh1, even when both 

overexpressed and highly active, is not capable of efficiently clearing Cdc20, and 

suggests that the effective clearance of Cdc20 in α-factor-blocked cells is due at least in 

part to Cdh1-independent activities.  

 

Cdc20 levels are increased but still cell cycle regulated in the absence of CDH1 

 We examined the effect of endogenous Cdh1 on Cdc20 levels.  Using centrifugal 

elutriation, we separated cycling cdh1 and wild-type cells into different cell cycle 

fractions based on cell size (this change in procedure was necessary because cdh1 cells 

fail to arrest properly in response to α-factor).  cdh1 cells have higher levels of Cdc20 

than CDH1 cells, particularly in G1; however, Cdc20 declines to a low level in cdh1 cells 

as they progress through S-phase (Figure 4.5), before increasing later in the cell cycle.  

This is consistent with both CDH1-dependent and CDH1-independent mechanisms being  
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Figure 4.4 Overexpressed CDH1-m11 lowers Cdc20 levels, but does not clear it.  Either 
HA-CDH1 or HA-CDH1-m11 was induced using deoxycorticosterone in cycling strains 
with a GAL4-Mineralocorticoid receptor fusion (containing the DNA binding domain of 
the former, and ligand binding domain of the latter, rendering GAL responsive genes 
inducible by exogenous mineralocorticoids).   Levels of endogenously expressed 
18MYC-Cdc20 and HA-Cdh1 were followed by immunoblot, with a nonspecific band 
reactive with the anti-HA antibody serving as a loading control. 
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Figure 4.5 Deletion of CDH1 partially stabilizes Cdc20.  A CDH1 18MYC-CDC20 and 
cdh1 18MYC-CDC20 strains were elutriated, and the resultant fractions were 
immunoblotted for Myc and Clb2.  Pgk1 serves as a loading control. B FACS to assess 
DNA content for the fractions collected in (A) 
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involved in the degradation of Cdc20.  This finding correlates with the characterization 

above of destruction box-dependent and independent mechanisms of Cdc20 proteolysis. 

 

Inducible Cdc20 is degraded by both Cdh1- dependent and independent 

mechanisms 

 Depletion of Cdc20 results in a reversible metaphase arrest.  An allele of MET3-

HA-CDC20 replacing the endogenous copy of CDC20 allows for methionine-repressible 

CDC20 transcription; in the absence of methionine CDC20 is constitutively expressed.  

MET3-HA-CDC20 CDH1 and MET3-HA-CDC20 cdh1 strains were constructed and 

grown to log phase in media lacking methionine.  Methionine was then added, and 30 

minutes after addition strains did not have any detectable Cdc20 in either CDH1 or cdh1 

backgrounds (Figure 4.6).  cdh1 strains readily arrest in the first cycle after shutoff of 

CDC20 transcription, similar to CDH1 control cells.  Upon induction of CDC20 to 

release the cells, Cdc20 levels increase much more in a cdh1 than in a CDH1 

background, suggesting that APC-Cdh1 can effectively dampen Cdc20 levels during 

mitotic exit.  However, this effect is short lived, and Cdc20 rapidly stabilizes at a lower 

level (though still higher than CDH1 cells) (Figure 4.6).    

These results are consistent with the effects of CDH1 deletion on Cdc20 levels 

from the endogenous promoter, and on the effects of Cdc20 destruction box mutation, in 

demonstrating Cdh1- and db-dependent Cdc20 degradation, and independent degradation 

independent of Cdh1 and destruction boxes. 
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Figure 4.6 Inducible Cdc20 is degraded by both Cdh1 dependent and independent 
mechanisms. A Methionine was added at time 0 to cycling CDH1 and cdh1 strains, with 
MET3pr-HA-CDC20 (methionine repressible) replacing endogenous CDC20, to shutoff 
CDC20 transcription. After two hours, these cells were released into methionine-free 
media, inducing CDC20 transcription.  Samples were taken every ten minutes thereafter 
(R10, R20, etc).  HA-Cdc20 was immunoblotted against, with Pgk1 serving as a loading 
control.  B DNA content of the strains in (A) was assessed by FACS.  C Quantification of 
immunoblots in (A).   
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Discussion 

The regulatory control of Cdc20 has implications for the proper ordering of cell 

cycle events.  Multiple mechanisms are involved in its regulation including 

transcriptional control, Cdc20 protein destruction, and CDK phosphorylation of the APC.  

Both the transcriptional control and at least part of the CDK phosphorylation of the APC 

(specifically of Cdc16, Cdc23, and Cdc27) are dispensable for essentially normal cell 

cycle progression (Rudner and Murray, 2000; Yeong et al., 2001).  This work addresses 

the mechanisms by which Cdc20 protein stability is regulated, clarifying the agents, 

timing and motifs involved in Cdc20 destruction. 

Conflicting reports exist in the literature as to what mediates the destruction of 

Cdc20.  Studies have variously implicated the APC but presumably not Cdh1 (Prinz et 

al., 1998; Shirayama et al., 1998), APC-Cdh1 specifically (Huang et al., 2001), and an 

APC-independent mechanism (Goh et al., 2000).  Here we find evidence for both APC-

Cdh1 dependent and independent mechanisms.   

APC-Cdh1 effectively restrains Cdc20 levels from mitotic exit through the 

subsequent G1 (Figure 4.5).  This provides a simple mechanism for temporal separation 

of APC-Cdc20 and APC-Cdh1 activity, by Cdh1-dependent removal of Cdc20.  Other 

mechanisms, such as dephosphorylating core APC components, may also contribute.  

Beginning in late G1/early S, a Cdh1-independent mechanism is responsible for Cdc20 

degradation.  We speculate that this may play role in limiting Cdc20 accumulation prior 

to anaphase so as to prevent premature cohesin cleavage, or may contribute to efficient 

engagement of the spindle checkpoint during aberrant mitoses (since Cdc20 is the 
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ultimate target of this checkpoint).  The molecular basis for APC-Cdh1 independent 

degradation of Cdc20 is unknown.   

APC dependent but destruction box independent degradation of Cdc20 was 

reported in S phase and mitosis (Prinz et al., 1998); it is possible that this is the Cdh1- 

and destruction box-independent Cdc20 degradation we observe.  We have not evaluated 

the role of APC-dependent but coactivator-independent ubiquitination of Cdc20. 

