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BIOPHYSICAL CHARACTERIZATION OF STRUCTURE AND 

DYNAMICS OF NUCLEAR PORE COMPLEX COMPONENTS 

 

Martin Kampmann, Ph.D. 

The Rockefeller University 2009 

 

The Nuclear Pore Complex (NPC) mediates nucleo-cytoplasmic transport in 

all eukaryotes and is among the largest cellular assemblies of proteins, called 

nucleoporins (nups). The details of NPC architecture, dynamics, and 

mechanism are still unknown. NPCs can be dissected biochemically into 

distinct subcomplexes. One of the best-characterized subcomplexes, the 

Nup84 complex, consists of seven nups and was proposed to form a 

membrane-coating module of the NPC. I optimized the isolation of the 

heptameric complex from budding yeast and analyzed its structure by 

negative-stain electron microscopy (EM). My data confirm the previously 

reported flexible Y-shape. I solved the three-dimensional structures of two 

conformers of the heptamer and discerned additional details, including 

specific hinge regions. Tagged versions of two nups were localized within 

the heptamer and known crystal structures were docked into the EM map. 

The globular ends of the arms and the stem are formed by β-propeller 



domains; thinner connecting segments are formed by α-solenoids. 

Strikingly, the same organizational principle is found in the clathrin 

triskelion, which was proposed to share a common evolutionary origin with 

the heptameric complex. A second focus of this thesis is the investigation of 

NPC dynamics in live cells, using polarized fluorescence microscopy. Two 

types of NPC dynamics have been suggested to play important functional 

roles: the dilation of the NPC to accommodate the transport of large cargoes, 

and the movement of disordered FG domains of nups to gate the NPC via 

entropic exclusion. An alternative model envisages a static FG domain 

meshwork that operates via hydrophobic exclusion. I analyzed theoretically 

how anisotropy measurements of GFP-tagged nups can be used to monitor 

nup orientation and dynamics. In a collaboration with the Simon lab (The 

Rockefeller University), we established techniques to analyze GFP 

anisotropy in live yeast cells. GFP attached to ordered nup domains 

displayed defined orientations with respect to the NPC, whereas GFP 

attached to the FG domains is randomly oriented. Homo-FRET between 

GFP-tags was observed in two cases. Future experiments should enable us to 

distinguish between different models for the role of FG domains in NPC 

gating, and to investigate NPC dilation during transport. 
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CHAPTER 1: Introduction 

 

This chapter introduces the subject of the thesis, the structure and function of 

the nuclear pore complex, as well as the experimental approaches used to 

obtain the results that are presented in the following chapters.  

 

The Nuclear Pore Complex  

The hallmark of eukaryotic cells is their compartmentalization into 

specialized membrane-bounded organelles. The most prominent organelle is 

the nucleus, which contains the genomic DNA. The boundary between the 

nucleus and the cytoplasm is formed by the nuclear envelope, which consists 

of two membranes: the inner nuclear membrane on the nucleoplasmic side, 

and the outer nuclear membrane, which is continuous with the endoplasmic 

reticulum, on the cytoplasmic site. The nuclear envelope is perforated by 

circular pores, at which the inner and outer nuclear membranes are 

connected by a sharply bent membrane domain called the pore membrane. 

These pores contain a large proteinaceous assembly, the nuclear pore 

complex (NPC) (Figure 1). 
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Figure 1 Schematic overview of Nuclear Pore Complex architecture and 

membrane topology. (a) The nuclear envelope is a double membrane 

surrounding the nucleus. It is perforated by pores containing nuclear pore 

complexes (NPCs). The outer nuclear membrane is continuous with the ER. 

(b) Detailed view of a NPC. A pore in the nuclear membrane is a 

circumscribed fusion between the inner and outer nuclear membranes. The 

membrane domain lining the pore is the pore membrane; it contains integral 

membrane proteins called poms, which anchor the NPC. The proteins 

constituting the NPC are called nucleoporins (nups). The NPC has an 

eightfold axis of symmetry perpendicular to the nuclear membrane. The 

central core of the NPC also has a twofold symmetry axis in the nuclear 

envelope mid-plane. Nucleoplasmic and cytoplasmic nups are bound 

asymmetrically to the central core. 
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The NPC mediates transport between the nucleus and the 

cytoplasm. Nucleo-cytoplasmic transport is required for many basic cellular 

functions: mRNAs, which are transcribed and processed in the nucleus, are 

exported to the cytoplasm, where they are translated; the 40S and 60S 

ribosomal subunits are assembled in the nucleus and exported into the 

cytoplasm; proteins functioning in the nucleus need to be imported from the 

cytoplasm, where they are synthesized.  

While actively transporting a variety of substrates, some of 

them very large, the NPC also functions as a passive diffusion barrier for 

molecules larger than ~40 kDa that are not selectively transported. Thus, the 

NPC functions as the “gatekeeper” of the nucleus. The control of access to 

the genomic DNA can be a regulatory mechanism, for example in the case 

of transcription factors.  

Besides its transport function, the NPC has been implied in 

chromatin organization, gene regulation, and maintenance of genome 

integrity. The mechanistic basis for these diverse functions of the NPC is 

currently not understood in detail. 
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Modular architecture of the NPC 

The NPC is an assembly of multiple copies of ~30 different proteins called 

nucleoporins (nups), with an estimated total mass of ~50 MDa in budding 

yeast and an even greater mass in metazoan cells (Cronshaw et al., 2002; 

Rout et al., 2000). The pore membrane domain contains three specific 

integral membrane proteins called poms, which presumably function in 

anchoring the soluble nups. The relative stoichiometry of nups within the 

yeast NPC has been estimated from quantitative Western blots (Rout et al., 

2000).  

Electron microscopic (EM) structures of whole NPCs from a 

variety of organisms have revealed the dimensions and symmetry of the 

NPC, as well as its overall architecture (Akey and Radermacher, 1993; Beck 

et al., 2004; Beck et al., 2007; Hinshaw et al., 1992; Kiseleva et al., 2004; 

Yang et al., 1998). The NPC displays eightfold symmetry around its nucleo-

cytoplasmic axis. A small fraction of NPCs with nine- or tenfold symmetry 

has been observed as well (Hinshaw and Milligan, 2003). In addition, the 

central core of the NPC displays two-fold symmetry around an axis within 

the nuclear envelope mid-plane. Peripheral nups are asymmetrically bound 

to the cytoplasmic and nucleoplasmic sides of the core, where they form 
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cytoplasmic filaments and the so-called nuclear basket structure, 

respectively (Figure 1). 

In budding yeast, the core NPC is up to 100 nm wide, and its 

extension along the nucleo-cytoplasmic axis is ~30 nm (Yang et al., 1998). It 

contains a central channel with a diameter of about 40 nm, through which 

selective transport between nucleus and cytoplasm occurs. The approximate 

locations of nups within the yeast NPC have been mapped by immuno-EM 

(Rout et al., 2000). 

Several high-resolution crystal structures have been solved of 

individual nup domains (Berke et al., 2004; Hodel et al., 2002; Hsia et al., 

2007; Jeudy and Schwartz, 2007; Napetschnig et al., 2007; Robinson et al., 

2005; Weirich et al., 2004), as well as binary complexes between nup 

domains (Berke et al., 2004; Boehmer et al., 2008; Brohawn et al., 2008; 

Debler et al., 2008; Hsia et al., 2007; Melcák et al., 2007). 

Based on these crystal structures, different models for the 

arrangement of nups within the NPC have been proposed (Brohawn et al., 

2008; Hsia et al., 2007). Based mostly on biochemical interaction data, a 

computer-generated model for NPC architecture was proposed (Alber et al., 

2007). However, a consensus model has not yet emerged. 
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Both EM (Akey, 1995; Beck et al., 2004; Beck et al., 2007) and 

crystallographic data (Boehmer et al., 2008; Debler et al., 2008; Melcák et 

al., 2007), as well as atomic force microscopy studies (Jaggi et al., 2003; 

Mooren et al., 2004; Stoffler et al., 1999; Wang and Clapham, 1999) suggest 

that the NPC is conformationally flexible. This flexibility may be a 

functional requirement - specifically, dilation of the NPC has been suggested 

to facilitate the transport of large cargo (Melcák et al., 2007). 

Several nups contain so-called FG domains featuring repeats of 

characteristic phenylalanine-glycine (FG) motifs. These domains do not 

adopt defined folds and are unstructured in vitro (Lim et al., 2006). The FG 

domains are thought to fill the central channel of the NPC and form 

filaments extending into the nucleus and cytoplasm. They have been 

proposed to provide the basis for selective transport through the NPC, as 

described below. FG domains cannot easily be studied by classical methods 

of structural biology, due to their disordered nature. Most of our knowledge 

of NPC structure is limited to the ordered domains of nups. 

 

The Nup84 complex: a conserved NPC subcomplex 

Nups are organized into distinct structural modules, called NPC 

subcomplexes. In higher eukaryotes, the NPC undergoes disassembly into 
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these subcomplexes during mitosis. Interphase NPCs can be dissected 

biochemically into similar subcomplexes.  

One of the best-characterized NPC subcomplexes is the 

heptameric Nup84 complex from yeast. This heptameric complex consists of 

Nup133, Nup84, Nup145C, Sec13, Nup85, Seh1 and Nup120 and has a 

predicted molecular mass of 576 kDa. The heptamer can be isolated from 

budding yeast, using non-ionic detergent and salt (Siniossoglou et al., 2000), 

and it was also successfully reconstituted from proteins that were 

recombinantly expressed in E. coli (Lutzmann et al., 2002). 

Both reconstituted and native complex were shown by 

negative–stain electron microscopy to form a Y-shaped structure (Lutzmann 

et al., 2002; Siniossoglou et al., 2000). Based on reconstitution and negative-

stain electron microscopy of various nup modules of the heptamer, the 

positions of these modules within the two-dimensional Y-shaped structure 

were suggested (Lutzmann et al., 2002). While several crystal structures of 

heptameric complex nups are known (Brohawn et al., 2008; Debler et al., 

2008; Hsia et al., 2007), the three-dimensional structure of the entire 

heptamer has not been previously determined. 

The yeast Nup84 complex has an equivalent in vertebrate cells, 

the nonameric Nup107-160 complex (Belgareh et al., 2001; Glavy et al., 
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2007; Loïodice et al., 2004). The nonameric complex stays intact throughout 

mitosis, when it is targeted to kinetochores and functions in spindle 

assembly (Belgareh et al., 2001; Orjalo et al., 2006; Zuccolo et al., 2007). It 

was also shown to be required for NPC formation (D'Angelo et al., 2006; 

Harel et al., 2003; Walther et al., 2003). These findings suggest that the 

subcomplex represents a functional module. 

Interestingly, both the heptameric and the nonameric complexes 

share a protein subunit, Sec13, with the COPII complex, which coats 

vesicles for transport from the ER to the Golgi apparatus. Furthermore, the 

two principal folds of the heptamer nups, β-propellers and α-solenoids, are 

also found in coat complexes for vesicular transport. These facts have led to 

the hypothesis that the heptameric complex, as well as vesicle coats, have 

evolved from a “protocoatamer”, which played a crucial role in the evolution 

of eukaryotic cells (Devos et al., 2004). The formation of the nuclear 

envelope and the endoplasmic reticulum in the evolution of prokaryotic to 

eukaryotic cells was envisaged to occur by invagination of specific domains 

of the prokaryotic plasma membrane (Blobel, 1980). A protocoatamer was 

suggested to stabilize the sharp membrane bends generated by this process. 

During the evolution of eukaryotic cells, this protocoatamer would have 
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given rise to present-day membrane coat structures, including the heptameric 

subcomplex of the NPC (Devos et al., 2004).  

Consistent with a membrane-coating function, the heptamer is 

localized close to the pore membrane in vivo (Rout et al., 2000). Moreover, 

several of the heptameric complex nups contain a predicted membrane-

curvature sensing motif, and in the case of Nup133, this motif was shown to 

mediate selective binding to highly curved liposomes in vitro (Drin et al., 

2007). 

 

FG Domains and Mechanism of Transport through the NPC 

Proteins destined for nuclear import or export contain short sequences that 

function as nuclear localization sequence (NLS) or nuclear export sequence 

(NES). These sequences are recognized by transport factors called 

karyopherins (kaps), which in turn interact with FG motifs to facilitate 

transport through the NPC. 

The directionality of transport is controlled by Ran, a small 

GTPase. A guanine nucleotide exchange factor for Ran (ran-GEF) is 

localized to the nucleus, whereas a GTPase activating protein for Ran (ran-

GAP) is present in the cytoplasm. This distribution results in a high ratio of 

Ran-GTP to Ran-GDP in the nucleus, and a high Ran-GDP to Ran-GTP 
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ratio in the cytoplasm. Ran-GTP dissociates imported proteins from their 

kaps in the nucleus, thus sequestering the imported protein in the nucleus. 

Ran-GTP also stabilizes complexes of export cargoes with their kaps, thus 

facilitating export. In the cytoplasm, Ran-GEF stimulates GTP hydrolysis by 

Ran, which leads to the dissociation of the export complex.  

While the role of these soluble transport factors has been well 

characterized, the mechanism by which the interaction between kaps and FG 

repeats leads to transport through the NPC is still controversial, and several 

models have been proposed (Figure 2). 

 According to the virtual gating model (Rout et al., 2003; Rout 

et al., 2000), the free ends of FG domains are highly mobile and form a 

dynamic “polymer brush” occluding the central channel of the NPC. This 

behavior has been observed for isolated FG domains in vitro (Lim et al., 

2006). Thereby, they prevent large molecules from entering the NPC. Kaps 

mediate binding to the FG repeats, and the binding energy is proposed to 

overcome the entropically unfavorable pathway through the occluded 

channel of the NPC.  

The selective phase model (Frey and Gorlich, 2007; Ribbeck 

and Gorlich, 2002) suggests that the FG repeats interact with each other and 

form a hydrophobic meshwork in the central channel of the NPC that 
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prevents the passage of hydrophilic cargo. A hydrogel could be formed from 

isolated FG domains in vitro using a pH-shift protocol (Frey and Gorlich, 

2007). Kap binding to FG repeats competes with FG–FG interactions, thus 

allowing kap-bound cargo to partition into the hydrophobic phase and “melt 

through” the meshwork.  

The dual-gate model (Patel et al., 2007) is a combination of the 

previous two models: mobile nups at the NPC periphery may present an 

entropic barrier, while a central meshwork of nups may form a hydrophobic 

barrier.  

In an addition to the virtual gating model, kaps were suggested 

to bind several FG repeats cooperatively, thus inducing a local collapse of 

mobile FG domains around the cargo complex, which would counteract the 

steric repulsion and promote capture and transport (Lim et al., 2007). 

These models were mostly supported by studies of isolated FG 

domains in vitro. The dynamics of FG repeats have not previously been 

studied in the context of live cells. 
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Figure 2 Models for selective transport through the NPC. FG domains are 

schematically depicted as grey lines, with yellow dots representing FG 

motifs. Blue disc: protein excluded from the NPC channel. Green disk: kap-

cargo complex. Red dots represent FG-binding sites on the kap. In the 

selective phase model, FG domains form a hydrophobic meshwork cross-

linked by interactions between FG motifs. Kaps interact with FG motifs and 

thus partition into the “FG phase”. In the virtual gating model, FG domains 

are highly mobile and prevent proteins from entering the NPC channel 

entropically. Kaps bind FG motifs and the binding energy overcomes the 

entropic cost of traversing the channel. The dual gate model combines the 

two models. 
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Electron Microscopy of Macromolecular Complexes 

A major part of the results presented in this thesis is based on electron 

microscopic (EM) studies of a NPC subcomplex. This section introduces 

concepts underlying EM of macromolecular assemblies that are directly 

relevant to the work presented in Chapter 2. For a detailed description of the 

methodology, the reader is referred to the monograph by Frank (Frank, 

2006). 

Image formation in the EM relies on the scattering of electrons 

by a thin specimen. To prevent electron scattering by air molecules, a 

vacuum is maintained inside the EM. Biological specimens scatter a small 

fraction of the electrons elastically, and interference of unscattered and 

elastically scattered electrons generates so-called phase contrast in the 

image plane. Inelastic scattering events and scattering of electrons outside 

the aperture of the EM result in a reduction of the number of electrons 

reaching the image plane and thereby generates so-called amplitude 

contrast. The transformation of the projected Coulomb potential of the 

specimen into image contrast by the EM is described quantitatively by the 

contrast transfer function. The image can be recorded on photographic film 

or by a CCD camera linked to a scintillator screen that generates light 

signals in response to impacting electrons.  
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Unstained biological specimens generally give rise to low-

contrast EM images. To improve the contrast, staining protocols have been 

developed. A commonly used approach is negative staining of 

macromolecules or viruses with heavy metal salt solutions (Brenner and 

Horne, 1959), as illustrated in Figure 3. Particles in aqueous solution are 

adsorbed to a thin carbon support film and a solution of a heavy metal salt is 

added. The sample is dried, leaving a layer of heavy metal stain on the 

support film. Stain is excluded from the biological particles, thus negatively 

staining the specimen. Potential artifacts of the negative staining technique 

include (i) distortion of the particle structure during the air-drying process, 

(ii) loss of information about internal particle structures that are not 

penetrated by the stain, and (iii), in the case of large particles, incomplete 

coverage of the particle with stain, leading to “one-sided” staining. 

To avoid staining artefacts, samples can be subjected to cryo-

EM: An aqueous solution containing biological molecules is applied to a 

perforated carbon film and frozen rapidly to obtain a thin layer of vitreous 

ice, which can then be imaged under vacuum. The advantage of this method 

is that particles are in a more “native-like” state. However, cryo-EM images 

are typically very low in contrast. 
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Figure 3 Negative staining of biological particles (schematic diagram). 

Particles of interest and a heavy metal stain are applied to a carbon support 

film and dried. Stain is excluded from the particles, which therefore appear 

as bright objects on a dark background. Accumulation of stain around the 

particle occurs frequently and gives rise to a dark rim surrounding the 

particle. 

 

When exposed to the electron beam inside the EM, biological 

samples suffer radiation damage. To minimize this damage, the total dose of 

electrons used for particle imaging is typically limited to ~10 electrons per 
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Figure 4 Averaging of noisy images increases the signal-to-noise ratio 

(schematic diagram). The object of interest is a dark square on a lighter 

background. Five noisy images are taken and digitized to yield 4-by-4 pixel 

images. Each pixel is associated with a numeric value corresponding to its 

brightness on a grayscale. Pixel values at corresponding positions of the 

images can be averaged. The average image resembles the object more 

closely than any of the individual noisy images.  

 

Å2. The disadvantage of this low-dose regime is that the resulting images 

contain a high level of stochastic shot noise. The signal-to-noise ratio can be 

increased by averaging a large number of images (Frank et al., 1981), as 

illustrated in Figure 4.  
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Only images representing a highly similar view and 

conformation of the particle should be averaged, particle images therefore 

need to be classified into groups representing distinct particle views or 

conformations. Alignment of particle images is required prior to 

classification and averaging. Computational methods for automatic 

reference-free alignment (Penczek et al., 1992) and classification (van Heel 

and Frank, 1981) of particle images are available.  

A quantitative measure for the quality of alignment between 

two images is the cross-correlation coefficient (CCC). For digitized images a 

and b with average pixel intensity values <a> and <b>, which are each 

composed of N pixels with the intensities ai and bi in the i-th position within 

the image, the CCC is defined as  

 

[1.1]  

 

 

As illustrated in Figure 5, the correct alignment between two images can be 

found by calculating the CCC between two images in all possible positions 

relative to each other and choosing the position with the highest CCC. 
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Figure 5 Image alignment based on the cross-correlation coefficient (CCC). 

