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ABSTRACT 

Much has been learned about Mycobacterium tuberculosis, the causative agent 

of tuberculosis, “the great white plague,” since the bacterium was isolated and 

initially characterized by Robert Koch over a century ago. Over the last decade, 

new genetic tools for manipulation of the bacterium have been developed, its 

genome has been sequenced, and the search for new vaccines and drug targets 

has greatly intensified. Yet, surprisingly little is known about which mycobacterial 

genes are truly important for the organism’s ability to persist in the tissues of its 

human hosts. The metabolic pathways used by the tubercle bacillus to establish 

and maintain a life-long infection have largely been ignored by researchers, yet 

they may represent promising new areas for therapeutic intervention. Recently, 

one enzyme of the glyoxylate shunt of M. tuberculosis, isocitrate lyase (ICL), was 

shown to be required for virulence in experimental infections of mice. The other 

enzyme of the glyoxylate shunt, malate synthase (MLS), may also be important 

for the intracellular survival of the tubercle bacillus; yet, no studies have been 

done to determine its in vivo role. We present here results of genetic studies of 

MLS in the saprophyte Mycobacterium smegmatis, and show that MLS, unlike 

ICL, is dispensable for growth on acetate or fatty acids. We also describe the d-

glycerate pathway in M. smegmatis, which enables malate synthase-deficient 

bacteria to utilize acetate and fatty acids as sole carbon sources, and which 

allows M. smegmatis to grow on glyoxylate. The d-glycerate pathway, however, 

does not appear to exist in the pathogenic Mycobacterium tuberculosis. 
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CHAPTER 1 

Tuberculosis: The Disease and The Bacillus 

1.1. The duration of the mycobacterial infection 

A white woman had active pulmonary tuberculosis of 41 years’ duration. She had 
bilateral bronchiectasis, cavitation in the right upper lobe, a collapsed left lung, 
pleural effusion, and an induced left pneumothorax of 36 years’ duration. She 
had received no antituberculosis drugs for 28 years from the onset of her illness, 
and these drugs, when finally prescribed, were taken inadequately. Pleural 
effusion present for 28 years required aspiration…. The patient survived 41 years 
with advanced, active, pulmonary tuberculosis with cavitation, a functionless left 
lung, and pleural effusion, and she harbored a strain of M. tuberculosis resistant 
to all antituberculous drugs except streptomycin. [Edwards et al. 1970] 

 

The report by Edwards and colleagues is noteworthy for several reasons. On the 

one hand, it highlights the resilience of the human body in the face of severe 

pathological destruction, as the patient survived for decades with one functional 

lung. On the other, however, it underlines the tenacity and recalcitrance of the 

tubercle bacillus. Despite the best surgical interventions of the time, the care by 

numerous physicians in six large military hospitals, and the administration of 

antibiotics, the patient was never cured; instead, the bacillus acquired resistance 

to all but one of the antibiotics and, by maintaining an active infection, it was 

undoubtedly transmitted to other individuals.  

 Other details of the story make it even more interesting. The patient did 

survive for over four decades, but she was the exception rather than the rule, as 

studies of patients with such advance disease and cavitation revealed that 85 per 

cent died within a year (Barnes and Barnes, 1928). Furthermore, her husband of 

30 years was with her at all times, served as her “personal doctor”, and 
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administered pneumothorax fills at home, yet he never showed any evidence of 

the disease. It is clear, however, that the patient would have shed an enormous 

number of multi-drug resistant bacilli in her community, and while her husband 

never had an active infection, others may have contracted the disease from her.  

 This ability of the mycobacteria to persist in the face of the combined 

assault of the immune system and antibiotics is a hallmark of tuberculosis. It is 

estimated that 90% of infected individuals will not develop clinical disease; of the 

10% who do develop disease, some of them will succumb within the first few 

years after infection, while the rest will control the infection initially, but develop 

tuberculosis later in life (Comstock, 1982). The persistence of the bacterium in 

the tissues of otherwise healthy humans has been well documented. Hernandez-

Pando and colleagues (2000) used PCR to examine macroscopically normal lung 

tissue from individuals who had died from causes other than tuberculosis. In five 

of 13 people from Ethiopia and ten of 34 individuals from Mexico, DNA from M. 

tuberculosis was detected. The lungs of these humans presumably harbored a 

handful of live mycobacteria, which could eventually establish an active infection. 

A remarkable example of a reactivation of latent infection was reported in 

Denmark, where scientists obtained evidence of endogenous reactivation of M. 

tuberculosis after 33 years of latency (Lillebaek et al., 2002). The patient had 

presumably received the BCG vaccine prior to infection, did not show signs of 

disease after contracting the bacterium, yet presented with active tuberculosis 33 

years later.  
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1.2. The global burden of the disease 

The World Health Organization’s website (www.who.int) provides statistics 

regarding the magnitude of the TB epidemic worldwide. Of the 2 billion people 

who are currently infected with the tubercle bacillus, 200 million are expected to 

develop active tuberculosis. 8.8 million new cases of TB occurred in 2003, with 

the overwhelming majority of cases concentrated in 22 countries. About half a 

million of these new cases were multi-drug resistant (MDR), with the highest 

rates in the former Soviet Union and China, where one in eight patients fails to 

respond to standard drug therapy. MDR-TB, however, has been detected in 

virtually all of the 109 countries surveyed by the WHO. TB has reached pandemic 

status in Africa, which accounts for a quarter of all TB cases, and in Southeast 

Asia, in which 6 countries (Bangladesh, China, India, Indonesia, Pakistan and 

Philippines) register half of all new cases (WHO, 2005).  