 Work based upon overexpression studies of CDC20 alleles with destruction box 

deletions, has arrived at conflicting conclusions for the relative contributions of the two 

destruction boxes (Goh et al., 2000; Prinz et al., 1998; Shirayama et al., 1998).  We find 

both destruction boxes to contribute to Cdc20 instability, particularly during G1.  

However, the stabilization conferred by destruction box ablation appears only partial; 

peak mitotic levels of Cdc20-db3 are higher than α-factor blocked levels, while small G1 

elutriated cdh1 cells have similar Cdc20 levels to their large 2C DNA content 

counterparts.  This suggests that APC-Cdh1 mediates the destruction of Cdc20 through 

both destruction box dependent and independent mechanisms.  One possible targeting 

motif is a potential KEN box in the C-terminal portion of Cdc20; the contribution of this 

motif to Cdc20 instability has not been evaluated.   

This work, taken as a whole, argues for a Cdh1 and destruction box dependent 

mechanism targeting Cdc20 for destruction from late mitosis through the subsequent G1, 

and a separate Cdh1 and destruction box independent mechanism degrading Cdc20 from 

S-phase into mitosis.  The Cdh1 dependent degradation likely contributes to the strict 

alternation of APC-Cdc20 and APC-Cdh1 activity, thus promoting separate degradative 
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regimes during anaphase onset and spindle disassembly.  These findings go some way to 

reconciling the conflicts in the literature, clarifying regulation of Cdc20 protein levels. 
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CHAPTER FIVE 

Conclusions, Questions and Future Directions 

 

CDK phosphorylation and Acm1 regulate Cdh1 activity 

Through a careful exact gene replacement study, we have found CDK 

phosphorylation of Cdh1 to be essential for inactivating APC-Cdh1, and this inactivation 

essential for viability.  Acm1, which is not required for normal cell cycle progression or 

APC-Cdh1 inhibition, can block Cdh1 sufficiently to allow a fraction of cells to construct 

bipolar spindles, but not undergo anaphase or complete the cell cycle.  This establishes 

CDK phosphorylation as the major and essential regulator of APC-Cdh1 activity, and 

places Acm1 in a minor supporting role. We fail to find any evidence that Cdc5 

phosphorylation is able to inhibit Cdh1 activity.   

A failure of CDK phosphorylation of Cdh1 results in a predominantly monopolar 

spindle arrest.  SPB separation can be promoted by expression of an undegradable mitotic 

cyclin, but not the kinesin Cin8 as had been previously reported (Crasta et al., 2006).  A 

fraction of CDH1-m11 cells construct bipolar spindles, which nevertheless fail to 

progress to anaphase owing to a failure to accumulate Cdc20 and consequently to cleave 

cohesin.   

This approach has thus allowed for the determination of the physiologically 

significant regulators of Cdh1 activity, as well as mechanisms by which failure to 

inactivate Cdh1 interferes with cell cycle progression.   
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Does Acm1, in the absence of inhibitory CDK phosphorylation of Cdh1, permit 

bipolar spindle construction through mitotic cyclin accumulation? 

How Acm1 allows for bipolar spindle assembly in a fraction of these cells is not 

clear.  We find that increasing the gene dosage of ACM1 results in a corresponding 

increase in mitotic cyclin levels, and independently that expression of undegradable 

cyclins promotes SPB separation.  It is possible that a single copy of ACM1 allows for a 

fraction of cells to construct bipolar spindles by inhibiting the APC sufficiently to allow 

for at least transient accumulation of mitotic cyclins, which could drive bipolar spindle 

assembly.  If this is the case, then altering the copy number of CLB2, or replacing the 

endogenous gene with an allele coding for a partially stabilized cyclin such as with the 

KEN box ablated, would be predicted to increase the proportion of bipolar spindles seen 

at the CDH1-m11 arrest.  An alternate, but not mutually exclusive possibility is that the 

accumulation of other APC substrates contributes significantly to bipolar spindle 

assembly. 

 

Is there a physiological role for Cdh1 nuclear export? 

 The physiological role of nuclear export in Cdh1 regulation, if any, remains 

unclear and not easily addressed.  As Msn5, which exports Cdh1 from the nucleus, is not 

essential, it is unlikely that nuclear export is a critical inhibitor of Cdh1.  It is not known 

whether preventing nuclear export alters the CDH1-m11 terminal phenotype; it is 

conceivable that a shift towards monopolar spindle arrest would result from deletion of 

MSN5.  However, given the numerous other proteins shuttled by Msn5, such a result 

could also plausibly explained by pleiotropic effects. 
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 Cdh1 export is phosphorylation dependent (Jaquenoud et al, 2002), and 

experiments are planned to test whether specific partially CDK-unphosphorylatable Cdh1 

alleles are constitutively nuclear.  This will be performed with partially 

unphosphorylatable GFP-tagged Cdh1 alleles under the GAL1 promoter, which will be 

integrated into cells with HTB2-mCherry marking the nucleus.  By arresting the cells 

with α-factor, inducing GFP-Cdh1 alleles, and then releasing them, the Cdh1 nuclear 

export dynamics will be measured as they progress through the cell cycle.  If a specific 

site or cluster of sites is responsible for nuclear export, then alleles lacking such site(s) 

will be expected to be constitutively nuclear.  If specific sites are responsible, it will be 

interesting to see whether these same sites are also involved in blocking APC interaction.  

Alternatively, if nuclear export is based upon generic binding of CDK phosphorylation 

sites, all partially unphosphorylatable Cdh1 alleles will result in slowed nuclear export.   

 

Does Cdh1 drive its own inactivation through transcription? 

 As mitotic cyclins are responsible for turning off the G1 regulon (Amon et al., 

1993) and Cdh1 promotes mitotic cyclin degradation, a failure to inactivate Cdh1 likely 

results in sustained G1 regulon expression.  This is suggested by the sustained polarized 

growth found in CDH1-m11 cells.  In a normal cell cycle, Cdh1 inactivation likely 

involves the progressive phosphorylation of Cdh1 until it is inactivated.  If, for some 

reason, Cdh1 inactivation fails (such as by a stochastic failure to sufficiently 

phosphorylate it), persistent Cdh1 activity might prevent the shutoff of the G1 regulon.  

