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ABSTRACT

Chromosome segregation during cell division requires spindle assembly around M-phase

chromatin.  In cells lacking centrosomes, such as those found in female meiosis,

chromosomes themselves nucleate and stabilize microtubules in order to promote

accurate spindle formation.  Here we present a description of the composition and

function of the vertebrate chromosomal passenger complex (CPC), known to include

Incenp, Survivin, and the kinase Aurora B.  We report the identification of Dasra A and

Dasra B as two new components of the vertebrate CPC, and demonstrate that the CPC is

required for chromatin-dependent spindle formation in Xenopus egg extracts.  The failure

of microtubule stabilization caused by depletion of the chromosomal passenger complex

is rescued by codepletion of the microtubule-depolymerizing kinesin MCAK, whose

activity is negatively regulated by Aurora B.  We demonstrate that the Aurora B pathway

is normally suppressed in the cytosol, but becomes activated by chromatin and

centrosomes, leading to the phosphorylation of both histone H3 and the microtubule

destabilizing protein Op18/Stathmin.  Chromatin-mediated CPC activation and spindle

assembly require Dasra protein-dependent chromatin binding by the CPC, but this

function of Dasra proteins can be bypassed by adding anti-Incenp antibodies, which

autonomously stimulate Aurora B pathway activity.  Such inappropriate CPC activation

leads to the formation of centrosomal spindles lacking chromosomes.  These results

demonstrate that Dasra proteins make the Aurora B pathway competent for chromatin-

dependent activation, and provide a mechanism for the spatial regulation of spindle

assembly.
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That which seems like poison at first, but tastes like nectar in the
end—that is the joy of sattva, born of a mind at peace with itself.

- Bhagavad-Gita, 18:37
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CHAPTER 1

Introduction

     All eukaryotic organisms face the fundamental challenge of accurately replicating and

distributing their genetic material through successive cellular divisions.  Failure in this

regard can have catastrophic consequences not only for the individual cell, but also for

the adult organism.  For this reason, as well as due to the dramatic cytological

rearrangements seen during cell division, the mechanisms controlling cellular

proliferation have long held a special interest [reviewed in (Nasmyth, 2001)].  The study

of chromosome segregation in particular has spanned most of the past 130 years, dating

back to the initial observations on sister chromatid separation (Flemming, 1879) and the

chromosomal basis of development (Boveri, 1888; 1907).  Nonetheless it is only in the

relatively recent past that meaningful progress has been made toward understanding in

molecular detail how the cell and chromosome cycles are accurately and coordinately

controlled.

The Logic of Cell Cycle Control

     It is now understood that progression through the eukaryotic cell cycle is controlled

through the sequential activity of cyclin-dependent kinases (CDKs), which, as implied by

their name, are dependent on the presence of cyclin proteins for their function [reviewed

in (Nurse, 2000)].  In animal cells, Cdk2 bound to S-phase specific cyclins (Cyclins E

and A) acts to promote S-phase progression, whereas Cdk1 binding to M-phase cyclins

(Cyclins A and B) allows entry into mitosis.  The levels of cyclins themselves are
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controlled through temporally restricted expression coupled to alternating rounds of

ubiquitin-mediated proteolysis, ensuring that the cell cycle proceeds unidirectionally.

Likewise, DNA replication is limited to one round per cycle through the control of pre-

replication complex (pre-RC) assembly by CDK (Blow and Dutta, 2005).  In higher

eukaryotes, protein inhibitors of pre-RC formation also exist which are themselves

degraded during anaphase of the preceding cell cycle (McGarry and Kirschner, 1998;

Tada et al., 2001).  The overall effect of such a system is to maintain an orderly

progression of cellular events, culminating in cell division and a reinitiation of the clock.

Moreover, since progression to each step of the cycle is largely dependent on the

successful completion of the previous step, each transition provides a “checkpoint” to

ensure that the genetic material is still intact [reviewed in (Hartwell and Weinert, 1989;

Nyberg et al., 2002)].

Microtubule Dynamics and Dynamic Instability

     Chromosome segregation occurs during M-phase, and requires the establishment of

the spindle, a bipolar structure along which chromosomes segregate during anaphase.

The spindle is comprised of microtubules, themselves polymers of αβ tubulin

heterodimers [reviewed in (Desai and Mitchison, 1997)].  Tubulin dimers spontaneously

assemble into protofilaments by longitudinal association, and each microtubule consists

of a hollow ~25 nm tube formed by lateral association of approximately 13 tubulin

protofilaments.  The ‘head-to-tail’ orientation of α- and β-tubulin within each

protofilament generates a natural polarity to microtubules, in which one end terminates in

α-tubulin subunits, while the other terminates in β-tubulin subunits.  By convention, the
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former is referred to as the minus end (slow growing) and the latter as the plus end (fast

growing).

     Microtubules are dynamic structures, a property which is thought to aid in the capture

of chromosomes during M-phase.  The behavior exhibited by microtubules in vivo has

been termed dynamic instability (Mitchison and Kirschner, 1984), which refers to the

manner in which microtubules stochastically transition between phases of growth and

shrinkage.  According to this model, the dynamic properties of microtubules can be

described by four parameters: growth rate, shrinkage rate, catastrophe frequency (the

frequency of transitions from growth to shrinkage per unit time), and rescue frequency

(the frequency of transitions from shrinkage to growth per unit time).  GTP-bound tubulin

dimers are added onto the growing microtubule end during the growth phase, which is

however also associated with GTP hydrolysis by β-tubulin within the microtubule lattice

(David-Pfeuty et al., 1977); it is the instability introduced into the lattice by GTP

hydrolysis by β-tubulin that makes dynamicity possible.  During shrinkage, free GDP-

bound dimers or oligomers are released, at which point GTP can be exchanged for GDP,

and the cycle can repeat (Figure 1-1).
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Figure 1-1.  Mechanics of Microtubule Growth and Shrinkage
During microtubule growth, GTP-tubulin dimers are added to the growing end as GTP is
hydrolyzed by β-tubulin within the microtubule lattice, while during shrinkage GDP-
tubulin is released from shrinking ends.  Reproduced from Kinoshita et al., 2002.

     The values of the parameters of microtubule dynamics can be adjusted by numerous

factors, including binding by Microtubule Associate Proteins (MAPs).  For instance, it

has been shown that XMAP215, a well-characterized MAP from Xenopus, can stimulate

the growth rate of microtubules 8-fold (Gard and Kirschner, 1987), and also acts to

inhibit catastrophes (Tournebize et al., 2000).  The parameters of dynamic instability can

also be modulated by the activity of members of the kinesin family of  microtubule motor

proteins, in particular the ‘KinI’ family, which contain an internal motor domain and

seem to act as microtubule catastrophe promoting factors (Desai et al., 1999b).  In

addition, the oncoprotein 18 (Op18)/stathmin protein has been described to promote

catastrophe (Belmont and Mitchison, 1996; Howell et al., 1999b), potentially by

sequestration of tubulin dimers.
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Pathways of Spindle Formation: Astral Spindle Assembly

     Spindle formation is thought to occur by at least two pathways, one of which relies on

the self-assembly of microtubules around chromatin during M-phase, and the other of

which is organized by microtubule nucleation from centrosomes [reviewed in (Karsenti

and Vernos, 2001)].  These pathways have been referred to as ‘anastral’ and ‘astral’,

respectively, since they differ in their reliance on the astral microtubules nucleated by

centrosomes (Varmark, 2004).  In metazoa, the anastral chromatin-dependent pathway is

thought to dominate during female meiosis (in which centrosomes are absent) and in

higher plants.  Conversely, the astral pathway plays a major role during somatic cell

divisions in animals.

     The astral pathway of spindle assembly is largely controlled by centrosomes in their

capacity as microtubule organizing centers (MTOCs).  Centrosomes are paired organelles

each consisting of a pair of centrioles embedded in a proteinaceous matrix referred to as

the pericentriolar material (PCM).  During mitosis, one centrosome is typically found at

each spindle pole, such that each daughter cell inherits one centrosome after cell division;

this centrosome is then duplicated during S-phase of the next cell cycle, concomitant with

DNA replication (Compton, 2000).  As cells enter mitosis, the centrosomes separate and

begin to nucleate highly dynamic astral microtubules.  This increase in dynamicity is at

least partly due to a dramatic increase in the catastrophe rate of microtubules (Inoue and

Salmon, 1995).  It has been suggested that the increase in dynamicity could provide a

mechanism underlying a ‘search-and-capture’ mechanism for chromosome attachment to

the mitotic spindle (Holy and Leibler, 1994; Kirschner and Mitchison, 1986).  In this

model, microtubules are proposed to randomly search space until they come in contact
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with kinetochores, the proteinaceous structures formed on the centromeres of

chromosomes during cell division, and which are required for spindle attachment;

interaction between these ‘kinetochore fiber’ (K-fiber) microtubules and kinetochores

would then stabilize K-fibers [see Figure 1-2; (Mitchison et al., 1986; Mitchison and

Kirschner, 1985)].  Such a mechanism would require that microtubules be sufficiently

dynamic to efficiently search for chromosomes throughout all of the volume of a mitotic

cell.

Figure 1-2.  Structure of the Mitotic Spindle During Astral Spindle Assembly
Astral spindles are proposed to form by ‘search-and-capture’ mechanisms, in which
dynamic plus-ends of astral microtubules nucleated from centrosomes stochastically
search space, becoming stabilized on binding to kinetochores.

     Chromosome capture by astral microtubules should usually lead to monopolar

orientation of the chromosome, as it is extremely unlikely that a replicated chromosome

will simultaneously attach each sister chromatid correctly.  Monopolar orientation is
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usually followed by poleward movement of the chromosome, which however eventually

becomes properly orientated after capture of the previously unattached sister chromatid

by microtubules emanating from the opposite spindle pole [reviewed in (Compton,

2000)].  Cells have developed elaborate mechanisms to ensure that anaphase is delayed

until all chromosomes have become properly captured and oriented in this way (see

below).

     The microtubule nucleating capacity of centrosomes is crucial to their function in

astral spindle formation.  As mitosis initiates, centrosomes undergo a process termed

maturation, in which factors important for microtubule nucleation are progressively

accumulated into the PCM.  These proteins include XMAP215 and the γ-tubulin ring

complex (γTuRC), the latter being comprised of a tubulin variant which is involved in the

initial stages of microtubule nucleation from centrosomes (Oakley and Oakley, 1989;

Zheng et al., 1995).  The process of centrosome maturation requires the function of the

Aurora A kinase, which functions in multiple capacities to promote centrosome function.

These include phosphorylation of transforming acidic coiled-coil (TACC) proteins, which

has been demonstrated to recruit TACC proteins to centrosomes and promote their

interaction with XMAP215.  In turn, centrosomal XMAP215 promotes microtubule

stability at nascent plus ends, allowing microtubule growth (Barros et al., 2005; Kinoshita

et al., 2005).  Consistent with these findings, loss of Aurora A leads to decreased γ-

tubulin and XMAP215 accumulation, diminished centrosomal microtubule density and

length, and abnormal centriole numbers (Berdnik and Knoblich, 2002; Giet et al., 2002;

Gietz and Sugino, 1988; Hannak et al., 2001; Terada et al., 2003).
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Pathways of Spindle Formation: Anastral Spindle Assembly

     Recently at least three major pathways have been found to be essential for the

chromatin-dependent pathway of spindle assembly.  One of these involves Ran, a small

GTPase which has been intensively studied due to its important role in nucleocytoplasmic

shuttling during interphase [reviewed in (Harel and Forbes, 2004)].  It is now clear,

however, that Ran also has a crucial function in cell division.

     Ran controls nucleocytoplasmic shuttling by regulation of a group of nuclear transport

proteins known as karyopherins, which includes molecules involved in nuclear import

(importins) and others involved in nuclear export [exportins; (Weis, 2002)].  Importins

themselves can be further subclassified into the α and β families, which regulate import

by binding to the nuclear localization signal (NLS) of proteins destined for the nucleus.

Binding of Ran-GTP to importins causes the release of their associated cargo, which

therefore can become locally concentrated.  During interphase, the levels of Importin-

associated cargoes in the nucleus rises due to the action of RCC1, the guanine nucleotide

exchange factor for Ran (Bischoff and Ponstingl, 1991; Kalab et al., 2002; Zheng, 2004).

Since RCC1 itself binds histones (Nemergut et al., 2001; Ohtsubo et al., 1989), and is

activated in the presence of chromatin (Nemergut et al., 2001), Ran-GTP levels become

elevated within the nucleus.  Moreover, the localization of RanGAP (the GTPase

activating protein for Ran) to the cytoplasm ensures the directionality of cargo transport

(Figure 1-3).
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Figure 1-3. Production of a Nucleocytoplasmic Ran-GTP Gradient by RCC1 and
RanGAP
Nuclear Ran-GTP levels are maintained at high levels by the action of chromatin-
associated RCC1, which catalyzes GTP loading onto Ran, and cytoplasmic RanGAP,
which promotes GTP hydrolysis by Ran.  Reproduced from (Zheng, 2004).

     As cells enter mitosis, the concentration of Ran-GTP in the nucleus leads to a locally

high level of Ran-GTP in the vicinity of mitotic chromosomes; this enrichment has been

directly visualized in both Xenopus egg extract (Kalab et al., 2002) and in mammalian

cells (Li and Zheng, 2004a; Li and Zheng, 2004b).  The high levels of chromatin-

proximal Ran-GTP then lead to the release of ‘spindle assembly factors’ (SAFs), NLS-

containing proteins bound to the Importins which function in assembly of the spindle

during M-phase; such proteins include NuMA, TPX2, and XCTK2 [Figure 1-4; (Gruss et

al., 2001; Nachury et al., 2001; Wiese et al., 2001)].  These proteins play multiple roles in

spindle assembly, including important functions in microtubule nucleation and spindle

pole organization (Garrett et al., 2002; Gruss et al., 2001; Merdes et al., 2000; Merdes et

al., 1996).
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Figure 1-4. Ran-GTP Promotes Spindle Assembly Through the Release of
Importin-bound Spindle Assembly Factors
Ran-GTP binding induces the release of Spindle Assembly Factors (SAFs) from their
inhibitory binding to Importin α/β.  Reproduced from Zheng, 2004.

     Interestingly, when the upstream components of this pathway are bypassed in Xenopus

egg extract by the direct introduction of non-hydrolysable Ran-GTP, bipolar spindles and

asters are formed in the complete absence of centrosomes and chromosomes (Carazo-

Salas et al., 1999; Ohba et al., 1999; Wilde and Zheng, 1999).  Accordingly, it has been

observed that Ran-GTP itself affects microtubule dynamics, inducing a ~3-fold increase

in microtubule rescue frequency in Xenopus egg extract (Carazo-Salas et al., 2001; Wilde

et al., 2001).  Moreover, Ran-GTP increases the microtubule-nucleating activity of

centrosomes (Carazo-Salas et al., 2001), and has been proposed to the source of the long-

range communication described to occur between chromatin and centrosomes (Carazo-

Salas and Karsenti, 2003). Ran has therefore emerged as a central player in multiple

aspects of spindle formation, and is likely to play key roles both on chromosome arms,

kinetochores (Joseph et al., 2002), and at centrosomes.

     It has recently been proposed that the chromosomal Polo-like kinase Plx1 controls

another pathway required for chromatin-dependent microtubule assembly (Budde et al.,
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2001).  In particular, it was found that depletion of Plx1from Xenopus egg extracts causes

formation of aberrant spindle structures having reduced microtubule density around M-

phase chromatin; interestingly, it was demonstrated that this effect of Plx1 depletion

coincides with reduced phosphorylation of Op18/Stathmin, a small tubulin-binding

protein previously described to be overexpressed in some types of tumors (Budde et al.,

2001; Curmi et al., 2000).

     Op18 exhibits an extremely complex phosphorylation pattern, and during M-phase

becomes phosphorylated on three sites in a manner sensitive to chromatin and/or

microtubule stabilization (Andersen et al., 1997; Kuntziger et al., 2001).  Although the

protein has no reported enzymatic activity, phosphorylation has been reported to

antagonize an intrinsic microtubule destabilizing activity of Op18, such that introduction

of non-phosphorylatable mutants perturbs microtubule stabilization and spindle formation

(Andersen et al., 1997; Budde et al., 2001; Marklund et al., 1996).  The actual mechanism

by which Op18 destabilizes microtubules is controversial; both tubulin sequestration and

direct catastrophe promotion have been proposed and supported by experimental

evidence (Belmont and Mitchison, 1996; Howell et al., 1999a; Howell et al., 1999b;

Larsson et al., 1997).  Regardless of the downstream mechanism however, it is thought

that chromatin-derived signals lead to Op18 phosphorylation and inhibition, allowing

localized microtubule stabilization in the vicinity of chromosomes during M-phase

(Figure 1-5).  The question of whether Plx1 represents the only or even the main

chromatin-dependent inhibitor of Op18-mediated microtubule destabilization currently

remains unanswered.
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Figure 1-5. A Model For Chromatin-Dependent Inactivation of Op18/Stathmin
Chromatin-associated kinases, such as the Xenopus Polo-like kinase Plx1 are proposed to
phosphorylate and inactivate the microtubule destabilizing activity of Op18/Stathmin (red
line), allowing chromatin-dependent spindle assembly.  Reproduced from Budde et al.,
2001.

     We recently described a third pathway required for chromatin-dependent spindle

formation, which involves an evolutionarily conserved group of proteins referred to as

the ‘chromosomal passenger complex’ [CPC; (Sampath et al., 2004)].  These proteins,

which in higher eukaryotes include Aurora B, Incenp, Dasra A/B, and Survivin, form a

stable complex, and share a dynamic localization pattern throughout M-phase (Bolton et

al., 2002; Carmena and Earnshaw, 2003; Losada et al., 2002).  Incenp (inner centromere

protein) was originally isolated in a biochemical screen for antigens derived from purified

‘chromosomal scaffold’ preparations (Cooke et al., 1987), and was notable at the time for

its striking relocalization from inner centromeres at metaphase to the spindle midzone at

anaphase .  In contrast, the budding yeast homolog of Aurora kinase family, Ipl1, was

identified genetically as causing increased ploidy when mutated (Chan and Botstein,

1993).  The appreciation of the functional interrelatedness of the passenger proteins came

when it was found that all shared the same distinct localization patterns as Incenp, and
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were interdependent for their correct localization (Adams et al., 2000; Kaitna et al.,

2000).  In addition to those previously mentioned, several other proteins have been

suggested to behave as chromosomal passenger proteins.  For instance, the recently

discovered protein TD-60 has been reported to colocalize with the CPC, and is required

for Aurora B and Survivin localization in mammalian cells (Mollinari et al., 2003).