 TB, malaria and HIV/AIDS kill 6 million people each year, a third of whom 

die from TB. TB is the leading killer of HIV-infected individuals; a quarter of a 

million TB deaths, most of them in Africa, are associated with HIV/AIDS. The TB 

epidemic in the developing world mainly impacts on young adults, who are the 

economic drivers of society; in fact, TB is a leading cause of mortality among 

young women, especially in Africa. Due to the high rates of TB infection in Africa, 

the global incidence of the disease is growing at 1% per year. Areas of high HIV 

prevalence in Africa experience more than twice the rate of TB cases (400 per 

100,000 people per year) compared to low HIV prevalence areas (WHO, 2005). 
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1.3. The physical nature of the bacillus 

M. tuberculosis, and the related fast-growing saprophyte M. smegmatis, belong 

to the genus Mycobacterium. This genus comprises a number of species of acid-

fast, rod-shaped bacteria, and is the only genus in the family Mycobacteriaceae 

within the order Actinomycetales. Like other related Actinomycetales, such as 

Nocardia and Corynebacterium, mycobacteria have high genomic DNA GC 

content and produce mycolic acids as major components of their cell wall. The 

tubercle bacilli measure between 1 and 4 µm in length and are 0.3 to 0.6 µm in 

diameter; they possess only a single cytoplasmic membrane, but they also have 

thick, waxy cell walls. Mycobacteria are obligate aerobes, despite possessing 

enzymes required for anaerobic fermentative growth (Cole et al., 1998); 

however, they can grow at low O2 concentrations and can even survive long 

periods of complete oxygen deprivation (Wayne and Hayes, 1996).  

Unlike M. leprae, M. tuberculosis and M. smegmatis can be cultured in 

liquid or on solid media containing carbon and nitrogen sources as well as basic 

salts and trace elements (Wayne, 1994). M. smegmatis is more amenable to 

growth in minimal media than its pathogenic cousin, which makes it a useful 

model for metabolic studies. It also doubles every 3-4 hours in culture, and 

forms colonies in 3 to 4 days, while M. tuberculosis doubles every 20-24 hours 

and forms a colony on agar in 3-4 weeks. All of the experiments described in this 

thesis were carried out with M. smegmatis, largely because they were not 

feasible, or easily executable, with pathogenic M. tuberculosis. 
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 The study of mycobacteria has been facilitated by the sequencing of 

several mycobacterial genomes over the last decade. They are high-GC (~ 65%) 

and lack pathogenicity islands typical of many bacterial pathogens. The genomes 

of the virulent laboratory strain H37Rv (Cole et al. 1998), the clinical isolate 

CDC1551 (Fleischmann et al., 2002), the animal pathogen M. bovis (Garnier et 

al. 2003), as well as the M. leprae genome (Cole et al., 2001), were all recently 

decoded. The Institute of Genomic Research (TIGR) has also sequenced and 

annotated the genomes of M. aviam paratuberculosis and M. smegmatis mc2155. 

A perusal of the genome statistics reveals that M. smegmatis has duplicated a 

significant portion of its genetic material. However, this duplication does not 

include the glyoxylate shunt glcB gene (which encodes malate synthase) and the 

two isocitrate lyase genes (icl1 and icl2).   

 Mycobacterial species have greatly duplicated the genes involved in fatty 

acid biosynthesis, which is perhaps not surprising given that mycobacteria 

possess an extremely complex lipid-rich cell wall (Brennan, 2003). Close to ten 

percent of the DNA of pathogenic mycobacteria is predicted to be involved in 

lipid metabolism. The M. smegmatis genome displays an equally extensive 

expansion. Focusing on the fatty acid degradation (fad) genes, The Institute for 

Genomic Research’s (TIGR’s) annotation suggests that there could be as many 

as 7 fadA, 9 fadB, around 40 fadD, and more than 40 FadE genes. Comparable 

duplication of the fatty acid biosynthesis (fab) genes exists in M. smegmatis. 
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1.4. General metabolic features of mycobacteria 

The extensive duplication of lipid assimilation and biosynthesis genes appear be 

the most striking feature of mycobacterial metabolism. When grown in synthetic 

media, mycobacteria behave like most other bacterial species, and can use a 

range of substrates as carbon and energy sources (Wheeler and Ratledge, 

1994). Mycobacteria possess all the enzymes for glycolysis, the pentose 

phosphate pathway, and the tricarboxylic acid and glyoxylate cycles, plus a 

number of oxygenases, oxidoreductases, and dehydrogenases. Mycobacteria can 

also utilize several anaerobic electron transport chains, such as the nitrate, 

fumarate, and possibly nitrite reductases (Cole et al., 1998).  

 Little is known about the primary carbon sources utilized by mycobacteria 

in vivo, but it is thought that lipids might be more readily available for 

assimilation than carbohydrates (Wheeler and Ratledge, 1994). Mycobacteria 

may in fact use both lipids and carbohydrates in host tissues, and biosynthetic 

and degradative reactions could take place simultaneously. Studies by Segal and 

Bloch (1956) of virulent bacilli isolated from host tissues suggested that fatty 

acids might serve as the major source of carbon and energy in vivo. Recent 

studies in our laboratory (McKinney et al., 2000; Muñoz-Elías and McKinney, 

2005; Muñoz-Elías et al., 2006) suggest that the ability to degrade and assimilate 

lipids for both energy and biosynthetic purposes is of crucial importance to the 

tubercle bacillus during the establishment of a persisten infection. A more 

complete overview of mycobacterial metabolism will be provided later.  
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1.5. Mycobacterial features examined in this thesis 

Mycobacterial metabolism, molecular genetics, pathophysiology and persistence, 

the immune response of the infected host, and the interaction between the 

bacillus and its host at the cellular level have been reviewed extensively 

(Wheeler and Ratledge, 1994; Dannerberg and Rook, 1994; McKinney et al. 