(a) Examples of unaligned images of a white square on a dark background 

There are only two pixel values, 0 and 1. (b) The CCC is calculated for 

different combinations of images. (c) A translational cross-correlation 

function is obtained by shifting two images across each other and calculating 

a CCC for every possible shift. The maximum of the cross-correlation 

function indicates the shift needed for optimal alignment. An autocorrelation 

function is the cross-correlation function of an image with itself.  
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In order to classify aligned images, a metric of image similarity 

is required. Digital grayscale images with n·m pixels can be described as 

points in an n·m-dimensional space, and their Euclidean distance can provide 

a measure of similarity, provided that pixel values were normalized in each 

image (Figure 6). To analyze clustering of images in this high-dimensional 

space, methods of multivariate data analysis, such as principal component 

analysis are used to reduce the dimensionality of the problem. Other metrics 

for the similarity between images are also in use, such as the χ2 distance in 

correspondence analysis (van Heel and Frank, 1981). Either method 

determines those directions (factors) in n·m space along which most of the 

variance occurs. These factors are called eigenimages, since they correspond 

to eigenvectors in principal component analysis. Most of the signal is 

usually contained in the first few factors; thus every original image can be 

reconstituted as a linear combination of a limited number of eigenimages. 

Hierarchical ascendant classification or k-means clustering can then be used 

to classify images in this lower-dimensional space. 
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Figure 6 Clustering of images based on Euclidean distances. Two-pixel 

grayscale images can be assigned to points in a two-dimensional space, 

where their coordinates are defined by the pixel values at two positions. 

Euclidean distances can then be calculated (shown in red) and serve as a 

basis for the detection of clusters.  

 

The central problem in single-particle EM is how the three-

dimensional (3D) structure of a particle can be reconstructed from a number 

of two-dimensional (2D) images. A straightforward solution would be to 

rotate the specimen within the EM and take pictures from many different 

angles. However, due to the low-dose requirement for single-particle EM, 
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only one or two images with an acceptable signal-to-noise ratio can be taken 

from a given area of the specimen.  

A commonly used technique for the de novo determination of 

3D structures is random-conical tilt reconstruction (Radermacher et al., 

1986). As illustrated in Figure 7, a field of particles, usually adsorbed to a 

carbon support film, is tilted by a known angle, and a first image is taken. 

Then, the sample is returned to an untilted position and a second image is 

taken. Since the in-plane orientation of particles in untilted images is 

random, the tilted images show a range of different particle views. Pairs of 

tilted and untilted images of the same particle are selected. Untilted particle 

images are used to classify particles and determine their in-plane orientation, 

and tilted particle images are used to reconstruct the 3D structure of the 

particle. 

When a previously determined 3D structure of a given particle 

is available, projection matching can be applied to obtain a reconstruction 

using more or better 2D images. The previous 3D structure is used to 

calculate 2D projection images in different directions. The new images of 

particles in unknown orientations can then be aligned to whichever 
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Figure 7 Principle of Random Conical Tilt reconstruction. A field of 

particles is imaged once at a 50º tilt angle, and then without tilt. The untilted 

image is used to determine in-plane orientations of particles. The tilted 

images show different views of the particle and are used for 3D 

reconstruction. 

 

 

projection they most resemble, based on cross-correlation. Thus, the 

orientation of the new image is determined and a new 3D structure can be 

reconstructed from the new images. 

There are several operational definitions for the resolution of a 

3D EM structure. Most commonly, the set of images is randomly split in 

half and independent 3D structures are reconstructed from each of the half-
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sets. These structures are Fourier-transformed, resulting in volumes in 

reciprocal space, where the center of the volume corresponds to the lowest 

spatial frequency, and concentric “Fourier shells” around it correspond to 

increasing spatial frequencies. The cross-correlation between corresponding 

shells from the two volumes is calculated. The cross-correlation typically 

decreases as the spatial frequency increases, and the spatial frequency at 

which the Fourier shell correlation drops to 0.5 is regarded as the 

reproducible resolution of the initial 3D structure. 

 

Fluorescence anisotropy  

Chapter 3 presents the development of assays for NPC architecture and 

dynamics based on polarization fluorescence microscopy. This section 

introduces the most important principles underlying that technique. More 

details can be found in textbooks of biophysical chemistry (Cantor and 

Schimmel, 1980). 

Molecules can exist in different energy states, corresponding to different 

electronic, vibrational, and rotational states. At room temperature, molecules 

are in the lowest electronic state, S0. However, absorption of a photon with 

the required energy will excite a molecule to the next electronic state, S1 

(Figure 8). By vibrational relaxation, the molecule reaches the lowest  
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Figure 8 Fluorescence and competing processes. Horizontal lines represent 

different vibrational energy levels of molecules. Absorption of a photon can 

excite a molecule such that it transitions from the ground electronic state, S0, 

to an excited electronic state S1. Part of the energy is rapidly dissipated by 

vibrational relaxation. The ground state can be reached by emission of a 

photon (fluorescence), by nonradiative processes, or by transfer of energy by 

FRET to a nearby molecule, which will in turn transition to the excited 

electronic state. 

 

vibrational energy level within S1. From here, the molecule can return to the 

electronic ground state S0 either by non-radiative processes (such as 

quenching or internal conversion), or by emitting a photon in a process 

called fluorescence. Since a fraction of the energy of the absorbed photon is 

usually dissipated by vibrational relaxation, the energy of the photon emitted 



 25 

by fluorescence is typically lower than the energy of the absorbed photon 

and the emitted light has a longer wavelength than absorbed light. 

Non-radiative decay and fluorescence are competing pathways 

occurring with rates knr and kF, respectively. Not every absorbed photon will 

lead to emission of a photon. The ratio of emitted photons to absorbed 

photons is called quantum yield ϕF, and can be calculated as: 

 

[1.2]  ϕF = kF / (kF + knr) 

 

Molecules undergoing fluorescence are called fluorophores. 

Excited states of fluorophores decay exponentially over time, thus the 

fluorescence intensity of a population of fluorophores excited at time t = 0 

follows: 

 

[1.3]   

 

I0 is the initial fluorescence intensity, and the decay constant τF is called 

fluorescence lifetime, and can be calculated as follows: 

 

[1.4]  τF = ϕF / kF = 1 / (kF + knr) 

! 
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Fluorescence lifetimes are typically on the nanosecond timescale. 

Transitions between electronic states of a molecule are 

associated with transition dipole moments that correspond to a spatial vector 

μ in the coordinate system of the molecule. Light can be described as a 

rapidly oscillating electromagnetic field, and excitation of a molecule by 

light occurs most efficiently when the electric field vector of the light is 

parallel to the absorption transition dipole moment of the molecule. When 

plane-polarized light is used to excite a population of molecules, those 

molecules oriented with μ parallel to the direction of the electric field vector 

E have the highest probability of being excited. This phenomenon is called 

photoselection.  

The polarization of light emitted from a fluorophore will be 

parallel to the emission transition dipole of the molecule. The transition 

dipoles for photon absorption and emission are parallel if both transitions are 

between the same electronic states of a molecule. Assuming that the 

molecules do not rotate between absorption and emission, and that the 

population of molecules is randomly oriented (isotropic), one can calculate 

which fraction of the emitted light maintains the polarization direction of the 
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exciting light. A measure for this conservation of the initial polarization is 

called anisotropy and measured as follows:  

 

[1.5]  Measured anisotropy 

€ 

A =
I|| − I⊥
I|| + 2I⊥

 

 

€ 

I|| and 

€ 

I⊥ are the intensities of emitted light measured after passing through 

a polarizer oriented parallel or perpendicular, respectively, to the 

polarization direction of the exciting light. For a rigid, isotropic sample as 

described above, the value for A is: 

 

[1.6]  Limiting anisotropy 

€ 

A0 =
3cos2 ξ −1

5
 

 

where ξ is the angle between transition dipoles. This angle can directly be 

determined in rigid isotropic samples, where the measured anisotropy A is 

identical to the limiting anisotropy A0. If the absorption and emission dipoles 

are the same, A0 becomes 0.4. 

Samples that are not rigid or isotropic will have other 

anisotropy values, hence anisotropy measurements can reveal properties of a 

sample, as described in the following three subsections. 
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(i) Rotational diffusion of the fluorophores 

If molecules rotate between photon absorption and emission, the transition 

dipoles of absorption and emission will differ in the coordinate system of the 

observer. If the rotation is slow compared to the fluorescence lifetime of the 

molecule, the dipoles will be correlated, but if the rotation is very fast 

compared to the fluorescence lifetime, the dipoles become virtually 

uncorrelated, and thus almost all information about the polarization plane of 

the exciting light is lost. The ratio between the rotational correlation time τc 

of the fluorophore and its fluorescence lifetime τF thus determines the 

measured anisotropy as described by the Perrin equation: 

 

[1.7]
 
 

 

Hence, the limit for A is 0 as τc tends to 0: for very short correlation times, 

the light becomes depolarized. For τc much larger than τF, the fluorophore 

behaves essentially as rigid and A becomes A0.  

The rotational correlation time τc is inversely proportional to 

the rotational diffusion constant Drot of the fluorophore, and thus depends on 
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the hydrated volume VH of the fluorophore, as well as on temperature T and 

viscosity η:  

 

[1.8]   

 

where k is Boltzmann’s constant. For globular proteins, the hydrated specific 

volume is ~1 cm3/g. From this value, we can predict τc for a globular protein 

of molecular mass M in water at 20ºC to be: 

 

[1.9]  τc = M/2.4 x 10-9 seconds / kDa. 

 

Therefore, fluorescence anisotropy measurements can be used to monitor 

rotational diffusion, and to calculate the volume and approximate mass of a 

fluorophore in a solution of known viscosity.  

 

(ii) Orientation of the fluorophores 

While molecules in solution are usually randomly oriented, molecules in 

biological systems can be ordered according to various geometric principles. 

In the simplest case, all fluorophore transition dipoles μ could be parallel to 

each other, and excitation and emission dipoles could be identical. When 
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exposed to polarized light, the excitation of fluorophores in the sample will 

then depend on the angle between μ and the electric field vector E of the 

light. If they are perpendicular, no fluorophores are excited. If they are 

parallel, all fluorophores are maximally excited. In general, the probability p 

of excitation will depend on the angle between μ and E as follows: 

 

[1.10]  

€ 

p∝ cos2∠(E,µ) =
E ⋅µ
E µ
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The components of the emitted light parallel and perpendicular to E will also 

depend on the dipole orientation μ: 

 

[1.11]  

€ 

I|| ∝ p ⋅ cos2∠(E,µ)  

 

[1.12]  

€ 

I⊥ ∝ p ⋅ sin2∠(E,µ)  

 

The resulting anisotropy value is a function of μ. Note that the anisotropy in 

this example can reach values of up to 1, whereas for samples with randomly 

oriented fluorophores, the maximum value is 0.4 
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(iii) Fluorophore clustering 

An excited molecule can pass on its energy to a nearby fluorophore, thereby 

exciting it. Note that this process is not mediated by photon emission and 

absorption. It is referred to as fluorescence resonance energy transfer 

(FRET) and can occur as long as the emission spectrum of the donor 

molecule overlaps with the absorption spectrum of the acceptor molecule. 

FRET efficiency E is highly dependent on the distance |R| between 

fluorophores: 

 

[1.13]  

€ 

E =
R0
6

R0
6 + R 6  

 

where R0, the distance of half-maximal FRET efficiency, is called the 

Förster distance. R0 depends on a number of factors, including the spectral 

overlap between donor emission and acceptor absorption, the quantum yield 

of the donor, the refractive index of the medium, and, as detailed below, on 

the orientation between donor and acceptor dipoles: 

 

[1.14]  

€ 

R0 ∝ κ26  
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where κ2 is the orientation factor defined as: 

 

[1.15]  

€ 

κ2 = (cosθ− 3 ⋅ cosϕ ⋅ cosψ)2 

 

for angles θ (between the donor emission and acceptor absorption dipoles), 

ϕ (between donor emission dipole and the vector R connecting donor and 

acceptor) and  ψ (between acceptor absorption dipole and R), as shown in 

Figure 9. For a mixture of randomly oriented molecules, the average κ2 is 

2/3. 

When FRET occurs between two identical fluorophores, it is 

referred to as homo-FRET. While homo-FRET cannot be detected on the 

basis of the wavelength of emitted light, it will typically cause a decrease in 

fluorescence anisotropy. This is due to the fact that while the anisotropy of 

light emitted from donor molecules that were photoselectively excited with 

polarized light reflects the orientation of the donor, homo-FRET can lead to 

emission from fluorophores that would normally not have been excited by 

the polarized light. Hence the perpendicular component of the emitted light 

intensity will generally increase and the anisotropy will decrease. In ordered 

systems, the geometry of dipole orientations will determine the extent and 

effects of homo-FRET. 
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Figure 9 Angles defining the orientation factor κ2 for FRET. See text for 

details. 
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CHAPTER 2: Three-dimensional structure and electron microscopic 

analysis of the membrane-coating module of the nuclear pore complex 

 

I set out to determine the three-dimensional structure of native Nup84 

complex from budding yeast by single-particle EM. My objective was the 

elucidation of the architectural principles of the heptameric complex, which 

would provide further insights into the proposed evolutionary relationship 

between the NPC subcomplex and vesicle coats, and a detailed 

characterization of the observed flexibility of the heptamer. Moreover, 

docking of nup crystal structures into an EM structure of the entire 

subcomplex should be an important step towards bridging the gap between 

high-resolution structures of individual nups and low-resolution structures of 

the entire NPC. 

 

Purification and EM of the Nup84 complex from budding yeast 

Purification protocols for affinity-tagged Nup84 complex from budding 

yeast have been reported (Cristea et al., 2005; Lutzmann et al., 2005; 

Siniossoglou et al., 2000; Siniossoglou et al., 1996). The published protocols 

produced particle populations either missing individual proteins, namely 
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Nup133 (Siniossoglou et al., 2000; Siniossoglou et al., 1996), or containing 

additional nups or other proteins (Cristea et al., 2005; Lutzmann et al., 

2005). Furthermore, most of the published protocols (Cristea et al., 2005; 

Siniossoglou et al., 2000; Siniossoglou et al., 1996) used lysis buffer 

containing 1% Triton X-100, well above the critical micelle concentration. 

Potential incorporation of the protein complex into micelles would likely 

compromise structure determination by EM. Also, I hoped to recover higher-

order structures of the Nup84 complex that may exist within the NPC, and 

that may be disrupted under harsh detergent conditions. 

I therefore developed a protocol for affinity-purification of the 

heptameric Nup84 complex followed by size-exclusion chromatography, 

with the following objectives: (i) recovery of intact complexes, (ii) purity, 

and (iii) minimization of detergent use. An overview of the purification 

protocol is shown in Figure 10. 

During size-exclusion chromatography, the heptameric complex eluted as 

one slightly asymmetric peak (Figure 11a). On-line multi-angle light 

scattering indicated a molecular mass of 574.9 kDa for the peak, consistent 

with a single heptamer. The chromatography fraction indicated by dashed 

lines in (Figure 11a) was analyzed by SDS-PAGE and 
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Figure 10 Purification Strategy for the Nup84 complex from budding yeast. 

For details of the protocol, see Chapter 5.  
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Figure 11 Purification and electron microscopy of the heptameric Nup84 

complex. (a) Size exclusion chromatography profile of affinity-purified 

Nup84 complex released from IgG-beads by TEV protease cleavage. The 

fraction indicated by dashed lines contains Nup84 complex and was used for 

EM. (b) Coomassie-stained SDS-PAGE of the fraction from size exclusion 

chromatography indicated in (a). All bands were identified by mass 

spectrometry. Nup85-CBP is Nup85 C-terminally tagged with the 

calmodulin-binding peptide moiety of the TAP-tag, which was cleaved from 

the protein A moiety by TEV protease. (c) Negative-stain EM of heptameric 

complex particles. A field of particles adsorbed to glow-discharged carbon 

film and stained with 2% uranyl formate is shown. 
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 Figure 11
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the identity of each band was confirmed by mass spectrometry (Figure 11b). 

An aliquot of this material was applied to glow-discharged carbon-coated 

grids, negatively stained with uranyl formate, and subjected to EM (Figure 

11c). As previously described (Lutzmann et al., 2002; Siniossoglou et al., 

2000), the heptamer appeared as a Y-shaped particle. 

 

2D analysis of particle structure and flexibility 

EM images of 9,028 individual particles were subjected to automated 

reference-free alignment. Aligned particles were then computationally 

clustered into 90 classes, and particles within each class were averaged. The 

resulting class averages are shown in Figure 12. Inspection of the class 

averages revealed characteristic features of the heptameric complex (Figure 

13). 

The heptamer forms a ~45 nm long, branched structure with a short arm, a 

long arm and a stem meeting at a vertex. In most class averages, the stem 

appears kinked at two regions, referred to as stem hinge 1 (the vertex-

proximal hinge) and stem hinge 2 (the vertex-distal hinge). Four globular 

regions with a diameter of ~5 nm are present at the end of the long and short 

arms, at the foot of the stem and as a knob next to the vertex.  
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Figure 12 Alignment, classification and averaging of particle images. 

Reference-free alignment and k-means classification of 9,028 untilted 

particle images into 90 classes resulted in the depicted class averages. The 

number of particles constituting each class is indicated. 
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Figure 13 Structural details of the Nup84 complex. A well-defined class 

average is shown and prominent features are named. 

 

Strikingly, the globular region at the tip of the long arm shows a 

central hole or depression and thus resembles a β-propeller in top view. The 

present 2D structure is consistent with the structure described by Lutzmann 

and colleagues (Lutzmann et al., 2002) but reveals more details since 

averaging of aligned particle images increased the signal-to-noise ratio. 

The 2D class averages show a spectrum of different 

appearances (Figure 12), differing mainly in the angles between different 

segments of the particle. To analyze this variability, I determined angles 
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Figure 14 Heterogeneity of particle appearance. (a) Definition of angles 

between particle segments for the 2D view of untilted particles. α, angle 

between long and short arms; β, angle between long arm and vertex-

proximal stem segment; γ, angle at stem hinge 1; δ, angle at stem hinge 2. 

(b) Distribution of angles for the 90 classes shown in Figure 12. Angles 

were measured for 2D class averages and assigned to the number of particles 

constituting each class. 
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between particle segments for the 90 class averages (Figure 12). Four angles 

were measured (Figure 14a): α (the angle between the two arms), β (the 

angle between the long arm and the vertex-proximal stem segment), γ (the 

angle at stem hinge 1), and δ (the angle at stem hinge 2). The angle between 

the short arm and the vertex-proximal stem segment equals 360º–(α+β), and 

is therefore not separately analyzed.  

Analysis of the 90 classes revealed a continuum of angles 

between particle segments (Figure 14b). The highest variability between 2D 

class averages was observed at the two stem hinges, especially stem hinge 2. 