Likewise, the ICIS protein was isolated as a microtubule-binding protein which localizes

to inner centromeres, physically interacts with the CPC, and activates the microtubule

depolymerase MCAK, a member of the KinI family of kinesins (Ohi et al., 2003).  Orc6,

a component of the origin recognition complex (ORC), has also been proposed to serve

as a chromosomal passenger protein, a speculation based largely on its distinctive CPC-

type localization pattern during mitosis (Prasanth et al., 2002).

     From numerous studies involving loss of function of individual CPC components, it

has become clear that this complex has important roles in promoting proper chromosome

orientation, spindle formation, spindle checkpoint signaling, and cytokinesis (Ditchfield

et al., 2003; Hauf et al., 2003; Kaitna et al., 2000; Lampson et al., 2004; Mackay et al.,

1998; Sampath et al., 2004; Tanaka et al., 2002).  Nevertheless the question of how

Aurora B can be regulated spatially and otherwise to impinge on such a diverse set of

processes remains unanswered.  Such regulation might be achieved through the function

of other CPC components, as it has been reported that the C-terminal ‘IN-box’ of Incenp

can allosterically activate Aurora B kinase activity (Honda et al., 2003; Sessa et al.,

2005).  Likewise, little is currently known regarding the Aurora B downstream effector

proteins.
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     With regard to spindle formation, a major recent advance was the finding that Aurora

B could phosphorylate MCAK, thus inhibiting its activity (Andrews et al., 2004; Lan et

al., 2004; Ohi et al., 2004).  This finding was important given the previously described

roles of MCAK in spindle formation, chromosome alignment and orientation, and

regulation of microtubule dynamics (Kline-Smith et al., 2004; Ohi et al., 2004; Walczak

et al., 2002; Walczak et al., 1996).  We have proposed a model in which spindle

formation around M-phase chromatin in Xenopus egg extract is regulated partly by

Aurora B-dependent MCAK phosphorylation (Sampath et al., 2004).

     In addition to microtubule nucleation and stabilization by the pathways discussed

above, spindle formation also requires a balance of forces provided by the activity of both

microtubule plus- and minus-end directed motor proteins [reviewed in (Compton, 2000;

Heald, 2000)].  These proteins have been postulated to promote spindle formation at least

in part by cross-linking antiparallel microtubules, thus separating the spindle poles, and

by sliding parallel microtubules, leading to pole focusing (Compton, 2000; Nedelec et al.,

2003; Walczak et al., 1998).  As a result a bipolar structure is formed along which

chromosomes can segregate equally.

The M-Phase Spindle Checkpoint

     In addition to formation of a bipolar spindle, accurate chromosome segregation also

requires correct chromosome orientation, in which each sister chromatid is connected to

microtubules emanating from a single spindle pole, and vice versa.  Eukaryotic cells have

developed elaborate mechanisms to distinguish this ‘amphitelic’ orientation from

malorientations, including ‘syntelic’ orientation, in which both chromatids attach to a
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single pole, and ‘merotelic’ orientation, in which a single chromatid is attached to both

spindle poles.  It has been proposed that amphitelic orientations can be detected due to

the physical tension that such a configuration induces across the paired centromeres

(Nicklas, 1997; Tanaka, 2005).  In the absence of tension and/or microtubule occupancy,

a spindle checkpoint signal is propagated which causes cells to delay the metaphase-

anaphase transition, allowing time for chromosome capture and reorientation (Figure 1-

6).

     The molecular mechanisms underlying spindle checkpoint activity are under intensive

investigation, but several major themes have emerged.  Kinetochores form the interface

between chromosomes and the spindle, and therefore serve as the platform at which

spindle checkpoint signaling occurs.  Many of the proteins involved in the checkpoint

localize to the kinetochore at least transiently, including Mad1, Mad2, Bub1, Bub3,

BubR1, and Mps1, several of which were originally identified in screens for genes

involved in the promoting cell cycle arrest in response to spindle poisons (Hoyt et al.,

1991; Li and Murray, 1991).  In Xenopus, recruitment of the Aurora B/Incenp complex to

unattached kinetochores seems to be the most upstream component of a signaling

cascade, eventually resulting in the recruitment of Mad1/Mad2 (Vigneron et al., 2004).

These proteins, acting in concert with Cdc20 and the BubR1 kinase, are thought to

mediate inhibition of the Anaphase Promoting Complex (APC), a multisubunit ubiquitin

ligase responsible for ubiquitination and degradation of cyclin and securin [reviewed in

(Musacchio and Hardwick, 2002)].  Thus, activation of the spindle checkpoint

coordinately inhibits both the metaphase-anaphase cell cycle transition and sister

chromatin separation (Figure 1-6).
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Figure 1-6. Inhibition of Sister Chromatid Separation by the Spindle Checkpoint
Unattached kinetochores or the absence of tension activates the spindle checkpoint
through the inhibition of the Anaphase Promoting Complex (APC), a ubiquitin ligase
responsible for triggering anaphase through the ubiquitination of Securin and cyclins.
Reproduced from Musacchio and Hardwick, 2002.

     The process of chromosome reorientation likely involves Aurora B-dependent

microtubule disassembly (Lampson et al., 2004; Tanaka et al., 2002), and the spindle

assembly checkpoint likewise requires CPC function (Gadea and Ruderman, 2005;

Vigneron et al., 2004).  Given the recently established functional relationship between

Aurora B and MCAK, and the similar accumulation of malorientations seen in Aurora B-
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and MCAK-deficient cells, much attention is also now being focused on the ways in

which the interplay between these two molecules might regulate spindle formation,

chromosome orientation, and spindle checkpoint signaling.

Structure and Function of Aurora Kinases

Mammalian genomes encode three related Aurora-family kinases (Aurora A, B, and C),

while only Aurora A and B homologs have been identified in frogs and nematodes, and

only one Aurora homolog exists in budding and fission yeasts (Brown et al., 2004).  All

three kinases share a similar domain structure, with an N-terminal regulatory domain, a

central kinase domain, and a short C-terminal domain.  The N-terminal domain is

relatively poorly conserved between the Aurora family members, and is thought to confer

specificity in protein-protein interaction (Carmena and Earnshaw, 2003).

     As discussed above, Aurora A is a crucial regulator of centrosome maturation,

centrosome separation, and cytokinesis.  In fact, the aurora mutant in Drosophila was

initially described to cause formation of monopolar spindles, presumably as a result of

failed centrosome separation (Glover et al., 1995).  Since then, it has become clear that

loss of Aurora A function leads to multiple defects in centrosome function, including

impaired accumulation of pericentriolar material (Berdnik and Knoblich, 2002; Hannak

et al., 2001) and defective astral microtubule formation (Giet et al., 2002).

     Aurora A function is tightly regulated, at least in part by binding to the protein TPX2

(targeting protein for Xklp2).  It has been demonstrated that during mitosis, chromosomal

Ran-GTP promotes the localized release of TPX2 in the vicinity of chromosomes; this

released TPX2 can then bind to Aurora A, regulating its localization to centrosomes and
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microtubules (Kufer et al., 2002).  The catalytic activity of Aurora A is also stimulated on

TPX2 binding due to increased autophosphorylation and inhibition of protein

phosphatase 1-dependent dephosphoryation (Eyers et al., 2003; Tsai et al., 2003).

Interestingly, PP1 was also described to negatively regulate Ipl1 (Francisco et al., 1994),

the single yeast Aurora protein, as well as vertebrate Aurora B (Murnion et al., 2001;

Sugiyama et al., 2002).

     As discussed previously, Aurora B has multiple functions in chromosome orientation,

spindle checkpoint signaling, and cytokinesis [reviewed in (Carmena and Earnshaw,

2003)].  Like Aurora A, Aurora B activity and localization are governed by binding to an

activating protein, Incenp.  Recent structural data indicates that Aurora B becomes

activated on binding to a C-terminal region of Incenp, which allosterically induces the

active conformation of the Aurora B T loop; phosphorylation of Incenp by Aurora B then

promotes full activation of the kinase (Sessa et al., 2005).  Despite these insights, it

remains unclear how this complex series of events is spatially and temporally regulated,

and how it is affected by the presence of other CPC components.  Likewise, the extent of

functional overlap between Aurora A and Aurora B is currently unclear.   For instance,

while it is clear that Aurora  is essential for histone H3 serine 10 phosphorylation (Giet

and Glover, 2001; Murnion et al., 2001), recent data indicates that both kinases are

required for serine 7 phosphorylation of Cenp-A, the centromeric H3 variant histone

(Kunitoku et al., 2003).  Recent data do indicate however that Aurora B in particular is

involved in the removal of chromosome-bound heterochromatin protein 1 (HP1) isoforms

during mitosis, although the functional relevance of this activity is completely unknown

(Fischle et al., 2005; Hirota et al., 2005).
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     The issue of functional redundancy becomes more complicated in light of the recent

discovery of mammalian Aurora C, a protein with extensive structural and sequence

similarity to Aurora B.  Aurora C can physically associate with CPC components, and its

overexpression leads to mitotic defects reminiscent of those seen in CPC-deficient cells

(Yan et al., 2005).  Moreover, Aurora C is activated by binding to Incenp (Li et al.,

2004), and expression of Aurora C can rescue the loss of Aurora B expression (Yan et al.,

2005), suggesting the possibility for extensive functional overlap in vivo.

Xenopus Egg Extract As a Model For Studying Chromosome Segregation

Cytosolic extracts prepared from unfertilized Xenopus laevis eggs have served as a

powerful model system in which to study the processes governing chromosome

condensation, spindle assembly, spindle checkpoint signaling, and sister chromatid

segregation.  Since these unfertilized eggs are naturally arrested at metaphase II of

meiosis (due to the so-called ‘cytostatic factor’, or CSF, activity), induction of anaphase

results in a quasi-mitotic segregation event which recapitulates many of the aspects of

somatic cell mitosis [reviewed in (Desai et al., 1999a; Murray, 1991)].

     Addition of sperm nuclei to CSF-arrested extract results in the rapid reorganization of

the sperm chromatin into a condensed M-phase configuration without intervening DNA

replication.  The metaphase-to-anaphase transition is under experimental control, and can

be induced simply by adding calcium, which mimics the biochemical events occurring

naturally after fertilization.  Calcium addition induces cyclin degradation, loss of Cdk

activity, and subsequent entry into interphase, which is accompanied by DNA replication.

Murray and Kirschner demonstrated that resynthesis of cyclin is sufficient to switch
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interphase extract back into an M-phase (high Cdk) state (Murray and Kirschner, 1989;

Murray et al., 1989), and therefore addition of either fresh CSF extract or non-degradable

cyclin B (cyclin BΔ90) can be used to induce M-phase entry and chromosome

recondensation in interphase extracts.  Such ‘cycled’ extracts contain replicated, paired

sister chromatids, and assemble spindles which, upon calcium addition, undergo

anaphase A-type chromosome segregation (Funabiki and Murray, 2000).  All of these

events can be observed by fluorescence microscopy in either fixed or live specimens.

     The use of this cell-free system also allows the use of powerful biochemical

methodologies.  For example, mutant proteins can be added to extracts and their

dominant effects can be observed.  More importantly, individual proteins and/or their

associated protein complexes can be immunodepleted and replaced with mutant forms

(Funabiki and Murray, 2000).  In addition, interfering antibodies can be added to block

endogenous protein function (Ohi et al., 2003).  Taken together, these techniques make

the Xenopus egg extract system an ideal one in which to investigate the complex spatial,

temporal, and biochemical events regulating metazoan chromosome segregation.
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CHAPTER 2
The Chromosomal Passenger Complex Is Required for Chromatin-
Induced Microtubule Stabilization and Spindle Assembly

Results

Identification of A Novel Vertebrate Chromosome Binding Protein

     The Xenopus egg extract system has previously been used to identify proteins which

copurify with condensed, M-phase chromosomes (Hirano and Mitchison, 1994).  This

approach was limited by its ability to identify only those chromosomal proteins which

were extremely abundant, and whose identity could be deduced by microsequencing.  We

set out to identify new vertebrate chromosome-binding proteins using a method not

subject to these limitations.  Specifically, we undertook an expression screen using

Xenopus egg extracts, and utilizing a normalized cDNA library derived from Xenopus

laevis eggs.  Individual clones were arrayed into 384-well microtiter plates, and each 384

well plate was then reformatted into four 96 well plates, from which row, column, and

plate pools of plasmids were derived (Figure 2-1A).  These pools of plasmids were then

translated in vitro and added to Xenopus egg extract containing sperm nuclei, which were

cycled through interphase to metaphase in the presence of biotinylated dUTP.  The

condensed mitotic chromosomes were then partially purified by centrifugation through a

sucrose cushion, followed by further purification with streptavidin-coated magnetic

beads.  Copurifed labeled proteins were examined by SDS-PAGE.  Using this method,

we identified a protein which bound to purified Xenopus sperm chromosomes; this

protein was temporarily named p344B8 due to its apparent molecular weight and

microtiter plate location (Figure 2-1B).
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Figure 2-1.  A Screen for Metaphase Chromosome-binding Proteins Identifies
p344B8

(A) Schematic of the expression screening method used to screen an arrayed Xenopus egg
cDNA library for mitotic chromosome-binding proteins.  See Methods section for details.
(B) Results of pooled expression screening. Each 364-well plate from the library was first
reformatted into four 96-well plates; one “subplate” consists of 96 individual clones.
Pools of cDNA clones were transcribed and translated in rabbit reticulocyte lysates (as
described in Methods).  Aliquots of input in vitro translations are shown at left, with the
fraction co-purifying with mitotic chromosomes shown at right.  Arrowhead indicates the
position of clone p344B8.
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     To investigate the localization of the p344B8 protein, we generated a p344B8-GFP

fusion protein, mRNA encoding which was transcribed in vitro and added to Xenopus egg

extract containing sperm nuclei.  When the localization of the p344B8-GFP protein was

examined by live microscopy, we observed that the protein localized throughout

metaphase chromosomes, with enrichment at the primary constriction (Figures 2-2A and

2-2B).   Variable localization to telomeres was also noted (data not shown).  When

calcium was added to induced anaphase onset, we observed that the p344B8-GFP signal

became redistributed from metaphase chromosomes to the spindle midzone (Figure 2-

2C).  This dynamic localization pattern was reminiscent of that of the ‘chromosomal

passenger’ complex, which was known to include the proteins Aurora B, Incenp, and

Survivin, and which has been described to bind to inner centromeres in metaphase and

the spindle midzone in anaphase [reviewed in (Carmena and Earnshaw, 2003)].

     Sequence analysis demonstrated that p344B8 did not  encode a protein homologous to

these or any other annotated protein, but rather was a member of a novel protein family

comprising two proteins: p344B8 (hereafter referred to as Dasra A, see below) and a

related protein which we designated Dasra B.  Orthologues of Xenopus laevis Dasra A

and Dasra B can be found in both Xenopus tropicalis, Gallus gallus, and Danio rerio,

whereas only Dasra B-type sequences can currently be found among mammalian

genomic DNA and EST databases (Figure 2-3).  Likewise, only one protein containing

any homology to Dasra proteins could be found in Caenorhabditis elegans sequence

databases; this protein, CSC-1, contains little or no homology to Dasra A, and only

limited homology to Dasra B, most of which is confined to a C-terminal patch (Figure 2-
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3, arrowheads).  The previously described imperfect direct repeat found in CSC-1 is

absent in both Dasra A and Dasra B [Figure 2-3, underlined; (Romano et al., 2003)].

Figure 2-2.  p344B8-GFP Localizes to the Inner Centromere at Metaphase and to the
Spindle Midzone at Anaphase
(A) Metaphase localization of p344B8-GFP.  mRNA encoding p344B8-GFP (green) was
added to CSF (meiotic metaphase II arrested) egg extract containing sperm nuclei, and
the extract was cycled through interphase to metaphase.  Rhodamine-tubulin (red) and
DAPI (blue) were added to visualize microtubules and DNA, respectively. Scale bar, 5
µm.
(B) An individual chromosome (blue) from egg extract expressing p344B8-GFP (green).
Scale bar, 5 µm.
(C) Time lapse microscopy of p344B8-GFP-containing spindles after induction of
anaphase.  The boxed regions of merged images (p344B8-GFP, green; DAPI, blue;
rhodamine-tubulin, red) are shown at increased magnification in monochrome.  Arrows
indicate centromeres, which lead chromosome movement during anaphase, and
arrowheads telomeres.  Scale bars, 5 µm.
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Figure 2-3. Sequence Alignment of Dasra Family and Dasra-like Proteins
Sequence alignment of Xenopus laevis Dasra A, Gallus gallus Dasra A, Danio rerio
Dasra A, Xenopus laevis Dasra B, Gallus gallus Dasra B, Homo sapiens Dasra
B/CDCA8, and Caenorhabditis elegans CSC-1.  Identical or conserved amino acids are
boxed; identity or similarity between Dasra A sequences is shown in blue, between Dasra
B sequences in green, and between all sequences in red.  Double underlines indicate the
direct repeat region of CSC-1, and arrowheads indicate the region of high homology
between Dasra B sequences and CSC-1.