1998; Wayne and Sohaskey, 2001; Russell, 2001; Clark-Curtiss and Haydell, 

2003; Boshoff and Barry, 2005; Muñoz-Elías and McKinney, 2006). This thesis 

will focus on the central metabolism of M. tuberculosis and its saprophytic cousin 

M. smegmatis. Chapter 2 describes our current understanding of the metabolism 

of bacteria grown in vitro, the main organisms studied being Escherichia coli and 

some relatives of the Mycobacteriaseae family, such as Corynebacterium and 

Streptomyces; the role of the glyoxylate shunt enzymes for growth in vitro and 

for the establishment of persistent infection in vivo will be emphasized. Chapter 3 

describes the results of studies on the role of the gyoxylate shunt enzyme malate 

synthase in the utilization of carbohydrates and fatty acids as carbon sources, 

and the role of this pathway in mycobacterial anaplerosis during growth on two-

carbon molecules (acetate and glyoxylate) and compounds catabolized to acetyl-

CoA, such as fatty acids. The experiments were done in M. smegmatis, but the 

results have important implications for understanding the metabolism of M. 

tuberculosis. 
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CHAPTER 2 

Bacterial Metabolism In Vitro 

2.1. General aspects of in vitro metabolism 

Our knowledge of the in vitro metabolism of eubacteria has largely been derived 

from studies of enteric organisms, particularly Escherichia coli. The ease of 

biochemical and genetic manipulation of E. coli has enabled scientists to assign 

unambiguous functions to many of the genes involved in central metabolism. 

Thus, in many cases the function of a newly sequenced gene can be adduced 

from its homology to functionally chyaracterized E. coli genes. This chapter will 

focus on aspects of E. coli metabolism and will summarize our current knowledge 

of mycobacterial metabolic pathways, highlighting important differences. 

 Many species of eubacteria will grow readily on solid or in liquid media 

containing basal salts and essential elements in trace amounts, as long as carbon 

and nitrogen sources are provided. As mentioned above, most mycobacteria can 

be cultured in vitro in synthetic media, M. leprae being a notable exception. 

Some organisms with mutations in biosynthetic pathways may require media 

supplementation with compounds like thiamine or lipoic acid, vitamins or amino 

acids, or precursors for the biosynthesis of coenzymes such as NAD+ and NADH+, 

or flavin-containing molecules such as FMN and FAD. Both the pathogenic 

tubercle bacillus and its non-pathogenic relative M. smegmatis grow without 

requiring such supplements, as can be expected given the completeness of their 

genomes for genes involved in the biosynthesis of essential precursors. 
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2.2. Carbohydrate metabolism 

The most common type of sugar used to culture eubacteria is glucose, a six-

carbon substrate. Glucose can be oxidized to pyruvate via the Embden-Meyerhof 

pathway (EMP, a.k.a. glycolysis) or the Entner-Doudoroff pathway (EDP), or it 

can be converted to pentose sugars via the pentose phosphate pathway (PPP) 

(Fraenkel, 1996). Acetyl-CoA generated from pyruvate is further oxidized to 

carbon dioxide and water via the tricarboxylic acid (TCA) cycle. Pentose sugars 

are precursors for nucleotides and nucleic acids. The EMP, EDP, and PPP 

pathways of eubacteria and eukaryotes are depicted in Figure 2.1.  

 The first step of glycolysis is the activation of glucose to glucose 6-

phosphate, which can be done by glucokinase (glk). Enterics use the 

phosphoenolpyruvate (PEP) phosphotransferase system (PTS) as the main route 

of glucose activation and transport into the cell. M. tuberculosis lacks PTS and 

glucokinase homologs, and most likely uses polyphosphate glucokinase (PPGK) 