Angles γ and δ at the stem hinges varied from ~110º to ~180º, and from 

~110º to ~230º, respectively (Figure 14b), causing the stem appearance to 

vary from straight to kinked. The angles around the vertex, α and β, also 

vary considerably: from ~80º to ~140º, and from  ~130º to ~190º, 

respectively (Figure 14b). 
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Figure 15 Correlations between particle angles. Angles between particle 

segments, as defined for untilted particles in Figure 14a. All binary 

combinations of angles α, β, γ and δ are plotted; each marker represents two 

angles for a particle class. Marker area is proportional to class size. Particle-

based correlation coefficients are indicated in purple. 
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 The angles at the stem hinges, γ and δ, are positively 

correlated with a correlation coefficient of 0.78 (Figure 15): most particles 

appear to have either a straight stem or a stem kinked at both hinges; stems 

kinked atone hinge and straight at the other hinge were not commonly 

observed. This suggests either that a large stem region undergoes a rigid-

body movement, or that conformational changes at the two stem hinges are 

coupled. Other pairs of angles between particle segments do not correlate 

strongly (Figure 15), and principal component analysis indicates that 

correlated changes of the stem hinge angles γ and δ explain 73% of the 

measured angular variance (Figure 16). Weak anti-correlation between α 

and β (–0.44) can be rationalized by the fact that the sum of α, β, and the 

angle between short arm and vertex-proximal stem is fixed at 360º.  

The foot region also shows conformational flexibility, as 

evidenced by the varying position of the foot with respect to the adjacent 

stem segment, and the fuzzy appearance in several class averages, which is 

indicative of in-class variation (Figure 12). Since the foot appears as a 

globular shape without discernible internal features, I could not reliably 

determine its orientation with respect to the stem and therefore abstained 

from quantitative analysis of variability in the foot region.  
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Figure 16 Principle component analysis (PCA) of the variation of angles α, 

β, γ and δ between particle segments (see also Figure 14 and Figure 15). 

(a) Eigenvector 1 explains 73% of the variance; the remaining three 

eigenvectors explain the residual 27% of the variance. (b) Biplot: The black 

dots correspond to the original data projected onto the plane defined by the 

first two eigenvectors. The projections of the four original dimensions 

(angles) onto this plane are indicated by colored lines. Eigenvector 1 

represents mainly the correlated variation in γ and δ. Eigenvector 2 

represents mainly the anti-correlated variation in α and β. 

3D structures of the heptameric complex 
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The method of choice for the de novo determination of 3D structures by EM 

is random-conical tilt reconstruction (Radermacher et al., 1986): A field of 

particles is imaged once after tilting the sample by a known angle, in my 

case 50º, and a second time after returning the sample to an untilted position, 

and pairs of tilted and untilted views of the same particle are picked, as 

illustrated in Figure 17. Since the in-plane orientation of particles in untilted 

images is random, the tilted images show a range of different particle views. 

Untilted particle images are used to classify particles and determine their in-

plane orientation, and tilted particle images are used to reconstruct the 3D 

structure of the particle. 

The 9,028 untilted particle images analyzed above were all taken in 

conjunction with tilted images of the same particles. The continuum of 

different conformations present in the heptamer population poses a challenge 

to 3D reconstruction. Ideally, a conformationally homogeneous class of 

particles should be used for reconstruction. At the same time, a class 

comprising a large number of particles is desirable to improve signal-to-

noise ratio and angular coverage for random-conical tilt reconstruction. The 

number of particles chosen for a 3D reconstruction is thus a trade-off 

between homogeneity and signal-to-noise ratio. I approached the problem as 

follows: Untilted particle were grouped into larger classes by hierarchical 
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clustering, and two relatively homogeneous classes encompassing 497 and 

608 particles, respectively, were chosen for random conical tilt 

reconstruction (Figure 18a). 

 

 

 

Figure 17 Micrograph tilt pair. A field of negatively stained particles was 

imaged at 50º and 0º tilt. Pairs of tilted and untilted views of the same 

particle were picked as illustrated by white ovals. 
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Figure 18 3D structures of the heptameric complex. (a) 9,028 untilted 

particle images were grouped by hierarchical ascendant classification and 

the two depicted classes, comprising 497 and 608 particles, respectively, 

were chosen for random conical tilt reconstruction. (b) Initial maps obtained 

by random conical tilt reconstruction from the classes shown in (a) are 

depicted as isodensity contour surfaces that were low-pass filtered beyond 

the reproducible resolution (FSC = 0.5 at 1/58 Å-1, see Figure 22). (c) The 

initial maps were used as references for projection matching of all 9,028 

tilted particle images (see text for details and Figure 19). 4,430 particles 

aligned to initial map 1, and 4,598 particles aligned to initial map 2. 3D 

maps 1 and 2 were obtained by the simultaneous iterative reconstruction 

technique, and are shown in two views as isodensity contour surfaces low-

pass filtered beyond the reproducible resolution (FSC = 0.5 at 1/35 Å-1, see 

Figure 22). 
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   Figure 18 
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Figure 19 Projections calculated from initial maps 1 and 2. Projections were 

calculated in 5º increments up to a tilt angle of 55º. Projections between tilt 

angles of 40º and 55º (as indicated by red and blue boxes) were used for 

projection matching.  
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Figure 20 Cross-correlation-based projection matching. (a) Each grey dot 

represents one image of a particle from the tilted specimen. The non-

normalized cross-correlation coefficient between the particle and the best-

matching reference projection from initial map 2 is plotted versus the non-

normalized cross-correlation coefficient between the particle and the best-

matching reference projection from initial map 1. Red and blue dots 

represent particles from the classes that were used to construct initial maps 1 

and 2, respectively. The diagonal (x=y) divides the particles into two sets of 

particles: those that have a higher score for alignment to a projection from 

initial volume 1 and were used for the reconstruction of final map 1 (dots 

below the diagonal), and those that have a higher score for alignment to a 

projection from initial volume 2 and were used for the reconstruction of final 

map 2 (dots above the diagonal). For control purposes, volumes were also 

reconstructed from subsets of particles that represented the 50% or 25% of 

the particles in each set with the highest cross-correlation coefficients for 

alignment to the best reference projection. (b) Maps obtained by projection 

matching and simultaneous iterative reconstruction using for each map the 

25% of particles which aligned to the initial maps with the highest cross-

correlation coefficients (see text for details). 4a (c) Final maps obtained by 

projection matching and simultaneous iterative reconstruction using all 

particles. All structures are depicted to scale as isodensity contour surfaces 

that were low-pass filtered beyond the reproducible resolution. 
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Figure 21 Angular coverage for final maps 1 and 2. Bubble plots showing 

the distribution of tilted particle images between projections from initial 

maps 1 and 2. Each projection is characterized by the angles φ (in-plane 

rotation before tilt) and θ (tilt). Bubble size is proportional to the number of 

particles aligned to each projection. In total, 4,430 particles aligned to initial 

map 1, and 4,598 particles aligned to initial map 2. 

 



 55 

 

Figure 22 Fourier Shell Correlation (FSC) for initial and final maps 1 and 2, 

as well as control maps that were reconstructed by projection matching, only 

using the best-matching 25% or 50% of particles, as shown in 

Supplementary Figures 4,5. The reproducible resolution, as defined by 

FSC=0.5, is ~58 Å for the initial maps and ~35 Å for the final maps. 

 

3D maps were generated by random conical tilt reconstruction 

(Figure 18b). The reproducible resolution of these initial 3D maps is ~58 Å 

as determined by the 0.5 Fourier-Shell correlation (FSC) criterion (Figure 

22). My next goal was to increase the signal-to-noise ratio of the initial maps 

by incorporating more tilted particle images. I hypothesized that some of the 

variation in particle appearance is likely to be caused by slight differences in 
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the particle orientation with respect to the carbon support. Therefore, 

additional particles are likely to have a similar conformation to the particles 

constituting the two initial maps, and the signal-to-noise ratio of the initial 

maps may be improved by incorporating additional particle images. 

I proceeded as follows: Projection images were created from 

the two initial maps (Figure 19), and all tilted particle images were matched 

to one of these projections based on the highest correlation coefficient. 4,430 

particles aligned best to initial map 1 and 4,598 particles aligned best to 

initial map 2. Figure 20a shows the cross-correlation coefficients (CCC) for 

alignment of each particle to the best-matching reference projection from 

both initial maps (grey dots). Each particle was assigned to either map 1 or 

map 2 to maximize the CCC. Figure 21 shows the numbers of particles 

corresponding to each projection. 

Red and blue dots in Figure 20a correspond to the particles that 

were used to construct initial maps 1 and 2, respectively. Of the particles 

used for initial map 1, 86% have a higher CCC for alignment to initial map 1 

projections than to initial map 2 projections; they lie below the x=y diagonal 

in Figure 20a. Of the particles used for initial map 2, 91% lie above the 

diagonal. Therefore, the CCC is a suitable criterion to distinguish the two 

different particle conformations. 
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Interestingly, the CCC distributions of particles used to 

reconstruct initial maps 1 and overlap with the CCC distribution of all other 

particles, supporting the idea that some of the other particles are likely to 

represent different views of a particle in the same (or a highly similar) 

conformation as initial maps 1 and 2. 

However, the CCC distributions are unimodal; therefore, it is 

not possible to find by inspection a correct threshold to distinguish between 

particles with a conformation corresponding to the reference map and 

particles with a different conformation. This finding is compatible with my 

conclusion that there is a continuous spectrum of particle conformations. 

I therefore independently reconstructed maps from three subsets 

for each map 1 and map 2 using the simultaneous iterative reconstruction 

technique (Gilbert, 1972). The subsets contained the 25% particles with the 

highest CCCs, the 50% particles with the highest CCCs, or all particles. The 

maps obtained from these subsets are highly similar (Figure 20b,c). 

The Fourier shell correlation (FSC) curves for all maps are 

compared in Figure 22. The reproducible resolution of the maps, as defined 

by FSC=0.5, increases monotonically with the number of particles used for 

the reconstruction. I therefore decided to use the final maps 1 and 2 
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(reconstructed from all particle images), with a reproducible resolution of 

~35 Å, for further analysis.  

The 3D structures confirm that the isolated heptameric complex 

is a flexible particle that can exist in different conformations (Figure 18bc): 

map 1 corresponds to a “straight-stem” conformation and map 2 to a 

“kinked-stem” conformation. In both conformations, the particle lies 

relatively flat on the carbon support film. It is possible that binding of the 

particle to the planar support restricts its conformational flexibility, and that 

the complex displays an even greater conformational variability in solution.  

I attempted to characterize the 3D structure of the heptameric complex in 

solution by collecting cryo-EM images of vitrified samples. Unfortunately, I 

was not able to detect the particle by either cryo-EM or negative-stain cryo-

EM, probably due to the low contrast provided by the thin, extended shape 

of the particle. 

 

Nup positions within the heptameric complex 

The localization of several nups or nup complexes to different segments of 

the Nup84 complex was reported by Hurt and colleagues (Lutzmann et al., 

2002), and further supported by crystallographic studies (Boehmer et al., 

2008; Brohawn et al., 2008; Debler et al., 2008; Hsia et al., 2007). 
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Specifically, the following aspects of Nup84 complex architecture were 

previously established: 

(i) Nup145C·Sec13 and Nup85·Seh1 are stable heterodimers 

(Lutzmann et al., 2002) in which the seventh blade of the Sec13 and Seh1 β-

propellers is contributed by Nup145C and Nup85, respectively (Brohawn et 

al., 2008; Debler et al., 2008; Hsia et al., 2007).  

(ii) Nup120 can form trimers with Nup145C·Sec13 and with 

Nup85·Seh1, and together, these five proteins can form a pentamer which 

appears in EM as a triskelion with three short arms, and can thus be 

concluded to correspond to the two arms and the vertex-proximal stem 

segment of the heptameric complex (Lutzmann et al., 2002).  

(iii) Nup84 forms a dimer with Nup133 (Lutzmann et al., 

2002); more specifically, these two nups interact via their C termini 

(Boehmer et al., 2008).  

(iv) Nup133·Nup84 forms a tetramer with Nup145C·Sec13. 

Nup84 alone, as well as the Nup133·Nup84 dimer bind the 

Nup120·Nup145C·Sec13·Nup85·Seh1 pentamer, thereby extending one of 

the three arms into the elongated stem (Lutzmann et al., 2002). Taken 

together, these observations show that the two arms of the heptameric 

complex are formed by Nup120 and Nup85·Seh1, which are connected to 
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Nup145C·Sec13 at the vertex region. Nup145C·Sec13 forms the upper part 

of the stem, Nup84 the mid-stem and Nup133 the distal stem and the foot. 

I described here the asymmetric appearance of the two arms of 

the heptameric complex. Since previous data did not allow us to deduce 

which arm corresponds to Nup120 and which to Nup85·Seh1, I addressed 

this question experimentally. I genomically tagged the C terminus of Seh1 

with green fluorescent protein (GFP) and purified the heptameric complex 

from this modified yeast strain.  

Furthermore, I chose to tag N- or C-termini of other proteins that are part of 

available crystal structures: the C-terminus of Sec13 (Hsia et al., 2007), and 

the N- and C-termini of Nup133 (Berke et al., 2004; Boehmer et al., 2008). 

GFP tagging did not interfere with nuclear envelope localization in vivo 

(Figure 23) or with complex purification, with one exception: GFP-tagging 

of Sec13 greatly reduced recovery of heptameric complex, which prevented 

me from collecting data from this version of the complex. 

EM images were collected for the other three GFP-tagged 

complexes, and aligned class averages of GFP-tagged and untagged particles 

were compared. Areas of statistically significant differences corresponding 

to the GFP density could be localized (Figure 24). 
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Figure 23 Localization of GFP-tagged nups in vivo. Micrographs of yeast 

strains that were used for the purification of GFP-tagged heptameric 

complex. Overlay of GFP fluorescence (green) and phase contrast 

(grayscale). Nup133-GFP and GFP-Nup133 show the nuclear rim staining 

pattern typically observed for NPC-localized proteins. Sec13-GFP shows 

cytoplasmic localization in addition to the nuclear rim staining, as expected 

based on its localization to both the NPC and COPII coats. Seh1-GFP is 

localized mainly to the nuclear rim; a small fraction may also be localized to 

other endomembranes. 
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Figure 24 Mapping of nup localization. Heptameric complexes were 

purified from yeast strains in which one protein of the subcomplex was 

genomically tagged with GFP: the C-terminus of Seh1 (first row), the C-

terminus of Nup133 (second row) or the N-terminus of Nup133 (third row). 

Aligned class averages of untagged and GFP-tagged particles are shown in 

columns (1) and (2). The significance map column (3) shows extra density 

for the GFP-tagged particles above multiples of the pixel-based standard 

deviation of the class averages. Column (4) shows an overlay of columns (1) 

and (3).  
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In the case of Seh1-GFP, the GFP appears to be rigidly attached to the rest 

of the particle, resulting in a defined additional density approximately the 

size of the GFP protein, at the tip of the short arm. For the other GFP-tagged 

particles, the GFP density appears more fuzzy and delocalized, likely 

because of a greater flexibility of the attached GFP in these cases. The C-

terminus of Nup133 coincides with stem hinge 2. The GFP attached to the 

N-terminus of Nup133 gives the most diffuse signal, but the largest coherent 

area of additional density is localized on the distal stem segment, between 

stem hinge 2 and the globular foot domain. 

These localization maps, in conjunction with established 

interactions between members of the heptameric complex (Boehmer et al., 

2008; Brohawn et al., 2008; Debler et al., 2008; Hsia et al., 2007; Lutzmann 

et al., 2002), enabled me to assign the identity of structural features of the 

heptameric complex as follows: Short arm, Nup85·Seh1; long arm, Nup120; 

vertex-proximal stem, Nup145C·Sec13, medial stem, Nup84; distal stem, 

Nup133. Thus, I confirmed the general nup arrangement proposed by 

Lutzmann and colleagues (Lutzmann et al., 2002) and elucidated the 

structure further by assigning the positions of nups within the two 

asymmetric arms.  
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EM map 2 was segmented according to this assignment (Figure 

25) to indicate the approximate localization of nups. Some details, such as 

the exact interaction of Nup120, Nup145C and Nup85 regions at the vertex, 

are currently unknown and displayed tentatively. 

 

Nup crystal structures docked into the EM map 

I proceeded to dock known crystal structures of heptameric complex 

components into the 3D EM structure. Each crystal structure was 

computationally fitted into the EM map based on global 3D cross-

correlation, without initial constraints. From the list of likely positions and 

orientations within the EM map generated by the algorithm, the highest-

scoring fit that localized the crystal structure to the correct segment of the 

heptamer (as defined in Figure 25) was accepted, as illustrated in Figure 26. 

Docking was carried out independently for heptamer maps 1 and 2, and the 

resulting structures are shown in Figure 27, Details of the docked structures 

in map 2 are shown in Figure 28. 
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Figure 25 Segmentation of the particle (map 2) based on mapped nup 

localizations and previously established biochemical interactions. The 

particle surface is color-coded to represent the regions of the particle 

corresponding to different modules. Boundaries between regions are 

approximate.  
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Figure 26 Crystal structure docking strategy, illustrated for Nup145C·Sec13. 

For objective docking, the crystal structure was fit globally into the EM map 

by the program Situs. The program returns a list of likely positions of the 

crystal structure within the EM map, ordered by a cross-correlation score 

indicating the quality of fit. Darker shades of blue indicated higher-scoring 

positions.  
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Figure 27 Docking of available crystal structures (ribbon representation) 

into the EM maps (isodensity contour mesh representation). Two views 

related by a 90º rotation around a vertical axis are shown. The crystal 

structures are of: yeast Nup85 (amino acids 1-570 of 744, dark blue) in 

complex with yeast Seh1 (full length, light blue) (Debler et al., 2008), yeast 

Nup145C (amino acids 125-555 of 711, dark green) in complex with human 

Sec13 (amino acids 1-316 of 322, light green) (Hsia et al., 2007), human 

Nup107 (the homologue of yeast Nup84, amino acids 658-925 of 925, 

orange) in complex with human Nup133 (amino acids 934-1156 of 1156, 

red) (Boehmer et al., 2008), and Nup133 (amino acids 76-478 of 1156, red) 

(Berke et al., 2004). The conformation of the Nup107·Nup133 fragment is 

likely to differ from the actual Nup84·Nup133 conformation in map 2, as 

evidenced by the poor fit, and the structure is included for illustrative 

purposes only. Empty regions in the particle map correspond to proteins and 

protein domains for which no crystal structure is available yet.  
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Figure 27 
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Figure 28 Detailed views of crystal structures docked into map 2; N- and C-

termini of the crystallized nup domains are indicated. (a) Nup85·Seh1 (b) 

Nup145C·Sec13 (c) Nup133 β-propeller. 

 

 

The Nup85·Seh1 dimer fit into the short arm of the heptamer 

(Figure 28a), and assumed highly similar positions in EM maps 1 and 2 

(Figure 27). The Seh1 β-propeller corresponds to the thicker globular region 

at the end of the short arm; the α-solenoid regions of Nup85 localize to the 

thinner arm region. The crystal structure of Nup85 lacks 174 C-terminal 

amino acids. The C-terminus of the crystallized Nup85 fragment points 
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towards the end of the short arm (Figure 28a). Since the end of the short 

arm is occupied with the Seh1 β-propeller, additional C-terminal residues of 

Nup85 likely fold back towards the vertex region. The crystallized domain 

of Nup85 does not completely fill the short arm of the EM map, thus leaving 

space for the Nup85 C-terminus. However, the current resolution of the EM 

map is not sufficient to discern the exact location of the additional residues. 

The Nup145C·Sec13 dimer localizes to the vertex-proximal 

stem region (Figure 28b), with highly similar orientations in maps 1 and 2 

(Figure 27). The Sec13 β-propeller corresponds to the knob region. The 

crystal structure of Nup145C lacks 125 N-terminal amino acids and 156 C-

terminal amino acids. Both the N- and C-terminus of the crystallized 

Nup145C fragment point towards the vertex of the heptamer (Figure 28b), 

suggesting that the region between the knob and the vertex is filled with the 

remaining portions of Nup145C. The middle part of Nup145 extends to the 

stem hinge 1 region of the heptamer, where it interacts with Nup84. This 

suggests that stem hinge 1 is formed at the interface between Nup145C and 

Nup84. 