      To begin to address the expression patterns of Xenopus Dasra A and Dasra B, we

performed Northern blot analysis on total RNA purified from either eggs (arrested at

meiotic metaphase II) or the XTC Xenopus fibroblast tissue culture cell line.  We

observed that Dasra A and Survivin were specifically expressed in egg, with little or no

detectable mRNA present in fibroblasts (Figure 2-4).  This is in keeping with previous

findings that Survivin levels are highest during embryogenesis and substantially lower in
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somatic cells.  In contrast, Dasra B, Aurora B, and Incenp all demonstrated

approximately equivalent mRNA levels between eggs and fibroblasts (Figure 2-4),

suggesting the Dasra B may be the predominant or only Dasra family member present in

the CPC of Xenopus somatic cells.  No evidence was found to suggest that either Dasra

A, Dasra B, or Incenp is subject to alternative splicing, however both Aurora B and

Survivin displayed minor bands which may correspond to alternatively spliced products.

Figure 2-4.  Dasra A, But Not Dasra B, is Preferentially Expressed in Xenopus Eggs
Total RNA was purified from unfertilized Xenopus eggs (‘Egg’) or from the XTC
Xenopus fibroblast tissue culture cell line (‘TC’).  20 micrograms of total RNA per
sample were separated on a formaldehyde agarose gel, transferred to nitrocellulose, and
hybridized with labeled probes produced by PCR of full-length xDasra A, xDasra B,
xAurora B, xIncenp, or xSurvivin clones.  Membranes were then washed and exposed to
a PhosphorImager.  Ethidium bromide staining of 18S rRNA was used to demonstrate
equal loading.
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     To confirm the lack of expression of Dasra A in somatic cultured cells, we performed

indirect immunofluorescence on XTC cells using Dasra A- or Incenp-specific antibodies

(see below for description of antibodies).  As expected, Incenp localized to centromeres

at metaphase and the spindle midzone/midbody at anaphase/telophase; in contrast, no

significant signal was seen with the Dasra A-specific antibodies (Figure 2-5).  We

conclude that Dasra A expression is likely limited to the period of embryonic

development, consistent with our observations that Dasra A ESTs are less abundant in

libraries derived from adult tissues (H.F., unpublished observations).

Figure 2-5. Dasra A is Not Expressed in Cultured Xenopus Somatic Cells
Asynchronous XTC cells were fixed with methanol and indirect immunofluorescence
was performed with Dasra A- (red), Incenp- (red), and α-Tubulin (green)-specific
antibodies.  DNA (blue) was counterstained with Hoechst 33258.
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Dasra Proteins are Novel Components of the Vertebrate Chromosomal Passenger

Complex

     The dynamic localization pattern of Dasra A was reminiscent of that of the

‘chromosomal passenger’ proteins Incenp, Aurora B, and Survivin [reviewed in

(Carmena and Earnshaw, 2003)].  To investigate the relationship between the Dasra

proteins and the vertebrate chromosomal passenger complex (CPC), antibodies were

raised against peptides encoding the C-terminal 15 amino acids of Xenopus Dasra A and

Incenp.  These antibodies predominantly recognized one species each in CSF-arrested

egg extract, which could be immunodepleted by >90% by treatment with anti-Dasra A or

anti-Incenp beads, respectively (Figures 2-6A and 2-6B).  Interestingly, immunodepletion

of Incenp lead to >90% codepletion of Dasra A, Aurora B, and Survivin, whereas

depletion of Dasra A lead to ~70% codepletion of Incenp (Figure 2-7).  In agreement

with these findings, immunoprecipitation of Dasra A could coprecipitate Incenp, Aurora

B, and Survivin (Figure 2-6C), suggesting that Dasra A resides in the Incenp, Aurora B,

and Survivin-containing CPC.  This conclusion is supported by the finding that Dasra A

cofractionates with the other CPC members by sucrose density centrifugation (H.

Funabiki, data not shown).  Moreover, Dasra A and Incenp colocalize by indirect

immunofluorescence at both metaphase and anaphase (Figure 2-6D).

     Together, these data demonstrate that Dasra A is a novel member of the Xenopus

chromosomal passenger complex.  We have named this protein family protein Dasra in

reference to the twin deities of Hindu mythology, Dasra and Natsatya, who together act

as harbingers of the goddess of the dawn (Aurora of Roman mythology).
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Figure 2-6.  Dasra A and Dasra B are New Components of the Chromosomal
Passenger Complex
p344B8 is hereafter referred to as Dasra A (see text for details).
(A) Specificity of anti-Dasra A antibodies and immunodepletion of Dasra A from
Xenopus egg extract.  Metaphase low-speed extracts were depleted with either control
IgG beads or anti-Dasra A beads.  A Western blot of total protein from each is shown
probed with anti-Dasra A antibodies (gift of H. Funabiki).
(B) Immunodepletion of Incenp from egg extract, and codepletion of Incenp with Dasra
A.  Metaphase low-speed extracts were depleted with either control IgG beads, anti-
Incenp beads (gift of H. Funabiki), or anti-Dasra A beads.  A Western blot of total protein
from each is shown probed with anti-Incenp antibodies.  Arrowhead indicates the
position of Incenp; the minor crossreacting species are not depleted by either anti-Incenp
or anti-Dasra A beads.  Anti-Aurora B and anti-Survivin antibodies were gifts of T.
Hirano.
(C) Dasra A physically interacts with the chromosomal passenger complex.  High speed
supernatants of metaphase Xenopus egg extracts were depleted with either control IgG
beads, anti-Dasra A beads, or anti-Dasra A beads in the presence of Dasra A peptide
competitor.  A Western blot of total protein from the supernatant (left) or bead-bound
(right) fractions was prepared, and probed with the indicated antibodies.
(D) Dasra A and Incenp colocalize in metaphase and anaphase.  Metaphase spindles were
assembled on replicated sperm chromosomes in CSF extract.  To induce anaphase, 0.5
mM calcium chloride was added to metaphase reactions.  Assembled spindles were
sedimented onto coverslips and processed sequentially for immunofluorescence using
anti-Dasra A (green) and anti-Incenp (red) antibodies.  DNA was stained with Hoechst
33258 (blue). Scale bars, 5 µm.
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Figure 2-7. Dasra A and Incenp Reciprocally Immunodeplete From Egg Extract
(A) CSF extract was immunodepleted with either control IgG beads, anti-Incenp beads,
or anti-Dasra A beads.  Total protein from the supernatants of immunodepletion reactions
was analyzed by Western blot using the indicated antibodies.  Various fractions of the
control depletion supernatant were loaded in order to quantify the percentage of
immunodepletion achieved by either anti-xIncenp or anti-xDasra A bead treatment.

     To determine whether Dasra B also behaves as a chromosomal passenger protein, the

CPC was immunoprecipitated from extract containing 35S-labeled Dasra B, using

antibodies against either Incenp or Dasra A (Figure 2-8A).  While Incenp

immunoprecipitation coprecipitated significant amounts of Dasra B, only a relatively

minor amount was precipitated with α-Dasra A beads; in contrast, Dasra A was

efficiently precipitated with both antibodies.  This demonstrates that exogenous Dasra B

can be incorporated into the CPC, although the CPC may actually be comprised of

distinct Dasra A- or Dasra B-containing populations.  As expected for a chromosomal

passenger protein, exogenous Dasra B-GFP fusion protein localizes to metaphase sperm

chromosomes in egg extract, with enrichment observed at centromeres (Figure 2-8B).
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Figure 2-8. Xenopus Dasra B Behaves as a Chromosomal Passenger Protein
(A) Dasra B coprecipitates with Incenp and Dasra A in Xenopus egg extract.  35S-labeled
Dasra B (left) or Dasra A (right) protein was incubated for 30 min with CSF extract
containing cycloheximide.  The extract was then treated with either control IgG beads,
anti-xIncenp beads, or anti-Dasra A beads, and the bead-bound fraction of each was
analyzed by SDS-PAGE, followed by autoradiography.  Arrowhead indicates the
positions of Dasra B and Dasra A.  Bracket indicates low molecular weight products from
in vitro translation.
(B) Metaphase localization of Dasra B-GFP. mRNA encoding Dasra B-GFP (green) was
added to CSF extract containing sperm nuclei, and the extract was cycled through
interphase to metaphase.  Rhodamine-tubulin (red) and DAPI (blue) were added to
visualize microtubules and DNA, respectively.  Scale bar, 5 µm.

Human Dasra B Is Required for Proper Metaphase Chromosome Alignment in

Mammalian Cells

     To examine the function of human Dasra B (hDasra B)/CDCA8, an antibody was

raised against a C-terminal hDasra B peptide.  Immunofluorescence on metaphase HeLa

cells with the anti-hDasra B antibody revealed punctate dots on chromosomes, which

were coincident with anti-Aurora B staining (Figures 2-9A and 2-9B).  Although this

antibody did not work for immunoblotting (data not shown), it coimmunoprecipitated

Aurora B and Survivin from mitotic cells, suggesting that hDasra B interacts with the

chromosomal passenger complex (Figure 2-9C).
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     To examine whether hDasra B is required for proper function of the chromosomal

passenger complex in human cells, HeLa cells were treated with an siRNA

oligonucleotide targeting the hDasra B mRNA.  In hDasra B siRNA-treated cells arrested

in metaphase with the proteasome inhibitor MG132, 41% of mitotic cells demonstrated

severe chromosome misalignment, often with chromosomes that were no longer localized

between the spindle poles (Figures 2-9B and 2-10A, quantified in Figure 2-10B, left); in

such cells, anti-hDasra B, anti-Aurora B and anti-Survivin antibodies all failed to stain

chromosomes by immunofluorescence (Figure 2-9B, and data not shown).  hDasra B

siRNA-treated cells also accumulated multiple interphase nuclei (Figure 2-10B, right).

These phenotypes are reminiscent of those seen following loss of Aurora B function

(Ditchfield et al., 2003; Hauf et al., 2003).  Furthermore, Survivin protein levels were

reduced by 60-70% after treatment with hDasra B siRNAs, whereas Aurora B and Incenp

levels were unchanged (Figure 2-9D), indicating that hDasra B is required to maintain

normal levels of Survivin protein.  Overall, these data correspond well with the findings

of Gassmann and colleagues, who reported that hDasra B (referred to by them as

Borealin) forms a complex with Aurora B, Incenp, and Survivin, and that siRNA-

mediated depletion of hDasra B leads to chromosome misattachment and misalignment

(Gassmann et al., 2004).
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Figure 2-9. Human Dasra B (hDasra B) Is Associated with the Chromosomal
Passenger Complex, and Is Required for Proper Metaphase Chromosome
Alignment
(A) Localization of hDasra B during mitosis in human cells. Asynchronous HeLa cells
were stained with anti-hDasra B antibodies (green), anti-α-Tubulin (red), and Hoechst
33258 (blue).  Scale bars, 5 µm.
(B) Loss of hDasra B expression causes Aurora B mislocalization and metaphase
chromosome misalignment.  HeLa cells were treated with either a control EGFP siRNA
oligo (top row) or an hDasra B-specific siRNA oligo for 30 h, arrested with the
proteasome inhibitor MG132 for 2 h, and analyzed by immunofluorescence using anti-
hDasra B (red) and anti-hAurora B (green) antibodies.  DNA was stained with Hoechst
33258 (blue).  Scale bars, 5 µm.
(C) Physical interaction between hDasra B, hAurora B, and hSurvivin.  HeLa cells were
synchronized in M-phase by thymidine-nocodazole arrest, and complexes were
immunoprecipitated from lysates using either control IgG or anti-hDasra B antibodies.
Western blots of the eluted fractions were performed using the indicated antibodies.
(D) Loss of hDasra B expression leads to decreased hSurvivin protein levels.  HeLa cells
were treated with either a control or a hDasra B-specific siRNA oligo, as described in
(B).  After 30 h, cells were lysed and analyzed by Western blot using anti-hSurvivin, anti-
hAurora B and anti-α-Tubulin antibodies.
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Figure 2-10. hDasra B Is Required for Proper Metaphase Chromosome Alignment
(A) Chromosome misalignment caused by loss of hDasra B.  HeLa cells were treated
with either a control or an hDasra B-specific siRNA oligo and analyzed by
immunofluorescence with anti-α-Tubulin antibodies (red).  DNA was stained with
Hoechst 33258 (green).  A cell was scored as “severely misaligned” if the chromosomal
mass was either not organized into a metaphase plate, or was extended beyond the
spindle or metaphase plate.  Scale bars, 5 µm.
(B) Quantitation of metaphase chromosome misalignment (left) and interphase
multinuclearity (right).  Values shown are the mean plus standard deviation from three
independent experiments, with at least 100 cells counted per experiment.  Chromosome
misalignment was evaluated by scoring the percentage of mitotic cells with bipolar
spindles having the indicated phenotypes, as determined by Hoechst 33258 staining of
chromosomes.

The Chromosomal Passenger Complex is Required for Bipolar Spindle Formation

in Xenopus Egg Extracts

Note: The following work was conducted in collaboration with H. Funabiki.

     To investigate the function of the Dasra A-containing CPC, we immunodepleted the

complex from CSF-arrested egg extract using anti-Dasra A antibodies (ΔDasra A extract)

and monitored spindle assembly around cycled sperm chromosomes.  As  expected,

mock-depleted extract contained predominantly bipolar spindles by seventy minutes after

entry into metaphase (Figure 2-11A, quantified in Figure 2-11B).  To our surprise

however, we found that 79% of the spindle structures formed in ΔDasra A extract were

either monopolar spindles or asters (Figure 2-11A, quantified in Figure 2-11B).  Given

that Dasra A immunodepletion leaves ~30% of Incenp undepleted  (Figure 2-7), we
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speculated that this effect might itself represent only a partial CPC loss-of-function

phenotype.  To confirm and extend this finding, we therefore examined spindle formation

in extract depleted using anti-Incenp antibodies (ΔIncenp extract).  As would be expected

if ΔDasra A depletion represents an intermediate CPC-depletion phenotype, ΔIncenp

extract demonstrated an even more severe spindle formation defect (Figure 2-11A,

quantified in Figure 2-11C), in which replicated sperm chromosomes were predominantly

associated with either very few astral microtubules (42%) or no detectable microtubules

at all (57%).  This data suggests that the chromosomal passenger complex is required for

efficient bipolar spindle formation.
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Figure 2-11.  xDasra A and xIncenp Depletion Induce Defects in Spindle Formation
in Egg Extracts
(A) Spindles assembled on replicated sperm chromosomes (containing centrosomes) in
mock-depleted extract, ΔDasra A extract (depleted with anti-xDasra A antibodies), or
ΔIncenp extract (depleted with anti-xIncenp antibodies).  Chromosomes were visualized
with Hoechst 33258 (red) and microtubules with rhodamine-labeled tubulin (green).
Scale bar, 10 µm.
(B) Quantitation of spindle structures assembled on replicated chromosomes in control or
ΔDasra A extracts. Spindles were scored 70 min after entry into M phase at 15.5°C.
Values shown are the mean plus standard deviation from four independent experiments.
Spindle classification was as indicated in (A).
(C) Quantitation of spindle structures assembled on replicated chromosomes in control or
ΔIncenp extracts.  Spindles were scored at 70 min after entry into M phase at 15.5°C.
Values shown are the mean plus standard deviation from three independent experiments.
Spindle classification was as indicated in (A).
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The Chromosomal Passenger Complex is Required for Chromatin-Induced Spindle

Assembly

Note: The following experiments were conducted by H. Funabiki and R. Ohi.

     Xenopus sperm nuclei contain both centrosomes and chromosomes, both of which can

act as a source for microtubule assembly in egg extract.  However, since microtubule

polymerization from centrosomes precedes chromatin-induced spindle assembly, defects

in these two pathways can be distinguished by monitoring spindle assembly over time.

To determine whether the failure of spindle formation in ΔIncenp extract represents a

defect in centrosomal and/or chromatin-induced spindle assembly, microtubule

nucleation was monitored in control or ΔIncenp extract after addition of sperm nuclei to

CSF extract.  In control extract, rapid centrosomal microtubule nucleation was observed

within 10 min  after incubation at 15.5°C, which was progressively replaced by

chromatin-oriented spindle assembly such that 96% of structures were either monopolar

or bipolar spindles by 40 min (Figure 2-12, top row).   By contrast, sperm nuclei in

ΔIncenp extract displayed only centrosomal microtubule nucleation, after which spindle

assembly failed to proceed, suggesting that chromatin-induced spindle formation was

defective (Figure 2-12, bottom row).
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Figure 2-12.  Microtubule Nucleation from Sperm Centrosomes and Chromosomes
in ΔIncenp Extract
Microtubule nucleation was visualized from centrosomes associated with demembranated
sperm nuclei in control or ΔIncenp extracts.  Sperm nuclei were incubated in extracts at
15.5°C for the time indicated, and were visualized with Hoechst 33258 (red) in the
presence of rhodamine-labeled tubulin (green).  For each time point, quantitation is given
of the indicated microtubule morphology; at least 200 sperm nuclei were scored at each
timepoint.  Scale bar, 10 µm.

     To further test this possibility, spindle assembly was monitored around DNA-coated

beads, which form chromatin in egg extract and can support bipolar spindle assembly

(Budde et al 2001; Heald et al, 1996).  In control extracts, bipolar spindles began to form

around chromatin beads after ~20 min, whereas no microtubule assembly was observed

in ΔIncenp extract (Figure 2-13A top and middle rows, quantified in Figure 2-14).
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Figure 2-13. Microtubule Nucleation from Chromatin Beads in ΔIncenp Extract
(A) Spindle formation was monitored by time-lapse video microscopy immediately after
adding control, ΔIncenp, or ΔIncenpΔMCAK extracts to DNA-coated beads at 20°C.
Microtubules were visualized with rhodamine-tubulin, and chromatin beads were
simultaneously observed by their autofluorescence.  Time is in minutes after the
beginning of image acquisition.  The first images were taken 4 min after placing the ice-
cold extracts on slides at 20°C.  Scale bar, 10 µm.
(B) Microtubules assembled on chromatin beads in control extract, ΔIncenp extract,
ΔMCAK extract, or ΔIncenpΔMCAK extract.  DNA-coated beads were incubated in
extracts at 15.5°C for 60 min, and were visualized with Hoechst 33258 (red) in the
presence of rhodamine-labeled tubulin (green).  Scale bar, 10 µm.
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     Since Aurora B has been described to phosphorylate and inactivate the microtubule

depolymerase MCAK, we hypothesized that the failure of chromatin-induced

microtubule assembly in ΔIncenp extract might be due to MCAK hyperactivity.  To test

this possibility, spindle assembly was monitored in extract codepleted of MCAK and

Incenp (ΔIncenpΔMCAK extract).  Unlike the phenotype observed in ΔIncenp extract,

microtubules were stabilized around chromatin beads in ΔIncenpΔMCAK extract (Figure

2-13A bottom row, Figure 2-13B, quantified in Figure 2-14), suggesting that the absence

of chromatin-induced spindle assembly in ΔIncenp extract may be at least partially a

consequence of unrestrained MCAK activity.