for glucose activation. Glucose-6-phosphate is converted to fructose-6-phosphate 

by phosphoglucose isomerase (pgi); E. coli pgi mutants can grow on glucose by 

using the PPP (Fraenkel and Horecker, 1965). The conversion of fructose-6-

phosphate to fructose-1,6-bisphosphate is catalyzed by phosphofructokinase 

(pfk); two copies of the enzyme are present in E. coli and in M. tuberculosis, 

where functional redundancy seems to exist (Sassetti et al., 2003). The hexose 

fructose-1-6-bisphosphate is finally split into the trioses glyceraldehyde-3-

phosphate and dihydroxyacetone-phosphate, by fructose-1,6-bisphosphate  
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Figure 2.1. Routes of glucose degradation. Embden-Meyerhof pathway (EMP) [E. coli 
genes shown]: glk, glucose kinase; pgi, phosphoglucose isomerase; pfk, 
phosphofructokinase; fba, fructose-1,6-bisphosphate aldolase; tpi, triosephosphate 
isomerase; gap, glyceraldehyde 3-phosphate dehydrogenase; pgk, phosphoglycerate 
kinase; pgm, phosphoglycerate mutase; eno, enolase; pyk, pyruvate kinase. Glucose-6-
phosphate can be converted to gluconate or 6-phosphogluconate, which can enter the 
pentose phosphate pathway (PPP) or the Entner-Doudoroff pathway (EDP). gcd, glucose 
dehydrogenase; gntK, gluconate kinase; zwf, glucose 6-phosphate dehydrogenase; pgl, 
6-phospho-gluconolactonase; edd, 6-phosphogluconate dehydrogenase; eda, 2-keto-3-
deoxy-6-phosphogluconate aldolase; gnd, 6-phosphogluconate dehydrogenase; rpe, 
ribulose-5-phosphate epimerase; tkt, transketoase; tal, translaldolase. Ribose-5-
phosphate and rpi, ribose-5-phosphate isomerase not shown. Abbreviations: KGDP, 2-
keto-3-deoxy-phosphogluconate; GA, glyceraldehyde; GAP, glyceradehyde-3-phosphate; 
PGP, glycerate-1,3-bisphosphate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; 
PEP, phosphoenolpyruvate. Modified from Verhees et al. (2003) and Fraenkel (1996). 
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aldolase (fba). Triosephosphate isomerase (tpi) interconverts the two three-

carbon compounds. In the lower branch of the glycolytic pathway, 

glyceraldehyde-3-phosphate is ultimately oxidized to one molecule of pyruvate, 

with the concomitant generation of two ATP molecules, by the enzymes 

glyceraldehyde-3-phosphate dehydrogenase (gap), phosphoglycerate kinase 

(pgk), phosphoglycerate mutase (pgm), enolase (eno), and pyruvate kinase 

(pyk).  

 The pentose phosphate pathway (PPP) can also generate glyceraldehyde-

3-phosphate, and consists of two branches for production of ribose-5-phosphate, 

a precursor for the synthesis of nucleotides and nucleic acids. The first is the 

“oxidative branch” which reduces two molecules of NADP+. The second forms 

pentoses from hexose and triose phosphates via non-oxidative reactions, which 

are catalyzed by transketolase and transaldolase (Horecker, 2002). The study of 

the PPP began with the discovery of NADP by Otto Warburg as the coenzyme 

required for the oxidation of glucose-6-phosphate to 6-phosphogluconate. Since 

the role of NAD+ in glycolysis was well established at the time, an alternative 

pathway for oxidation of phospho-hexoses was sought and their conversion to 

phosphopentoses was discovered. The PPP fulfills two important functions: it 

generates ribose-5-phosphate for biosynthesis of nucelotides, and it provides 

reducing power in the form of NADPH. Ribose-5-phosphate can also be formed 

from the hexose fructose-6-phosphate and the triose glyceraldehyde-3-

phosphate by non-oxidative rearrangements catalyzed by transketalose- 
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Figure 2.2. The pentose phosphate pathway (PPP). Genes: gcd, glucose 
dehydrogenase; gntK, gluconate kinase; gnd, 6-phosphogluconate dehydrogenase; zwf, 
glucose 6-phosphate dehydrogenase; pgl, 6-phosphogluconolactonase; rpe, ribulose 5-
phosphate epimerase; rpi, ribose 5-phosphate isomerase; tkt, transketalose; tal, 
transaldolase. Modified from Fraenkel (1996). 
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transaldolase (tkt-tal) to form the four-carbon erythrose-4-phosphate (Horecker, 

2002). M. tuberculosis has complete glycolytic and pentose phosphate pathways; 

transposon mutants in tkt and tal have been shown to be impaired for growth in 

vitro (Sassetti et al., 2003). 

6-phosphogluconate can be oxidized to glyceradehyde-3-phosphate and 

pyruvate via the Entner-Doudoroff pathway (EDP). The two unique EDP genes 

are edd, encoding 6-P-gluconate hydratase, and eda, coding for 2-keto-3-deoxy-

6-P-gluconate aldolase (Fraenkel, 1996; Peekhaus and Conway, 1998). The 

combined action of the two enzymes converts a phosphate hexose into pyruvate 

and phosphotriose. Recent examination of hyperthermophilic archaea and 

bacteria has led Romano and Conway (1996) to conclude that the EDP is an 

older route of sugar dissimilation than the EMP. Based on the presence of 

gluconeogenesis via a “reversed” EMP route, but the lack of the traditional EMP 

in ancient organisms, they suggest that the EDP was the original catabolic 

pathway, with the “reversed” EMP originally serving an anabolic role; the EMP 

become a catabolic pathway with the evolution of phosphofructokinase. In 

pathogenic mycobacteria, however, there is no evidence for the existence of the 

EDP as homologs of edd and eda are missing (Muñoz-Elías and McKinney, 2006).  

Figure 2.3 shows the pathways for glucose degradation in archaea, which 

occurs via variants of the EMP and EDP (Verhees et al., 2003). As depicted, the 

EDP is present in an altered form from the EDP in E. coli; the reduction of 

glyceraldehyde-3-phosphate to 3-phosphoglycerate can be accomplished in a  
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Figure 2.3. Glucose degradation in archaea via variants of the Embden-Meyerhof 
pathway (EMP) and Entner-Doudoroff pathway (EDP). Unique genes are: gapor, 
glyceraldehyde-3-phosphate ferredoxin oxidoreductase; gapn, non-phosphorylating 
glyceraldehyde-3-phosphate dehydrogenase (NAD+ dependent); gdh, gluconate 
dehydratase; kald, 2-keto-3-deoxy-gluconate aldolase; kgdK, 2-keto-3-deoxy-gluconate 
kinase; gad, glyceraldehyde dehydrogenase; glcK, glycerate kinase. GAPN catalyzes the 
phosphate-independent, single-step oxidation of glyceraldehyde-3-phosphate to 3-
phosphoglycerate, thus differing from GAPDH. KGDP, 2-keto-3-deoxy-phosphogluconate; 
KGD, 2-keto-3-deoxy-gluconate; GA, glyceraldehyde; GAP, glyceradehyde-3-phosphate; 
PGP, glycerate-1,3-bisphosphate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; 
PEP, phosphoenolpyruvate. Modified from Verhees et al. (2003).  
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reaction catalyzed by GAPOR (glyceraldehyde-3-phosphate ferredoxin 