The N-terminal Nup133 β-propeller forms the globular foot 

region of the heptamer, in a similar orientation for maps 1 and 2 (Figure 27 

and Figure 28c). The N-terminal 66 amino acids of Nup133 are absent from 
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the crystal structure and presumably unstructured. The N-terminus of the 

crystallized Nup133 β-propeller domain points away from the foot, towards 

the stem region (Figure 28c), consistent with the observed localization 

pattern of the GFP-tagged N-terminus of Nup133 (Figure 24). The C-

terminus of the crystallized Nup133 β-propeller domain points away from 

the stem; the following residues will have to fold back to connect to the 

remaining part of Nup133. Again, the resolution of the EM map is not high 

enough to predict the exact path taken by protein fragments absent from the 

crystal structure. 

Since structures of yeast Nup133 and Nup84 have not been 

determined, I used the partial crystal structures of their human homologues 

Nup133 and Nup107 for docking. The crystal structure contains C-terminal 

fragments of Nup107 and Nup133. Since the C-terminus of Nup133 maps to 

stem hinge 2 (Figure 24), the crystal structure can be expected to be situated 

in this segment of the heptamer. The global fitting method failed for the 

Nup107·Nup133 structure: none of the computed positions coincided with 

stem hinge 2. Therefore, I positioned the crystal structure manually in this 

region and optimized the local fit computationally. The crystal structure does 

not fit neatly into the EM map (Figure 27). The likely explanation is that 

since stem hinge 2 is a conformationally flexible region, the conformation of 



 72 

human Nup133·Nup107 in the crystal structure is somewhat different from 

the conformation of the homologous yeast Nup133·Nup84 in the particle 

conformation of map 2. Thus, the docking of the Nup133·Nup107 fragment 

is tentative, and mainly shown for illustrative purposes. 
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CHAPTER 3: Investigation of Nuclear Pore Complex Architecture and 

Dynamics in Live Cells by Polarized Fluorescence Microscopy  

 

As outlined in Chapter 1, polarized fluorescence microscopy can yield 

information about the orientation and rotational diffusion of fluorophores, as 

well as the distances between fluorophores. Fluorescent labeling of NPC 

components may therefore provide insights into NPC dynamics and 

architecture in live cells, and into the mechanism by which FG domains 

function in NPC gating. In the first three sections of this chapter, I will 

discuss theoretically how fluorescence anisotropy measurements of GFP-

tagged nups in live cells can reveal aspects of NPC architecture and 

dynamics. In collaboration with Alexa Mattheyses, Claire Atkinson and 

Sanford Simon (The Rockefeller University), we established techniques for 

the acquisition and computational analysis of polarized fluorescence 

microscopy measurements of GFP-tagged nups in live yeast cells. These 

techniques, as well as first results, will be presented in the remaining 

sections of this chapter.  
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Effects of orientation of GFP-tagged nups within the NPC on 

fluorescence anisotropy: Theory 

Fluorescence anisotropy in macroscopically ordered systems has been 

investigated previously for different geometries (Axelrod, 1979; Rocheleau 

et al., 2003; Vrabioiu and Mitchison, 2006, 2007). In this section, I will 

apply previous theoretical results to quantitatively derive how the 

microscopically measured fluorescence anisotropy of GFP rigidly attached 

to nups depends on the orientation of GFP within the NPC.  

The nuclear envelope is assumed to be a sphere, and a central 

cross-section of the sphere is imaged. The coordinate system xyz is defined 

with respect to the microscope (Figure 29). z is the optical axis, and y is the 

direction of the electric field dipole of the polarized exciting light. The 

coordinate system NPQ is defined with respect to the nuclear pore complex 

(Figure 30). N is the nucleo-cytoplasmic axis, which always lies in the xy 

plane since a central section of the nuclear envelope is imaged. P is chosen 

to be parallel to z, which places Q in the xy plane. PQ is the plane of the 

nuclear envelope. The position of a NPC along the nuclear envelope cross-

section can be described by γ, the angle between N and y. 
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Figure 29 Microscope-fixed coordinate system. The orthogonal coordinate 

system xyz is fixed with respect to the microscope. z is parallel to the optical 

axis and y is parallel to the electric field vector of the exciting light. The 

focal plane is chosen such that the nuclear envelope is imaged as a central 

cross section. The position of a NPC along the nuclear cross-section is 

defined by the angle γ between the y axis and N, the eight-fold symmetry 

axis of the NPC. N always lies in the xy plane and is normal to the nuclear 

envelope plane.  
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Figure 30 NPC-fixed coordinate system. The orthogonal coordinate system 

NPQ is fixed with respect to an individual NPC. P is chosen to be parallel 

with the optical axis z. P and Q span the nuclear envelope plane. NPQ can 

be transformed into xyz by a rotation of γ around P. The orientation of a 

fluorophore with excitation transition dipole μ within the NPC is 

characterized by two angles, α and β. α is the angle between N and μ; β is 

the angle between P and the projection of μ onto the PQ plane.  

 

The excitation transition dipole μ of a fluorophore rigidly attached to the 

NPC can be defined by two angles: α, the angle between μ and the nucleo-

cytoplasmic axis N, and β, the angle between P and the projection of μ onto 

the nuclear envelope plane PQ. I chose to express fluorophore dipole 
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orientation using these two angles, since the representation of the eight-fold 

symmetry of the NPC around N is particularly elegant in this notation: eight 

fluorophores labeling all copies of the same nup will have 

€ 

µ j  dipoles with  

 

[3.1]  

€ 

α j = α1 and 

€ 

β j = β1 + ( j −1) π4  for j = 1, … , 8 . 

 

Vectors μ, x, y and z can be expressed as unit length vectors in the NPQ 

coordinate system:  
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The fluorophore transition dipole μ has the following x, y and z components: 

 

[3.6]  

€ 

µ x =
µ ⋅ x
µ x

= sinα ⋅ sinβ ⋅ cos γ − cosα ⋅ sin γ  

 

[3.7]   

€ 

µ y =
µ ⋅ y
µ y

= cosα ⋅ cos γ + sinα ⋅ sinβ ⋅ sin γ 

 

[3.8]  

€ 

µ z =
µ ⋅ z
µ z

= sinα ⋅ cosβ 

 

For each individual fluorophore, the probability 

€ 

pµ  of being excited by 

polarized light is proportional to 

€ 

µ y
2, since the energy of an electric field is 

proportional to the square of the electric field vector. Thus: 

 

[3.9]  

€ 

pµ ∝µ y
2 = (cosα ⋅ cos γ + sinα ⋅ sinβ ⋅ sin γ)2  

 

Whereas α is a parameter specific to the geometry of fluorophore attachment 

to the nup, and γ depends on the region of the nuclear envelope that we 

investigate, the probability distribution of β can be assumed to be uniform 
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over [0 , 2π]. Therefore, we can calculate f, the fraction of the fluorophores 

that will be excited on average, as follows:  

 

[3.10]
 
 

 

After substituting with equation [3.9] and solving the integral, we obtain: 

 

[3.11]  

 

Note that f does not depend on β, and thus the eightfold symmetry of the 

NPC around N does not affect the result: 

 

[3.12]
 
 

 

Likewise, in the case of sixteen nups, where eight nups are related to the 

eight other nups by a rotation of 180º around an axis within the nuclear 

envelope plane, the results are not affected: α for the additional eight nups is 

obtained by adding π to the α value for the first eight nups, and f(α+π) = 

f(α). This property of f is expected, since dipoles are invariant with respect 

to rotation by π.  
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Figure 31 Graph of f, the fraction of fluorophores excited by polarized light, 

as a function of α (the angle between the fluorophore excitation transition 

dipole and the nucleo-cytoplasmic axis of the NPC) and γ (the angle 

between the nucleo-cytoplasmic axis of the NPC and the electric field dipole 

of the exciting light). 

 

The family of functions 

€ 

fα (γ) is displayed in Figure 31. To 

localize minima and maxima along the nuclear envelope cross-section, we 

calculate the first two derivatives of f with respect to γ: 
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[3.13]
 
 

 

[3.14]
 
 

 

For any choice of parameter α (with one exception), we find the following 

two points to be critical points: 

 

[3.15]   
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that is, for the exact orientation α* of the fluorophores, their excitation 

becomes independent on the position of the NPC along the nuclear envelope 

cross-section. 

For 

€ 

α < arccos 1
3

, 

€ 

γ1 is a maximum point and 

€ 

γ2 is a 

minimum point; for 

€ 

α > arccos 1
3

, the situation is reversed. Hence, for any 

fixed α, the largest difference between values is found between 

€ 

fα (γ1) and 

€ 

fα (γ2 ), and this difference will be referred to as 

€ 

Δf (α) :  

 

[3.19]  

 

In combination with equation [3.11], we obtain: 

 

[3.20]  
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[3.22]  

 

These points represent special cases of 

€ 

fα (γ), which I will now discuss. 

 

(i) 

€ 

α1: All fluorophore dipoles are parallel to the nucleo-

cytoplasmic axis 

When the fluorophore excitation transition dipoles are parallel to the nucleo-

cytoplasmic axis (

€ 

α = α
1

= 0 + n ⋅ π) equation [3.11] becomes: 

 

[3.21]  

 

For NPCs with their nucleo-cytoplasmic axis parallel to the direction of the 

polarized light, all fluorophores are excited, 

€ 

fα1 (γ1) =1. For NPCs with their 

nucleo-cytoplasmic axis perpendicular to the direction of the polarized light, 

none of the fluorophores are excited: 

€ 

fα1 (γ2 ) = 0. Therefore, 

€ 

Δf (α1) =1, 

which is the maximal value of 

€ 

Δf . 
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(ii) 

€ 

α2: fluorophore dipoles are parallel to the nuclear envelope 

When the fluorophore transition dipoles are parallel to the nuclear envelope 

€ 

(α = α2 = π
2 + n ⋅ π) , equation [3.11] becomes: 

 

[3.22]  

 

Now fluorophores in NPCs with their nucleo-cytoplasmic axis parallel to the 

direction of the polarized light are not excited, 

€ 

fα2 (γ1) = 0. Half of the 

fluorophores in NPCs with their nucleo-cytoplasmic axis perpendicular to 

the direction of the polarized light are excited: 

€ 

fα2 (γ2 ) = 1
2 , 

€ 

Δf (α2 ) = − 12 . 

Thus far, we have characterized the fraction of fluorophores 

that are excited by polarized light. In a typical experimental setup for 

polarization microscopy, the emitted light is passed through an analyzer or 

polarizing beam splitter, such that 

€ 

I||, the light intensity parallel to y, the 

electric field component of the exciting light, can be quantified separately 

from 

€ 

I⊥ , the light intensity perpendicular to y and parallel to x. 

€ 

I|| and 

€ 

I⊥ 

depend on the orientation of the emission transition dipole of the 

fluorophore, which I will assume to be identical to the excitation transition 

dipole μ. This assumption is valid if the excitation transition occurs between 

! 

f"2 (#) = 1
2
$ sin2 #
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the same two electrical states as the emission transition. In the case of GFP, 

this has been shown experimentally to be a fair assumption (Rocheleau et 

al., 2003; Volkmer et al., 2000). 

Equations [3.6-3.8] then apply directly to the x, y and z 

components of the transition emission dipole μ of an excited fluorophore. 

The x, y and z components of the light intensity emitted by this fluorophore 

are proportional to the squares of the dipole components, 

€ 

µ
x

2, 

€ 

µ y
2, 

€ 

µ z
2 . To 

obtain the relative average light intensity components for all fluorophores at 

given α and γ, we need to multiply the light intensity components from a 

fluorophore oriented at angle β with the probability that this fluorophore was 

excited by the polarized light (equation [3.9]), and then integrate over all β:  

 

[3.23]
 
 

 

[3.24]
 
 

 

[3.25]  

€ 

Iz = 1
2π µ z

2pµdβ = 1
2 a

2 sin2 α + 1
8 b

2 sin2 α
0

2π
∫  

where                         ,                         ,                         ,                         .  

Graphs of these functions are presented in Figure 32. 
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Figure 32 x,y and z components of light emitted by GFP attached to the 

NPC. The light intensity components depend on α (the angle between the 

GFP excitation transition dipole and the nucleo-cytoplasmic axis of the 

NPC) and γ (the angle between the nucleo-cytoplasmic axis of the NPC and 

the electric field dipole of the exciting light).  
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 Figure 32 
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When measuring 

€ 

I|| and 

€ 

I⊥ using a microscope, the intuitive 

assumption would be 

€ 

I|| = I y , 

€ 

I⊥ = I
x
. However, light intensity components 

get “mixed” as they pass through the microscope. A correction for this 

component mixing has been derived by Axelrod (Axelrod, 1979): 

 

[3.26]  

 

[3.27]  

 

where 

 

[3.28]  

 

[3.29]  

 

[3.30]  

€ 

K 3 = 1
3 (2 − 3cosσ 0 + cos3σ 0 )  

 

! 

I
||

= K
1
Ix + K

2
I y + K

3
Iz

! 

I" = K
2
Ix + K

1
I y + K

3
Iz

! 

K1 = 1
12 (1" 3cos# 0 + 3cos2 # 0 )

! 

K 2 = 1
4
(5 " 3cos# 0 " cos

2 # 0 " cos
3# 0 )
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where 

€ 

σ 0 is the half-angle of the maximum cone of light entering the lens. 

€ 

σ 0 can be calculated from NA, the numerical aperture of the objective and n, 

the index of refraction of the medium through which the light passes, using 

the following relation: 

  

[3.31]  

 

In the present study, we used an objective with NA = 1.45 and immersion oil 

with n = 1.516, yielding σ0 ≈ 1.27 (73º). Using this value for σ0, we obtain 

K1 ≈ 0.03, K2 ≈ 1.00, K3 ≈ 0.38. Graphs of 

€ 

I|| and 

€ 

I⊥ for these values are 

shown in Figure 33. 

The corrected anisotropy distribution around the nuclear 

envelope cross-section for GFP with orientation α with respect to the NPC 

as measured by polarized microscopy is: 

 

[3.32]
 
 

 

Inserting K1 ≈ 0.03, K2 ≈ 1.00, K3 ≈ 0.38 into [3.32] yields: 

 

[3.33]  
 
 

! 

NA = nsin"
0

! 

A" (#) =
I|| $ I%
I|| + 2 & I%

= (K 2 $ K1)
I y $ Ix

(K1 + 2K 2 )Ix + (K 2 + 2K1)I y + 3K 3Iz

! 

A" (#) $
I y % Ix

2.1& Ix +1.1& I y +1.2 & Iz
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Figure 33 Predicted GFP fluorescence light intensities parallel and 

perpendicular to the exciting light. Numerical values were calculated for the 

numerical aperture and immersion oil used in this study, and are shown as a 

function of α (the angle between the GFP excitation transition dipole and the 
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nucleo-cytoplasmic axis of the NPC) and γ (the angle between the nucleo-

cytoplasmic axis of the NPC and the electric field dipole of the exciting 

light). 

This family of functions Aα(γ) can be written explicitly by substitution with 

equations [3.23-3.25]; it is graphed in Figure 34a. 

 

 

Figure 34 Fluorescence anisotropy as a function of α (the angle between the 

GFP excitation transition dipole and the nucleo-cytoplasmic axis of the 

NPC) and γ (the angle between the nucleo-cytoplasmic axis of the NPC and 

the electric field dipole of the exciting light). Numerical values were 
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calculated for the numerical aperture and immersion oil used in this study. 

(a) Graph for all values of α and γ. (b) Graph for three selected values of α: 

0, π/4 and π/2. 

 

Although the graph of

€ 

Aα (γ) has similarities with 

€ 

fα (γ), there are interesting 

differences. Extrema 

€ 

Aα (γ) are found at γ = 0 and γ = π/2 for any choice of 

parameter α. Whether these extrema are maxima or minima depends on K1, 

K2, K3 and α. Importantly, further extrema can be present, thus 

€ 

Aα (γ = 0)  

and 

€ 

Aα (γ = π
2 ) do not always represent the global maximum and minimum 

of the anisotropy. For illustrative purposes, we will consider three cases of 

€ 

Aα (γ), shown in Figure 34b for K1 ≈ 0.03, K2 ≈ 1.00, K3 ≈ 0.38. The general 

characteristics of these functions are outlined below and also apply to other 

values K1, K2, K3, as long as K2  > K1. 

 

(i) α=α1, all GFP dipoles parallel to the nucleo-cytoplasmic axis 

When the GFP transition dipoles are parallel to the nucleo-cytoplasmic axis 

(α = α1 = 0), the anisotropy is maximal for NPCs with their nucleo-

cytoplasmic axis parallel to the direction of the polarized light (γ = 0). In 

NPCs at a 45º angle along the nuclear envelope cross-section (γ = π/4), the 

measured 

€ 

I|| and 

€ 

I⊥ are equal, therefore the anisotropy becomes 0. For 
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NPCs oriented between 45º and 90º (π/4 < γ < π/2), 

€ 

I⊥ is greater than 

€ 

I||, 

resulting in negative anisotropy values. Note that the anisotropy is not 

defined for γ = π/2, since GFP is not excited in NPCs in this orientation. 

 

(ii) α=α2, GFP dipoles parallel to the nuclear envelope 

When the GFP transition dipoles are parallel to the nucleo-cytoplasmic axis 

(α = α2 = π/2), the anisotropy is maximal for NPCs with their nucleo-

cytoplasmic axis perpendicular to the direction of the polarized light (γ = 

π/2). As γ decreases from π/2 towards 0, the anisotropy decreases. In NPCs 

at a 45º angle along the nuclear envelope cross-section (γ = π/4), the 

measured  and  are equal, therefore the anisotropy becomes 0. The 

anisotropy is not defined for γ = 0, where GFP is not excited. 

 

(iii) α=π/4 

When the GFP transition dipoles are at a 45º angle from the nucleo-

cytoplasmic axis (α = π/4 + n·π), the anisotropy reaches a global minimum 

at γ = π/2 and a local minimum at γ = 0. The maximum anisotropy is 

obtained for γ close to π/4. 

 

! 

I||

! 

I"
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As these examples illustrate, the pattern of GFP anisotropy 

around the nuclear envelope cross-section, both in terms of the localization 

of maxima and minima, and in terms of the relative values of these extrema, 

is a function of α. The dramatic changes in the anisotropy pattern as a 

function of α should allow us to estimate α by measuring A(γ) 

experimentally, even in the presence of noise.  

 

Effects of homo-FRET between GFP-tagged nups within the NPC on 

fluorescence anisotropy: Theory 

As described in Chapter 1, the efficiency of homo-FRET between two 

fluorophores depends on their distance and mutual orientation. When 

investigating homo-FRET for molecules in solution, one assumes random 

orientations between the fluorophores to calculate the homo-FRET 

efficiency and the loss of anisotropy resulting from homo-FRET. This 

assumption is not valid for fluorophores that are ordered with respect to the 

NPC. In the following sections, I will derive upper bounds for the effect on 

anisotropy that results from homo-FRET between ordered GFP-tagged nups 

and show that the effects are negligible for nups occurring in eight or sixteen 

copies. For nups occurring in more than sixteen copies, and for GFP 

attached to disordered nup domains, homo-FRET can have substantial 



 95 

effects on anisotropy. These depend on the labeling density, which can 

easily be controlled in genomically tagged yeast cells, as discussed below.  