Figure 2-14. Quantitation of Microtubule Nucleation from Chromatin Beads in
ΔIncenp Extract
Quantitation of microtubule structures assembled on chromatin beads as described in
Figure 2-13.  Structures associated with bead aggregates consisting of more than 6 beads
were scored.   Classification: “Beads with MT,” chromatin beads are associated with any
visible microtubule fibers (including those beads associated with bipolar spindles);
“Beads on spindle,” chromatin beads are associated with a bipolar spindle; “Beads w/o
MT,” chromatin beads are not associated with any visible microtubule fibers.
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The Chromosomal Passenger Complex is Not Required for Ran-GTP-Dependent

Microtubule Nucleation

Note: The following experiments were conducted in collaboration with H. Funabiki.

     To determine whether the Ran-GTP pathway of microtubule nucleation is required for

chromatin-induced spindle formation downstream of the CPC, we utilized a dominant-

negative mutant of Ran, RanT24N, which blocks RCC1-mediated production of Ran-

GTP (Carazo-Salas et al., 2001).  While 100% of bead aggregates demonstrated

microtubule nucleation in ΔIncenpΔMCAK extract, 98% of bead aggregates in

ΔIncenpΔMCAK containing RanT24N lacked detectable microtubules (Figure 2-15).

Microtubule polymerization around chromatin beads in ΔMCAK extract could likewise

be suppressed by addition of RanT24N (Figure 2-15).  These findings suggest that Ran-

GTP can act to promote microtubule nucleation in the absence of the CPC.

     To confirm that microtubule nucleation induced by Ran-GTP does not require the

CPC, an activated, non-hydrolyzable Ran-GTP mutant was added to control or ΔIncenp

extracts.  We observed similar levels of microtubule aster formation and qualitatively

similar aster morphology induced by Ran-GTP in control and ΔIncenp extract (Figure 2-

16), again suggesting that microtubule nucleation by Ran-GTP does not require the CPC.

In addition, this finding indicates that CPC-depletion in ΔIncenp extract does not either

specifically or non-specifically codeplete other microtubule stabilizing factors working

downstream of Ran-GTP.
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Figure 2-15.  Ran-GTP Nucleates Microtubules in ΔIncenp Extract
Chromatin-induced microtubule nucleation in ΔIncenpΔMCAK extract depends on the
Ran-GTP pathway.  Spindle formation was monitored by time-lapse video microscopy
immediately after placing ΔIncenpΔMCAK or ΔMCAK extracts, containing DNA-coated
beads and rhodamine-labeled tubulin, at 20°C, with or without 7 µM RanT24N protein (a
gift of E. Arias and J. Walter).  Time is in minutes after the beginning of image
acquisition.  The first images were taken 4 min after placing the ice-cold extracts on
slides at 20°C.  Scale bar, 10 µm.
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Figure 2-16.  Ran-GTP Nucleates Microtubules in ΔIncenp Extract
Metaphase control or ΔIncenp extracts were incubated with or without 25 µM GTPase-
defective Ran-G19V/Q69L (loaded with GTP; a gift of E. Coutavas and J. Gaetz) for 20
min at 15.5°C.  Microtubules were visualized with rhodamine-labeled tubulin.  Scale bar,
10 µm.  Right: quantitation of asters induced by GTP-loaded Ran-G19V/Q69L.  The
number of asters in whole slides was counted after 1 µl of each extract was mounted on a
slide with Fix solution.

Spindle Formation in Egg Extract Involves Dynamic CPC Binding to Chromatin

     We sought to determine whether chromatin-induced spindle formation by the CPC

involved stable loading of the complex onto mitotic chromosomes, or whether binding

instead was dynamic.  To address this question, we assembled cycled chromatin beads in

either control or ΔIncenp extract, retrieved the beads with a magnet, and transferred the

beads into fresh control or ΔIncenp extract in all combinations.  Spindle formation was

then monitored over time, and after 40 minutes of spindle assembly, aliquots of each

reaction were fixed and processed for immunofluorescence using anti-Incenp antibodies

(Figure 2-17).
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Figure 2-17.  A Method for the Study of CPC Binding to Chromatin
(A) Schematic of the ‘chromosome transfer’ experiment.  DNA beads were cycled
through interphase to metaphase in control (‘wild type’) or ΔIncenp extract, washed in
control or ΔIncenp extract, and transferred into both types of extract in all combinations.
After 40 min, samples were fixed and processed for indirect immunofluorescence using
anti-Incenp antibodies.

     As expected, we observed that control bead aggregates (‘chromosomes’) transferred

into control extract demonstrated robust spindle formation, whereas ΔIncenp

chromosomes transferred into ΔIncenp extract failed to support spindle formation (Figure

2-18, quantified in Figure 2-19).  Importantly, we found that when control chromosomes

were transferred into ΔIncenp extract, microtubules became transiently stabilized around

the beads before abruptly collapsing, eventually leading to a phenotype indistinguishable

from the ΔIncenp chromosome/ΔIncenp extract phenotype.  Unlike control chromosomes

placed in control extract, control chromosomes placed in ΔIncenp extract failed to

maintain Incenp on the beads as judged by immunofluorescence, and also did not display

histone H3 serine 10 phosphorylation (data not shown).  Interestingly, although ΔIncenp

chromosomes placed into control extracts did eventually display bipolar spindle

formation and Incenp loading, the kinetics of this process were delayed, such that at 30
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min ~74% of structures in the ΔIncenp chromosome/control extract sample were asters,

while ~85% of structures in the control chromosome/control extract sample were either

bipolar or multipolar spindles (Figure 2-19).  These findings suggest that the CPC is not

stably associated with bulk chromatin during M-phase, but rather exchanges dynamically

between the chromatin-bound and soluble states.  Moreover, the finding that CPC-

deficient chromosomes are delayed in the initiation of microtubule assembly suggests

that spindle formation may require at least transient cycling of the CPC through mitotic

chromatin.
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Figure 2-18.  The CPC Binds Dynamically to Chromatin During Spindle Assembly
Fixed squashes (7 min, 20 min, 30 min) and anti-Incenp immunofluorescence (40 min)
for the samples indicated in (A).  Microtubules were visualized with rhodamine-tubulin
(green), DNA beads with Hoechst 33258 (blue), and Incenp with anti-Incenp antibodies
(red).  Scale bar, 10 µM.
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Figure 2-19.  Spindle Formation Around Transferred Chromosomes
Quantitation of spindles from samples described above (Figure 2-18).
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CHAPTER 3
Functional Analysis of the Vertebrate Chromosomal Passenger
Complex

Results

Aurora B and Incenp Regulate Spindle Formation

We previously described the identification of Dasra A and Dasra B,  two new

components of the vertebrate chromosomal passenger complex (CPC), and reported that

immunodepletion of the CPC from Xenopus egg extract leads to failure of bipolar spindle

formation around M-phase chromatin (Sampath et al., 2004).  Subsequently, our lab

(work of K. Zelenova) found that a previously described homologue of Survivin, referred

to as SIX [Survivin In Xenopus; (Song et al., 2003)], can bind to metaphase

chromosomes (Figure 3-1).  Due to our inability to rescue CPC-depleted (ΔIncenp)

extract with epitope-tagged recombinant proteins, however, we were unable to perform

further functional analysis of individual CPC components, including the Dasra proteins.
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Figure 3-1. SIX Is a New Component of the Chromosomal Passenger Complex in
Xenopus
(A) Identification of SIX as a chromosome binding protein.  Individual clones identified
in the course of a screen for new chromosome binding proteins were translated in vitro
and tested for their ability to bind to mitotic chromosomes in Xenopus egg extract
(Sampath et al., 2004).  Recovery of in vitro translated histone H3 was used to judge
chromosome recovery.
(B) Sequence alignment between Xenopus laevis Survivin and SIX.  Red boxes indicate
identity  between amino acids, while red lettering indicates similarity.
(C) SIX binds to mitotic chromosomes in a CPC-dependent manner.  Metaphase
chromosomes were purified from control or ΔIncenp egg extract containing in vitro
translated SIX or RCC1 (latter as a negative control).  Copurifed proteins were analyzed
by SDS-PAGE and autoradiography.

     To bypass potential complications related to epitope tagging and purification of

recombinant proteins, we adapted the previously described ‘mRNA-dependent’ extract

system (Murray and Kirschner, 1989).  In this method, egg extract is treated with a low

dose of RNase A, leading to destruction of endogenous mRNAs while sparing ribosomes.

After addition of RNase inhibitor and tRNA, introduction of exogenous mRNAs leads to

resynthesis of the corresponding proteins.  Using this approach, it was previously
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demonstrated that cyclin is the only mRNA whose translation is required to permit cell

cycle progression in vitro (Murray and Kirschner, 1989).

     We treated CSF-arrested egg extract with RNase and RNase inhibitor, and then

immunodepleted with either control or anti-Incenp antibodies (Figure 3-2A).  Pools of in

vitro transcribed CPC mRNAs were added with sperm nuclei to these extracts, which

were released to interphase and subsequently cycled back to metaphase by the addition of

fresh RNase-treated, immunodepleted CSF extract.  Labeling of the reconstituted extracts

with 35S-methionine demonstrated efficient translation of all exogenous mRNAs (Figure

3-2B); note that the ‘Aurora Bp35’ species represents a product of internal translation

initiation, which also seems to exist endogenously (T. Maniar and S.C.S, unpublished

observations; (Honda et al., 2003).  Immunoblots with antibodies recognizing Incenp,

Aurora B, Dasra A, and Survivin indicated that all of these proteins were reconstituted to

approximately endogenous levels (Figure 3-3B).

     When spindle assembly was monitored by the addition of rhodamine-tubulin to the

reconstituted extracts, we found that CPC-depletion led to the expected absence of

chromatin-associated microtubules, whereas addition of a pool containing all CPC

mRNAs efficiently rescued the assembly of bipolar spindles (Figure 3-3A, top row;

quantified in Figure 3-3C).   By contrast, addition of an mRNA pool containing only

Dasra A/B and Survivin/SIX did not support spindle formation, demonstrating that

Aurora B and Incenp are required for chromatin-induced microtubule assembly in this

system.  Moreover, since spindle formation was observed following the addition of pools

lacking both Dasra proteins, we conclude that Dasra A/B are dispensable for bipolar

spindle formation in egg extract under the conditions for immunodepletion used here (see
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below).  We were not able to definitively determine the requirement for Survivin/SIX in

spindle formation, due to the fact that ~25% of Survivin was consistently undepleted in

ΔIncenp extracts (Figure 3-3B, and data not shown).   Consistent with these results, when

pools lacking individual CPC components were tested in this assay, only Aurora B and

Incenp were found to be  individually required for bipolar spindle formation (Figure 3-4).

However, as will be described below, the dispensability of Dasra proteins for spindle

formation likely reflects leaching of αIncenp antibody into the immunodepleted extracts.

Figure 3-2. A Method for the Reconstitution of ΔIncenp Extract
(A) Schematic for the reconstitution of CPC-immunodepleted (ΔIncenp) egg extract with
mRNA pools encoding CPC components.  Chromosomes (blue) and centrosomes (red)
are diagrammed.
(B) Top panel: Metabolic labeling of reconstituted egg extract.  RNase-treated control or
ΔIncenp extracts were reconstituted with mRNA pools and supplemented with 35S-
methionine, cycled through interphase to metaphase, and analyzed by SDS-PAGE and
autoradiography.
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Figure 3-3. Aurora B and Incenp are Required for Chromatin-Dependent Spindle
Formation in Xenopus Egg Extract
(A) Spindle assembly in reconstituted egg extracts.  Control or ΔIncenp extracts
reconstituted as described in (A) were cycled through interphase to metaphase, and
rhodamine-tubulin (red) was added to visualize microtubules; extracts were fixed 45 min
after entry into metaphase. Hoechst 33258 (green) was used to visualize DNA.  Scale bar,
10 µm.
(B) Western blot of total proteins from the cycled extracts described above (top panel)
using the indicated antibodies.
(C) Quantitation of structures formed in the control, ΔIncenp, and reconstituted ΔIncenp
extracts described in (A) and (C).
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Figure 3-4. Aurora B and Incenp are Individually Required for Chromatin-Induced
Spindle Formation
Control, ΔIncenp, or reconstituted ΔIncenp extracts containing sperm chromosomes were
cycled through interphase to metaphase.  Samples were fixed and spindle structures were
examined 45 min after entry into metaphase; a representative image of the predominant
(>70%) phenotypic class for each sample is shown.  All reconstitutions included mRNAs
encoding Aurora B, Incenp, Dasra A, Dasra B, Survivin, and SIX, unless otherwise
noted.  Rhodamine-tubulin (red) and Hoechst 33258 (green) were added to visualize
microtubules and DNA, respectively.  Scale bar, 10 µm.

     A potential homologue of Dasra B is required for viability in C. elegans (Romano et

al., 2003), and Survivin homologues are required for cell viability in both C. elegans and

fission yeast (Fraser et al., 1999; Morishita et al., 2001; Rajagopalan and

Balasubramanian, 1999), therefore we were surprised to find that depletion or substantial

reduction in the levels of these proteins did not noticeably perturb spindle formation.  In

order to confirm this result, we generated a deletion mutant of Incenp (IncenpΔ1-327)

which retains binding to Aurora B, but which cannot bind to Dasra proteins or
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Survivin/SIX [Figure 3-5; (Bolton et al., 2002)].  Pools of mRNAs containing Aurora B

and full-length or truncated Incenp were added to RNase-treated, immunodepleted egg

extracts as described above.  We observed that IncenpΔ1-327 still supported spindle

formation at levels equivalent to full-length Incenp (Figure 3-6, quantified in Figure 3-7).

Although these data seem to suggest that Aurora B and Incenp represent a minimal CPC

subcomplex required for spindle formation, we subsequently found that this result in fact

reflected the presence of αIncenp antibodies in the immunodepleted extract, which led to

CPC activation.  When immunodepletion was carried out under conditions which

precluded antibody leaching, Dasra proteins were found to be essential for robust spindle

assembly (A. Kelly, T. Maniar, and S.C.S., data not shown).  Of note, we cannot formally

exclude the possibility that the residual undepleted Survivin also has a function in spindle

assembly.
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Figure 3-5. The IncenpΔ1-327 Mutation Abolishes Incenp Interaction with Dasra A,
Dasra B, Survivin, and SIX
Metabolically labeled control, ΔIncenp, or reconstituted ΔIncenp extracts containing 35S-
methionine were cycled through interphase to metaphase, and the CPC was
immunoprecipitated with anti-Incenp beads.  Copurifying proteins were examined by
SDS-PAGE and autoradiography.  Asterisk indicates the Aurora Bp35 species, a product
of internal translation initiation.  Aliquots of the cycled and labeled pre-
immunoprecipitation samples are shown at left.
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Figure 3-6. The N-terminal Domain of Incenp is Dispensable For Spindle Formation
In the Presence of αIncenp Antibodies
Control, ΔIncenp, or reconstituted ΔIncenp extracts were cycled, and samples were fixed
45 min after entry into metaphase.  Arrowheads indicate achromosomal spindles formed
in reconstituted ΔIncenp extract.  Rhodamine-tubulin (red) and Hoechst 33258 (green)
were added to visualize microtubules and DNA, respectively.  Scale bar, 10 µm.
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Figure 3-7. The N-terminal Domain of Incenp is Dispensable For Spindle Formation
In the Presence of αIncenp Antibodies
Quantitation of DNA-containing structures formed in the extracts described in Figure 3-
6; >250 structures were scored for each sample.

Achromosomal Spindle Formation is Induced by Aurora B and Incenp

     On closer inspection of the structures formed in reconstituted ΔIncenp extract, we

noticed the presence of numerous apparently bipolar structures lacking sperm

chromosomes (Figure 3-6, arrowheads).  These achromosomal bipolar spindles were

observed in ΔIncenp extract reconstituted with Aurora B and either full-length Incenp or

IncenpΔ1-327, and could be seen both in the vicinity of chromosomal spindles and

completely separated from them (Figures 3-6, 3-8).  Although such achromosomal

spindles comprised up to ~50% of all bipolar structures in reconstituted extracts, they

could not be detected in either control depleted or unreconstituted ΔIncenp extracts

(Figure 3-7).  Interestingly, preliminary data suggests that the formation of

achromosomal bipolar spindles by Aurora B and Incenp may be partially suppressed by

the addition of mRNAs encoding Dasra A/Dasra B/Survivin/SIX, while this suppression

was not seen in extracts expressing Aurora B and IncenpΔ1-327 (data not shown).
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Figure 3-8. Addition of Aurora B and Incenp to ΔIncenp Extract Induces
Achromosomal Spindle Formation
(A) Representative images of achromosomal spindles formed in cycled ΔIncenp extract
reconstituted with Aurora B and either full length Incenp (top row) or the N-terminal
truncation mutant IncenpΔ1-327 (bottom row), which does not interact with Dasra A/Dasra
B or Survivin/SIX.  Rhodamine-tubulin (monochrome) and Hoechst 33258 were added to
visualize microtubules and DNA, respectively.  None of the depicted figures contained
Hoechst-stainable material (data not shown).  Scale bar, 10 µm.
(B) Quantitation of structures formed in control, ΔIncenp, and reconstituted ΔIncenp
extract, including achromosomal bipolar spindles.
(C) Length of chromosome-containing and achromosomal spindles formed in control,
ΔIncenp, or reconstituted ΔIncenp extracts.  Pole-to-pole distance was measured for
cycled spindles fixed 45 min after entry into metaphase.  Mean plus standard deviation
for >50 spindles of each class is included.
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Figure 3-9. Addition of Aurora B and Incenp to ΔIncenp Extract Induces
Achromosomal Spindle Formation
Spindle formation by purified centrosomes in reconstituted ΔIncenp extract.  Purified
centrosomes (a gift of K. Kinoshita) were added to control, ΔIncenp, or reconstituted
ΔIncenp extract, cycled through interphase to metaphase, and fixed 45 min after entry
into metaphase.  Rhodamine-tubulin was added to visualize microtubules (monochrome).
Scale bar, 10 µm.