oxidoreductase) and GAPN (non-phosphorylating glyceraldehyde-3-phosphate 

dehydrogenase, NAD+ dependent enzyme). Also, gluconate is converted to 2-

keto-3-deoxy-phosphogluconate by the enzymes GDH and KGDK in a two-step 

mechanism, obviating the need for the reaction catalyzed in eubacteria by EDD. 

KGD can separately be oxidized to 2-phosphoglycerate as well. 

Unlike the variant EMP and EDP pathways used by archaea and 

eubacteria/eukarya, the gluconeogenic pathway is conserved in both (Figure 

2.4), consistent with the idea that gluconeogenesis is an ancient pathway, while 

the catabolic role of the EMP is more recent (Romano and Conway, 1996). Two 

enzymes unique to the gluconeogenic pathway are fructose-1,6-bisphosphatase 

(fbp) and PEP synthase (pps). E. coli mutants lacking fbp cannot grow on 

gluconeogenic substrates such as acetate and dicarboxylic acids (Fraenkel and 

Horecker, 1965). In M. tuberculosis, the gluconeogenic dephosphorylation of 

fructose-1,6-bisphosphate is catalyzed by the class II fructose-1,6-

bisphosphatase encoded by the glpX gene (Movahedzadeh et al., 2004).  

 M. tuberculosis does not possess a pps homolog; instead, pyruvate 

phosphate dikinase (ppdK) catalyzes the same conversion. M. smegmatis has a 

homolog of pps, but not ppdK. Aside from phosphorylation of pyruvate, 

phosphoenolpyruvate (PEP) can be generated by decarboxylation of 

oxaloacetate, catalyzed by PEP carboxykinase (PCK). E. coli strains lacking PCK 

cannot grow on the TCA cycle intermediates malate, fumarate, or oxaloacetate  
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Figure 2.4. Gluconeogenesis. Found in both bacteria/eukarya and archaea, this 
pathway reduces pyruvate to fructose-6-phosphate, which can be further converted to 
glucose-6-phosphate or xululose-5-phosphate (or ribose-5-phosphate) via the pentose 
phosphate pathway (PPP). Pentose sugars are used for nucleotide biosynthesis. 
Enzymes unique to gluconeogenesis are: fbp, fructose-1,6-bisphosphatase; pps, 
phosphoenolpyruvate synthase; ppdk, pyruvate phosphate dikinase.  
Modified from Verhees et al. (2003).  
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(Anderson and Wood, 1969). PCK is encoded by the pckA gene in M. 

tuberculosis; its importance for mycobacterial survival in vivo was recently 

suggested by the demonstration that pckA-deficient M. bovis BCG is attenuated 

for virulence in mice and macrophages (Liu et al., 2003). M. smegmatis also 

possesses a single copy of pckA. We have isolated pckA-deficient transposon 

mutants with PCK deficiency, which fail to grow on acetate or palmitate (an 

even-chain fatty acid) or succinate (TCA cycle intermediate) as the sole carbon 

substrates (L. Merkov and A. Upton, unpubl. observations). 
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2.3. Fatty acid degradation 

When fatty acids are used as the carbon source, they are converted to acetyl-

CoA via the β-oxidation cycle (Figure 2.5). Each turn of the β-oxidation cycle 

generates one molecule of FADH2 and one molecule of NADH, which can be used 

for production of ATP, making growth on fatty acids more energetically favorable 

than growth on acetate alone (Clark and Cronan, 1996). While E. coli possesses 

a small number of genes involved in fatty acid degradation, all mycobacterial 

genomes exhibit an extensive degree of duplication of the fad genes, as shown 

in Fig. 2.5. This gene expansion is not limited to pathogenic species, as M. 

smegmatis contains a comparable number of fad genes.  

The E. coli fadL gene, which is essential for long chain (> C12) fatty acid 

transport (Black, 1988; 1991), has no annotated homologs in mycobacteria. This 

may be explained by the fact that FadL resides in the outer membrane of E. coli, 

and is responsible for transport of long chain fatty acid in the periplasmic space, 

while medium-length and short chain fatty acids may diffuse freely through the 

outer membrane. FadD then activates fatty acids by linking them to coenzyme-A 

(CoA), for which it requires free pools of both CoA and ATP; the activation of 

fatty acids renders their transport unidirectional (DiRusso and Black, 2004). 