 

(i) GFP attached to ordered domains of nups present in eight copies 

within the NPC 

Due to the eightfold symmetry axis of the NPC, nups occurring in eight 

copies per NPC will always form an octagon parallel to the nuclear envelope 

plane (Figure 35). If r is the distance between the nups and the 

nucleocytoplasmic axis N, then we can place one GFP on the P axis, where 

it will have the following coordinates m1 and dipole vector μ1: 

 

[3.34]  

€ 

m1 = 0,r,0( ) ; µ1 =

cosα
sinα ⋅ cosβ
sinα ⋅ sinβ

 

 

 
  

 

 

 
  
 

 

An adjacent GFP will have the coordinates m2 and dipole vector μ2: 

 

[3.35]  

€ 

m2 = 0, 1
2
r, 1

2
r( ) ; µ 2 =

cosα
sinα ⋅ cos(β + π

4 )
sinα ⋅ sin(β + π

4 )

 

 

 
 
 

 

 

 
 
 
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Figure 35 Geometry of two GFP molecules attached rigidly to two adjacent 

nups localized in the same plane parallel to the nuclear envelope. Details are 

given in the text.  
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The vector R between them is: 

 

[3.36]  

€ 

R = m2 −m1 =

0
1− 2
2
r

1
2
r

 

 

 
 
 

 

 

 
 
 
 

 

and the length of R is: 

 

[3.37]  

€ 

R = 2 − 2 ⋅ r  

 

The cosines of the angles between μ1, μ2 and R, as defined in 

Chapter 1, can be calculated as follows: 

 

[3.38]  

€ 

cosθ = µ1 ⋅µ 2 = cos2 α + 1
2
sin2 α  

 

[3.39]  

€ 

cosφ =
µ1 ⋅ R
R

= 1
2 2− 2

sinα ⋅ [ 2 sinβ + ( 2 − 2)cosβ] 

 

[3.40]  

€ 

cosψ =
µ 2 ⋅ R
R

= 1
2 2− 2

sinα ⋅ [ 2 sinβ − ( 2 − 2)cosβ] 
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 Thus, the orientation factor κ2 can be calculated explicitly: 

 

[3.41]  

€ 

κ2 = (cosθ− 3 ⋅ cosθ ⋅ cosψ)2

=
[(2 2 − 4)cos2 α + ( 2 −1+ 3( 2 − 2)cos2 β)sin2 α]2

24 −16 2

 

 

Note that κ2 depends only on α and β, not on r.  

The Förster distance for homo-FRET between randomly 

oriented GFP molecules (κ2 = 2/3) is 47 Å (Gautier et al., 2001). We can 

calculate the Förster distance R0 for other values of κ2 as follows: 

 

[3.42]  

€ 

R0 =
3κ2

2
6 ⋅ 47Å 

 

The homo-FRET efficiency E is then:  

 

[3.43]  

€ 

E =
1

1+
2
3κ2

R
47Å
 

 
 

 

 
 

6  
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and E is a function of r, α and β. For any given set of dipole orientations α 

and β, E will increase as r (and thus the distance |R| between the GFP 

molecules) decreases. The smallest possible value of r for ordered nup 

domains is 200 Å, since the central channel of the yeast NPC has a diameter 

of ~40 nm (Yang et al., 1998). Values of E for r = 200 Å will thus represent 

an upper limit for homo-FRET between GFP attached to ordered nups 

present in eight copies per NPC. Figure 36 shows E as a function of α and β 

for r = 200 Å. Even for optimal choices of α and β, the homo-FRET 

efficiency is well below 0.1%, and thus negligible. 

 

(ii) GFP attached to ordered domains of nups present in sixteen copies 

within the NPC 

For nups present in sixteen copies, the nearest neighbor for a given nup can 

be a nup related by symmetry around a dyad axis that lies within the nuclear 

envelope mid-plane. To describe the spatial relationship between GFPs 

attached to these two nups, we need two further parameters: h, the distance 

from the nuclear envelope mid-plane and δ, the angle between the dyad axis 

and the shortest line connecting GFP and the nucleocytoplasmic axis N 

(Figure 37).  
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Figure 36 Homo-FRET efficiency E between GFP molecules rigidly 

attached to nups present in eight copies per NPC, as a function of α and β. 
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Figure 37 Geometry of two GFP molecules attached rigidly to two nups 

related by dyad symmetry. Details are given in the text. 
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δ is between 0 and π/16, since for greater values of δ, a 

different GFP becomes the nearest neighbor. To simplify calculations, we 

choose the dyad axis to coincide with the P axis of the coordinate system. 

The coordinates m1, m2 and the dipole vectors μ1, μ2 of the GFP 

molecules are: 

[3.44]  

€ 

m1 = h,r cosδ,r sinδ( ) ; µ1 =

cosα
sinα ⋅ cosβ
sinα ⋅ sinβ

 

 

 
  

 

 

 
  
 

[3.45]

€ 

m2 = −h,r cosδ,−r sinδ( ) ; µ 2 =

cosα
cos(2δ) ⋅ sinα ⋅ cosβ + sin(2δ) ⋅ sinα ⋅ sinβ
cos(2δ) ⋅ sinα ⋅ sinβ − sin(2δ) ⋅ sinα ⋅ cosβ

 

 

 
  

 

 

 
  
 

 

Vector R connecting the GFPs, and its length |R| are: 

 

[3.46]  

€ 

R =

−2h
0

−2r sinδ

 

 

 
  

 

 

 
  
; R = 2 h2 + r 2 sin2 δ  

 

The cosines of the angles between μ1, μ2 and R can be used to calculate κ2, as 

in the previous section. The resulting expression is cumbersome and 

therefore not given here. κ2 depends on α, β, δ, h and r. 
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The efficiency of homo-FRET can become very high when |R|, 

the distance between the GFP molecules, is short. This is the case whenever 

h and δ are small, irrespective of r. However, our ability to monitor homo-

FRET relies on a loss of anisotropy occurring when a photon absorbed by a 

GFP in one orientation is transferred to, and emitted by a GFP in a different 

orientation. For small δ, where homo-FRET can occur efficiently, the 

dipoles of the GFP molecules are also very similar, thus leading to a small 

effect on the anisotropy – in the limit of δ=0, μ1 =  μ2 and we cannot detect 

the homo-FRET event. The question is therefore whether there are values of 

δ for which homo-FRET occurs between GFP molecules that are different 

enough in their orientation to result in detectable FRET. 

When homo-FRET occurs between two GFP molecules rigidly 

positioned with respect to each other, the probability of transfer back to the 

original donor GFP cannot be excluded. The probability of photon emission 

from the GFP that was originally excited is: 

 

[3.47] 

€ 

(E −1) + E ⋅E ⋅ (E −1) + E ⋅E ⋅E ⋅E ⋅ (E −1) + ...= E 2n (E −1)
n=0

∞

∑  

 

and the probability of photon emission from the adjacent GFP is 
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[3.48]  

€ 

E ⋅ (E −1) + E ⋅E ⋅E ⋅ (E −1) + ...= E ⋅ E 2n (E −1)
n=0

∞

∑  

 

Thus, the overall efficiency with which the photon will be emitted from the 

adjacent GFP, which I will designate E∞, is: 

 

[3.49]  

€ 

E∞ =

E ⋅ E 2n (E −1)
n=0

∞

∑

E ⋅ E 2n (E −1)
n=0

∞

∑ + E 2n (E −1)
n=0

∞

∑
=

E
E +1

 

 

For maximally efficient homo-FRET, E∞ = ½. 

When the effects of homo-FRET are taken into account, 

equations [3.23-25] become: 

 

[3.50]  

€ 

I
x

FRET = 1
2π pµ1

⋅ (1− E∞ ) ⋅µ1,x
2 dβ

0

2π

∫ + 1
2π pµ1

⋅E∞ ⋅µ 2,x
2 dβ

0

2π

∫  

 

and mutatis mutandis for Iy and Iz. These FRET-corrected intensity 

components would be used to calculate the FRET-corrected anisotropy 

AFRET. In order to summarize the anisotropy changes caused by homo-FRET, 
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one could calculate the root mean square deviation between AFRET and the 

FRET-less anisotropy A along the nuclear envelope cross-section: 

 

[3.51]  

€ 

RMSDFRET
(α,δ,r,h) = 1

2π (AFRET − A)2 dγ
0

2π

∫  

 

In practice, already the integral in equation [3.50] is too complicated to solve 

analytically, even with the help of computer programs like Mathematica, 

since p, E∞ and μ all depend on β. Instead, I will estimate an upper limit for 

the anisotropy change caused by homo-FRET. 

To eliminate the dependence of E∞ on β, we set κ2 to its 

theoretical maximum value of 4. Furthermore, to minimize |R|, we will set r 

to 200 Å, the smallest value for ordered nups as outlined above, and we will 

set h to 20 Å, corresponding roughly to the radius of GFP itself. The 

resulting value of E∞ is: 

 

[3.52]  

€ 

E∞,max =
1

2 + 32
3⋅476

400 + 40,000 ⋅ sin2 δ( )3
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The integral in equation [3.50] can now be solved, and AFRET can be 

calculated. However, the integral in [3.51] is again too complicated. 

Therefore, we are not able to investigate the RMSDFRET for all α, γ and δ. 

Instead, we will first inspect the change in anisotropy caused by homo-

FRET, AFRET(γ,δ)–A(γ) for three specific values of α: 0, π/4, and π/2. For 

α=0, the calculated change in anisotropy was close to 0 for all values of α 

and δ. The other two cases are shown in Figure 38. Since the largest effect 

was apparent around δ=3π/64, I calculated AFRET(α,γ)–A(α,γ) for this value 

of δ (Figure 39). The largest calculated effect on anisotropy was a decrease 

by ~0.01 (for α=π/2, γ=π/2, δ=3π/64). A change in anisotropy on this order 

of magnitude is small but detectable. However, most parameter choices of α, 

δ, h and r will result in much smaller homo-FRET effects. In general, homo-

FRET between GFPs labeling ordered domains of nups present in 16 copies 

per NPC is therefore not likely to be an important factor in fluorescence 

anisotropy measurements. 
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Figure 38 Upper limit of effects of homo-FRET on anisotropy for α=π/4 

and α=π/2. For α=0, no changes were detectable. Maximal changes in 

anisotropy are observed for a value of δ around 3π/64. 
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Figure 39 Upper limit of effects of homo-FRET on anisotropy for δ=3π/64. 

 

 

(iii) GFP attached to ordered domains of nups present in thirty-two 

copies within the NPC 

The core NPC consists of 16 asymmetric units. Nups present in 32 copies 

per NPC will therefore be present in two copies per asymmetric unit. Within 

an asymmetric unit, there are no symmetry constraints; hence it is possible 

that the two nups present in the same asymmetric unit are positioned close to 
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each other for efficient homo-FRET and at angles that lead to significant 

losses in anisotropy upon homo-FRET. We predict that in the case of 32 

GFP-labeled nups, each nup has exactly one potential homo-FRET partner, 

since homo-FRET between proteins located in different asymmetric units is 

not efficient or does not have a large effect on anisotropy, as shown above. 

However, since the orientation and distance for homo-FRET pairs are 

arbitrary, it is not possible to predict the exact effect of homo-FRET on 

anisotropy around the nuclear envelope cross-section. 

An experimental approach that we developed in order to test for 

homo-FRET between GFP-labeled nups is to control the GFP-labeling 

stoichiometry of a given nup. In budding yeast, genomic tagging in haploid 

strains will lead to a stoichiometry of one GFP tag per nup. The same 

stoichiometry is obtained in diploid strains in which both alleles of the nup 

are genomically tagged with GFP. However, diploid strains in which only 

one of the two nup alleles is tagged with GFP will have a labeling ratio of 

0.5. A caveat is that the efficiency of gene expression may be affected by 

GFP tagging and distort the ratio of labeled versus unlabeled nup. 

Furthermore, mRNA production in bursts can lead to stochastic fluctuations 

in the ratio of labeled and unlabeled nups over time. Thus, when an NPC is 
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assembled in the presence of an excess of GFP-tagged nup over untagged 

nup, its GFP labeling ratio will be larger than 0.5, and vice versa. 

However, if we assume that on average, the GFP-labeling ratio 

in a single-labeled diploid will be 0.5, then there is a 50% chance for each 

GFP-nup that a homo-FRET partner is present in the asymmetric unit. The 

lower labeling ratio will thus reduce the amount of homo-FRET occurring 

by half, and be reflected in a gain in anisotropy. Since the labeling ratio 

should generally not affect the orientation of labeled nups within the NPC, 

or the rotational diffusion of labeled nups, a difference in GFP anisotropy 

between fully and half-labeled strains is indicative of homo-FRET. 

 

(iv) GFP attached flexibly to nup domains. 

In this section, we will consider GFP molecules that do not show a fixed 

orientation with respect to the NPC, and therefore exhibit a uniform 

anisotropy value along the nuclear envelope cross-section. If GFP rotational 

diffusion is negligible, this anisotropy value will be ~0.4 in the absence of 

homo-FRET. The orientation factor κ2 between any two disordered GFP 

molecules will on average be 2/3, thus the Förster distance R0 will be 47 Å. 

Homo-FRET efficiency should thus solely depend on the distance |R| 

between GFP molecules (equation [1.13], from chapter 1.). The anisotropy 
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of randomly oriented acceptor molecules is 0 on average. Since anisotropy 

values of different coexisting species (in this case, primary excited 

fluorophores, with an anisotropy of ~0.4, and acceptor molecules, with an 

anisotropy of 0) are additive, the expected anisotropy is: 

 

[3.53] 

€ 

A = (1− E∞ ) ⋅0.4 + E∞ ⋅0 = (1− E∞ ) ⋅0.4  

 

We can distinguish two types of unoriented GFP tags: those 

that are localized at defined positions within the NPC since they are attached 

to nups via a short flexible linker, and those that are attached to nups via a 

long, unstructured FG domain and thus neither orientationally nor spatially 

fixed with respect to the NPC. 

For spatially fixed GFP molecules attached to nups present in 

eight copies per NPC, |R| can be calculated directly from their distance r to 

the nucleo-cytoplasmic axis, using equation [3.37]. For the minimal distance 

of r = 200 Å for ordered nups, we obtain |R|≈153Å, which translates to a 

negligible FRET efficiency of 0.8%. However, randomly oriented nups 

present in more than eight copies can be present in pairs with short distances 

between them, resulting in efficient homo-FRET.  
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GFP tags attached to unstructured FG domains of nups are not 

localized to a defined position within the NPC. Rather, they will assume a 

position within a radius ρ of the structured domain of the nup. Results 

obtained in vitro suggest that FG domains can be described by the Kradky-

Porod model as worm-like chains with a persistence length lp of 3.9 Å and a 

contour length Lc corresponding to the number of amino acids multiplied 

with the average peptide bond length of 3.8 Å (Lim et al., 2006). Thus, the 

average ρ will be 

 

[3.54] 

€ 

ρ = 2 ⋅ l p ⋅ Lc ≈ 30 ⋅ aaÅ 

 

where aa is the number of amino acids constituting the FG domain. In the 

context of the NPC, the density of FG domains is so high that the ends of FG 

domains are likely “pushed” further away from their anchoring point in the 

structured part of the NPC (Lim et al., 2006). Thus, it is probably a fair 

assumption that GFP molecules attached to the end of FG domains of central 

nups are randomly distributed within the central channel, and possibly the 

volume surrounding it. If we describe the central channel as a cylinder with 

height 30 nm and a radius of 20 nm, the local concentration of n GFP 

molecules would be: 
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[3.55]  

€ 

n ⋅ [nup]central channel =
n /NA

π ⋅202 ⋅ 30 nm3
≈ n ⋅ 44µM 

 

which corresponds to ~0.7 mM for nups occurring in 16 copies and ~1.4 

mM for nups present in 32 copies. If we assume that the FG domains extend 

beyond the central channel towards the cytoplasm and nucleoplasm, the 

local GFP concentration would be even lower. 

The critical concentration C0 at which the homo-FRET 

efficiency is 50% can be calculated from R0 as follows (Förster, 1948): 

 

[3.56]  

€ 

C0 =
3

4π ⋅ NA ⋅ R0
3 =

3
4π ⋅ NA ⋅ (47Å)

3 ≈ 3.8mM 

 

Different equations have been derived to calculate the homo-FRET 

efficiencies E for concentrations below C0 (Förster, 1948; Ore, 1959). 

According to these equations, the range of E predicted for 16 GFP molecules 

(0.7 mM) or 32 GFP molecules (1.4 mM) is between 20% and 30%, thus 

homo-FRET between GFP attached to FG domains could decrease the 

anisotropy from 0.4 to ~0.3-0.33. Decreasing the GFP labeling ratio from 1 
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to 0.5 amounts to halving the GFP concentration, which will reduce the 

homo-FRET efficiency. 

 

To summarize this section, GFP labeling of one species of nup within the 

NPC can lead to a loss in anisotropy by homo-FRET, but only for GFP-tags 

that are flexibly attached to nups, or for GFP-tags that are rigidly attached to 

nups present in more than 16 copies per NPC. In particular, homo-FRET 

will not occur between GFPs localized to the structured domains of nups 

related by eightfold symmetry around the nucleo-cytoplasmic axis. This 

precludes their use in monitoring radial dilation of the transporting NPC. 

However, such measurements could be achieved by labeling more than one 

nup species with GFP, or by labeling two nup species with different spectral 

variants of GFP and quantifying hetero-FRET between them. 

To distinguish anisotropy loss due to homo-FRET from 

anisotropy loss caused by other processes, cells with a reduced GFP labeling 

ratio can be investigated, since GFP density should affect homo-FRET, but 

not other processes affecting fluorescence anisotropy. 
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Effects of dynamics of GFP-tagged nups within the NPC on fluorescence 

anisotropy: Theory 

As outlined in Chapter 1, loss in fluorescence anisotropy can occur when the 

fluorophore changes its orientation on the time-scale of the fluorescence life 

time. Using equation [1.7], we can estimate the magnitude of this effect for 

GFP. The molecular weight of GFP is ~27 kDa, its τc in aqueous solution at 

20ºC estimated from equation [1.9] is ~11 ns. The fluorescence lifetime τF of 

GFP is ~3 ns (Suhling et al., 2002; Volkmer et al., 2000). According to the 

Perrin equation, the measured anisotropy A for GFP in solution should 

therefore be A0·(1/(1 + 3 ns/11 ns)) ≈ 0.8·A0 = 0.8 x 0.4 = 0.32. This is 

indeed the experimentally determined value for free GFP in solutions as well 

as in the cytosol of eukaryotic cells (Rocheleau et al., 2003). Thus, the 

difference in anisotropy we can expect between rapidly diffusing and 

spatially fixed unoriented GFP tags within the NPC is at most ~25%. In 

particular, very accurate measurements will be required to distinguish 

between the hydrophobic meshwork and the entropic exclusion model for 

FG repeats.  

Rotational diffusion can also lower anisotropy values for GFP 

tags that appear to have a somewhat defined orientation within the NPC 

based on their anisotropy variation around the nuclear envelope cross-
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section. This situation would apply to GFP tags that rotate around a defined 

axis that is close to but not coincident with the GFP dipole axis.  

 

Computational Processing of Polarization Microscopy Images 

To measure the anisotropy of GFP-tagged nups in vivo, yeast cells were 

subjected to polarized fluorescence microsopy (technical details are 

described in Chapter 5). The exciting light was passed through a polarizer 

with known orientation. The emitted light was passed through a 

polarizer/image splitter, so that separate images corresponding to the light 

intensity parallel and perpendicular to the direction of the exciting light 

could be recorded simultaneously with a CCD camera (Figure 40). 