The result of this could be sustained transcription of proteins responsible for Cdh1 

inactivation, including the G1 cyclins, ACM1, and CLB5 (Spellman et al., 1998).  This is 
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testable through the use of reporters, such as fluorescent proteins placed under the control 

of these respective promoters, as well as by microarray analysis.  If this is the case, then 

ACM1 transcription alone is not sufficient to inactivate Cdh1; however the combination 

of Acm1 and the perhaps more important cyclins would likely be sufficient in the more 

physiological context of phosphorylatable Cdh1.  

 Of note, this mechanism could plausibly also drive PDS1 transcription (Spellman 

et al., 1998) if Cdh1 inactivation fails.  This would have the effect of preventing 

premature anaphase, especially if Cdh1 has some ability to ubiquitinate Pds1. 

 

Acm1 as a Cdh1 buffer 

 In the absence of Cdh1 phosphorylation, a single copy of ACM1 is insufficient to 

permit cell cycle progression.   However, it does allow a fraction of cells to separate their 

SPBs.  The induction of Acm1 in late G1, in the context of a normal cell cycle, may serve 

to buffer APC-Cdh1 which has not been inactivated.  If inactivation of Cdh1 by 

phosphorylation is delayed, it is plausible that the expression of Acm1 will allow for 

timely bipolar spindle construction and cell cycle progression. 

 

How does inhibitory multisite Cdh1 phosphorylation work?  

Multisite phosphorylation is a common but poorly understood regulatory 

mechanism; Cdh1, with its 11 putative CDK sites, is an excellent example of such 

multisite phosphorylation.  The principles by which such regulatory mechanisms 

function, and whether they can be generalized or simply categorized, remain largely 

unclear.  Numerous possibilities exist.  Distinct sites may mediate different regulatory 
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mechanisms.  Partially overlapping subsets of sites may mediate different regulatory 

mechanisms (Komeili and O'Shea, 1999).  Clusters of sites may determine regional 

electrostatics important for protein protein interactions (Holt et al., 2009).  Apparently 

strict counting mechanisms have been reported (Nash et al., 2001).  Only through the 

characterization of numerous proteins regulated by multisite phosphorylation can 

principles and predominant circuitry be inferred.  We have attempted to explore the 

multisite phosphorylation of Cdh1, and have made some progress.  We have found that 

no individual, nor two adjacent, phosphorylation sites are required.  Genetically separable 

alleles collectively covering all phosphorylation sites were found, with specific synthetic 

interactions found with N-terminal site ablation and the single deletions of ACM1 and 

CLB5.  N-terminal sites were found to contribute more significantly to Cdh1 inactivation 

than C-terminal sites.  These results preclude the interpretation of any strict counting 

mechanism.  Sites are genetically separable, which may in part reflect the specificity of 

inhibitory phosphorylation; we were not able to infer any strict separation of regulatory 

mechanisms.  Further characterization of nuclear localization determinants by the 

experiments outlined has the potential to shed further light on the underlying architecture 

of Cdh1 multisite phosphorylation.  This will undoubtedly need to be supplemented with 

precise biochemical studies. 

 

Temporally separating Cdc20 and Cdh1 activity 

 APC-Cdc20 and APC-Cdh1 act sequentially, helping to order anaphase and 

mitotic exit.  We have examined the regulatory mechanisms restraining Cdh1 activation 

in detail, as well as addressing open questions pertaining to the regulation of Cdc20.   Our 
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work on the regulation of Cdc20 argues for a Cdh1 and destruction box dependent 

mechanism targeting Cdc20 for destruction from late mitosis through the subsequent G1, 

and a separate Cdh1 and destruction box independent mechanism degrading Cdc20 from 

S-phase into mitosis.  The Cdh1-independent degradation may lower Cdc20 levels so as 

to prevent premature Cdc20 activation.  The Cdh1 dependent degradation of Cdc20 can 

directly contribute to the strict alternation of destructive phases, and may allow for Cdc20 

specific substrates to accumulate before Cdh1 is inactivated in late G1/S.   
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CHAPTER SIX 

Materials and Methods 

 

Yeast strains and plasmids. 

Standard methods were used throughout.  All strains are W303.  See Table 5.1 for 

strains used.  See Table 5.2 for plasmids used. 

 

Time Courses 

CDH1-m11 GALL-HA-ACM1 time courses were performed by arrest in YPG + 

10nM α-factor for 135 minutes at 30°, followed either by glucose addition or 

resuspension in YPD + 10nM α-factor for 30 minutes.  (Both procedures were found to 

result in complete clearance of exogenous Acm1 by western blot, and had identical SPB 

phenotypes.)  For time lapse microscopy, strains were washed 3X in SC media, placed 

onto SC + Glucose agar pads, and imaged as in (Bean et al., 2006), discussed below.  For 

bulk culture time courses, cells were removed from α-factor by 3 washes in cold YEP, 

and released into YPD at 30°C.  For fluorescent microscopy in these timecourses, cells 

were fixed at room temperature for 15 minutes using a 4% paraformaldehyde buffer, 

washed twice with Sorbitol-Phosphate buffer ((1.2M sorbitol, 200 μM MgCl2, 100 mM 

KPO4, pH 7.5)), and otherwise handled as in (Drapkin et al, Molecular Systems Biology, 

in press).   
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 MET3pr-CLB2-kd time courses were carried out similarly except that pregrowth, 

arrest and 60 min of release were carried out in 0.2g/L methionine (10X standard 

concentration). Transfer to methionine-free medium by three washes then induced 

MET3-CLB2-kd. 

Temperature sensitive scc1-73 and corresponding controls were blocked in α-

factor for 165 minutes at 23°, and glucose added for 30 minutes to inactivate GAL-

ACM1.  After 3 washes in ice-cold YEP, cells were released at 30° and shifted to 37° 30 

minutes post-release to inactivate scc1-73.   

 All other α-factor time courses were performed by blocking for between two and 

three hours in α-factor, washing 3X in α-factor-free media, and releasing into the 

indicated culture conditions.  Washing of α-factor arrested cells requires centrifugation; 

filtration leads to clumping of these cells.   