     Qualitatively, the achromosomal spindles observed in reconstituted extracts were

unlike normal spindles assembled around sperm chromatin, since they possessed

prominent astral microtubules, sparse overlapping interpolar microtubules, and reduced

overall length and tubulin density (Figure 3-8A, 3-8C).  These characteristics led us to

speculate that they were generated via interaction of centrosomal rather than chromatin-

derived microtubules.  To test whether achromosomal spindles could be produced in the

complete absence of chromatin, we added purified centrosomes to ΔIncenp extract

reconstituted with Aurora B and Incenp.  While little or no interaction was observed

between centrosomes in control or ΔIncenp extract, abundant centrosome association was

seen in the reconstituted ΔIncenp extract, leading to the generation of both bipolar

structures and much larger, mesh-like networks of centrosomes (Figure 3-9).  As

expected, achromosomal bipolars also formed in the presence of sperm nuclei in these

experiments.  In contrast, achromosomal spindle formation was never observed in
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reconstituted extract alone (data not shown).  Taken together, these findings indicate that

the formation of achromosomal spindles in this system either directly or indirectly

involves the activity of Aurora B and centrosomes.

Op18/Stathmin Phosphorylation is Increased in Reconstituted ΔIncenp Extract

     To begin to address the molecular events underlying the achromosomal spindle

formation observed in reconstituted ΔIncenp extract, we considered the possibility that

depletion and reconstitution might in some way lead to hyperactivation of one of the

known pathways of spindle formation; these include Aurora B-dependent MCAK

phosphorylation (Ohi et al., 2004; Sampath et al., 2004) and phosphorylation of

Op18/Stathmin (Andersen et al., 1997; Budde et al., 2001).  Since activation of these two

pathways should lead to increased phosphorylation of MCAK and Op18, respectively, we

immunoprecipitated MCAK and Op18 from metabolically labeled control or ΔIncenp

extract, with or without reconstitution of Aurora B and Incenp, and quantified the degree

of labeling of each protein following SDS-PAGE and exposure to a PhosphorImager.  We

observed that control, reconstituted control, and ΔIncenp extracts showed no differences

in the level of MCAK and Op18 labeling (Figures 3-10A, 3-10B).  In contrast,

reconstitution of ΔIncenp extract with Aurora B and Incenp lead to a relatively modest

increase in MCAK phosphorylation (~40%; Figure 3-10A), but a substantial increase in

Op18 phosphorylation (~150%; Figure 3-10B).
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Figure 3-10. Reconstitution of ΔIncenp Extract Leads To Hyperphosphorylation of
Op18/Stathmin
Control and ΔIncenp extract were cycled through interphase to metaphase with or without
reconstitution of Aurora B and Incenp.  Metaphase samples were labeled with γ-32P-ATP
and immunoprecipitated with either α-MCAK (A) or α-Op18 (B) beads.  The bead-
bound fraction was washed extensively in the presence of phosphatase inhibitors,
separated by SDS-PAGE, and exposed to a PhosphorImager for quantitation of the
indicated bands (right).
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     The dramatic increase in Op18 phosphorylation observed after reconstitution of

ΔIncenp extract was surprising, since no DNA or any other source for microtubule

stabilization was added to the reactions, and Op18 has been previously reported to

become hyperphosphorylated in response to microtubule stabilization (Kuntziger et al.,

2001).  These findings therefore prompted us to further investigate the regulation of Op18

by Aurora B.

Op18 Hyperphosphorylation is CPC-Dependent, and is Activated in Reconstituted

ΔIncenp Extract

     Op18 has been reported to become phosphorylated on serine 16 in response to

microtubule stabilization mediated by sperm nuclei, centrosomes, or isolated chromatin

(Kuntziger et al., 2001), however it has not been reported to be phosphorylated by Aurora

B.  To establish whether Op18 hyperphosphorylation is dependent on the CPC, we added

increasing doses of sperm nuclei, centrosomes, or DNA beads to control or ΔIncenp

extract, and monitored Op18 phosphorylation by Western blot.  We found that the

slowest migrating, most highly phosphorylated form of Op18, corresponding to the serine

16-phosphorylated form (Kuntziger et al., 2001), was induced by all three stimuli in a

dose-dependent manner, but was completely absent in ΔIncenp extract (Figure 3-11).

This result demonstrates that the CPC is required either directly or indirectly for Op18

phosphorylation.  Importantly, as suggested above by the induction of centrosomes

interaction in reconstituted ΔIncenp extracts, this finding again indicates that the Aurora

B pathway is activated by centrosome- or microtubule-derived signals.
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Figure 3-11.  Op18 Hyperphosphorylation is CPC-Dependent, and is Activated in
Reconstituted ΔIncenp Extract
Op18 hyperphosphorylation is CPC-dependent.  Control and ΔIncenp extracts containing
increasing amounts of sperm nuclei (500, 2000, or 10000/µl), centrosomes (250, 1000, or
10000/µl), or DNA beads (1, 2, or 5 µl) were added to CSF arrested control or ΔIncenp
extract, and were cycled through interphase to metaphase.  Samples were taken 45 min
after entry into metaphase and analyzed by Western blot using the indicated antibodies,
including α-Op18 (a gift of R. Heald).

     The finding that Op18 becomes constitutively hyperphosphorylated following

reconstitution of ΔIncenp extract with Aurora B/Incenp, but not by Aurora B/Incenp

expression in control extract, suggested that CPC depletion might lead to codepletion of

an unknown inhibitory factor.  One potential source of inhibition might be Dasra proteins

or Survivin/Six, particularly given that ~30% of Survivin usually remains undepleted,

and therefore might serve to inhibit exogenous protein.  To investigate this possibility, we

examined Op18 phosphorylation by Western blot in control or ΔIncenp extracts

reconstituted with Aurora B and IncenpΔ1-327, which cannot bind to Dasra proteins or

Survivin/SIX (Figure 3-5).  We observed that Op18 still became hyperphosphorylated in

reconstituted extract in the presence of IncenpΔ1-327 (Figure 3-12), suggesting that, if it

existed, the unknown inhibitory factor was not Dasra A, Dasra B, Survivin, or SIX.
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Moreover, the fact that Aurora B and Incenp expression in control extract does not lead to

Op18 hyperphosphorylation indicates that this effect is not due to CPC overexpression.

     We eventually found that, as with spindle formation, both the constitutive activation

of Op18 phosphorylation and achromosomal spindle formation in reconstituted ΔIncenp

extract were dependent on the presence of leached αIncenp antibody in the

immunodepleted extract (A. Kelly and S.C.S., data not shown).  Direct addition of

αIncenp antibodies to control extracts induces both CPC-dependent Op18

phosphorylation, as well as achromosomal spindle formation by centrosomes (A. Kelly,

data not shown).

Figure 3-12.  Op18 Hyperphosphorylation is CPC-Dependent, and is Activated in
Reconstituted ΔIncenp Extract
Reconstitution of ΔIncenp extract leads to Op18 hyperphosphorylation.  Control or
ΔIncenp extracts containing water, sperm nuclei (10000/µl), centrosomes (3000/µl), or
DNA beads (5 µl) with or without reconstitution were cycled through interphase to
metaphase.  Samples were taken 60 min after entry into metaphase and analyzed by
Western blot using the indicated antibodies.
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     Op18-mediated microtuble destabilization has been shown to be regulated by

phosphorylation (Gavet et al., 1998; Horwitz et al., 1997; Larsson et al., 1997; Marklund

et al., 1996), and serine 16 phosphorylation in particular has been shown to inhibit its

microtubule-destabilizing activity (Melander Gradin et al., 1997).  The data presented

here therefore suggest that at least part of the mechanism by which reconstituted Aurora

B induces the formation of achromosomal spindles by centrosomes is via constitutive

inhibition of Op18-mediated microtubule destabilization.

Dasra Proteins Regulate Spindle Checkpoint Activity and CPC Chromosome

Binding

     The above data define distinct roles for Aurora B and Incenp in promoting spindle

formation, including functions both at chromosomes and on centrosomes.  To further

investigate the spatial regulation of CPC function, we examined the requirements for

mitotic spindle checkpoint activity, which is thought to require localization of the

complex to the centromere (Vigneron et al., 2004).  Aurora B-dependent mitotic

checkpoint activity can be activated in egg extract by the addition of high concentrations

of sperm nuclei in the presence of nocodazole (Gadea and Ruderman, 2005; Vigneron et

al., 2004).  Accordingly, we tested the ability of reconstituted ΔIncenp extracts to support

checkpoint activity after cycling and adding 9000 sperm nuclei per microliter of extract.

Checkpoint activity can be monitored by analyzing chromosome morphology and cyclin

degradation after the addition of calcium to induce anaphase; in the presence of an

activated checkpoint, chromosomes should remain condensed and cyclin levels should
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remain stable.  As expected, we found that chromosomes from control depleted extract

remained condensed  after calcium addition, whereas chromosomes in ΔIncenp extract

had an interphase morphology (Figure 3-13A).  This was reflected in the maintenance

and loss, respectively, of cyclin B1 levels in control and ΔIncenp extract (Figure 3-13B).

Importantly, addition of all CPC mRNAs to ΔIncenp extract rescued the spindle

checkpoint defect, and both mitotic chromosomes condensation and cyclin B1 levels

were maintained.  As observed for spindle assembly, mRNA pools lacking Aurora B and

Incenp were unable to rescue spindle checkpoint function.  Surprisingly however, we

found that the absence of Dasra proteins also led to the complete abrogation of spindle

checkpoint activity (Figure 3-13A, 3-13B).  Addition of either Dasra A or Dasra B to the

mRNA pools was sufficient to restore checkpoint activity.  In contrast, Survivin/SIX

deficiency did not affect checkpoint activity, though we cannot rule out the possibility

that the residual ~25% of undepleted Survivin protein is sufficient to confer checkpoint

function.
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Figure 3-13. Dasra Proteins Are Required for Spindle Checkpoint Activity in
Xenopus Egg Extract
(A) Chromosome morphology assay for spindle checkpoint activity.  CSF arrested
control, ΔIncenp, or reconstituted ΔIncenp extracts were cycled through interphase to
metaphase, and 10000 sperm nuclei/µl egg extract were added.  Extracts were then
incubated for 30 min in the presence of nocodazole, calcium was added to induce exit
from metaphase, and chromosome morphology was examined in fixed samples 60 min
after calcium addition.  Note that the compact metaphase morphology is due to the
presence of nocodazole, whereas interphase nuclei are decondensed and swollen.
Hoechst 33258 was added to visualize DNA (monochrome).  Scale bar, 10 µm.
(B) Western blot analysis of control, ΔIncenp, or reconstituted ΔIncenp extracts
following checkpoint activation and release from CSF arrest.  Aliquots of the cycled,
nocodazole-treated samples described in (A) were taken at 0 min, 30 min, or 60 min after
the addition of calcium to release CSF arrest.  Western blots of total proteins were
performed using the indicated antibodies.  Asterisk (upper band) indicates a cross-
reactive species.

     We previously demonstrated that loss of hDasra B function in mammalian cells

inhibits proper localization of the passenger complex during mitosis (Sampath et al.,

2004).  We therefore investigated whether the lack of spindle checkpoint function in

Dasra-deficient extract might be due to lack of CPC binding to mitotic chromosomes.

Metaphase chromosomes were purified from reconstituted ΔIncenp extract which had
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been metabolically labeled with 35S-methionine, and the extent of copurification of the

labeled CPC members was examined by SDS-PAGE (Figure 3-14A).  We observed that

~9-fold less Incenp and Aurora B, and 25-fold less Survivin were recovered when Dasra

proteins were absent than in their presence.  Chromosomes purified in the absence of

both Dasra proteins and Survivin/SIX showed no additive effect on suppression of

Aurora B and Incenp chromosomal loading.  To confirm and extend this result, we

repeated the experiment using chromatin beads rather than sperm chromosomes as the

source of DNA.  Essentially the same effect was seen on purified chromatin beads, which

contained ~20-fold less Incenp, 15-fold less Aurora B, and 20-fold less Survivin in the

absence of Dasra proteins than in their presence (Figure 3-14B).

     It is important to note that a fraction of Aurora B and Incenp were still recovered in

the absence of Dasra A/B and Survivin/SIX using both sperm chromosomes and

chromatin beads, which may indicate the existence of a parallel pathway for the loading

of this subcomplex onto metaphase chromosomes.  One possibility in this regard is

chromosomal recruitment through the previously described interaction between Incenp

and Heterochromatin Protein 1 (HP1), which involves the hinge region of HP1 (Ainsztein

et al., 1998).  Alternatively, this effect may also reflect the presence of αIncenp-

dependent constitutive Aurora B activation.
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Figure 3-14. Dasra Proteins Are Required for Efficient CPC Chromosome Binding
in Xenopus Egg Extract
(A) Dasra proteins are required for efficient CPC binding to chromosomes.
Metabolically labeled control, ΔIncenp, or reconstituted ΔIncenp extracts containing
sperm nuclei, 35S-methionine, and biotin-dUTP were cycled through interphase to
metaphase, and chromosomes were purified using streptavidin-coated magnetic beads.
Copurification of labeled proteins was analyzed by SDS-PAGE and quantified using a
PhosphorImager.  Note that copurifed labeled histones are evident due to incomplete
degradation of their abundant mRNAs during RNase treatment, and indicate equal
chromosome recovery, as does Coomassie staining (data not shown).
(B) Dasra proteins are required for efficient CPC binding to chromatin beads.
Metabolically labeled control, ΔIncenp, or reconstituted ΔIncenp extracts containing
DNA beads and 35S-methionine were cycled through interphase to metaphase, and the
beads were recovered using a magnetic particle separator.  Copurification of labeled
proteins was analyzed as described above (C).
(C) Incenp localization on individual chromosomes.  Control, ΔIncenp, or reconstituted
ΔIncenp extracts containing sperm nuclei were cycled through interphase to metaphase,
diluted with chromosome dilution buffer, and processed for indirect immunofluorescence
using anti-Incenp antibodies (bottom), and Hoechst 33258 to visualize DNA (top).  Scale
bar, 10µm.
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     Because chromatin beads do not contain the repetitive centromeric sequences required

for kinetochore assembly, they are thought to mimic chromosome arms in composition.

Indeed, we found that in vitro translated histone H3, but not the centromeric H3 variant

Cenp-A, copurified with chromatin beads incubated in egg extract (Figure 3-15).  The

failure of the CPC to load onto chromatin beads in Dasra-deficient extract therefore

suggests that Dasra proteins are required for CPC binding to chromosome arms during

mitosis.  Consistent with this model, immunofluorescence on individual chromosomes

revealed lack of Incenp staining on both centromeres and chromosome arms in the

absence of Dasra proteins (Figure 3-14C).

Figure 3-15. Chromatin Beads Bind  Histone H3, But Not the Centromeric H3
Variant Cenp-A
Egg extract containing DNA beads and the indicated in vitro translated proteins were
cycled through interphase to metaphase, the beads were recovered using a magnetic
particle separator, and copurifying proteins were examined by SDS-PAGE and
autoradiography.  Aliquots of the cycled and labeled samples before bead purification are
shown at left.  Note that both H3 and Dasra A shift to higher molecular weight after
becoming chromatin-associated.
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CHAPTER 4
Discussion

     Our studies on the chromosomal passenger complex (CPC) began with our

identification of Dasra A and Dasra B as two novel components of the CPC in

vertebrates.  In the process of exploring the functions of these two proteins, we made the

unexpected finding that the CPC is strictly required for chromatin-dependent spindle

assembly in Xenopus egg extracts.  Nonetheless these initial studies left the actual

functions of the Dasra proteins in doubt.  Our subsequent studies on CPC function using

depletion and add-back have allowed us to assign functions to the Dasra proteins, and

serendipitously led us to uncover a new and unanticipated role of the CPC in the

regulation of centrosome-derived astral microtubules.  This finding in turn led us to

define a new role for Aurora B in the phosphorylation of microtubule destabilizing

protein Op18.

Dasra A and Dasra B Are Novel, Evolutionarily Conserved Components of the CPC

     Our analysis indicates that, along with Aurora B, Incenp, and Survivin, Dasra A and

Dasra B are components of the Xenopus chromosomal passenger complex.  In addition to

sharing the dynamic localization pattern observed for the known CPC components

(Figures 2-2A, 2-2C, 2-5, 2-6D), Dasra A codepletes with the CPC (Figures 2-6B, 2-7),

Dasra A and B coprecipitate with Incenp (Figures 2-6C, 2-8A), and Dasra A cosediments

with Incenp, Aurora B, and Survivin by sucrose density centrifugation (Sampath et al.,

2004). We detect these proteins (and possibly SIX), but no other major bands in

precipitates of metabolically labeled CPC, and these are the major proteins absent on
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Incenp-depleted chromosomes (Figure 4-1), therefore we believe that these five proteins

comprise the major components of the CPC in Xenopus.  We do not exclude the

possibility, however, that other proteins may codeplete with the complex, although they

may not bind at equal or near-equal molarity with the other components of the CPC (see

below).