To calculate the pixel-by-pixel anisotropy, the parallel and 

perpendicular channel images needed to be aligned. We found that the 

accuracy of alignment was a crucial factor for the calculation of anisotropy 

values: Since the nuclear envelope signal in the images was only a few 

pixels wide, slight misalignment of the channels resulted in pairing of 

nuclear envelope pixels from one channel with background pixels from the 

other channel, and the anisotropy values calculated from these mispaired 

pixels were meaningless.  
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Figure 40 CCD-recorded GFP polarized epifluorescence micrograph. The 

image was split by a polarizer/splitter into the emitted light components 

parallel and perpendicular to the direction of the exciting light. Specimen: 

Yeast cells with GFP-labeled nups. 

 

We first attempted to align the two half-images globally using 

an ImageJ script; however, the results were not satisfactory (Figure 41a). 

Possible reasons include the fact that only whole-pixel shifts were 

considered by ImageJ, and that distortions in the imaging of the two 
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channels may thwart global alignment. We therefore implemented scripts in 

MATLAB and SPIDER that were based on the single-particle EM approach 

for image alignment: Image pairs of corresponding individual cells were 

cropped from both channel images and aligned using rotational and 

translational sub-pixel alignment. This approach gave generally good results 

(Figure 41a). 

 

Figure 41 Computational image alignment and thresholding. (a) Alignment 

of the parallel and perpendicular channel images. Global alignment does not 

result in accurate alignment of individual nuclear envelopes. We therefore 

implemented sub-pixel alignment of individual images. (b) Thresholding of 

individual nuclear envelope images. The top 10% brightest pixels usually 

coincide with the nuclear envelope signal. 
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To include only pixels corresponding to nuclear envelope signal 

in our further analysis, we applied a threshold-based mask to the images. 

The cell-based approach proved to be crucial for this step as well. Since 

fluorescence intensities varied considerably between cells in one field 

(Figure 40), it was impossible to find a global threshold that would include 

nuclear envelope pixels from all cells but exclude background pixels. 

Instead, we created masks for each image pair based on the 10% brightest 

pixels in the image from the parallel channel. This mask usually coincided 

with the nuclear envelope signal (Figure 41b).  

A further aspect of data analysis that we aimed to automate was 

the quantification of anisotropy changes along the nuclear envelope cross-

section, which would allow us to determine the orientation of fluorophores 

with respect to the NPC, as detailed above. Thresholded nuclear envelope 

image pairs were centered based on their center of gravity calculated from 

pixel intensities, and anisotropy values were averaged for eight sectors of the 

centered image (Figure 42). 

 



 120 

 

Figure 42 Anisotropy quantification in 8 image sectors. Nuclear envelopes 

were individually centered within square images, and the image was divided 

into 8 sectors, as shown. The average anisotropy value was calculated for 

each sector.  

 

Anisotropy variation along the nuclear envelope cross-section for GFP 

attached to folded nup domains 

As described above, GFP in a fixed orientation within the NPC is expected 

to give rise to an anisotropy that varies along the nuclear envelope cross-

section. We tested a variety of yeast strains in which GFP was attached 

either to a nup domain that was predicted to be folded, or to an FG domain, 

which is presumably unfolded. As shown in (Figure 43), the anisotropy 

patterns between these two types of strains were indeed different. 



 121 

  

 

Figure 43 Anisotropy distribution along the nuclear envelope cross-section. 

Individual nuclear envelope anisotropy maps are shown after thresholding. 

(a) GPF attached to the ordered domain of Nsp1. Anisotropy values for the 

left and right edges of the nuclear envelopes appear higher than for the top 

and bottom edges. (b) GFP attached to the FG domain of Nup116. 

Anisotropy values do not seem to vary systematically along the nuclear 

envelope cross section. 

 

To analyze anisotropy patterns in a large number of cells, we 

determined average anisotropy values for 8 sectors of the image (Figure 44). 

A comparison for GFP tagging of the structured and unstructured ends of 

Nup57 is shown in Figure 44. GFP attached to the structured C-terminus of 
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Nup57 has high anisotropy values for γ = 0+n·π, and low anisotropy values 

for γ = π /2+n·π, indicating that the GFP dipole is oriented close to the 

nucleo-cytoplasmic axis of the NPC. GFP attached to the unstructured N-

terminus of Nup57 shows no significant variation in anisotropy around the 

nuclear envelope cross-section, suggesting that the GFP molecules are 

randomly oriented within the NPC. 

 

 

Figure 44 Average anisotropy values in different nuclear envelope sectors 

of four yeast strains: Left, structured domain of Nup57 labeled with GFP, 

50% or 100% labeling ratio. Right, FG-domain of Nup57 labeled with GFP, 

50% or 100% labeling ratio. 
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Figure 45 Comparison of anisotropy distributions for various yeast strains. 

The difference between the anisotropy at γ=0 and at γ=π/2 is shown. In the 

first six strains, GFP is attached to a structured domain. In the following five 

strains, GFP is attached to an FG domain. In the last two strains, GFP is 

attached to the N-terminal β-propeller of Nup159, which in turn is connected 

to the structured C-terminal domain of Nup159 by an FG domain. Data were 

collected on a different day than data shown in Figure 44 and Figure 46. 

 

Similar results were obtained for other nucleoporins as 

summarized in Figure 45. GFP attached to structured nup domains 

displayed considerable differences between anisotropy values at 0º and 180º 

on the one hand, and anisotropy values at 90º and 270º on the other hand. 
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Dipoles of GFP attached to the structured domains of Nup57, Nic96, Nsp1 

and Nup49 seem to be oriented close to the nucleo-cytoplasmic axis of the 

NPC.  

Nup159 is a special case, since the major structured domain of 

the protein is found at the C-terminus, and a β-propeller is found at the N-

terminus (Weirich et al., 2004), linked to the C-terminal structured part by 

the unstructured FG-domain. The small negative anisotropy difference 

indicates that the orientation of the GFP dipole more similar to the nuclear 

envelope plane than to the nucleo-cytoplasmic axis. Possibly, the Nup159 β-

propeller is less rigidly oriented with respect to the NPC, due to its 

attachment via the unstructured FG-domain. This would explain why the 

difference of anisotropy along the nuclear envelope cross-section is rather 

small.  

GFP molecules attached to the FG domains of Nup57, Nup116 

and Nup1 showed almost constant anisotropy values, indicating that they 

were randomly oriented with respect to the NPC. These findings are not 

surprising, but it is reassuring that our measurements support the generally 

accepted view that FG domains are disordered. 
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Homo-FRET revealed by varying GFP labeling ratio 

In yeast, complete labeling of a given nup with GFP can be achieved by 

tagging the nup genomically in a haploid strain. Alternatively, both alleles of 

the nup gene can be tagged in a diploid strain. A reduced labeling ratio is 

obtained by labeling only one allele in a diploid strain. We will refer to this 

latter case as “50% labeled”, even though the actual labeling ratio may differ 

from that exact value. (It may, if anything, be expected to be lower than 

50%, if we assume that gene expression is less efficient for the longer 

construct than for the wild type gene, rather than vice versa.) 

Homo-FRET is predicted to be more efficient in 100%-labeled 

strains, since their concentration of potential FRET acceptor molecules is 

higher than that in 50%-labeled strains. In order to detect homo-FRET, we 

therefore compared the anisotropy between strains that were 100% versus 

50% GFP-labeled. We found significant differences for strains in which the 

structured domain of Nup57 was tagged, as well as for strains in which a 

GFP tag was inserted between the FG-domain and the structured domain of 

Nup116 (Figure 46). 
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Figure 46 Increased GFP labeling ratio decreases anisotropy. Strains in 

which a nup is genomically GFP-tagged either in a haploid strain (100% 

labeling), or in a diploid strain that possesses a second, unlabeled copy of the 

same nup (50% labeling). Top, the structured domain of Nic96 was tagged. 

Bottom, a GFP tag was introduced between the FG domain and the 

structured domain of Nup116. 
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For both strains, the anisotropy is lower in 100% labeled strains 

than in 50% labeled strains. This effect is difficult to explain by other factors 

than homo-FRET, since the orientation or flexibility of GFP tags should not 

be affected by nearby GFP tags. Nic96 is thought to occur in 32 or more 

copies per NPC (Rout et al., 2000). Therefore, Nic96 homo-FRET is 

consistent with our prediction that homo-FRET between GFP molecules 

attached rigidly to ordered nup domains occurs only for nups present in at 

least 32 copies per NPC. Nup116 is thought to be present in 16 copies per 

NPC (Rout et al., 2000). The comparatively low amount of anisotropy 

variation along the nuclear envelope cross-section may be indicative of the 

fact that the GFP tag adjacent to the FG domain displays some degree of 

variability in its orientation, thus increasing the effect of homo-FRET on 

anisotropy values. 

 

Blocking active transport through the NPC 

In order to study NPC dynamics, such as dilation or FG-domain movements 

that specifically accompany active transport through the NPC, we needed to 

block transport through the NPC. We tested two methods that were 

developed by others (Shulga et al., 1996; Strawn et al., 2004). To monitor 

active transport in live cells, we used a GFP-NLS reporter, which is actively 
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transported into the nucleus under normal conditions, but equilibrates 

between nucleus and cytoplasm when transport is blocked, since it is small 

enough to diffuse through the NPC passively (Figure 47). 

 

 

Figure 47 A GFP-NLS reporter for active transport through the NPC. In the 

absence of active transport, the reporter equilibrates between the nucleus and 

the cytoplasm due to passive diffusion through the NPC. In the presence of 

active transport, the reporter accumulates in the nucleus. 

 

As described in Chapter 1, active transport through the NPC is 

driven by a Ran gradient, which in turn is established by the action of two 

asymmetrically distributed regulators of Ran: Ran-GEF in the nucleus and 

Ran-GAP in the cytoplasm. Temperature-sensitive alleles of these two 

factors have been found in yeast. We successfully induced a transport block 

in mtr1–1 (ran-GEF) mutant cells (Booth et al., 1999) by shifting them to the 

restrictive temperature (Figure 48). However, recovery was relatively fast 

after shifting back to the permissive temperature, and it was not easy to 
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control the temperature of the microscope stage and objective precisely. An 

additional concern was that temperature may have several indirect effects on 

GFP anisotropy, which may confound the analysis of effects due to changes 

in NPC structure dynamics.  

 

 

Figure 48 Transport block in a temperature-sensitive Ran-GEF (mtr1-1) 

mutant strain. Cells expressing the GFP-NLS reporter (Figure 47) were 

grown at 23ºC, shifted to 37ºC for one hour, and shifted back to 23ºC. GFP 

epifluorescence micrographs were taken at various time points to monitor 

the subcellular distribution of the reporter. Top row: wild type cells as 

negative control. Bottom row: Ran-GEF temperature sensitive mutant 

strains. 
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We therefore tested an alternative, less specific way of blocking 

transport NPC: By treating the cells with deoxy-glucose and sodium azide, 

they are rapidly depleted of ATP, which will in turn deplete GTP and block 

transport. This method worked efficiently (Figure 49), but caused an 

increase in background fluorescence, thus affecting the measured anisotropy 

values. We are currently developing computational methods of background 

subtraction to solve the problem. 

 

 

Figure 49 Transport block by energy depletion. Sodium azide and 

deoxyglucose were added to wild type cells expressing a GFP-NLS reporter 

(Figure 47), and GFP epifluorescence micrographs were taken at different 

timepoints. 
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CHAPTER 4: Discussion and Future Directions 

 

Three-dimensional structure of the Nup84 complex 

I solved 3D structures of an entire NPC subcomplex, the heptameric Nup84 

complex from budding yeast. My data confirm the overall architecture that 

was proposed previously based on 2D EM (Lutzmann et al., 2002). 

Averaging of images allowed me to discern additional details, such as four 

globular regions and the asymmetry of the two arms of the particle, and to 

characterize the conformational heterogeneity of the particle. The 3D maps, 

in combination with protein labeling experiments, enabled me to dock 

available nup crystal structures into the heptamer structure.  

The EM structures (Figure 18) do not necessarily represent the 

conformation of the heptameric complex in the context of the NPC since  

(i) interactions with other nups may affect the conformation of the 

heptameric complex, and (ii) the present structures are of the particle bound 

to a planar support film, whereas in the context of the NPC, the heptameric 

complex coats a highly curved surface. Distortions of the particle structure 

caused by negative staining and by missing-cone effects due to incomplete 

angular coverage of particle views are a potential concern, but they are 
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unlikely to be dramatic in the present study, since the particle is not very 

extended in the direction perpendicular to the carbon support film. The 

simultaneous iterative reconstruction technique was used to minimize 

missing-cone effects. The docking of nups into the EM map (Figure 27) 

represents the best possible fit given the current data; future higher-

resolution EM maps and additional crystal structures may lead to a 

refinement of nup positions and orientations.  

Despite these caveats, the present 3D structures yield 

fundamental insights into the architecture of the heptameric complex. The 

main architectural principle of the heptameric complex is that the globular 

domains at the ends of the arms and the stem are formed by β-propeller 

domains, whereas the thinner connecting segments are formed mainly by α-

solenoid folds. While the crystal structure of Nup120 is not yet available, we 

expect Nup120 to conform to this principle: the shape of the long arm 

strongly suggests that the predicted Nup120 β-propeller localizes to the 

thick, globular end of the arm, whereas the predicted α-helical regions form 

the thinner connection to the vertex. This arrangement is supported by the 

2D class averages (Figure 13): the long arm ends in a round shape ~5 nm in 

diameter with a central hole or depression, compatible with a β-propeller in 

top view. Intriguingly, the same architectural principle of α-solenoid arms 
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ending in β-propeller domains is also found in the clathrin triskelion(Fotin et 

al., 2004), thus lending further support to the hypothetical evolutionary 

relationship between vesicle coats and the heptameric complex. 

β-propellers occur in many biological contexts, frequently 

acting as platforms for interactions with other proteins. The structural basis 

for this function is their rigid fold and the availability of several highly 

variable interaction surfaces (Paoli, 2001). Remarkably, the surfaces of the 

four β-propellers in the heptamer are mostly exposed, and thus available for 

interactions with other proteins. As suggested previously (Brohawn et al., 

2008; Debler et al., 2008; Hsia et al., 2007), the β-propellers may be 

involved in higher-order interactions between heptameric complexes within 

the NPC. Such an arrangement occurs in the COPII vesicle coat (Fath et al., 

2007). Moreover, a scaffold formed by heptameric complexes is likely to 

form a platform that organizes other nups within the NPC. 

Whereas the β-propellers are rigid structural units, the 

connecting regions formed by α-solenoids and, possibly, by unstructured 

regions are likely to account for the conformational flexibility of the 

heptameric complex. Flexibility of α-solenoid arms was described for both 

COPII coatamers (Fath et al., 2007) and clathrin triskelia (Ferguson et al., 
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2008), where it is thought to allow the formation of vesicle coats in different 

sizes. 

In Figure 50, the present EM map of the Nup84 complex is 

compared to the computationally generated model by Alber and colleagues 

(Alber et al., 2007). Although the overall dimensions of the complex are 

similar, the arrangement and interactions of nups found by EM and 

crystallography differs from the computational model. Most notably, Sec13 

is predicted to interact only with Nup84 by Alber and colleagues, whereas it 

forms a very intimate complex with Nup145C in the crystal structure: one 

blade of the Sec13 β-propeller is formed by Nup145C. Furthermore, the 

present EM map shows no direct interaction between Sec13 and Nup84. 

These findings highlight the importance of classical structural biology 

techniques to confirm results from computational modeling approaches. 
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Figure 50 Comparison between the EM map and the model by Alber and 

colleagues. (a) Segmented EM map of the Nup84 complex. (b) 

Computational model for the Nup84 complex (Alber et al., 2007). Color was 

added to facilitate comparison with the EM map. (a) and (b) are drawn to 

scale. (c) “Protein adjacencies” within the Nup 84 complex, according to 

Alber et al., 2007. The indicated edge weights correspond to the fraction of 

computational models of the entire NPC in which the proteins connected by 

the edge are in direct contact. 
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 Figure 50 
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A model for the role of the Nup84 complex in NPC assembly 

The heptameric complex was reported to play an essential role in the 

formation of NPCs, both post-mitotically and during interphase. 

Immunodepletion of the vertebrate homologue of the heptamer from nuclear 

assembly reactions leads to the formation of a continuous nuclear envelope 

devoid of pores (Harel et al., 2003; Walther et al., 2003). Similarly, the 

heptamer is required for de novo insertion of NPCs into the interphase 

nuclear envelope (D'Angelo et al., 2006). While the mechanism of NPC 

assembly is currently unknown, a specific structural role for the heptameric 

complex in this process can be envisaged based on its structure and its 

affinity for highly curved membrane surfaces. 

Formation of new NPCs during interphase requires the 

formation of a fusion pore between the outer and inner nuclear membranes. 

In other biological contexts, membrane fusion was shown to occur by a 

stepwise process: apposition of two membranes, hemifusion between the 

inner leaflets of the two lipid bilayers, reversible formation of a small fusion 

pore, stabilization and expansion of the fusion pore (Chernomordik and 

Kozlov, 2008). In different biological processes, such as exocytosis or viral 

membrane fusion, these steps are catalyzed by specific proteins that interact 
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with the membranes to overcome the inherent energy barriers of each step 

along the fusion pathway, and to control the geometry of fusion. 

The heptameric complex may function in one or several phases 

during the formation of nuclear envelope pores (Figure 51). The formation 

of the initial fusion pore is likely catalyzed by integral membrane proteins, 

possibly by the poms, which are components of the mature NPC. The 

heptamer may then stabilize initial fusion pores, by binding to the sharply 

bent membrane lining the pore. The following step of fusion pore expansion 

is particularly interesting in the case of nuclear envelope pores: whereas in 

other biological contexts, such as vesicle fusion, fusion pores expand 

maximally to integrate the vesicle membrane into the target membrane, the 

nuclear envelope fusion pore expands to a defined diameter of ~100 nm to 

accommodate the NPC. A scaffold formed by several heptamers may control 

the final size of the fusion pore, and thus act as a molecular ruler. 

Once the heptamer scaffold has stabilized the 100 nm pore, it 

can serve as a platform for the recruitment of other nups. The eightfold 

symmetry of the NPC may be dictated by the eightfold symmetry of the 

initial scaffold formed by heptameric complexes. 
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Figure 51 Hypothetical role for the heptameric complex in NPC assembly. 

Interphase formation of NPCs requires a fusion between inner and outer 

nuclear membranes, which is presumably by transmembrane proteins yet to 

be identified. The heptameric complex may recognize and bind the sharply 

bent fusion pore membrane, thereby stabilizing it. Assembly of a scaffold of 

heptameric subcomplexes may define the final diameter of the pore, and 

possibly also determine the eightfold symmetry of the mature NPC. The 

nature of the scaffold is currently unknown; it may consist of two or four 

rings, or some other arrangement of heptamers. 

 
 

The architecture of a scaffold formed by Nup84 complexes is as 

yet unknown. Unfortunately, I was not able to observe higher-order 

assemblies of the heptamer directly by EM. Interactions between heptamers 

are likely unstable outside the context of the NPC. This may even be a 

physiological requirement, since these interactions would have to dissociate 

to allow the passage of integral membrane proteins of the inner nuclear 

membrane through the NPC (King et al., 2006). 
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Several models have been proposed for the structure of a 

Nup84 complex scaffold in the context of the NPC. The heptameric complex 

was suggested to assemble into a head-to-tail arrangement of eight 

heptameric complexes in a ring (Hsia et al., 2007). I built such a 

hypothetical head-to-tail ring from the EM maps (Figure 52), and the 

resulting diameter is ~100 nm, which corresponds to the observed outer 

diameter of the NPC.  