MET3-HA-CDC20 time courses were performed by adding 0.2g/L methionine to 

methionine-free synthetic media, arresting for between two and three hours, filtered onto 

nitrocellulose membranes, washed and release into methionine-free medium.  GALL-

CDC20 time courses were performed by centrifugation of log phase cells in YPG, 

washing, resuspension into YPD, arrest for two to three hours, 3X washing, and release 

into YPG.  GALL-CDC20 blocks requires resuspension into galactose-free media for the 

arrest; simple addition of glucose is inadequate for a clean arrest. 

 Centrifugal elutriations were performed using 1L of log phase culture with a 

Beckman JE5.0 elutriator rotor, running at 3000RPM with sequential fractions elutriated 

off by stepwise increase in pump speed.  
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Fixed cell fluorescence microscopy 

Fluorescence and DIC images were acquired using an Axioplan 2 microscope 

(Carl Zeiss MicroImaging Corp.) with a 63X 1.4 numerical aperture Plan- Apochromat 

objective, coupled to a Hamamatsu C4742-95 CCD camera (Sciscope Instrument). 

Camera and microscope were interfaced with the OpenLab software (Improvision). 

Filters and dichroics used were made by Chroma. YFP was detected with a YFP filter, 

mCherry with a Cy3 filter, CFP with a CFP filter, and GFP with a narrow band pass 

FITC filter.  For spindle analysis seven optical sections were taken at 0.3 micron spacing; 

for illustrative purposes these were merged into two-dimensional maximum projections.  

Acquisition was automated using an OpenLab script written by B. Drapkin. 

 

Time-lapse Microscopy 

Time-lapse microscopy was performed as described (Bean et al., 2006). Briefly, 

fields of single cells were imaged with fluorescence time-lapse microscopy at 30 °C 

using a Leica DMIRE2 inverted microscope with a Ludl motorized stage (Bean et al., 

2006). Images were acquired with a Hamamatsu Orca-ER camera. Custom Visual Basic 

software integrated with ImagePro Plus was used for automated image acquisition and 

microscope control. 

 

Immunoblots 

Western Blots were performed using standard methods.  Antibody concentrations 

used were: anti-Pgk1 1:10,000 (Invitrogen), anti-HA 12CA5 1:1,000 (Roche), rabbit 

polyclonal anti-Clb2 1:10,000, Myc 9E10 1:1,000 (Santa Cruz Biotechnology), Clb5 yN-
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17 (Santa Cruz), Cdc5 yC-19 (Santa Cruz), and HRP-conjugated secondary antibodies at 

1:4,000.  ECL signal was measured in a Fujifilm DarkBox with CCD camera, and 

quantified using MultiGauge software (Fujifilm). 

 

Flow Cytometry 

 DNA content was assessed through propidium iodide staining of ribonuclease 

treated cells on a FACSCalibur machine (BD Biosciences), as described (Epstein and 

Cross, 1992). 

 

Quantitative PCR  

Quantitative PCR was performed using SYBR green (Qiagen) according to the 

manufacturer’s instructions, and data analyzed by SDS 2.2 (Applied Biosystems). 

 

Cloning: 

 CDC20, CDH1-pkm, and first four N-terminal CDH1 CDK site mutagenesis was 

performed by Quickchange Multi-Site Directed Mutagenesis (Stratagene) using the 

following primers: 

Cdc20-db1: AATGCAGCAATTAGCGGTAACgcTTCTGTAgcTTCTATTGCGTCCCCAACAAAGC 

Cdc20-db2: CTGAACATTAGAAACTCCAAAgcTCCCAGTgcACAAGCCTCTGCCAATTCTATT 

S125A: CTCAGAGAGCgcTATAGATCGC 

S259A: GTTTTAGATGCCCCggCATTAGC 

CDH1T12A: CCATTCATGAATAATGCGCCTTCCTCCTCCCC 

CDH1S16A: GAATAATACGCCTTCCAGTGCACCACTCAAGGGTTCTG 
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T12AS16A: CATTCATGAATAATGCGCCTTCCAGTGCACCACTCAAGGGTTC 

CDH1T42A: CGCCTCACTATTATCAGCTCCCTCCAGGCG 

CDH1-pbm was constructed by PCR, by creating separate overlapping fragments 

followed by PCR using the most 5’ and 3’ primers.  The following primers were 

employed: 

CDHS15/41Af:GCCTTCCgCCTCCCCACTCAAGGGTTCTGAAAGTAAGAGGGTA

TCGAAAAGGCCAATATCTAGTTCTTCGTCCGCCTCACTATTAgCATCTCC 

CDH156/172AR:GCGTGGcATGTGGCGAAAATTCCTCTAAACCAGCAGCTTCAG

GAGGTGGAGTTGcTACTCGTTCCAG 

CDHS15Rev: CTTGAGTGGGGAGGcGGAAGGC 

CDHS172AFor: GAATTTTCGCCACATgCCACGC 

For JRP91 (pRS406 ACM1), ACM1 was cloned as a ClaI fragment and placed 

into pRS406 at the ClaI site. 406-HLP112 is HLP112 BglI swapped into pRS406.  For 

405-GALL-HLP109, HA3-ACM1 was cloned as an XbaI/XhoI fragment into a 405-

GALL plasmid backbone. 