Figure 4-1. Incenp, Aurora B, Dasra A/Dasra B, and Survivin/SIX are the Primary
Components of  the CPC in Xenopus Egg Extract
(A) Metabolic labeling of CPC components.  Egg extract was labeled with 35S-
methionine, immunoprecipitation was carried out with control IgG, anti-Dasra A, or anti-
Incenp antibodies, and the precipitated proteins were resolved by SDS-PAGE and
autoradiography.  Asterisk indicates an unknown protein in the anti-Incenp IP.
(B) Protein composition of control and CPC-deficient chromosomes.  Control and
ΔIncenp egg extract were metabolically labeled with 35S-methionine, chromosomes were
purified, and the recovered chromosome-binding proteins were resolved by SDS-PAGE
and autoradiography.  Asterisk indicates unknown proteins which change in abundance
between control and ΔIncenp chromosomes.



73

     Xenopus Dasra A and Dasra B share only 26% identity at the amino acid level, similar

to the level of identity between Xenopus Dasra A and human Dasra B (23%).  In contrast,

Xenopus Dasra A is 41% identical to chicken Dasra A, and Xenopus Dasra B is 42%

identical to human Dasra B.  It would thus seem to be the case that Dasra A and Dasra B

are indeed evolutionarily (and thus functionally) distinct genes, rather than simply

representing products of gene duplication within Xenopus.  The precise functional

differences between Dasra A and Dasra B remain mysterious; for instance, while we have

established that Dasra proteins are required for spindle checkpoint activity in egg extract

(Figure 3-13), both Dasra A and Dasra B are capable of fulfilling this function when

added exogenously, a remarkable finding given the sequence dissimilarity between the

two proteins.  In the future, restoration of  spindle checkpoint activity in ΔIncenp extract

may provide an assay which can be used for domain-swap experiments, which may

delineate the functionally conserved regions of both proteins.  Structural data could also

be particularly illuminating in this regard.

     Dasra B, but not Dasra A, shows very limited sequence similarity to CSC-1, a

component of the CPC in nematodes [Figure 2-3; (Romano et al., 2003)].  Much of the

identity between xDasra B and CSC-1 is confined to a small C-terminal patch of

unknown significance.  In the future is will be important to investigate the function of this

domain, potentially using spindle checkpoint activity as an assay as described above.

Chromatin-Dependent Spindle Formation by Aurora B and Incenp

     As discussed in Chapter 1, several pathways are thought to be required for the

induction of spindle formation around chromatin during M-phase; this includes, but is not



74

limited to, the Ran-GTP pathway (Carazo-Salas et al., 2001), and the Polo/Op18 pathway

(Budde et al., 2001).  Our findings demonstrate that depletion of the CPC leads to a

profound block in spindle formation around chromatin; in ΔIncenp extract, sperm-

associated centrosomes initially nucleate microtubules, but these microtubules fail to be

incorporated and converted into chromatin-stabilized spindles (Figure 2-12).  It has been

previously demonstrated that centrosomes undergo long-range communication with

chromatin, such that purified centrosomes added to egg extract containing chromatin

beads preferentially grow towards the beads (Carazo-Salas and Karsenti, 2003).  It

therefore seems likely that Aurora B not only promotes microtubule stability around

chromatin, but is also part of the mechanism underlying this communication between

chromatin and centrosomes.

     We show that the microtubule assembly defect observed in ΔIncenp extract can be at

least partially reversed by codepletion of the microtubule depolymerase MCAK.

Depletion of MCAK itself causes the formation of giant microtubule ‘halos’, and

although some bipolar spindles can be formed on CPC/MCAK codepletion, most

structures are qualitatively similar to those seen in ΔMCAK extract.  This would seem to

argue that MCAK depletion simply causes non-specific microtubule stabilization, and

therefore that although Aurora B and MCAK have antagonistic activities, they do not

necessarily act within a common pathway.  Such a position is unlikely to be valid,

however, since codepletion of MCAK with XMAP215, a well characterized microtubule

stabilizing protein (Kinoshita et al., 2001; Tournebize et al., 2000), does not lead to

microtubule ‘halos’.
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     Alternatively, work from several groups now suggests that a functional relationship

does indeed exist between Aurora B and MCAK.  In particular, it has now been

demonstrated that Aurora B can phosphorylate and inactivate the microtubule

destabilizing activity of MCAK (Andrews et al., 2004; Lan et al., 2004; Ohi et al., 2004).

Spatially, such regulation seems plausible, since both Aurora B and MCAK reside at the

inner centromere, and Aurora B-mediated phosphorylation appears crucial for

localization of MCAK to the centromeres of metaphase chromosomes in Xenopus egg

extract (Ohi et al., 2004).  Interestingly, when ΔMCAK extract was reconstituted with a

non-phosphorylatable mutant, bipolar spindle assembly was inhibited, and predominantly

monopolar structures were formed (Ohi et al., 2004).  This phenotype resembles the

ΔDasra A depletion phenotype, suggesting that the partial loss of CPC function in ΔDasra

A may phenocopy loss of MCAK regulation.

Aurora B, Incenp, and Dasra Proteins Regulate Chromatin-Dependent Spindle

Assembly

     We proposed on the basis of the findings presented in Chapter 1 that the CPC acts

locally to promote microtubule stabilization around chromosomes (Sampath et al., 2004),

however determination of the precise functions of each CPC component towards that

function eventually required the use of the ‘mRNA-dependent’ extract system.  Although

Aurora B and Incenp have been previously described to form a subcomplex (Gassmann et

al., 2004), our finding that these two proteins could together support spindle formation

was surprising, since we provide evidence that Aurora B and Incenp bind only relatively

weakly to chromosomes in the absence of Dasra proteins (Figure 3-14).
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     This discrepancy was eventually reconciled by the detection of αIncenp antibodies in

the reconstituted ΔIncenp extracts; these antibodies induce dose-dependent CPC

activation, suggesting that in the absence of Dasra proteins, antibody-induced CPC

activation leads to spindle formation.  This conclusion was subsequently supported by the

finding that extracts depleted of the CPC using beads bearing covalently coupled

antibodies are dependent on Dasra proteins for chromatin-dependent spindle formation.

Overall, our findings suggest a model in which Dasra proteins promote CPC binding to

and activation by chromatin, leading to spindle formation, while artificial activation of

the CPC using αIncenp antibodies bypasses the necessity for Dasra proteins in spindle

assembly.  This model is supported by the recent finding that The molecular nature of this

activating effect remain unclear, but the bivalent structure of immunoglobulin molecules

suggests that clustering of CPC holocomplexes by antibody may promote their trans-

phosphorylation and activation.  Future experiments using a constitutively activated

mutant of Aurora B (Eyers et al., 2005) may shed further light on the roles of the Dasra

proteins in CPC localization and activation.

     These data, as well as the finding that CPC-dependent Op18 phosphorylation is

increased in the presence of sperm nuclei and chromatin beads (Figure 3-11), suggest that

Aurora B may become activated by mitotic chromatin.  Indeed, it has very recently been

reported that hDasra B can bind directly to dsDNA in vitro (Klein et al., 2006),

suggesting that Dasra-dependent DNA binding promotes CPC activation and spindle

assembly.  We have found that Aurora B binding to mitotic chromosomes is dynamic;

when chromosomes purified from control extract are transferred to ΔIncenp extract,

microtubules polymerize only briefly before collapsing (Figures  2-18, 2-19), likely due
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to rapid exchange between the cytosolic and chromatin-bound CPC populations.  We

therefore propose that the activated form of Aurora B generated on chromatin creates a

zone of localized MCAK inhibition, the extent of which would be limited by diffusion

and the abundant phosphatase activity present in the cytosol.

     In many ways this model resembles the emerging theory of Ran-GTP-dependent

spindle formation, in which chromatin-bound RCC1 induces the formation of a high local

concentration of Ran-GTP, which is required for spindle formation (Carazo-Salas et al.,

1999; Kalab et al., 1999; Kalab et al., 2002).  Recent studies indicate that long-range

gradients of Ran-GTP/Importin-β are important for biased microtubule growth and

spindle assembly in egg extracts (Caudron et al., 2005); such gradients can be modulated

by the addition of RanGAP, RanBP1, or RCC1, which therefore perturb spindle

formation (Caudron et al., 2005; Kalab et al., 1999).  We speculate that Aurora B

activation on chromatin may likewise break the symmetry of mitotic cytoplasm by

generating a field of microtubule stabilization around chromatin, with the phosphatases

present in the cytoplasm playing an antagonistic but essential role analogous to those of

RanBP1 and RanGAP.

Multiple Pathways Contribute to Chromatin-Dependent Spindle Assembly

     If the above model is correct, in what way would Aurora B function differ from that of

Ran?  Although many analogies may be drawn between the Ran and Aurora B pathways,

many significant differences also exist.  For instance, while Ran only requires binding to

GTP for activation, Aurora B is dependent on continued binding to and phosphorylation

of Incenp for its full activation (Sessa et al., 2005).  This is reflected in the fact that, while
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addition of Ran-GTP to extracts causes spontaneous aster formation and spindle

assembly in the absence of chromatin (Carazo-Salas et al., 1999; Ohba et al., 1999; Wilde

and Zheng, 1999), expression of Aurora B alone in egg extract has no significant effect

on microtubule assembly (Figure 3-3, and data not shown).  Likewise, preliminary data

suggests that addition of a constitutively activated Aurora B mutant does not lead to

spontaneous microtubule polymerization (T. Maniar and S.C.S., data not shown).

     These findings underscore a more fundamental dissimilarity between the Ran and

Aurora B pathways: while Ran-GTP is capable of initiating de novo microtubule

nucleation, Aurora B seems largely to stabilize pre-nucleated structures.  Taken together,

it therefore appears likely that these two pathways must work together in order to

organize chromatin-dependent spindle assembly, for instance through Ran-dependent

microtubule nucleation followed by Ran- and Aurora B-dependent microtubule

stabilization.  Clearly, further investigation will be required to elucidate the downstream

effectors of both pathways.

     An additional layer of complexity is added by our finding that Aurora B also regulates

Op18/Stathmin phosphorylation, a finding also recently described by others (Gadea and

Ruderman, 2006); this function had previously ascribed to the chromatin-associated Polo-

like kinase Plx1.  We find that the CPC is indispensable for hyperphosphorylation of

Op18 in response to a variety of stimuli, including sperm nuclei, centrosomes, chromatin

beads, and taxol (Figure 3-11, and data not shown).  Hyperphosphorylation of Op18

requires its phosphorylation on serine 16, which exists within a perfect Aurora B

consensus site (KRAS; consensus [K/R][K/R]x[S/T]), suggesting that this site is a direct

target of Aurora B kinase activity.  Indeed, recent data demonstrate that the Aurora B-
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containing CPC can phosphorylate serine 16 of Op18 in vitro.  This is significant, given

that non-phosphorylatable mutants of Op18 inhibit spindle formation, while

‘pseudophosphorylation’ mutants lead to enhanced microtubule stability (Andersen et al.,

1997; Budde et al., 2001; Marklund et al., 1996).  Interestingly, preliminary data

demonstrate that, contrary to published findings, sperm nuclei, centrosomes, and

chromatin are all capable of stimulating CPC-dependent Op18 phosphorylation in the

presence of nocodazole, suggesting that in these cases microtubules are not necessary for

the activation of Op18 phosphorylation (T. Maniar, data not shown).  It is clear that

investigating the exact role of Aurora B in the regulation of Op18-mediated microtubule

destabilization will be an important avenue for future work.

Achromosomal Spindle Formation

     One of the most striking findings of our study was the observation of achromosomal

spindle formation in ΔIncenp extract reconstituted with Incenp and Aurora B.  Such a

phenotype has been reported in only a handful of situations to date: during

spermatogenesis in Drosophila mutants exhibiting severe chromosome missegregation

(Bucciarelli et al., 2003), in PtK cell homokaryons containing supernumerary

centrosomes (Faruki et al., 2002), and after addition of a constitutively activated Ran

mutant to Xenopus egg extract (Carazo-Salas et al., 1999; Ohba et al., 1999; Wilde and

Zheng, 1999).   Interestingly, the achromosomal spindles formed in these otherwise

disparate scenarios share similar structural features.  In particular, the spindles described

here resemble the bipolar structures induced by activated Ran, including the presence of

few interpolar microtubules, low overall tubulin density, and more prominent astral
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microtubules (Carazo-Salas et al., 1999; Wilde and Zheng, 1999).  Moreover, as Faruki

and colleagues observed in PtK homokaryons, we also noted the presence of

achromosomal spindles containing only a single prominent microtubule bundle (Faruki et

al., 2002); data not shown).  The instability of achromosomal spindles formed in PtK

homokaryons is also a characteristic shared with achromosomal spindles induced by Ran-

GTP (J. Gaetz, personal communication).  These findings may indicate that the lack of

chromosome-derived signals places defined constraints on certain aspects of spindle

structure, such as the extent and stability of antiparallel microtubule overlap, and the

number of astral microtubule bundles polymerized from each centrosome.

     What is the molecular basis of achromosomal spindle formation in reconstituted

ΔIncenp extract?  We eventually found that the presence of activating αIncenp antibodies

can account for the Aurora B- and Incenp- dependent formation of these structures in

reconstituted ΔIncenp extracts; direct addition of αIncenp antibodies to control extracts

also promotes centrosomal interaction, although the structures generated under these

circumstances do not generally resemble the bipolar spindles illustrated in this work (A.

Kelly, data not shown).  Nonetheless, it seems clear that the formation of achromosomal

bipolar spindles is a consequence of hyperactivation of the CPC.  The precise

mechanisms involved downstream of Aurora B remain unclear, but may include

regulation of both Op18 and MCAK.  Future work will also need to address the potential

contributions of both Aurora A and the Ran pathway to this effect.

     The finding that centrosome addition causes dose-dependent Op18 phosphorylation by

Aurora B (Figure 3-11) indicates that Aurora B can ‘communicate’ with centrosomes,

though in some currently ill-defined way.  This conclusion is consistent with our earlier
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findings that while centrosomes do nucleate microtubules in ΔIncenp, these microtubules

fail to become associated with chromatin, a striking deviation from the ‘long-range

communication’ which occurs between centrosomes and chromatin in undepleted extract

[Figure 2-12; (Carazo-Salas and Karsenti, 2003)].  As stated above, nocodazole treatment

does not block centrosome-induced, CPC-mediated Op18 phosphorylation; since taxol

treatment does lead to CPC-dependent Op18 phosphorylation (T. Maniar, data not

shown), it appears that both centrosomes themselves and the microtubules generated from

them have the potential to activate Aurora B-dependent microtubule stabilization via

Op18 phosphorylation.  We believe that these observations can begin to explain the

ability of the activated form of Aurora B generated after depletion and add-back to

promote centrosomal interaction.  Such an activity would not be apparent from the

analysis of ΔIncenp extract, since in the absence of Aurora B no stable microtubules are

formed in the vicinity of chromosomes.  It is interesting to note in this context that

reconstitution of ΔMCAK extract with a form that cannot be phosphorylated by Aurora B

leads to formation of monopolar spindles around sperm chromosomes (Ohi et al., 2004).

     What does the observation of achromosomal bipolar spindle formation indicate about

the endogenous function of Aurora B?  As described above, Karsenti and colleagues have

advocated the view that chromatin initially generates spatial gradients of information

which break the uniformity of mitotic cytoplasm; the developing spindle then

progressively converts from a radially symmetric configuration centered on chromatin, to

a bilaterally symmetric orientation after the recruitment of centrosomes and microtubule

motors (Carazo-Salas and Karsenti, 2003; Caudron et al., 2005).  These long-range

gradients are speculated to produce a zone of microtubule stability around chromatin,
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which would account for the ability of centrosomal asters to sense the presence of and

migrate towards chromatin from a distance (Carazo-Salas and Karsenti, 2003).

     We believe that by activating Aurora B after depletion and reconstitution, we have

effectively produced a field which mimics and signals the homogeneous presence of

chromatin.  The effect  of such a field would be to create a ‘uniformly localized’ zone of

microtubule stability, to which centrosomes are predicted to be recruited through the

long-range communication mechanism previously described (Carazo-Salas and Karsenti,

2003).  This prediction is consistent with our results, which demonstrate that

reconstituted ΔIncenp extract induces the widespread interaction of centrosomes.

Theoretical studies suggest that, once recruited, microtubule motors would be capable of

organizing centrosomes into bipolar arrays (Nedelec, 2002), consistent with our

observation of achromosomal bipolar spindles in reconstituted extract.  Remarkably, we

show that achromosomal spindles can be formed in the absence of chromatin-dependent

Ran activation, although the total independence of such achromosomal spindles from

Ran-GTP has not yet been established.  We propose that endogenously, Aurora B acts as

part of the symmetry-breaking mechanism predicted to produce gradients of microtubule

stability, and which allows centrosome recruitment and retention within the nascent

spindle.  Put differently, our data suggests that by spatially regulating microtubule

stabilization near chromosomes and promoting centrosome interaction with these

microtubules, Aurora B acts as a master regulator of spindle assembly, integrating its

astral and anastral aspects.  To date the only molecule thought to be able to fulfill such a

function is Ran itself.
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     Although no specific role has been reported for Aurora B in mitotic spindle

bipolarization in cultured mammalian cells (Ditchfield et al., 2003; Hauf et al., 2003),

loss of Aurora B does perturb spindle formation more generally (Andrews et al., 2004).

In particular, injection of anti-Aurora B antibodies into Xenopus somatic cells causes

astral microtubule elongation and reduction of spindle microtubule density (Kallio et al.,

2002), and introduction of a dominant-negative Aurora B mutant causes formation of

spindle microtubule ‘bundles’, all similar to effects seen in achromosomal spindles from

ΔIncenp reconstituted extract.  Moreover, Aurora B has been reported to localize to

spindle poles, in addition to centromeres, during metaphase (Murata-Hori et al., 2002).

We therefore suggest that Aurora B has an unappreciated role in the regulation of

centrosomal microtubule dynamics and the establishment of spindle bipolarity; future

work will examine what the molecular nature of this regulation might be, including

spatial control of MCAK function and modulation of proteins such as Eg5, a plus end-

directed kinesin known to be required for spindle bipolarity (Kapoor et al., 2000; Mayer

et al., 1999).  It  will also be crucial in the future to understand the similarities and

differences between the functions of Aurora A and Aurora B at centrosomes.