It was also proposed that four such rings in an anti-parallel 

arrangement would form an outer cylinder of the NPC, in which hetero-

octamers of Nup85·Seh1 and Nup145C·Sec13, which were observed in 

crystals, form poles parallel to the nucleocytoplasmic axis (Debler et al., 

2008; Hsia et al., 2007). The present EM data does not necessarily support 

such an arrangement, since Nup85·Seh1 and Nup145C·Sec13 are only 

separated by ~10 nm within one heptamer, whereas the anti-parallel cylinder 

model would require them to be separated by about half the length of the 

entire heptamer, i.e. 20 nm or more (Debler et al., 2008; Hsia et al., 2007). 

However, it cannot be excluded that the structure of the heptameric complex 

within the NPC differs drastically from the structure observed by single-

particle EM. Furthermore, it is possible that either the Nup85·Seh1 or the 

Nup145C·Sec13 hetero-octamer pole exist in the NPC, but not both. 
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Figure 52 Hypothetical model for a head-to-tail arrangement of eight 

heptamers in a ring. The ring diameter of ~100 nm is in good agreement 

with the outer diameter of the yeast NPC. 

 

 

An alternative model for the arrangement of Nup84 complexes 

within the NPC was suggested (Brohawn et al., 2008) in which eight 

heptamers interact via their Nup85·Seh1 and Nup120 arms to form a ring. In 
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this model, the stem would be approximately parallel to the 

nucleocytoplasmic axis. Two such rings were suggested to be linked by a 

scaffold formed by other nups, including Nic96. Based on the present EM 

structure, one such ring would be ~45 nm high, the entire assembly would 

thus be higher than 90 nm, which is not compatible with the observed NPC 

height of ~30 nm. However, we need to consider again the possibility that 

the structure of the Nup84 complex within the NPC differs significantly 

from the structure of the isolated particle. 

 

Flexibility and Dynamics in the NPC 

The flexibility of the heptameric complex is also potentially of physiological 

relevance. Flexibility of the entire NPC was described (Akey, 1995; Beck et 

al., 2004; Beck et al., 2007) and may reflect conformational changes that 

accompany active transport. In particular, dilation of the NPC may be 

required to allow passage of large cargoes, such as ribosomal subunits. 

Molecular sliding of nups located near the central channel of the NPC was 

suggested to form the basis for NPC dilation (Melcák et al., 2007). It is 

likely that conformational changes of these central nups would occur in 

concert with conformational changes of the more peripheral nups, including 
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the heptameric complex. A further requirement for flexibility may apply to 

the vertebrate homologue of the heptameric subcomplex, which has 

additional functions outside the NPC during mitosis (Lim et al., 2008), and 

may adopt distinct conformations in different cellular contexts. 

Interestingly, the length of the heptameric complex was 

constant in the different conformations we observed (Figure 12). This 

means that a ring of heptamers could maintain a fixed size based on head-to-

tail interactions, while the flexibility of the heptamer would buffer 

conformational changes of other parts of the NPC that are anchored to the 

heptamer ring (Figure 53). 
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Figure 53 Hypothetical model for conformational changes of the heptameric 

complex within the NPC. Rings of eight heptamers, map 1 (orange) and map 

2 (blue) are shown as transparent overlay. Remarkably, the head-to-tail 

length is identical for both conformations of the heptamer. The main 

difference is the movement of the stem hinge region. The flexibility of the 

heptamer in this region may be involved in buffering conformational 

changes of other parts of the NPC that are anchored here, while stabilizing 

the overall structure of the NPC and its interaction with the pore membrane.  
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Future studies addressing the interaction of the heptameric complex 

with other nups and membranes 

The structure of the heptameric complex raises further interesting questions: 

If the subcomplex is the membrane-coating module of the NPC, how does it 

interact with membranes? Do heptamers form higher-order oligomers within 

the NPC? How does the heptamer interact with other nups? In a continuation 

of the work presented here, I will attempt to answer some of these questions. 

The β-propeller domain of Nup133 was shown to interact 

directly with small liposomes in a sucrose flotation assay (Drin et al., 2007). 

I plan to test the binding of the entire heptameric complex to liposomes of 

different sizes in a similar assay. The composition of the liposomes will be 

designed to approximate the physiological lipid composition of the yeast 

nuclear envelope (Zinser et al., 1991). If stable complexes between the 

heptameric complex and liposomes can be obtained, I will investigate their 

structure by cryo-EM. Liposomes are known to generate cryo-EM images 

with good contrast. 

In addition, I will attempt to obtain 2D crystals of the 

heptameric complex at a planar phospholipid interface. This technique has 

successfully been used in the structure determination of both integral 

membrane proteins and soluble proteins. The setup of 2D crystallization 
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trials is illustrated in Figure 54. A solution of the protein of interest is 

placed in a well, and a phospholipid monolayer is created at the surface of 

the aqueous buffer. If the protein interacts with the lipid head groups, it 

accumulates at the monolayer surface. The local concentration becomes so 

high that ordered arrays or 2D crystals form. The monolayer and bound 

particles are transferred to a grid and imaged by EM. The binding of the 

particle to the lipid head groups can be promoted by including positively 

charged lipids, which electrostatically interact with negatively charged 

protein surfaces (Darst et al., 1988), or by including chemically modified 

lipids that specifically interact with the target protein (Bischler et al., 1998; 

Darst et al., 1991). Initially, I will attempt to obtain 2D crystals of the 

heptamer bound to phospholipids approximating the yeast nuclear envelope 

composition, in order to observe potentially the physiological mode of 

membrane interaction.  

If 2D crystals can be obtained, the particle will be fixed in one 

conformation, which will allow the determination of its structure at 

considerably higher resolution. Even if the heptamer does not crystallize, the 

high local concentration at the 2D interface should promote interactions 

between heptamers, which may reveal the physiological binding mode by 
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which heptamers form higher-order assemblies within the context of the 

NPC. 

 

 

Figure 54 2D crystallization trial, schematic diagram. See text for details. 

 

The heptamer also interacts with other nups within the NPC, 

such as Nup157 and Nup145N (Lutzmann et al., 2005). I will attempt to 

reconstitute complexes between the native heptameric complex and 

recombinant nups purified by other members of the Blobel lab, and to 

determine the 3D structure of these complexes by single-particle EM as 

before. The volume corresponding to the additional bound nup will be 

identified by difference mapping. 

Together, these future experiments should expand our 

understanding of the structural role of the Nup84 complex in the complex of 

the NPC. 
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Interpretation of fluorescence anisotropy measurements of GFP-tagged 

nups 

We established experimental and computational techniques to allow us to 

measure the fluorescence anisotropy of GFP-tagged nups in live yeast cells 

by polarized fluorescence microscopy. GFP attached to ordered nup domains 

was oriented with respect to the NPC, whereas GFP attached to FG domains 

appeared randomly oriented. In two cases, we observed homo-FRET 

between GFP tags. 

For the interpretation of these results in terms of their biological 

significance, a number of caveats need to be taken into account. When GFP 

is attached to nups, different scenarios can be envisaged:  

(i) The GFP can be linked rigidly to the nup, so that GFP dynamics 

reflect dynamics of the tagged nup domain. 

a. A nup highly oriented with respect to the NPC would orient the 

GFP dipole with respect to the NPC. 

b. Tagging of a flexible nup domain, such as the FG domain, 

would result in GFP dipoles that are not oriented with respect to 

the NPC 
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(ii) The link between the GFP and the nup can be so flexible that GFP 

dynamics do not reflect dynamics of the nup it is attached to. The 

GFP will appear randomly oriented, and possibly flexible, although 

the nup domain it is attached to is perfectly oriented. 

(iii) Within the NPC, there may only be a limited number of “niches” 

that can accommodate GFP tags without causing steric clashes 

with nups. The orientation of the GFP tag may therefore reflect its 

optimal positioning in a nearby niche, rather than properties of the 

nup it is attached to. 

We are planning to rule out the “niche” scenario using an 

approach developed in the Mitchison lab (Vrabioiu and Mitchison, 2006, 

2007): the N-terminus of GFP is formed by a short α-helix, which can be 

fused to the C-terminal α-helix of a suitable target protein, to yield a 

defined, rigid linkage between the target and the GFP tag. Furthermore, a 

defined number of α-helix-favoring residues can be introduced, such that the 

linking α-helix is extended. The extension will result in a rotation of the 

GFP tag around the α-helical axis. The angle of this rotation can be 

predicted from the known geometry of the α-helical fold. If the GFP dipole 

rotates in space as predicted when the α-helix is extended, it can be assumed 

that the GFP orientation depends on the nup and the rigid linker, rather than 
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on a niche constraining the nup. Almost half of the yeast nups are predicted 

to feature C-terminal α-helices (Devos et al., 2006) and are thus potential 

targets for the helical extension approach. 

The anisotropy values we obtained were lower than expected. 

For unoriented GFP tags, a value of ~0.4 would be expected for static GFP, 

and a value of ~0.32 for freely rotating GFP. Even homo-FRET would not 

be sufficient to lower the values below ~0.2, based on my calculations. 

One possible explanation is that some of our initial assumptions 

do not apply. Not all nuclear envelopes are perfect spheres, and the 

geometric heterogeneity should lead to lower average anisotropy values. 

Furthermore, the volume imaged by polarized fluorescence microsopy is not 

an infinitely thin central section through the nuclear envelope. The focal 

depth of the microscope is such that light is collected from a thicker section 

of the nuclear envelope, possibly corresponding to ~1/3 of the nuclear 

diameter. Thus, fluorescence from NPCs in different orientations is averaged 

for each value of γ, leading to a decrease in anisotropy. While this effect can 

be ignored for larger spheres, such as cells (Axelrod, 1979), it may become 

very significant for the comparatively small yeast nuclear envelope. It is 

difficult to apply accurate corrections for this effect, since the exact spatial 

intensity distribution of the focal field is not known. 
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An alternative method for determining anisotropy values would 

be the cuvette measurement of a yeast suspension. In that case, the 

anisotropy would be averaged over all nuclei of the entire population, and 

information about the spatial orientation of GFP dipoles with respect to the 

NPC would be lost. However, an independently measured value for the 

anisotropy of unoriented fluorophores would be obtained, and serve as a 

control for the values obtained by microscopy.  

 

Future studies addressing NPC architecture and dynamics in live yeast 

cells 

Two important questions about NPC dynamics remain to be answered: (i) 

what is the gating mechanism – in particular, do FG domains form a static 

meshwork that operates by hydrophobic exclusion, or a highly dynamic 

polymer brush that operates by entropic exclusion? (ii) Does the observed 

plasticity of NPC structure reflect conformational changes that accompany 

active transport, such as NPC dilation to allow the passage of large cargo? 

To answer the first question, we will confirm anisotropy values 

for tagged GFP domains from independent microscopy and cuvette 

measurements. We will also tag the free ends of FG domains with other 

fluorophores, such as small biarsenical dyes that bind to short tetracysteine 
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motifs in live cells, in order to confirm that the measured anisotropy values 

reflect properties of the FG domains, rather than the fluorescent tag. 

To answer the second question, we will optimize our transport 

block protocols and then compare homo-FRET between GFP-nups before 

and after transport block. Dilation during transport should be reflected in a 

reduction in homo-FRET. We will also construct strains in which a second 

species of nup is tagged with mCherry, which is as an efficient hetero-FRET 

acceptor with GFP as a donor. This will enable us to quantify FRET 

independent of anisotropy, which is a great advantage because anisotropy is 

influenced by a number of factors, as discussed in Chapter 3. 

A third application of the techniques we have developed will be 

the determination of nup orientation within the NPC. In combination with 

the α-helical extension approach described in the previous section, we 

should be able to confidently map the orientation of nups containing C-

terminal α-helices. In cases where the crystal structure of the C-terminal nup 

domain is known, this will allow us to predict the orientation of the entire 

nup domain with respect to the NPC. In the case of the Nup84 complex, very 

different models for the arrangement of the complex in the context of the 

NPC have been proposed (Brohawn et al., 2008; Hsia et al., 2007). The 

orientation in which the Nup84 is placed within the NPC differs by 90º 
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between the two models. Our method should therefore be uniquely suited to 

distinguish between the two models in vivo.  
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CHAPTER 5: Materials and Methods 

 

Plasmids 

All plasmids used are listed in Table 1. Oligonucleotide primers used in the 

construction of plasmids and yeast strains were ordered from IDT DNA 

Technologies. Each primer was assigned a number, and the oligonucleotide 

sequences of all primers are listed inTable 2.  

Plasmids were constructed using standard molecular cloning 

techniques (Sambrook et al., 1989). Polymerase chain reactions (PCR) were 

carried out using Kod HiFi DNA polymerase (VWR) following the 

supplier’s protocol. Magnesium concentration, extension time and annealing 

temperature were optimized for each PCR reaction, if necessary. Restriction 

endonucleases and T4 DNA ligase and mung bean nuclease were purchased 

from New England Biolabs. 

Plasmid CP429 was a gift from Susan Wente (Vanderbilt 

University).  

Plasmid pMK484 was constructed by PCR-amplifying yeast-

optimized EGFP from pKT127 with primers 1027 and 1030 to introduce 

PacI and AscI restriction sites and a Gly-Gly-Ser-Gly-Ser-Gly-Gly spacer at 
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the N-terminal end of EGFP. The PCR product was digested with PacI and 

AscI and ligated into the backbone of pKT127 from which the insert 

encoding EGFP had been removed by PacI/AscI cleavage. Plasmid pMK485 

was constructed by ligating the same insert into the backbone of pKT174, 

from which the ECFP sequence had been removed by PacI/AscI cleavage. 

Plasmid pMK489 was created by removing the ECFP sequence from 

pKT174 by PvuII/AscI cleavage, mung-bean nuclease digestion of the 5’-

single-stranded extension of the AscI-cleaved end and religation of the blunt 

ends. To create plasmid pMK490, the EGFP coding sequence from pKT127 

was PCR-amplified using primers 1079 and 1080, which introduced SacI 

and SpeI sites as well as Gly-Gly-Ser-Gly-Ser-Gly-Gly spacer at the C-

terminal end of GFP. This PCR product, as well as pMK489, were digested 

with SacI and SpeI and ligated to yield pMK490. 

Plasmid pMK468 was constructed by PCR-amplifying yeast-

optimized EGFP from pKT127 with primers 965 and 968 to introduce XhoI 

and HindIII restriction sites, as well as a Kozak sequence upstream of the 

open reading frame, and ligating it into the SalI/HindIII digested backbone 

of pUG27. 
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Plasmid 
number Description 

Parent 
plasmid Source 

CP429 GFP-NLS – Strawn et al., 
2004 

pKT127 yEGFP-KanR – Sheff and 
Thorn, 2004 

pKT128 yEGFP-SpHIS5 – Sheff and 
Thorn, 2004 

pKT174 yECFP-CaURA3 – Sheff and 
Thorn, 2004 

pRS422 ADE2-containing plasmid – Christianson et 
al., 1992 

pSH47 PGAL1-cre – Gueldener et al., 
2002 

pUG27 loxP- SpHIS5-loxP  Gueldener et al., 
2002 

pMK468 loxP- SpHIS5-loxP-Kozak-yEGFP pUG27 This study 

pMK484 GGSGSGG-yEGFP-KanR pKT127 This study 

pMK485 GGSGSGG-yEGFP-CaURA3 pKT174 This study 

pMK489 CaURA3 pKT174 This study 

pMK490 CaURA3-yEGFP-GGSGSGG pMK489 This study 

Table 1 Plasmids used in the present work. Details about the construction of 

these plasmids are provided in the text. 
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# Oligonucleotide sequence (5’ to 3’ end) 

920 GAAACGTACAGCACTTTAATTAATATAGACGTCTCTCTAg
gtgctggtttaattaacatg 

921 TACTGATATATAGATATAAACAAAAATATACAATATTTA
AAAtcgatgaattcgagctcg 

922 TCCACCTCTCTGGAAAAACAAATCAACTCGATAAAGAAA
ggtgctggtttaattaacatg 

923 ATGTCAAATAAGTGTAGAATAGAGGGAATTTTTTCTTTTA
GAtcgatgaattcgagctcg 

924 TTACATCAAAAAACGAAAACACTGGCATCATTGAGCATA
ggtgctggtttaattaacatg 

925 GTACTTGTTATACGCACTATATAAACTTTCAGGGCGATTT
ACtcgatgaattcgagctcg 

926 AAAGATGCTGCAATTGTAAAAAAATATAAAAATAAAACG
ggtgctggtttaattaacatg 

927 ATCGATCTTTATACAATTCAGTCATTGATTTAAGTAACCT
GAtcgatgaattcgagctcg 

931 gactaaggttggccatggaactgg 

965 cctgAAGCtttgtacaattcatccataccatggg 

968 cgtaCTCGAGtaaaaaatgtctaaaggtgaagaattattcactgg 

972 GTAACAAAAGACATACCTTGTTGACCAATTGATCACgccact
agtggatctgatatcacc 

973 CGAACCCGTTATTACTACCGCTGAAACCAAACATtttgtacaatt
catccataccatggg 

978 ATTCAGCTTCGAAGATTTCTTTTTTAAAACATTATTgccacta
gtggatctgatatcacc 
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979 CGCTGGGGAATGCGCCACGGCTAACTCCAAACATtttgtacaat
tcatccataccatggg 

982 TAAATATATATATATTGATTACAGAACCATTATAACgccact
agtggatctgatatcacc 

983 TCTCAGTGGGTACTTCATCCTTCAAAGAAGACATtttgtacaatt
catccataccatggg 

984 CAGAAAGATTGCAAGAATGAGGCACTCTAAAAGGatgtctaa
aggtgaagaattattcac 

985 CCTTCAGAAAAGCAACACAATACCTAATTACATAACCGA
TATtcgatgaattcgagctcg 

1027 ggTTAATTAAggtggttctggttctggtggtATGTCTAAAGGTGAAGAA
TTATTCACTGG 

1030 TATggcgcgccTTATTTGTACAATTCATCCATACCATGGG 

1031 ACTATACCATCAACTATGAAACCAACACTGTAGAATACgg
tggttctggttctggtggtA 

1032 CCAGTAAAGTTTATTATATATATGTAAAATTGTATTATAG
catcgatgaattcgagctcg 

1041 TTGAGGGTAAATGGGAACCCGCTGGTGAAGTTCATCAGgg
tggttctggttctggtggtA 

1042 TTTTCTTTTGAGATGTTTCATTTTAAATTCTTGATACTCTcat
cgatgaattcgagctcg 

1043 ATGAATTTAAGTGTATGTCAGTAATTACTGCCCAACAAggt
ggttctggttctggtggtA 

1044 AAGTACCAATATATAATGTTATGTATACATATATTCTTATc
atcgatgaattcgagctcg 

1046 CCTATTGATCAGAATGCCATACGTGAAG 

1050 GAACTTCTAAGCGAGCATGATGACC 
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1051 GGACTCAAGACAATGAACAAGGCCC 

1084 atgtctaaaggtgaagaattattcactgg 

1085 ttcttggccacccatatcacg 

1086 gtagttgggcagatattaccaatgctc 

1087 accaccagaaccagaaccac 

1088 GGATATGATAACTTCAATACAACTCATCG 

1089 ccagtgaataattcttcacctttagacatATGGCTATCCTAATGTACTTCAC
TTGAATTG 

1091 gtggttctggttctggtggtATGAGTGAAAAAAAAGTACATCTTCGTT
TGCGG 

1092 CTTGTGGTCATTGACTAGTCCATATCC 

1164 TTGGTAGCAAACCTGCTACAGGATCC 

1165 ccagtgaataattcttcacctttagacatACTACCAAACAGGCCCGTTGAAC
C 

1166 cccatggtatggatgaattgtacaaaAATAACACCTCTCAATCTACTAAT
GCTGGAG 

1167 CATTTTGTATGCGTTCGTCAAACTGGC 

Table 2 Oligonucleotide sequences of primers used in this study. 