For construction of Myc-tagged Cin8 alleles, an N-terminal 6MYC tag was 

subcloned out of pTK138 (6MYC-CIN8) via AgeI/PacI and into the corresponding 

region of pEH113, 250 and 394 (CIN8, CIN8-alaKEN, and CIN8-KED respectively) that 

had been BglI-swapped into a pRS406 backbone.  Resultant plasmids were transformed 

into the endogenous locus after PacI linearization, and clones screened to ensure presence 

of the 6MYC tag (which in principle can be lost in transformation due to resection past 

the tag prior to integration).   
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Table 5.1 (pages 104-108) 
Strain Name Genotype 
3023-2-1 MATa cdh1-m11::LEU2::URA3::cdh1-m11::TRP1 
3023-2-2 MATa cdh1-m11::TRP1::URA3::cdh1-m11::LEU2 
JRC35B-8d MATa cdh1-m11::LEU2::URA3::cdh1-m11::TRP1 cdc23-1 
JRC36B-5d MATa cdh1-m11::TRP1::URA3::cdh1-m11::LEU2 cdc23-1 
JRC374A-5b MATa GAL1-3FLAG-ACM1-URA3::ura3 ADE2 
JRC374C-3a MATa GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX ADE2 
MNX29-3b MATa CDH1-m11 GAL1-3FLAG-ACM1-URA3::ura3 
MNX29-8b MATa CDH1-m11 acm1::KanMX GAL1-3FLAG-ACM1-URA3::ura3 
JRC258B-9c MATa CDH1-pkm GAL1-3FLAG-ACM1-URA3::ura3 ADE2? 
JRC275B-11d MATa CDH1-pkm GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 
JRC362C-7c MATalpha CDH1-pbm GAL1-3FLAG-ACM1-URA3::ura3 
JRC373D-6c MATa bar1 CDH1-pbm GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 

JRC307C-2c 
MATa bar1 CDH1-m11 GALL-HA-ACM1-LEU2::leu2 MYO1-mCherry::HIS3 
TRP1::CFP-TUB1  

JRC307A-2a 
MATa bar1 CDH1 GALL-HA-ACM1-LEU2::leu2 MYO1-mCherry::HIS3 TRP1::CFP-
TUB1  

JRC318A-9c 
MATa bar1 CDH1 GALL-HA-ACM1-LEU2::leu2 HIS3::GFP-TUB1 SPC42-CFP-TRP1 
MYO1-mCherry::HIS3 ADE2 

JRC318A-11d 
MATa bar1 CDH1-m11 GALL-HA-ACM1-LEU2::leu2 HIS3::GFP-TUB1 SPC42-CFP-
TRP1 MYO1-mCherry::HIS3 ade2 

JR313 
MATa bar1 CDH1-m11 GALL-HA-ACM1-LEU2::leu2 HIS3::GFP-TUB1 SPC42-CFP-
TRP1 MYO1-mCherry::HIS3 ACM1::URA3 ade2 

JR314 
MATa bar1 CDH1-m11 GALL-HA-ACM1-LEU2::leu2 HIS3::GFP-TUB1 SPC42-CFP-
TRP1 MYO1-mCherry::HIS3 4XACM1::URA3 ade2 

JR315 
MATa bar1 CDH1-m11 GALL-HA-ACM1-LEU2::leu2 HIS3::GFP-TUB1 SPC42-CFP-
TRP1 MYO1-mCherry::HIS3 2XACM1::URA3 ade2 

330I-7b 
MATa bar1 GALL-HA3-ACM1::LEU2 SPC42-CFP::TRP1 HIS3::GFP-TUB1 MYO1-
mCherry::HIS3 acm1::KanMX 

395B-1b 
MATa bar1 CDH1-m11 GALL-HA-ACM1-LEU2::leu2  SPC42-CFP-TRP1 HIS3::GFP-
TUB1 MYO1-mCherry::HIS3 acm1::KanMX 

JRC430A-9a MATa bar1 CDH1 GALL-HA-ACM1-LEU2::leu2 18MYC-CDC20-TRP1 
JRC430A-5a MATa bar1 CDH1-m11 GALL-HA-ACM1-LEU2::leu2 18MYC-CDC20-TRP1 
JRC431B-4a MATa bar1 CDH1 GALL-HA-ACM1-LEU2::leu2 PDS1-18MYC-LEU2 
JRC431D-4b MATa bar1 CDH1-m11 GALL-HA-ACM1-LEU2::leu2 PDS1-18MYC-LEU2 

JRC389A-6d 
MATa bar1 CDH1-m11 GALL-HA-ACM1-LEU2::leu2HTB2-mCherry-HIS5 SPC29-
YFP-HIS3 CFP-TUB1-TRP1 MYO1-mCherry-HIS3 

JRC390A-5a 
MATa bar1 CDH1-m11 GALL-HA-ACM1-LEU2::leu2HTB2-mCherry-HIS5 SPC29-
YFP-HIS3 scc1-73 TRP+ ade2 

JRC304 
MATa bar1 CDH1 GALL-HA-ACM1-LEU2::leu2 HIS3::GFP-TUB1 SPC42-CFP-TRP1 
MYO1-mCherry::HIS3 6MYC-CIN8::ura3::CIN8 ADE2 

JRC306 
MATa bar1 CDH1 GALL-HA-ACM1-LEU2::leu2 HIS3::GFP-TUB1 SPC42-CFP-TRP1 
MYO1-mCherry::HIS3  6MYC-CIN8-alaKEN::ura3::CIN8 ADE2 

JRC301 
MATa bar1 CDH1-m11 GALL-HA-ACM1-LEU2::leu2 HIS3::GFP-TUB1 SPC42-CFP-
TRP1 MYO1-mCherry::HIS3 6MYC-CIN8::ura3::CIN8 ade2 

JRC303 
MATa bar1 CDH1-m11 GALL-HA-ACM1-LEU2::leu2 HIS3::GFP-TUB1 SPC42-CFP-
TRP1 MYO1-mCherry::HIS3  6MYC-CIN8-db::ura3::CIN8-alaKEN ade2 

JR325 
MATa bar1 CDH1-m11 GALL-HA-ACM1-LEU2::leu2 HIS3::GFP-TUB1 SPC42-CFP-
TRP1 MYO1-mCherry::HIS3 ade2 MET3pr-CLB2-kd::URA3 

JR326 
MATa bar1 CDH1 GALL-HA-ACM1-LEU2::leu2 HIS3::GFP-TUB1 SPC42-CFP-TRP1 
MYO1-mCherry::HIS3 ade2 MET3pr-CLB2-kd::URA3 
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JRC370A-6d 
 

MATa bar1 Clb2,kd trp1::TRP1::GAL1-SIC1(2X) HIS3:GFP-TUB1 SPC42-
CFP::TRP1 

JR393A-2d 

MATa bar1 CDH1-m11 GALL-HA-ACM1-LEU2::leu2 trp1::TRP1::GAL1-SIC1(2X) 
CLB2-ken,db SPC42-CFP::TRP1 HIS3::GFP-TUB1 MYO1-mCherry::HIS3 
 