Mycobacteria, on the other hand, have no outer membranes; thus, fatty acids 

may simply diffuse to, and through, the plasma membrane, where they would be 

activated by FadD proteins. The lipid-rich outer wall of mycobacteria might be 

permissive for diffusion of fatty acids toward the plasma membrane. 
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Figure 2.5. Fatty acid β-oxidation cycle. E. coli (ECO) and M. tuberculosis (MTB) genes 
(italicized) and enzymes are listed. Reproduced from Muñoz-Elías and McKinney (2006).  
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The fatty acid CoA synthase (FACS) encoded by fadD was originally identified by 

Overath et al. (1969). FACS catalyzes the synthesis of fatty-acyl CoA through the 

formation of a fatty acyl-AMP intermediate and the hydrolysis of ATP to yield 

pyrophosphate. All FACS proteins contain two canonical regions, the ATP-AMP 

motif, and the FACS motif. While FadL is specific for the transport of long-chain 

fatty acids, the E. coli FACS activates fatty acids varying in length from C6:0 to 

C20:4, with the highest specificity for C14:0 to C18:0 (Black and DiRusso, 1993).  

 The products of the 36 M. tuberculosis fadD genes can function as FACL 

(fatty acyl-CoA ligases) or FAAL (fatty acyl-AMP ligases) (Trivedi et al., 2004). 

While the FACL form fatty acyl-CoAs of different length, the FAAL form fatty acyl-

AMPs. The genes encoding FAAL are located next to polyketide synthesis (PKS) 

genes; FAAL activate fatty acids as acyl-adenylates and then transfer them onto 

the PKS. Disruption of fadD28 (FAAL), in M. tuberculosis blocked the synthesis 

and export of a cell wall-associated lipid, phthiocerol dimycocerosate (PDIM); the 

PDIM-deficient mutants were attenuated in mice (Cox et al., 1999). 

The FACL proteins demonstrate remarkable substrate tolerance in 

generating fatty acyl-CoAs from the corresponding fatty acids (Arora et al., 

2005). The combination of the large number of genes encoding FACL and the 

substrate promiscuity of individual FACL enables mycobacteria to activate a 

tremendous variety of fatty acids for biosynthesis or catabolism. These acyl-CoAs 

can enter the β-oxidation cycle as substrates for acyl-CoA dehydrogenase (FadE), 

which carries out the first repetitive step of β-oxidation (Figure 2.5).  
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The enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase activities 

of the β-oxidation cycle in E. coli are carried out by the product of fadB. M. 

tuberculosis and M. smegmatis possess over twenty genes predicted to encode 

enzymes with one of the two activities. The fadA genes, whose products catalyze 

the last step of the cycle, the removal of a molecule of acetyl-CoA, comprise the 

smallest group of cycle participants. A shortened fatty acyl-CoA molecule then 

reenters the cycle by binding to FadE, while acetyl-CoA enters the TCA cycle. 

 Short-chain fatty acids (C4-C6) are assimilated differently by E. coli. E. coli 

FACS cannot activate fatty acids shorter than C6 so the induction of a new set of 

genes, the atoADBC operon, is required for growth on acetoacetate and butyrate 

(Figure 2.6). The atoADBC operon is repressed by FadR; derepression, as well as 

the expression of a positive regulator encoded by atoC, results in the expression 

of the structural genes atoADB (Pauli and Overath, 1972). FadR repression is 

relieved through binding of an activated fatty acyl-CoA molecule and thus 

requires FACS activity (DiRusso and Black, 2004; Clark and Cronan, 1996). DNA 

binding by FadR is strongly inhibited by fatty acyl-CoA esters, with C16-C18 acyl-

CoAs showing the lowest Ki values. FadR dimers act as both repressors and 

activators, inhibiting transcription of the fad and ato genes, while activating the 

expression of the fatty acid biosynthesis genes fabA and fabB. FadR also 

activates iclR, which encodes a transcriptional repressor of the glyoxylate shunt 

genes; FadR can thus inhibit the expression of both the β-oxidation genes, which 

produce acetyl-CoA, and the glyoxylate shunt genes (Gui et al., 1996). 
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Figure 2.6. Pathways for assimilation of short-chain fatty acids. The atoABCD operon 
is required for catabolism of C4-C6 fatty acids in E. coli. The transcription of atoA, atoB, 
and atoD is under the control of regulators encoded by atoC (activator) and fadR 
(repressor). The mycobacterial scoBA genes have some homology to atoAD, while fadA 
genes have some similarity to atoB, which suggests they may play a role similar to the 
ato genes when mycobacteria are grown on C4-C6 fatty acids (butyrate, valerate and 
hexanoate). Modified from Clark and Cronan (1996).  
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The scoBA genes of M. tuberculosis have some homology to atoAD, while 

fadA genes have similarity to atoB. It is tempting to speculate that the scoBA 

genes participate in the metabolism of short-chain fatty acids; however, there is 

as yet no functional evidence to supports this hypothesis. On the other hand, 

neither the M. tuberculosis nor the M. smegmatis genome contains an obvious 

homolog of fadR. In fact, it is not known if, and how, fad genes are regulated in 

mycobacteria. We have consistently observed a slight lag in the growth of M. 

smegmatis in minimal media containing butyrate or hexanoate as sole carbon 

sources; this lag was not seen in the growth of M. smegmatis in media 

containing acetate, propionate, or valerate as carbon sources; these data will be 

presented in detail in the Results section (Chapter 3). 