     Control of centrosome stability is crucial for the maintenance of genome stability.

Aneuploidy (unequal chromosome segregation) is often observed in the presence of

abnormal numbers of centrosomes, and a number of genetic diseases are associated with

improper regulation of centrosome function [reviewed in (Badano et al., 2005; Nigg,

2002)].  Therefore it is clear that the initiation of centrosome formation must be tightly

controlled.  The association of centrosomes with chromatin must likewise be maintained

in order to prevent the generation of multipolar spindles, a particular challenge in zygotic
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cells, which contain an extraordinarily large amount of cytoplasm with relation to the size

of the mitotic spindle.  Our findings shed light on how these processes might be

controlled.

Dasra Proteins and Spindle Checkpoint Activity

     Even in the presence of αIncenp antibodies, we found that the Dasra proteins are

required for spindle checkpoint function (Figure 3-13A, 3-13B).  Recently it was reported

that Aurora B is the most ‘upstream’ component of the spindle checkpoint pathway in

Xenopus egg extract (Vigneron et al., 2004).  The authors of that study also reported that

addition of Aurora B, Incenp, and Survivin to CPC-depleted extract did not rescue

checkpoint activity or proper localization of the complex, leading them to speculate the

existence of an unknown component required for complex formation, centromeric

localization and checkpoint activity (Vigneron et al., 2004).  Given the data presented

here, it seems clear that Dasra proteins represent the missing CPC component required

for these processes.

     Why are Dasra proteins required for checkpoint function?  The answer to this question

likely lies at least partially in the observation that Aurora B and Incenp require Dasra

proteins for their efficient loading onto chromosomes (Figures 3-14A).  Incenp does not

become recruited to the inner centromere in the absence of Dasra A/B, as judged by

immunofluorescence (Figure 3-14C), and to the extent that chromatin beads can serve as

proxies for chromosome arms, Dasra proteins are also required for arm binding (Figure 3-

14B).  These findings may be related, since passenger proteins typically relocalize from

chromosome arms in prophase to inner centromeres at metaphase [reviewed in (Adams et
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al., 2001)].  The mechanism by which Dasra proteins promote chromosome binding is

unknown, but may include recruitment to proteins having a similar dynamic and/or

spatially restricted localization pattern (e.g. cohesin, centromeric or post-translationally

modified histone proteins).  In this regard, it is interesting to note that inhibition of Dasra

B expression in mammalian cells leads to selective loss of Cenp-A phosphorylation,

while H3Ser10 phosphorylation is unaffected (S.C.S., unpublished observations).

However, the observation that hDasra B is capable of binding to dsDNA in vitro (Klein et

al., 2006) suggests that Dasra dependent CPC-localization may be via direct chromosome

binding to centromeric and/or non-centromeric DNA, a model not inconsistent with the

evolutionary divergence of Dasra-family protein sequences.

Conclusions

     Our functional analysis of the CPC has demonstrated the importance of spatial

regulation of Aurora B function.  Chromosomes, centrosomes, and microtubules likely all

serve as sites of Aurora B activation towards substrates relevant for spindle formation

(e.g. Op18 and MCAK; Figure 4-2A), a process which does not intrinsically require

stable association of the CPC with metaphase chromosomes.  Like Ran-GTP, activated

Aurora B may then promote the formation a local zone of microtubule stability through

regulation of both Op18, MCAK and other factors (Figure 4-2B), and would act on Ran-

GTP-dependent microtubule seeds to promote microtubule polymerization within the

nascent spindle.  This microtubule stabilizing function could also facilitate centrosome

interaction with the spindle, an activity that may be reflected in the dramatic ability of

activated Aurora B to promote the formation of bipolar and multipolar structures by
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centrosomes in the total absence of chromatin.  Taken together, our findings shed new

light on how Aurora B functions at multiple locations to promote accurate spindle

formation and chromosome segregation.
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Figure 4-2.  A Model for Chromatin-Induced Spindle Assembly in the Metazoa
(A) Chromatin, centrosomes, and microtubules can promote CPC activation; in the case
of chromatin, this activation requires Dasra-dependent chromosome binding.  CPC
activation can be artificially induced by addition of αIncenp antibodies, which may act
via localized CPC clustering.  Activated CPC can then phosphorylate targets such as
Op18, histone H3 serine 10, and MCAK.
(B) Following the generation of microtubule seeds by chromatin-proximal Ran-GTP, the
activated CPC would promote localized microtubule stabilization via phosphorylation of
microtubule destabilizing proteins such as Op18 and MCAK.  The microtubules
generated by this pool of activated CPC could likewise serve to anchor centrosomes to
their associated spindle.  Bipolarization would then be induced through the actions of
microtubule motors and spindle associated proteins, including Eg5 and Dynein.
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Future Directions

     The findings described here represent an initial description of the composition and

function of the metazoan chromosomal passenger complex.  Numerous avenues however

exist for the further elucidation of CPC function in Xenopus.  Notably, although we have

now established the importance of Dasra proteins in chromosome binding, spindle

formation, and spindle checkpoint activity, the molecular basis for these functions

remains unclear.  If, as suggested by recent data, Dasra proteins in fact mediate direct

DNA binding (Klein et al., 2006), this may rationalize the radical divergence of Dasra-

family protein sequences, since these would presumably reflect the observed divergence

of centromeric DNA sequences.  On the other hand, we have found that Dasra proteins

are essential for efficient CPC binding to chromatin beads lacking centromeric DNA

sequences (Figure 3-14), suggesting that the intrinsic binding of Dasra proteins to DNA

may not be sequence specific.  Greater understanding of this aspect of Dasra protein

function will undoubtedly require structural and biophysical approaches in combination

with the loss-of-function techniques described here.  Such studies will also require

consideration of the function of Survivin, as multiple lines of evidence suggest that

Survivin and its homologs are functionally associated with Dasra proteins (Klein et al.,

2006; Romano et al., 2003; Sampath et al., 2004; Vader et al., 2006).

     The functional and evolutionary connection between Dasra A and Dasra B represents

another area for future research.  Despite intensive efforts, we were never successful in

producing an antibody capable of recognizing endogenous Xenopus Dasra B in protein

lysates derived from either eggs or somatic fibroblasts.  This technical limitation

precluded an analysis of Dasra B function in egg extracts, since it was not possible to
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perform immunodepletion experiments, or indeed to confirm the existence of Dasra B in

egg extracts.  This issue remains one of compelling interest nonetheless, since although

Dasra proteins have now been established as crucial regulators of CPC function, it

remains unclear why some organisms possess two Dasra family members (e.g. Xenopus,

chicken), while others require only one (as seen in mammals).  This question gain even

greater interest given that, despite the striking dissimilarity in sequence between Xenopus

Dasra A and Dasra B, both are capable of supporting spindle checkpoint function in egg

extracts.  This observation suggests either that the functional constraints on the Dasra

proteins do not translate into structural constraints, or that despite their dramatically

different sequences, Dasra A and B assume similar tertiary and/or quaternary structures.

While the latter possibility might be invoked to explain the observed differences in

sequence between Dasra B homologs in organisms having differing centromeric

sequences, the value of such a system within an individual species seems less obvious.

True understanding of the functions of Dasra A and Dasra B will eventually require

investigation in a physiological relevant context, namely embryogenesis, during which

both embryonic and somatic functions can be observed and perturbed.

     In addition to these questions related specifically to the Dasra proteins, many issues of

(greater or lesser) interest exist in relation to the CPC as a whole.  For example, the

model that Aurora B functions endogenously to regulate centrosome integration into the

nascent spindle deserves more careful examination.  As with the functional analysis of

the Dasra proteins, this would likely involve studying CPC function during early

development, since it is only then that this issue is of physiological relevance.  The role

of the CPC in modulating microtubule dynamics (i.e. both upstream and downstream of
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microtubule polymerization) is also of interest, although it has been reported that Aurora

B inhibition has no effect on microtubule nucleation or dynamics during either interphase

or mitosis (Rosa et al., 2006).  Of perhaps greater importance are the potential functional

connections between Aurora B and Aurora A, and between the CPC and Ran pathways

for spindle formation.  A precedent exists for the former, since it has been shown that

Aurora B-dependent Cenp-A phosphorylation during metaphase requires prior Aurora A-

dependent Cenp-A phosphorylation during prophase (Kunitoku et al., 2003).

     By contrast, there currently is little data supporting a functional connection between

the Ran-dependent and CPC-dependent pathways for spindle formation; indeed, we

found that spindle formation in ΔIncenpΔMCAK extract requires Ran function (Figure 2-

15), suggesting that these pathways operate in parallel.  Given however the similarities

between achromosomal spindle formation induced by activated CPC and activated Ran, it

would be worthwhile to use this model to readdress the possibility of cross-regulation

between these two critical pathways of spindle assembly.
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CHAPTER 5
Methods

Chapter 2 Methods:

Frog Egg Extracts

Unless specifically noted, freshly prepared meiotic metaphase II-arrested (CSF) Xenopus

laevis egg extracts were used (Murray, 1991).  To obtain high speed supernatant (HSS),

low-speed CSF extracts (supplemented with 10 µg/ml cytochalasin D) were centrifuged

at 50000 rpm for 1 h at 4°C in a Beckman TLS55 rotor, lipids were removed from the

top, and the remainder was recentrifuged at 50000 rpm for 1 h.  The supernatants were

then pooled and recentrifuged at 50000 rpm for 1 h.  These supernatants were frozen in

aliquots on liquid nitrogen, and thawed as needed.

Chromosome Binding Screen

A method described previously (Funabiki and Murray, 2000) was followed with

modifications.  Xenopus egg mRNA was isolated from low-speed egg extracts, and a full-

length, normalized cDNA library (Carninci et al., 2000) was built in a modified pCS2

expression vector (Turner and Weintraub, 1994).  Seven thousand bacterial colonies

containing independent cDNA clones were robotically formatted into 384-well plates.

The 5’- region of each clone was determined after amplification of the DNA using

TempliPhi (Amersham).  Each 384-well plate was robotically reformatted at the

Rockefeller University Gene Array Resource Center into four 96-well subplates, and

plasmid pools were prepared from columns, rows, and subplates, creating 24 pools per

384 well plate (12 column pools, 8 row pools, and 4 subplate pools).  These plasmid
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pools were added to a coupled transcription-translation system in rabbit reticulocyte

lysate (Promega).  For each chromosome binding reaction, sperm nuclei (final

concentration 1400/µl), 100 µg/ml cycloheximide, and 5 µM biotin-21-dUTP (Clontech)

were added to 120 µl of Xenopus CSF extract.  Thirty minutes after adding 0.3 mM

calcium chloride to allow entry into interphase, 12 µl of a labeled protein pool were

added.  After an additional 50 min at 22ºC, 60 µl of fresh CSF extract, 24 µg/ml cyclin

B∆90 (Glotzer et al., 1991), and 10 µg/ml nocodazole were added.  The extract was then

incubated for 80 min at 22ºC, after which the samples were frozen on liquid nitrogen and

stored at -80ºC.

     To purify chromosomes, the thawed extracts were mixed with 540 µl of Dilution

Buffer 2 [DB2; 10 mM K-HEPES (pH 7.7), 50 mM ß-glycerophosphate, 50 mM NaF, 20

mM EGTA, 2 mM EDTA, 0.5 mM spermine, 1 mM PMSF, 200 mM sucrose, 10 µg/ml

LPC (leupeptin, pepstatin, chymostatin)], layered over 60SDB2 (DB2 with 60% w/v

sucrose) in a centrifuge tube (Beckman #347357), and spun for 30 min at 14000 rpm in a

refrigerated Beckman Coulter 22R microcentrifuge using an S241.5 swinging bucket

rotor.  The sucrose interface was washed three times with 400 µl DB2, and the crude

chromosome preparation was resuspended in ~100 µl of residual 60SDB2 and incubated

with 15 µl Dynabeads M-280 streptavidin (Dynal) pre-equilibrated with 30SDB2 (DB2

with 30% w/v sucrose).  Chromosomes were captured by rotation with beads for 1 h at

4ºC, recovered using a magnetic particle separator (Boehringer) and washed five times

with 100 µl 30SDB2.  Samples were boiled in standard SDS-PAGE sample buffer, and

the copurifying labeled proteins were resolved by 7.5-15% gradient SDS-PAGE,

followed by exposure to a PhosphorImager screen (Fujifilm BAS-2500).
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     The individual clones responsible for bands observed in pooled screening were

determined by identifying column, row, and subplate (96-well) pools demonstrating

chromosome-binding proteins of similar molecular weight.  Putative chromosome

binding proteins were rescreened individually as described above, except that 4 µl of

individual translated clones were added to the reaction.

Identification of p344B8/Dasra A and Dasra B

The sequence of the p344B8/Dasra A cDNA was deduced by 5’ and 3’ sequencing of the

clone present in the arrayed library, followed by TBLASTN searches and alignment of

multiple ESTs present in public databases (Unigene Cluster Xl.5274).  This deduced

cDNA predicts a translated protein of 34 kD, similar to the molecular weight observed

after in vitro translation of the p344B8 clone present in the arrayed library.  TBLASTN

searches using the predicted xDasra A ORF sequence identified a homologous human

sequence (hDasraB; GenBank Accession Number BC008079, also known as CDCA8),

which when used in TBLASTN searches of Xenopus EST sequences identified a second,

more closely related Xenopus protein (xDasra B; partial sequence from GenBank

Accession Number CA982386).  Full length sequences of the cDNA clones encoding

xDasra A and xDasra B were determined at the Rockefeller University DNA Sequencing

Resource Center.  Dasra A and Dasra B homologs of chicken, Gallus gallus, and

zebrafish, Danio rerio, were obtained after TBLASTN searches using xDasra A and

xDasra B protein sequences.  The following EST sequences were used to assemble

predicted open reading frames: Gallus gallus Dasra A (BU225566, BU328206,

BU204597 and BU225870), Gallus gallus Dasra B (BU135762 and BX258302), Danio
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rerio Dasra A (BM777478 and BM036885), and Danio rerio Dasra B (BU492956 and

BQ616242).

Live Imaging of GFP Fusion Proteins

For C-terminal GFP-tagging, primers 4B8EcoRIAscI-1 (5’

CCCGAATTCATGCCGCCCAAGAGGAACAG 3’) and 4B8EcoRIAscI-2 (5’

AAGGCGCGCCGAGGGTATTCCCGTGGTGCTG 3’) were used to amplify the

complete p344B8/Dasra A ORF using the arrayed library clone, and the product was

cloned into pTGFC70 (H.F., unpublished; this plasmid contains the SP6 promoter driving

expression of the GFP protein downstream of an in-frame AscI site) to create pSCS012.

xDasra B was amplified with primers 4LPEcoRI-Fwd (5’

CCCGAATTCATGGCACCCGGGAAAAAGAAG 3’) and 4LPAscI-Rev (5’

AAGGCGCGCCCTTTAGTTTCTTGCAGAGCC 3’) from a clone present in the arrayed

library, and cloned into pTGFC70 to create pSCS021.

     For live imaging, pSCS012 and pSCS021 were linearized with XbaI and in vitro

transcribed using the mMessage mMachine SP6 kit (Ambion); pAFS210, encoding GFP

only, was used as a negative control (a gift of A. Straight).  For each spindle assembly

reaction, 1 µl of capped mRNA was added to 30 µl of Xenopus CSF extract containing

sperm nuclei (final concentration 400/µl); 0.3 mM calcium chloride was added to release

the extract into interphase, and the extract was incubated at 21ºC for 80 min.  A 10 µl

aliquot of fresh CSF extract was then added to 20 µl of this interphase extract to induce

M-phase.  After 30 min at 21ºC, DAPI was added to a final concentration of 0.05 µg/ml,

rhodamine tubulin to ~100 nM, and the extract was incubated in the dark for a further 30
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min.  To induce anaphase, 0.5 mM calcium chloride was added, and 3.5 µl of this extract

was immediately squashed under an 18x18 mm coverslip and sealed with Valap (Desai et

al., 1999a).  Chromosomes, GFP-fusion protein, and microtubules were imaged by time-

lapse microscopy using a Carl Zeiss Axioplan 2 microscope equipped with a

Photometrics CoolSnap HQ cooled CCD camera, and controlled by MetaMorph software

(Universal Imaging).  Images were processed with MetaMorph and Adobe Photoshop.

Generation of Peptide Antibodies

Methods previously described (Field et al., 1998) were followed.  Peptides corresponding

to the C-termini of xDasra A (CAKASIQHHGNTL), xIncenp

(CSNRHHLAVGYGLKY), and hDasra B (SNRLAQICSSIRTHK) were synthesized at

the Rockefeller University Protein Resource Center.  Peptides were conjugated to

hemocyanin (Sigma B8556 or H9035) and polyclonal antibodies were raised in rabbits

(Cocalico Biologicals, Reamstown, PA).  Antibodies were affinity purified after coupling

of the antigenic peptide to SulfoLink Coupling Gel (Pierce) according to the

manufacturers’s directions.  Bound antibodies were eluted with 100 mM Glycine, pH 2.3,

and peak fractions were pooled and dialyzed serially against PBS/50% glycerol, PBS, and

PBS/50% glycerol.  Affinity purified antibodies were stored at -30ºC.

Immunodepletion From Xenopus Egg Extracts

For each 50 µl immunodepletion reaction, 50 µl of Protein A-Dynabeads (Dynal) were

conjugated to either 5 µg affinity-purified anti-xDasra A, anti-xIncenp, or control rabbit

IgG, or to 12.5 µg anti-MCAK (Ohi et al., 2004) for at least 1 h at 4ºC.  Conjugated beads
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were washed twice in cold TBS and three times in cold Sperm Dilution Buffer [5 mM K-

HEPES (pH 7.7), 1 mM MgCl2, 100 mM KCl, 150 mM sucrose].  Excess buffer was

removed and 50 µl CSF extract containing 100 µg/ml cycloheximide and ~100 nM

rhodamine-tubulin was added, followed by gentle tapping to mix.  Extracts were depleted

in 50 µl aliquots in 0.6 ml microcentrifuge tubes for 2 h on ice, with a gentle mixing after

1 h.  Beads were removed using a magnetic particle separator, and residual beads were

removed after pooling the supernatants from several tubes.