JRC344F-12d MATa bar1 CIN8-GFP::URA3 SPC42-CFP::TRP1 acm1::KanMX 
JRC312A-5b MATa bar1 CDH1-pkm CIN8-GFP::URA3 SPC42-CFP::TRP1 acm1::KanMX 

JRC406B-4b 
MATa bar1 CDH1 GALL-HA-ACM1-LEU2::leu2 HIS3::GFP-TUB1 SPC42-CFP-TRP1 
MYO1-mCherry::HIS3 mad2::KanMX ade2 

JRC406C-4b 
MATa bar1 CDH1-m11 GALL-HA-ACM1-LEU2::leu2 HIS3::GFP-TUB1 SPC42-CFP-
TRP1 MYO1-mCherry::HIS3 mad2::KanMX ade2 

JRC379A-4d 
MATa bar1 CDH1-m11 GALL-HA-ACM1-LEU2::leu2 HT2B-mCherry-HIS5 MYO1-
GFP-KanMX 

JRC379A-1a 
MATa bar1 CDH1 GALL-HA-ACM1-LEU2::leu2 HT2B-mCherry-HIS5 MYO1-GFP-
KanMX 

JRC388A-5c 
MATa CDH1-11m HT2B-mCherry-HIS5 405-GALL-109 MYO1-mCherry::HIS3 
SPC29-YFP-HIS3  CFP-TUB1-TRP1 

JR90 MATa TRP1-18MYC-CDC20-WT ADE2 URA3::ura3 pRS313:GAL4-MR-HIS3 

JR91 
MATa TRP1-18MYC-CDC20-WT ADE2 GALL-HA-CDH1-WT-URA3::ura3 
pRS313:GAL4-MR-HIS3 

JRC142-8c MATa CDH1-3N 
JRC143-2b MATa CDH1-4N 
JRC144-9c MATa CDH1-7C 
JRC145-2a MATa CDH1-4C 
JRC146-4d MATa CDH1-WT 
JRC147-1c MATa CDH1-8C 
JRC148-5d MATa CDH1-1C 
JRC149B-8d MATa CDH1-2C 
2151-1C MATa cdh1::HIS3 
JRC397A-4a MATa GAL1-3FLAG-ACM1-URA3::ura3 
JRC177A-3d MAT? CDH1-3N GAL1-3FLAG-ACM1-URA3::ura3 
JRC113-4b MATa CDH1-4N GAL1-3FLAG-ACM1-URA3::ura3 
MNX32-6a MATa CDH1-7N GAL1-3FLAG-ACM1-URA3::ura3 
JRC115-3a MATa CDH1-9N GAL1-3FLAG-ACM1-URA3::ura3 
JRC116-6a MATa CDH1-10N GAL1-3FLAG-ACM1-URA3::ura3 
JRC117-1b MATa CDH1-11N GAL1-3FLAG-ACM1-URA3::ura3 
JRC180d-6d MAT? CDH1-1C GAL1-3FLAG-ACM1-URA3::ura3 
JRC182D-7b MAT? CDH1-2C GAL1-3FLAG-ACM1-URA3::ura3 
JRC179C-4b MAT? CDH1-4C GAL1-3FLAG-ACM1-URA3::ura3 
JRC181B-7c MATalpha CDH1-7C GAL1-3FLAG-ACM1-URA3::ura3 
JRC135-10b MATa CDH1-8C GAL1-3FLAG-ACM1-URA3::ura3 
JRC437A-6c MATa CDH1-4N GAL-3FLAG-ACM1-URA3::ura3 
JRC3437A-4d MATa CDH1-4N clb5::HIS3 GAL-3FLAG-ACM1-URA3::ura3 
JRC437A-9c MATa CDH1-4N clb6::KanMX GAL-3FLAG-ACM1-URA3::ura3 
JRC437A-6a MATA CDH1-4N clb5::HIS3 clb6::KanMX GAL-3FLAG-ACM1-URA3::ura3 
JRC439A-11d MATa CDH1-7C GAL-3FLAG-ACM1-URA3::ura3 
JRC439A-5d MATa CDH1-7C clb5::HIS3 GAL-3FLAG-ACM1-URA3::ura3 
JRC439A-5b MATa CDH1-7C clb6::KanMX GAL-3FLAG-ACM1-URA3::ura3 
JRC439A-3d MATa CDH1-7C clb5::HIS3 clb6::KanMX GAL-3FLAG-ACM1-URA3::ura3 
JRC436A-10a MATa CDH1 GAL-3FLAG-ACM1-URA3::ura3 
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JRC436A-6c MATa CDH1 clb5::HIS3 GAL-3FLAG-ACM1-URA3::ura3 
JRC436A-1c MATa CDH1 clb6::KanMX GAL-3FLAG-ACM1-URA3::ura3 
JRC436A-1d MATa CDH1 clb5::HIS3 clb6::KanMX GAL-3FLAG-ACM1-URA3::ura3 
JRC438A-4c MATa CDH1-8C GAL-3FLAG-ACM1-URA3::ura3 
JRC438A-1b MATa CDH1-8C clb5::HIS3 GAL-3FLAG-ACM1-URA3::ura3 
JRC438A-6c MATa CDH1-8C clb6::KanMX GAL-3FLAG-ACM1-URA3::ura3 
JRC438A-4a MATa CDH1-8C clb5::HIS3 clb6::KanMX GAL-3FLAG-ACM1-URA3::ura3 
JRC177A-3d MAT CDH1-3N GAL1-3FLAG-ACM1-URA3::ura3 
JRC177A-5c MAT CDH1-3N GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX msn5::HIS3 
JRC177A-7a MATalpha CDH1-3N GAL1-3FLAG-ACM1-URA3::ura3 msn5::HIS3 
JRC177D-12b MATalpha CDH1-3N GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 
JRC262A-2a MATa CDH1-T12A GAL1-3FLAG-ACM1-URA3::ura3 
JRC262A-1c MATa CDH1-T12A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 
JRC262A-9d MATa CDH1-T12A GAL1-3FLAG-ACM1-URA3::ura3 msn5::HIS3 
JRC262A-9c MATa CDH1-T12A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX msn5::HIS3 
JRC263A-9d MATa CDH1-S16A GAL1-3FLAG-ACM1-URA3::ura3 
JRC263A-2b MATa CDH1-S16A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 
JRC263A-5b MATa CDH1-S16A GAL1-3FLAG-ACM1-URA3::ura3 msn5::HIS3 
JRC263A-3b MATa CDH1-S16A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX msn5::HIS3 
JRC264A-3b MATa CDH1-S42A GAL1-3FLAG-ACM1-URA3::ura3 
JRC264A-2b MATa CDH1-S42A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 
JRC264A-2a MATa CDH1-S42A GAL1-3FLAG-ACM1-URA3::ura3 msn5::HIS3 
JRC264A-1b MATa CDH1-S42A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX msn5::HIS3 
JRC265A-8c MATa CDH1-T157A GAL1-3FLAG-ACM1-URA3::ura3 
JRC265A-2b MATa CDH1-T157A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 
JRC265A-7d MATa CDH1-T157A GAL1-3FLAG-ACM1-URA3::ura3 msn5::HIS3 
JRC265A-1c MATa CDH1-T157A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX msn5::HIS3 
JRC276A-3d MATa CDH1-T12A-S16A GAL1-3FLAG-ACM1-URA3::ura3 
JRC276A-12b MATa CDH1-T12A-S16A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 
JRC276A-8a MATa CDH1-T12A-S16A GAL1-3FLAG-ACM1-URA3::ura3 msn5::HIS3 