 The lack of an obvious FadR homolog in mycobacteria does not preclude 

the possibility that some transcriptional factors are under the negative or positive 

control of activated fatty acids, such as fatty acyl-CoAs or fatty acyl-AMPs. The 

presence of a significant number of hypothetical genes predicted to encode for 

transcriptional regulators, as well as the existence of numerous fad and fab 

promoter regions to analyze computationally, suggests that any potential 

regulators of the fad and fab genes will have to be discovered experimentally. 
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2.4. Acetyl-CoA metabolism 

The discovery of coenzyme-A (CoA) and the elucidation of its role as a carrier for 

acyl groups is arguably one of the most significant biochemical discoveries of the 

previous century (Bentley, 2000). As early as the 1870s, “reactive” C2 units were 

implicated in fatty acid biosynthesis; in 1907, Raper proposed a role for active C2 

units by stating: “The formation of fatty acids in animals, from carbohydrates, 

and the occurrence of natural fats such as butter, of all the fatty acids containing 

an even number of carbon atoms, from two to twenty, suggest that their fatty 

acids are produced by the condensation of some highly reactive substance 

containing two carbon atoms and formed in the decomposition of sugar” (Raper, 

1907). Rittenberg and Bloch (1945) demonstrated the utilization of acetate 

carbons for fatty acid synthesis in tissues and suggested that “fatty acids are 

synthesized by condensation of C2 units” with a CO → CH2 conversion.  

 Investigating lipid catabolism in 1904, Knoop fed dogs fatty acids carrying 

a terminal phenyl group and analyzed the compounds excreted in the urine; such 

“tracer” experiments led him to conclude that “fatty acid catabolism required the 

oxidation at the β carbon with loss of C2 units” (quoted in Bentley, 2000). The β-

oxidation theory was confirmed when Schoenheimer and Rittenberg (1937) 

observed in animals the conversion of C18 stearic acid to C16 palmitic acid to 

C14 myristic acid and C12 lauric acid. They proposed that the product was acetic 

acid or a functional derivative, but the structure of the “reactive C2” unit would 

remain a mystery it was solved in the 1940s by Fritz Lippman (Lippman, 1954).  
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Figure 2.7. Acetyl-CoA in intermediary metabolism. The reactions that activate acetate 
to acetyl-CoA are detailed. Abbreviated enzymes: PTA, phosphotransacetylase; ACKA, 
acetate kinase; ACS, AMP-forming acetyl-CoA synthase. Modified from Wolfe, 2005. 
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Acetyl-CoA can be generated from pyruvate, the end product of glycolysis, 

via the action of pyruvate dehydrogenase (PDH) (Figure 2.7). As mentioned in 

the previous subsection, each turn of the β-oxidation cycle releases a molecule of 

acetyl-CoA. Acetyl-CoA can be generated directly from acetate, by the two-step 

phosphotransacetylase (PTA) and acetate kinase (ACK) pathway, or directly by 

acetate CoA synthase (ACS). ACK phosphorylates the acetate molecule, and then 

PTA replaces the reactive phosphate group with coenzyme A. ACS forms the 

acetyl-CoA molecyle via an acetyl-AMP intermediate (Wolfe, 2005).  

 Depending on the organism’s metabolic needs, acetyl-CoA can be oxidized 

by the TCA cycle, where it is converted into two CO2 molecules and water. When 

E. coli cells are grown in high levels of glucose, they secrete acetate in the media 

through the PTA-ACKA pathway. When the supply of glucose is exhausted, they 

“switch” to metabolizing acetate back to acetyl-CoA using ACS (Holms, 1996). 

Deletion of the pta-ackA genes still allows E. coli to grow on acetate using ACS; a 

mutant lacking both pathways, however, is completely unable to utilize acetate 

(Kumari et al., 1995). M. tuberculosis and M. smegmatis have homologs of all 

three genes. Transposon mutants in the acs gene of M. smegmatis are unable to 

grow on agar plates containing a low concentration (0.1%) of acetate as the sole 

carbon. However, when the acetate concentration is increased to 0.5% or 1.0%, 

the acs mutants grow well, implying that acs is more efficient at scavenging low 

amounts of acetate, which cannot be accomplished by PTA-ACK (L. Merkov, 

unpubl. observations). 



 27

2.5. Tricarboxylic Acid Cycle 

Hans Adolf Krebs discovered three metabolic cycles: the ornithine cycle, the 

tricarboxylic acid (TCA) cycle and the glyoxylate cycle (Kornberg, 2000). During 

his work on the TCA cycle, Krebs built on early experiments done by a Hungarian 

biochemist, Albert Szent-Gyorgyi, who had studied the processes through which 

carbohydrates, proteins, and fats were oxidized to CO2 and water. Szent-Gyorgyi 

had discovered several C4 salts that were oxidized in tissues—succinate to 

fumarate, fumarate to malate, and malate to oxaloacetate—but he did not look 

for a circular pathway of oxidation (Kornberg, 2000).  

Krebs envisioned a circle, however, when he realized that adding pyruvate 

to tissues generated succinate, and that citrate could be formed from 

oxaloacetate if pyruvate was added. Krebs proposed the cycle in a paper that 

was rejected by Nature; as acetyl-CoA was not known at the time, he suggested 

that a triose was formed from oxaloacetate that reacted with pyruvate to form 

citrate (Krebs and Johnson, 1937). Lippman’s discovery of acetyl-CoA about a 

decade later suggested to Krebs the answer to his conundrum (Figure 2.8).  