Alternating upper case and lower case letters are used to denote different 

elements of the primer, such as sites recognized by restriction 

endonucleases, spacer sequences, sequences annealing to the PCR template.  
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Yeast strains 

All yeast strains used in the studies described in this thesis are listed in 

(Table 3). Standard procedures of yeast genetics were followed for the 

mating of haploid yeast strains, tetrad dissection of sporulated diploid strains 

and general strain maintenance (Sherman, 2002). Changes of the yeast 

genome sequence were achieved by the commonly used strategy of 

transformation with PCR-generated linear fragments (Sheff and Thorn, 

2004) unless specified otherwise. Yeast transformations with linear or 

plasmid DNA followed the lithium acetate/polyethylene glycol protocol 

(Gietz and Woods, 2002).  

Nup84 complex was purified from budding yeast in which the 

C-terminus of Nup85 was genomically tagged with a tandem affinity 

purification (TAP) tag (Ghaemmaghami et al., 2003). C-terminally GFP-

tagged strains MKY1262, MKY1266 and MKY1267 were derived from this 

strain using standard methods for genomic tagging. A seven-amino-acid 

spacer with the sequence Gly-Gly-Ser-Gly-Ser-Gly-Gly was included 

between GFP and the nup in all constructs in order to minimize the 

likelihood that the GFP-tag would disrupt physiological interactions between 

nucleoporins. Linear DNA encoding the spacer, GFP and a kanamycin 
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resistance marker that was flanked by sequences corresponding to the DNA 

sequence of the desired genomic locus of integration in yeast was generated 

by PCR, using pMK484 as a template and the following primer pairs: to 

construct MKY1262, primers 1031 and 1032; to construct MKY1266, 

primers 1043 and 1044; to construct MKY1267, primers 1041 and 1042. To 

confirm correct genomic integration of the tag, control PCRs were carried 

out, using genomic DNA from the newly constructed strains as a template 

and a primer that annealed to the GFP coding sequence (primer 931) in 

combination with a primer that annealed to the coding sequence of the 

targeted nup (primer 1046 for MKY1262, primer 1050 for MKY1266, and 

primer 1051 for MKY1267). 

N-terminal tagging of Nup133 with EGFP was achieved in two 

steps by adaptamer-based genomic tagging (Reid et al., 2002). Pieces of 

genomic DNA sequences corresponding to the regions flanking the desired 

insertion site were amplified from yeast genomic DNA using primers 1088 

and 1089 (upstream fragment) and primers 1091 and 1092 (downstream 

fragment). The PCR introduced a sequence corresponding to the 5’ end of 

the GFP coding sequence into the upstream fragment, and a sequence 

corresponding to the spacer into the downstream fragment. A fragment 

corresponding to the EGFP coding sequence followed by the first ~2/3 of the 
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Candida albicans URA3 coding sequence was created using primers 1084 

and 1085 with pMK485 as a template. This PCR product was spliced to the 

upstream fragment in a PCR reaction with primers 1085 and 1088. A 

fragment corresponding the last ~2/3 of the C. albicans URA3 coding 

sequence followed by the EGFP coding sequence was created using primers 

1086 and 1087 with pMK490 as a template. This PCR product was spliced 

to the downstream fragment in a PCR reaction with primers 1086 and 1092. 

The two different spliced fragments were pooled and transformed into the 

Nup85-TAP-HIS3 strain to yield MKY1268. In this strain, the GFP-URA3 

cassette separates the Nup133 promoter from the GFP-GGSGSGG-Nup133 

coding sequence and thus prevents expression of the GFP-tagged nup. 

MKY1268 was therefore plated on medium containing 5-fluoro-orotic acid 

(5-FOA, purchased from American Bioanalytical), which selected for cells 

in which the URA3 marker had been eliminated by recombination between 

the two GFP sequences. The resulting strain was named MKY240. 

Strains for fluorescence anisotropy medium were constructed in 

a W303 background since this strain is known to sporulated more efficiently 

than BY4743. However, the ade2– background of W303 causes the 

accumulation of a highly fluorescent metabolite. I therefore constructed a 

diploid W303 strain in which both copies of ade2– were repaired by 
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transformation with the ADE2 wild type sequence, obtained as the BglII 

fragment from plasmid pRS422 (Christianson et al., 1992). This strain, 

referred to as MKY363, was the parent for the GFP-tagged strains used for 

polarized microscopy. C-terminal diploid GFP fusion strains of Nsp1 

(MKY1210), Nup49 (MKY1211), Nup57 (MKY1212) and Nic96 

(MKY1213) were obtained by transformation with a PCR product generated 

from template pKT127 with the following primer pairs, respectively: 

922+923, 924+925, 926+927, 920+921. A diploid C-terminal GFP fusion 

strain of Nup1 (MKY1221), was obtained by transformation with a PCR 

product generated from template pKT128 with primers 984+985.  

N-terminal fusions of Nup57, Nup116 and Nup159 were 

obtained in a two-step procedure. MKY363 was transformed with PCR 

fragments generated from template plasmid pMK468 with the following 

respective primer pairs: 972+973, 978+979, 982+983. The SpHis5 marker 

was removed by cre-lox recombination (Gueldener et al., 2002) to obtain the 

final strains MKY216, MKY219 and MKY221. 

The internal GFP fusion of Nup116 was created by adaptamer-

based genomic tagging (see above) using the following primer pairs: 

1164+1165 to generate the upstream genomic flanking sequence, 

1166+1167 to generate the downstream genomic flanking sequence. 
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Corresponding haploid strains were obtained by sporulation and 

tetrad dissection of diploids. 

 

 

Strain 
number Description 

Strain 
background / 
Parent strain Source 

– W303 diploid MATa/α leu2-
3,112  ade2-1   
his3-11,15  ura3-
1  trp1-1  can1-
100 

ATTC 

– BY4741 MATa his3Δ1 
leu2Δ0 met15Δ0 
ura3Δ0 

ATTC 

– Nup85-TAP-HIS3 BY4741 Ghaemmag
hami et al., 
2003 

LDY551 mtr1-1 (ran-GEF ts mutant) W303 Booth et al., 
1999  

MKY1262 Nup133-GFP-KanR Nup85-TAP-HIS3 This study 

MKY1266 Seh1-GFP-KanR Nup85-TAP-HIS3 This study 

MKY1267 Sec13-GFP-KanR Nup85-TAP-HIS3 This study 

MKY1268 GFP-URA3-GFP-Nup133 Nup85-TAP-HIS3 This study 

MKY240 GFP-Nup133 Nup85-TAP-HIS3 This study 

MKY363 ADE2/ADE2 W303 This study 

MKY1210 Nsp1-GFP-KanR diploid MKY363 This study 
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MKY1211 Nup49-GFP-KanR diploid MKY363 This study 

MKY1212 Nup57-GFP-KanR diploid MKY363 This study 

MKY453 Nup57-GFP-KanR haploid MKY1212 This study 

MKY1213 Nic96-GFP-KanR diploid MKY363 This study 

MKY454 Nic96-GFP-KanR haploid MKY1213 This study 

MKY1221 Nup1-GFP- SpHIS5 diploid MKY363 This study 

MKY216 GFP-Nup57 diploid MKY363 This study 

MKY455 GFP-Nup57 haploid MKY216 This study 

MKY219 GFP-Nup116 diploid MKY363 This study 

MKY457 GFP-Nup116 haploid MKY219 This study 

MKY221 GFP-Nup159 diploid MKY363 This study 

MKY459 GFP-Nup159 haploid MKY221 This study 

MKY227 Nup116 with GFP tag 
between FG domain and 
structured domain, diploid 

MKY363 This study 

MKY469 Nup116 with GFP tag 
between FG domain and 
structured domain, diploid 

MKY227 This study 

Table 3 Yeast strains used in the present work. Details about the 

construction of these strains are provided in the text. 
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Nup84 complex purification 

Yeast cells were grown in YPD medium at 30ºC, harvested in mid-

exponential phase (OD600 = 0.4–0.6), washed in water and frozen in liquid 

nitrogen. Frozen cell pellets were ground cryogenically in a Retsch MM301 

bead mill, following the method by Cristea and colleagues (Cristea et al., 

2005). 4.5 l of cell culture yielded ~3 g of cell powder. 1.5 g cell powder 

was thawed in 13.5 ml lysis buffer (500 mM NaCl, 110 mM KOAc, 2 mM 

MgCl2, 20 mM HEPES pH 7.5, 0.05% CHAPS, 1 mM DTT, 1 mM PMSF, 5 

µM pepstatin A and 1/100 volume of protease inhibitor cocktail, Sigma 

catalogue number P8340), homogenized in a Dounce homogenizer (40 

strokes, tight pestle) and the lysate was clarified by centrifugation for 15 

minutes at 3,200 g. Clarified lysate was incubated for 1 hour at 4ºC with 109 

magnetic beads (Dynal) that were freshly coated with rabbit IgG (MP 

Biomedicals). A twofold dilution series of lysis buffer into elution buffer 

(200 mM NaCl, 110 mM KOAc, 2 mM MgCl2, 20 mM HEPES pH 7.5, 

0.05% CHAPS, 1 mM DTT) was prepared, and the beads were washed with 

five 1ml aliquots of sequentially diluted buffer to obtain a stepwise reduction 

in NaCl concentration. The beads were then resuspended in 500 μl of elution 

buffer, 100 units of AcTEV protease (Invitrogen) were added, and the 
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sample was incubated for 1 hour at 4ºC. The eluate was concentrated tenfold 

using Amicon Ultra filters (Millipore, 50 kDa molecular weight cutoff) and 

aggregates were removed from the concentrated sample by centrifugation for 

15 minutes at 18,000 g. The soluble fraction was then subjected to size-

exclusion chromatography in elution buffer on a Superose-6 column (2.4 ml 

column volume). For analytical purposes, eluted fractions were analyzed by 

SDS-PAGE, stained with Coomassie, and each individual protein band was 

identified by mass spectrometry. 

During optimization of the purification protocol, recovery and 

loss of heptameric complex at different steps was estimated by quantifying 

signals from Western blotting using an antibody against the calmodulin-

binding peptide moiety of the TAP-tag (Open Biosystems). The optimized 

procedure recovered ~20% of total cellular heptameric complex. ~10% was 

lost upon lysate clarification, < 2% was lost during bead washing, < 1% was 

lost due to incomplete cleavage with TEV protease, ~5% was lost during 

eluate concentration, < 1% was lost during removal of insoluble complex 

before size exclusion chromatography. The remaining loss occurred during 

incubation of the clarified lysate with IgG-dynabeads. We found that the 

amount of beads was limiting for subcomplex recovery at this step. 
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Electron microscopy 

For EM, 3 µl of the 150 µl fraction containing heptameric complex (elution 

volume 1.1–1.25 ml, see Fig. 1a) was directly applied to a glow-discharged 

carbon-coated copper grid and stained with three drops of 2% uranyl 

formate. Electron micrographs of negatively stained samples were collected 

with a defocus of –1.0 µm and doses not exceeding 10 e–/Å2 per exposure on 

a JEOL2100 field emission gun transmission electron microscope at 200 kV 

and recorded with a CCD camera at a calibrated magnification of 40,641, 

corresponding to 5.91 Å/pixel. Micrograph pairs were taken at tilt angles of 

50º and 0º in a semi-automated manner using SerialEM (Mastronarde, 

2005). All images for a given construct were taken from a single grid over 

several days. 

 

EM Image processing and analysis, 3D reconstruction 

Low-pass filtering of the micrographs at (15 Å)–1, the spatial frequency 

corresponding to the first node of the contrast transfer function, was applied 

instead of contrast transfer function-correction. Pairs of tilted particles were 

selected interactively in the program WEB (Frank et al., 1996). Reference-

free alignment and classification of untilted particles was carried out using 

the program EMAN (Ludtke et al., 1999). Angles between particle segments 
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in 90 class averages obtained from k-means classification in EMAN were 

measured in ImageJ (Abramoff et al., 2004) as accurately as possible. 

Principal component analysis was carried out in Matlab (The Mathworks). 

All remaining steps were implemented in SPIDER, based on procedures 

described in the SPIDER documentation (Frank et al., 1996). The global set 

of aligned particles was subjected to correspondence analysis and 

hierarchical ascendant classification to group particles. For two well-defined 

groups, initial 3D reconstructions were obtained from tilted particle images 

using random conical tilt reconstruction (Radermacher et al., 1986). These 

initial maps were used as references for projection matching. Reference 

projections were created in 5º increments for tilt angles from 40º to 55º, 

resulting in 205 projections per initial map. Each of the 9,028 tilted particle 

images was matched to the projection from either of the two references that 

resulted in the highest cross-correlation coefficient. Final maps were 

obtained by the simultaneous iterative refinement technique to minimize 

missing-cone effects. 

To localize GFP densities for tagged complexes, images of 

untilted GFP-tagged and untagged particles were pooled and subsequently 

aligned and classified as before. Well-defined classes were selected and 

separate class averages for tagged and untagged particles from the same 
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class were calculated. Significance of differences between the two class 

averages was calculated using the method by Wagenknecht and colleagues 

(Wagenknecht et al., 1988); pixels with intensity values below the average 

value in both tagged and untagged class average images were not included in 

the significance map since they were localized outside the particle and 

therefore reflected differences in stain levels.  

 

Docking of crystal structures into EM maps 

All figures of crystal structures and EM maps were prepared using Chimera 

(Pettersen et al., 2004). Structures with the PDB codes 3F3F (Nup85·Seh1), 

1XKS (Nup133) and 3BG0 (Nup145C·Sec13) were docked independently as 

rigid bodies into particle maps 1 and 2 by exhaustive cross-correlation based 

search in Situs (Chacon and Wriggers, 2002; Wriggers et al., 1999). From 

the list of likely positions, the highest-scoring position that placed the crystal 

structure in the correct segment of the particle (as assigned in Fig. 7a) was 

chosen. PDB code 3CQG (Nup107·Nup133) was docked locally based on 

cross-correlation in Chimera, since docking in Situs did not place the crystal 

structure in the correct segment of the EM map. 
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Fluorescence Polarization Microscopy of Yeast Cells 

Yeast cells were grown at 30ºC in synthetic medium lacking riboflavin and 

folic acid (Sheff and Thorn, 2004), which will be referred to as “low-

fluorescence medium”. During the exponential growth phase (OD600 = 0.3-

0.6), 1 ml of cell suspension was withdrawn and cells were pelleted by 

centrifugation for 5 seconds at 10,000 g. The supernatant was removed and 

the cell pellet was resuspended in 10 μl of low-fluorescence medium. 1 μl of 

the concentrated cell suspension was placed on a glass slide and the cells 

were immobilized by spreading the suspension with a glass cover slip. Cells 

mounted in this way could be imaged for up to 20 minutes. We compared 

this simple mounting protocol to the following, more elaborate protocol 

kindly provided by Dr. Frank Neumann (The Rockefeller University): A flat 

agarose pad was created in a depression on a glass slide by applying a heated 

solution of 1.4% agarose in low-fluorescence medium to the depression and 

removing excess agarose by sliding a second glass slide across the 

depression. Once the pad solidified, 2 μl of concentrated yeast cell 

suspension was applied to the pad and spread with a cover slip. We did not 

find any differences in the results obtained with these two mounting 

techniques when we tested both in a variety of experiments, and therefore 

decided to use the simpler mounting protocol, not involving the agarose pad. 
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For energy-depletion experiments, 1 ml of yeast cell suspension 

was withdrawn from an exponentially growing culture and pelleted as 

described above. The supernatant was removed and the cells were 

resuspended in 1 ml of energy-depletion medium (low-fluorescence medium 

lacking glucose and containing 50 mM sodium azide and 50 mM 2-

deoxyglucose). For end-point imaging, the cells were incubated at 30ºC for 

20 minutes and then pelleted and mounted as before. For time-course 

imaging, the cells were pelleted immediately after resuspension in energy-

depletion medium and mounted as before, and images were taken over 20 

minutes. 

To monitor nuclear import activity, yeast strains transformed 

with plasmid CP429 (Strawn et al., 2004) were grown in low-fluorescence 

medium lacking uracil and methionine. Lack of uracil selected for cells 

maintaining the plasmid, which carries the URA3 gene required for uracil 

prototrophy in a ura3– genetic background. Lack of methionine induced 

expression of the GFP-NLS reporter protein from the methionine-repressible 

MET25 promoter. 

An Olympus IX-70 wide-field microscope was set up for GFP 

fluorescence polarization microscopy as follows: light from a Xenon lamp 

was passed through a polarizer and the following filter set: excitation filter, 
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Chroma HQ 470/40 nm bandpass; dichroic mirror, 495 nm long-pass; 

emission filter, Chroma HQ 525/50 nm band-pass. A 60X oil objective with 

a numerical aperture of 1.45 was used. An Optosplit III Image Splitter 

(Cairn Research) split the emitted light based on polarization parallel versus 

perpendicular to the polarization direction of the exciting light, and these 

two channels were recorded as a split image with an ORCA-ER cooled CCD 

camera (Hamamatsu). Image acquisition was controlled by Metamorph 

software (Molecular Devices). 

During each microscopy session, control images were taken of 

slides prepared with media lacking cells to correct for camera background 

and background fluorescence of the medium, and of a fluorescein solution 

assumed to have no fluorescence anisotropy to calibrate the relative intensity 

of the images that were split on the basis of polarization. 

 

Quantitative analysis of fluorescence anisotropy 

During each microscopy session, control images of medium alone, and of a 

fluorescein solution were taken. The medium-only images were used to 

calculate the fluorescence and camera background for each channel, and to 

substract it from the experimental images. The fluorescein solution was 

assumed to have an anisotropy of 0, since fluorescein is a small molecule 
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with a high rotational diffusion constant. Fluorescein images could thus be 

used to correct for differential transmission of light intensities in the parallel 

and perpendicular channels. 

Pairs of images of the same cell were individually aligned 

based on cross-correlation with sub-pixel accuracy, and the nuclear 

envelopes were centered within the image by a program we developed for 

this purpose in SPIDER.  

Centering of nuclear envelopes was achieved as follows: a 

circular mask with a radius of 24 pixels was applied in order to exclude 

adjacent cells, pixels with intensities less than one standard deviation above 

the image average were set to 0 intensity, and the center of gravity 

calculated from the remaining pixels was shifted to the center of the image. 

The remainder of the analysis was carried out using MATLAB programs we 

developed. Anisotropy was calculated pixel-by-pixel for the aligned pairs of 

images corresponding to the parallel and perpendicular fluorescence 

intensities. Only the 10% of pixels with the brightest intensity values in the 

parallel channel were further analyzed, since these pixels corresponded to 

the nuclear envelope region (Figure 41). 

Analysis of sector anisotropy was carried out in MATLAB, 

using a sector mask as shown in Figure 42. 
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