JRC276A-9c 
MATa CDH1-T12A-S16A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 
msn5::HIS3 

JRC310A-10a MATa CDH1-T12A-S42A GAL1-3FLAG-ACM1-URA3::ura3 
JRC310B-3a MATa CDH1-T12A-S42A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX  

JRC310A-3a 
MATa CDH1-T12A-S42A GAL1-3FLAG-ACM1-URA3::ura3 msn5::HIS3 
acm1::KanMX  

JRC310A-3b MATa CDH1-T12A-S42A GAL1-3FLAG-ACM1-URA3::ura3 msn5::HIS3  
JRC398B-8c MATa CDH1-T12A-T157A GAL1-3FLAG-ACM1-URA3::ura3 msn5::HIS3 

JRC398B-9b 
MATa CDH1-T12A-T157A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 
msn5::HIS3 

JRC398A-12d MATa CDH1-T12A-T157A GAL1-3FLAG-ACM1-URA3::ura3 
JRC398C-1b MATa CDH1-T12A-T157A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 
JRC311A-9d MATa CDH1-S16A-S42A GAL1-3FLAG-ACM1-URA3::ura3 
JRC311A-11d MATa CDH1-S16A-S42A acm1::KanMX GAL1-3FLAG-ACM1-URA3::ura3 

JRC311A-7c 
MATa CDH1-S16A-S42A msn5::HIS3 acm1::KanMX GAL1-3FLAG-ACM1-
URA3::ura3 

JRC311A-7d MATa CDH1-S16A-S42A msn5::HIS3 GAL1-3FLAG-ACM1-URA3::ura3 
JRC320A-6b MATalpha CDH1-S16A-T157A GAL1-3FLAG-ACM1-URA3::ura3 

JRC320A-7a 
MATalpha CDH1-S16A-T157A acm1::KanMX msn5::HIS3 GAL1-3FLAG-ACM1-
URA3::ura3 
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JRC320A-1a MATalpha CDH1-S16A-T157A msn5::HIS3 GAL1-3FLAG-ACM1-URA3::ura3 
JRC320A-4d MATalpha CDH1-S16A-T157A acm1::KanMX GAL1-3FLAG-ACM1-URA3::ura3 
JRC267A-3d MATa CDH1-S42A-T157A GAL1-3FLAG-ACM1-URA3::ura3 
JRC267A-7b MATa CDH1-S42A-T157A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX  
JRC267A-10a MATa CDH1-S42A-T157A GAL1-3FLAG-ACM1-URA3::ura3 msn5::HIS3 

JRC267A-4c 
MATa CDH1-S42A-T157A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 
msn5::HIS3 

JRC280A-1b MATa CDH1-T12A-S16A-T157A GAL1-3FLAG-ACM1-URA3::ura3 
JRC280A-6a MATa CDH1-T12A-S16A-T157A GAL1-3FLAG-ACM1-URA3::ura3 msn5::HIS3 
JRC280B-7c MATa CDH1-T12A-S16A-T157A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 

JRC280B-5b 
MATa CDH1-T12A-S16A-T157A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 
msn5::HIS3 

JRC269B-2b MATa CDH1-S16A-S42A-T157A GAL1-3FLAG-ACM1-URA3::ura3 
JRC269B-1b MATa CDH1-S16A-S42A-T157A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX  
JRC269A-6c MATa CDH1-S16A-S42A-T157A GAL1-3FLAG-ACM1-URA3::ura3 msn5::HIS3 

JRC269A-1a 
MATa CDH1-S16A-S42A-T157A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 
msn5::HIS3 

MNX33-3c MATa CDH1-4N msn5null::HIS3 GAL1-3FLAG-ACM1-URA3::ura3 
MNX33-7d MATa CDH1-4N acm1::KanMX GAL1-3FLAG-ACM1-URA3::ura3 
MNX33-1d MATa CDH1-4N msn5null::HIS3 acm1::KanMX GAL1-3FLAG-ACM1-URA3::ura3 
JRC181D-5c MATa CDH1-7C GAL1-3FLAG-ACM1-URA3::ura3 msn5::HIS3 
JRC181C-1b MATalpha CDH1-7C GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 
JRC181D-3a MATalpha CDH1-7C GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX msn5::HIS3 
JRC397A-9b MATa GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 
JRC397A-9a MATa GAL1-3FLAG-ACM1-URA3::ura3 msn5::HIS3 
JRC397A-1c MATa GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX msn5::HIS3 
JRC177A-7a MATalpha CDH1-3N GAL1-3FLAG-ACM1-URA3::ura3 msn5::HIS3 
JRC177D-12b MATalpha CDH1-3N GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 
JRC177A-5c MAT CDH1-3N GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX msn5::HIS3 
MNX31-6c MATa CDH1-8c msn5::HIS3 GAL1-3FLAG-ACM1-URA3::ura3 
MNX31-6d MATa CDH1-8c msn5::HIS3 acm1::KanMX GAL1-3FLAG-ACM1-URA3::ura3 
MNX34-11c MATa CDH1-8c acm1::KanMX GAL1-3FLAG-ACM1-URA3::ura3 
JRC135-10b MATa CDH1-8C GAL1-3FLAG-ACM1-URA3::ura3 
JRC267A-3d MATa CDH1-S42A-T157A GAL1-3FLAG-ACM1-URA3::ura3 
JRC267A-7b MATa CDH1-S42A-T157A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX  
JRC267A-10a MATa CDH1-S42A-T157A GAL1-3FLAG-ACM1-URA3::ura3 msn5::HIS3 