     All incubations for spindle assembly using immunodepleted egg extracts were carried

out at exactly 15.5ºC in a water bath, and manipulations were carried out in a

temperature-controlled room at 20ºC.  For spindle assembly on replicated chromosomes,

40 µl of immunodepleted egg extract containing sperm nuclei (final concentration

400/µl) and 0.3 mM calcium chloride were incubated for 120 min at 15.5ºC to prepare

depleted interphase extracts.  Metaphase depleted spindles were prepared by adding 9 µl

of this interphase extract to 27 µl of fresh immunodepleted extract, followed by

incubation at 15.5ºC for 70 min.  To score depletion phenotypes, 1 µl of extract was

placed on a slide, 3 µl of Fix (Murray, 1991) was added, and an 18x18 mm coverslip was

placed on top.

     For spindle assembly on demembranated sperm nuclei, sperm nuclei (final

concentration 1500/µl) were added to 20 µl of fresh immunodepleted extracts.  For

spindle assembly on chromatin beads, 2 µl of DNA-coated beads, prepared following a

method previously described (Heald et al., 1998) and washed once with 20 µl of depleted

extract, were added to 66 µl of depleted extract containing cycloheximide and

rhodamine-tubulin, and were incubated for 2 h at 15.5°C after adding 0.3 mM calcium.
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To induce M phase entry, 24 µg/ml cyclin B∆90 and 33 µl of depleted extract were added,

and the extract was incubated for 30 min at 15.5°C.  The beads were then retrieved with a

magnetic particle separator and resuspended in 100 µl of fresh depleted extract.  To

monitor spindle assembly, 20 µl of the bead suspension was incubated for 60 min at

15.5°C, or 2.5 µl was used for live imaging at 20°C.

Immunoprecipitation from Egg Extract High-speed Supernatant (HSS)

20 µl of Protein A-sepharose (Sigma) bound to 5 µg of anti-xDasra A antibodies were

washed with XBE2 (10 mM HEPES-KOH, pH 7.6, 100 mM KCl, 2 mM MgCl2, 50 mM

sucrose, 5 mM EGTA and 10 µg/ml LPC), and were added to 50 µl of HSS with or

without 10 µl of 4 mg/ml xDasra A peptide (reconstituted in XBE2).  The beads were

incubated with HSS at 4°C for 80 min, washed 4 times with XBE2 + 0.3 M KCl, and

washed twice with XBE2 without KCl.  Beads were eluted with SDS-PAGE sample

buffer, applied to a gradient SDS-polyacrylamide gel, and analyzed by Western blotting.

Immunofluorescence Microscopy

Spindles assembled in Xenopus egg extract were processed for immunofluorescence as

described (Desai et al., 1999a; Funabiki and Murray, 2000).  Affinity purified anti-xDasra

A and anti-xIncenp antibodies were used at 1 µg/ml in AbDil (TBS/0.1%Triton X-

100+2% BSA) for 1 h, and were visualized with FITC- or X-Rhodamine-conjugated goat

anti-rabbit antibodies (Jackson ImmunoResearch).  DNA was counterstained with 0.25

µg/ml Hoechst 33258 in AbDil, and mounted in anti-fade mounting medium [90%

glycerol, 0.5% p-phenylenediamine, 20 mM Tris-HCl (pH 8.8)].
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     For simultaneous immunofluorescence using anti-xDasra A and anti-xIncenp

antibodies, slides were stained with 1 µg/ml anti-xDasra A antibodies as described above,

washed three times with AbDil, incubated for 30 min with FITC-conjugated goat anti-

rabbit Fab antibodies (Jackson ImmunoResearch), washed three times with Abdil,

blocked for 1 h with 70 µg/ml unconjugated goat anti-rabbit Fab (Jackson

ImmunoResearch), washed four times with AbDil, incubated with either 1 µg/ml anti-

xIncenp antibodies or Abdil (the latter as a negative control for cross-reaction) for 1 h,

washed three times with AbDil, and incubated with X-Rhodamine-conjugated goat anti-

rabbit antibodies.  Slides were then washed, counterstained, and mounted as described

above.  Negative control slides showed no rhodamine fluorescence when images were

acquired with exposure times equal to those used for antibody-stained slides.

     For immunofluorescence on cultured mammalian cells, HeLa cells grown on

coverslips were fixed for 1.5 min with -20ºC methanol, rinsed twice in TBS,

permeabilized in TBS+0.5% Triton X-100 for 10 min at RT, rinsed three times for 2 min

each in Triton X-100, and blocked in AbDil for at least 30 min.  Affinity purified anti-

hDasra B, anti-AIM-1 (BD Biosciences), and anti-hSurvivin (R&D Systems) were used

at 1 µg/ml, and anti-α-Tubulin (DM1, Sigma) at 1:1000, all after dilution in AbDil.  After

washing 3 times in AbDil, rabbit antibodies were detected with X-Rhodamine-conjugated

goat anti-rabbit antibodies, and mouse antibodies with FITC-conjugated goat anti-mouse

(Jackson ImmunoResearch).  Slides were stained with Hoechst and mounted as described

above.  Each image is a maximum projection derived from 0.1 µm serial sections through

the cell.
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Cell Culture and siRNA Treatment

HeLa cells were passaged in DMEM/10% FBS with penicillin and streptomycin at

37ºC/5% CO2.  For siRNA treatment and immunofluorescence, 5x104 cells were plated

into each well of a 6 well plate containing 3-4 acid washed, poly-D-lysine coated

coverslips, and were grown for 8-12 h in DMEM/10% FBS in the absence of antibiotics.

siRNAs were used at 200 nM, and were transfected using Oligofectamine (Invitrogen)

according to the manufacturers instructions.  siRNA target sequences were as follows:

hDasra B (5’ AAAGGUCAAGCCGUGCUAACA 3’),  EGFP (5’

AAGACGUAAACGGCCACAAGUUC 3’).  At 24-36 h post-transfection, cells were

treated with 20 µM MG132 (Peptides International) for 2 h at 37ºC, fixed, and analyzed

by immunofluorescence microscopy.  Chromosomes were scored for misalignment by

examining only those cells in mitosis.  A cell was scored as “misaligned” if at least one

chromosome was visibly separated from the metaphase plate, or if the chromosome mass

extended either throughout the interpolar region or beyond the spindle poles.

M-Phase Arrest and Immunoprecipitation

For mitotic arrest, 2x106 HeLa cells were plated onto 15 cm plates, incubated for 12-16 h,

treated with medium containing 2 mM thymidine for 18 h, released into fresh medium for

3-4 h, and blocked in medium containing 100 ng/ml nocodazole for 10-12 h.  Mitotic

cells were shaken off, washed twice with PBS, and transferred into fresh media for 1 h,

after which they were lysed by incubation in NP-40 Lysis Buffer [0.5% NP-40, 20 mM

Tris-HCl (pH 7.4), 500 mM NaCl, 0.5 mM EGTA, 10 mM ß-glycerophosphate, 10 µg/ml

leupeptin, 10 µg/ml pepstatin, 10 µg/ml chymostatin, 1 mM PMSF] on ice for 20 min.
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Lysates were cleared by centrifugation at 4°C at 13200 rpm for 10 min, and the

supernatant was diluted to 100 mM with NP-40 Lysis Buffer without salt.  Diluted lysates

were precleared with Protein A-sepharose (Roche) for 2 h at 4°C with rotation, the beads

were removed, and 10 µg of control IgG or affinity purified anti-hDasra B antibodies

were added.  After rotation for 1 h at 4°C, 30 µl of fresh Protein A-sepharose was added,

and the mixture was rocked for an additional 1 h.  The beads were then washed five times

with NP-40 Lysis Buffer, and samples were eluted with standard SDS-PAGE sample

buffer.

Western Blots

Immunoblots were blocked with PBS/4% nonfat dry milk for 1 h at RT or overnight at

4ºC.  Primary and secondary antibodies were diluted in PBS/4% nonfat milk at the

following concentrations: 1 µg/ml anti-Dasra A, 1 µg/ml anti-Incenp, 1 µg/ml anti-

Aurora B and anti-Survivin (gifts of T. Hirano), 1 µg/ml anti-hDasra B, 2 µg/ml anti-

XMAP215 (a gift of M. Shirasu-Hiza), 1 µg/ml anti-AIM1 (BD Biosciences), 1 µg/ml

anti-hSurvivin (R&D Systems), 1:5000 anti-α-Tubulin (DM1, Sigma).  Antibodies were

detected using either ECL or ECL-Plus (Amersham).

Sucrose Density Gradient Sedimentation

95 µl of CSF extract High Speed Supernatant was loaded onto a 5 ml 5-40% continuous

sucrose gradient [in 10 mM HEPES-KOH (pH 7.7), 50 mM ß-glycerophosphate, 50 mM

NaF] and spun for 15 h at 36,000 rpm in a rotor (SW55Ti; Beckman) at 4°C. In parallel

95 µl of calibration standards (BSA, 4.3S; catalase, 11.3S; and thyroglobulin, 19.4S) at 2
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mg/ml each were run on a separate gradient.  192 µl fractions were collected from each

gradient.

GenBank Accession Numbers

The mRNA sequences for Xenopus Dasra A and Dasra B have been deposited in

GenBank, with accession numbers AY644400 (Dasra A) and AY644401 (Dasra B).

Chapter 3 Methods:

Frog Egg Extracts

Unless specifically noted, freshly prepared meiotic metaphase II-arrested (CSF) Xenopus

laevis egg extracts were used (Murray, 1991).

Immunodepletion From RNase-treated Xenopus Egg Extracts

The preparation of RNase-treated extracts capable of supporting immunodepletion and

cycling typically required the use of naïve frogs that had not been previously hormonally

induced to lay eggs.  To prepare RNase-treated extract, boiled RNase A was added to

CSF-arrested extract at a final concentration of 0.11 µg/ml (10 µg/ml stock), and the

extract was incubated for 15 min at 12ºC.  RNase inhibitor (Super RNasin, Promega) was

then added at 1:150 dilution, and the extract was further incubated 5 min at 12ºC.

Extracts were then placed on ice, yeast tRNA was added to 0.05 µg/µl (5 µg/µl stock),

and ~100 nM rhodamine-tubulin was added.  RNase treatment was conducted in 300-400

µl aliquots, and the extracts were pooled after the addition of tRNA.
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     For each 50 µl immunodepletion reaction from RNase-treated CSF, 100 µl of

antibody-conjugated Protein A-Dynabeads (Dynal) were used.  Beads were conjugated

overnight at 4ºC in 0.1M phosphate buffer (pH 8.0) at a ratio of 50 µl beads:5 µg affinity-

purified α-Incenp, α-MCAK, α-Op18, or control rabbit IgG.  Conjugated beads were

washed once in phosphate buffer and five times in cold Sperm Dilution Buffer [5 mM K-

HEPES (pH 7.7), 1 mM MgCl2, 100 mM KCl, 150 mM sucrose].  Excess buffer was

removed and RNase-treated CSF extract was added, followed by gentle tapping to mix.

Extracts were depleted in 50 µl aliquots in 0.6 ml microcentrifuge tubes for 1.5 h on ice,

with a gentle mixing after 1 h.  Beads were removed using a magnetic particle separator

(Dynal), and residual beads were removed after pooling the supernatants from multiple

tubes.

Reconstitution of Immunodepleted Egg Extract

For the reconstitution of RNase-treated egg extract with >2 proteins, mRNA pools were

prepared.  Full length clones encoding Xenopus laevis Aurora B, Incenp, Dasra A, Dasra

B, Survivin, and SIX were individually in vitro transcribed using the mMessage

mMachine kit (Ambion).  Following phenol/chloroform extraction and precipitation,

capped mRNAs were pooled together, precipitated in the presence of 20 µg RNase-free

glycogen, and resuspended in RNase-free water such that 2 µl of the resuspended mRNA

contained sufficient mRNA for the reconstitution of 60 µl of ΔIncenp extract (final

volume after cycling).  The amount of mRNA needed for reconstitution of each protein

was empirically determined in advance by Western blotting.  Although these values

varied slightly from extract to extract, in general the following amounts of mRNA
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(OD260/280 ~1.7) were found to be sufficient to reconstitute ~60 µl (final volume) of

ΔIncenp extract to physiological levels, when added at the initial release into interphase

and as judged 60 min after entry into metaphase at 20°C: Incenp (10 µg), Aurora B (10

µg), Dasra A (2 µg), Dasra B (2 µg), Survivin (0.22 µg), SIX (0.22 µg).

     For the reconstitution of 1-2 proteins, mRNA pools were not prepared, and mRNA

encoding the proteins of interest were instead directly added to CSF-arrested RNase-

treated extracts in the amounts listed above.

     To monitor mRNA translation, 5 µl of CSF extract containing mRNA was taken

immediately after addition of calcium to induce release into interphase, and was added to

0.25 µl of 35S-methionine (Amersham #AG1594) diluted 1:1 with water.  The extract was

then cycled as described below, except that 10 µl of fresh extract was added to induce

entry to M-phase.  Samples were taken 60 min after M-phase entry, and translation

efficiency was evaluated following SDS-PAGE and autoradiography.

Spindle Assembly in RNase-treated, Immunodepleted Egg Extracts

All incubations for spindle assembly using immunodepleted egg extracts were carried out

at 20ºC in a water bath.  For a typical spindle assembly on replicated chromosomes, 25 µl

of RNase-treated control or immunodepleted egg extract containing sperm nuclei (final

concentration 500-10000/µl) or purified centrosomes (a gift of K. Kinoshita), 2 µl

mRNA, and 0.3 mM calcium chloride were incubated for 80 min at 20ºC to prepare

interphase extracts, after first removing 5 µl of the reaction for 35S-methionine labeling as

described above.  Metaphase spindles were assembled by the addition of 40 µl of fresh

RNase-treated control or immunodepleted extract, followed by incubation at 20ºC for 60
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min.  To score phenotypes, 1 µl of extract was placed on a slide, 3 µl of Fix (Murray,

1991) was added, and an 18x18 mm coverslip was placed on top.

     For spindle assembly and Western blot analysis using chromatin beads, 5 µl of DNA-

coated beads per sample, prepared as previously described (Heald et al., 1998), were

washed once with 20 µl of RNase-treated control or immunodepleted extract, added to 20

µl of RNase-treated control or immunodepleted extract containing rhodamine-tubulin,

and incubated for 80 min at 20°C after addition of 0.3 mM calcium chloride.  M phase

entry was induced as described above.

Spindle Checkpoint Analysis

To assay spindle checkpoint activity in reconstituted extracts, cycled, reconstituted

extracts were supplemented with sperm nuclei to a final concentration of 10000/µl

extract, nocodazole was added (10 µg/ml final concentration), and the extracts were

incubated for 45 min at 20°C.  Calcium chloride was then added to 0.4 mM, extracts were

placed at 20°C, and aliquots were taken on a time course for Western blot.  Fixed

squashes were simultaneously prepared for analysis of chromosome morphology.

Immunofluorescence Microscopy

Spindles assembled in Xenopus egg extract were processed for immunofluorescence as

described (Desai et al., 1999a; Funabiki and Murray, 2000).  Affinity purified anti-

xIncenp antibodies were used at 1 µg/ml in AbDil (TBS/0.1%Triton X-100+2% BSA) for

1 h, and were visualized with Alexa 488-conjugated goat anti-rabbit antibodies
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(Molecular Probes).  DNA was counterstained with 0.25 µg/ml Hoechst 33258 in AbDil,

and mounted in Mounting Medium [90% glycerol, 1X PBS].

     Immunofluorescence on individual diluted chromosomes was performed essentially as

described (Funabiki and Murray, 2000).

Microscopy

Hoechst 33258-stained chromosomes, rhodamine-tubulin labeled microtubules, and

fluorescent antibodies were imaged using a Carl Zeiss Axioplan 2 microscope equipped

with a Photometrics CoolSnap HQ cooled CCD camera, and controlled by MetaMorph

software (Universal Imaging).  Images were processed with MetaMorph and Adobe

Photoshop.

Chromosome and Chromatin Bead Purification

Replicated M-phase sperm chromosomes were purified as described previously (Sampath

et al., 2004).  For purification of chromatin beads, chromatin beads assembled as

described above were washed five times in cold Egg Extract Wash Buffer [10 mM K-

HEPES (pH 8.0), 100 mM KCl, 1mM MgCl2, 50 mM sucrose, 50 mM NaCl, protease

inhibitors (leupeptin, pepstatin, chymostatin)], and resuspended in standard SDS-PAGE

sample buffer.

Immunoprecipitation of Metabolically Labeled Proteins

For immunoprecipitation of labeled MCAK and Op18, RNase-treated control or ΔIncenp

extracts with or without reconstitution were cycled as described above, and γ-32P-ATP
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(Amersham #AA0018) was added at 1:50 final dilution to 35 µl extract per sample.

Extracts were then incubated at 20°C for 30 min, transferred to tubes containing 25 µl α-

MCAK or α-Op18 (prepared as described above), and incubated for 90 min on ice.

Beads were then retrieved with a magnet, washed four times with Egg Extract Wash

Buffer containing phosphatase inhibitors (described above), and resuspended in standard

sample buffer.  The  copurifying proteins were then separated by SDS-PAGE, and the

dried gel was exposed to a PhosphorImager (Fujifilm BAS-2500) for quantitation.

Western Blots

Immunoblots were blocked with PBS/4% nonfat dry milk for 1 h at RT.  Primary and

secondary antibodies were diluted in PBS/4% nonfat milk at the following

concentrations: 4 µg/ml α-Dasra A, 8 µg/ml α-Incenp, 1 µg/ml α-Aurora B and α-

Survivin (gifts of T. Hirano), 0.2 µg/ml α-Op18, 1:5000 α-α-Tubulin (DM1, Sigma).

Antibodies were detected using either ECL (α-Dasra A, α-Incenp, α-Op18, α-Tubulin;

Amersham) or Visualizer (α-Aurora B, α-Survivin; Upstate).
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