JRC267A-4c 
MATa CDH1-S42A-T157A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 
msn5::HIS3 

JRC280A-1b MATa CDH1-T12A-S16A-T157A GAL1-3FLAG-ACM1-URA3::ura3 
JRC280A-6a MATa CDH1-T12A-S16A-T157A GAL1-3FLAG-ACM1-URA3::ura3 msn5::HIS3 
JRC280B-7c MATa CDH1-T12A-S16A-T157A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 

JRC280B-5b 
MATa CDH1-T12A-S16A-T157A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 
msn5::HIS3 

JRC268B-3c MATa CDH1-T12A-S42A-T157A GAL1-3FLAG-ACM1-URA3::ura3 
JRC255A-3c  CDH1-T12A-S42A-T157A acm1::KanMX GAL1-3FLAG-ACM1-URA3::ura3 ade2 
JRC268A-10d MATa CDH1-T12A-S42A-T157A GAL1-3FLAG-ACM1-URA3::ura3 msn5::HIS3 

JRC268A-10b 
MATa CDH1-T12A-S42A-T157A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 
msn5::HIS3 

JRC269B-2b MATa CDH1-S16A-S42A-T157A GAL1-3FLAG-ACM1-URA3::ura3 
JRC269B-1b MATa CDH1-S16A-S42A-T157A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX  
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JRC269A-6c MATa CDH1-S16A-S42A-T157A GAL1-3FLAG-ACM1-URA3::ura3 msn5::HIS3 

JRC269A-1a 
MATa CDH1-S16A-S42A-T157A GAL1-3FLAG-ACM1-URA3::ura3 acm1::KanMX 
msn5::HIS3 

JR13 MATa HIS3::GFP-TUB1 MYO1-GFP-KANMX bar1 MYC-CDC20-TRP1 ADE2 
JR52 MATa HIS3::GFP-TUB1 MYO1-GFP-KAN bar1 TRP1-18MYC-CDC20-db1 ADE2 
JR55 MATa HIS3::GFP-TUB1 MYO1-GFP-KANMX bar1 MYC-CDC20-db2-TRP1 ADE2 
JR53 MATa HIS3::GFP-TUB1 MYO1-GFP-KAN bar1 TRP1-18MYC-CDC20-db3 ADE2 
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Table 5.2 
 
Plasmid Name Description Plasmid Notes 
FC695 pRS406 cdh1-m11::TRP1 cut with BglII to integrate at CDH1 
FC697 pRS406 cdh1-m11::LEU2 cut with BglII to integrate at CDH1 
JRP67 pRS406 CDH1-pkm (S125A-S259A) cut with BglII to integrate at CDH1 

JRP90 
pRS406 CDH1-pbm (S15A-S41A-S156A-
S172A) cut with BglII to integrate at CDH1 

406-HLP112 pRS406 GAL1-3FLAG-ACM1 cut with StuI to integrate at ura3 
405-GALL-HLP109 pRS405 GALL-HA-ACM1 cut with XcmI to integrate at leu2 
DJC235 18MYC-CDC20-TRP1 cut with MluI integrate at CDC20 
JRP87 pRS406 6MYC-CIN8 cut with PacI to integrate at CIN8 
JRP88 pRS406 6MYC-CIN8 alaKEN cut with PacI to integrate at CIN8 
JRP89 pRS406 6MYC-CIN8-KED cut with PacI to integrate at CIN8 
JRP91 pRS406 ACM1 cut with StuI to integrate at ura3 
JRP95 pRS406 MET3-CLB2-ken,db cut with StuI to integrate at ura3 
DJC235 pRS404 18MYC-CDC20 MluI to integrate at CDC20 
JRP1 18MYC-CDC20-db1-TRP1 MluI to integrate at CDC20 
JRP2 18MYC-CDC20-db2-TRP1 MluI to integrate at CDC20 
JRP3 18MYC-CDC20-db3-TRP1 MluI to integrate at CDC20 
FC681 pRS406 CDH1 cut with BglII to integrate at CDH1 
FC687 pRS406 CDH1-m11 cut with BglII to integrate at CDH1 
FC801 pRS406 cdh1::TRP1 cut with BglII to integrate at CDH1 
JRP4 pRS406 cdh1::LEU2 cut with BglII to integrate at CDH1 
JRP5 pRS406 GALL-HA-CDH1 cut with BglII to integrate at CDH1 
JRP6 pRS406 GALL-HA-CDH1-m11 cut with BglII to integrate at CDH1 
JRP55 pRS406 CDH1-T12A cut with BglII to integrate at CDH1 
JRP56 pRS406 CDH1-S16A cut with BglII to integrate at CDH1 
JRP57 pRS406 CDH1-T42A cut with BglII to integrate at CDH1 
JRP58 pRS406 CDH1-T12A T42A cut with BglII to integrate at CDH1 
JRP59 pRS406 CDH1-S16A T42A cut with BglII to integrate at CDH1 
JRP60 pRS406 CDH1-T12A-T157A cut with BglII to integrate at CDH1 
JRP62 pRS406 CDH1-T42A-T157A cut with BglII to integrate at CDH1 
JRP63 pRS406 CDH1-T12A-T42A-T157A cut with BglII to integrate at CDH1 
JRP64 pRS406 CDH1-S16A-T42A-T157A cut with BglII to integrate at CDH1 
JRP78 pRS406 CDH1-S16A-T157A cut with BglII to integrate at CDH1 
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