The TCA cycle has two roles: the oxidation of acetyl-CoA to carbon dioxide 

and water, and the production of precursors for amino acid, porphyrin, and 

cofactor biosynthesis (Cronan and LaPorte, 1996). The oxidation of acetyl-CoA 

generates two molecules of NADH, one NADPH, and one FADH2, which in turn 

are used for ATP production via respiration. The two carbons that enter the TCA 

cycle from  acetyl-CoA are sequentially lost as two carbon dioxide molecules. 
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Figure 2.8. Tricarboxylic acid (TCA) cycle (top) and glyoxylate cycle (bottom). The net 
effect of one turn of the TCA cycle is conversion of one molecule of acetate and two 
molecules of O2 into two CO2 molecules. The glyoxylate cycle bypasses the two CO2 
release steps, thus converting two acetates and half an O2 molecule into succinate. 
Modified from Cronan and LaPorte (1996).  
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The highest induction of the TCA cycle genes in E. coli is observed during aerobic 

growth on acetate or fatty acids. Such conditions, however, necessitate the 

induction of the glyoxylate shunt genes aceA and aceB encoding the E. coli 

isocitrate lyase and malate synthase, respectively, so that intermediates lost to 

biosynthesis can be replenished (Figure 2.8, bottom). The glyoxylate shunt is 

required for anaplerosis when acetate or fatty acids are the sole carbon sources; 

partitioning of some of the isocitrate through the shunt allows the regeneration 

of the four-carbon malate from glyoxylate and acetyl-CoA; this reaction 

replenishes four-carbon intermediates used for biosynthetis purposes.  

 Acetyl-CoA enters the cycle in a reaction catalyzed by citrate synthase that 

yields a molecule of citrate from condensation of oxaloacetate and acetyl-CoA. 

M. tuberculosis has at least three citrate synthase genes (gltA1, gltA2, citA) while 

M. smegmatis may have at least four (see Table 2.1). Interestingly, an M. 

smegmatis transposon mutant of gltA2 has a slight growth defect on plates 

containing acetate as the sole carbon (L. Merkov, unpubl. observations). 

Aconitase converts citrate to isocitrate; in E. coli, the fate of isocitrate is tightly 

controlled by the phosphorylation status of isocitrate dehydrogenase (IDH). If 

isocitrate is converted to α-ketoglutarate, a molecule of CO2 is lost; a second CO2 

molecule is lost when α-ketoglutarate is oxidized to succinyl-CoA by the α-

ketoglutarate dehydrogenase complex (KGDH). Succinate thiokinase (sucCD) 

converts succinyl-CoA to succinate, and generates a molecule of ATP. The KGDH 

genes (sucAB) and sucCD form an operon in E. coli. 
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Table 2.1. Homologs of M. tuberculosis genes in M. smegmatis. Metabolic pathway 
genes from H37Rv were compared to the recently annotated M. smegmatis genome on 
TIGR’s website (http://tigrblast.tigr.org/cmr-blast/). If a gene was not found in H37Rv, 
the sequence of the E. coli protein was used for searches; that gene is indicated in the 
table with (*). sucA (Rv1248c) has been renamed kgd, per Tian et al. (2005).  

Gene  Function H37Rv MSMEG 
pyk Pyruvate kinase 1617 3237 

0148 
pca Pyruvate carboxylase 2967c 2410 

6609 
ppc* PEP carboxylase (none) 3107  
pck PEP carboxykinase 0211 0246 

ppdK Pyruvate phosphate dikinase 1127 (none) 
pps* PEP synthase (none) 3938 
mez Malic enzyme 2332 (none) 
gltA1 Citrate synthase 1131 6608 

4040 
gltA2 Citrate synthase 0896 5650 

5654 
acn Aconitase 1475c 3151 
icl1 Isocitrate lyase 1 0467 0904 
icl2 Isocitrate lyase 2 1915/16 3713 

prpB* Methylisocitrate lyase (none) 6607  
6818 

glcB Malate Synthase 1837c 3646 
kgd α-Ketoglutarate carboxylase 1248c 5037 
sucB Pyruvate dehydrogenase E2 2215 4286 
sucC Succinyl-CoA synthase, beta 0951 5503 
sucD Succinyl-CoA synthase, alpha 0952 5502 
sdhA Succinate dehydrogenase A 3318 1667 
sdhB Succinate dehydrogenase B 3319 1666 
sdhC Succinate dehydrogenase C 3316 1669 
sdhD Succinate dehydrogenase D 3317 1668 
sdhA2 Succinate dehydrogenase A2 0248c 0408 
sdhB2 Succinate dehydrogenase B2 0247c 0407 
frdA Fumarate reductase A 1552 (none) 
frdB Fumarate reductase B 1553 (none) 
frdC Fumarate reductase C 1554 (none) 
frdD Fumarate reductase D 1555 (none) 
fum Fumarase 1098c 5225 
mdh Malate dehydrogenase 1240 (none) 
mqo Malate-quinone oxidoreductase 2852c 2614 
sfcA* Malic enzyme, NAD linked (none) (none) 

maeB* Malic enzyme, NADP linked (none) 5043 
gcvB Glycine dehydrogenase 1832 3648 
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M. tuberculosis has a different mechanism of generating succinate from α-

ketoglutarate (Tian et al., 2005). KGDH activity is missing; α-ketoglutarate is first 

converted to succinic semialdehyde in a reaction catalyzed by α-ketoglutarate 

decarboxylase (KGD, encoded by rv1248c), and succinic semialdehyde is further 

oxidized to succinate by two succinic semialdehyde dehydrogenases (SSADH) 

encoded by gabD1 (rv0234) and gabD2 (rv1731). KGD appears to be important 

for in vitro growth (Sassetti et al., 2003). M. tuberculosis would need to generate 

succinyl-CoA, needed for heme biosynthesis, either from succinate by succinyl-

CoA synthetase, or from propionyl-CoA by propionyl-CoA carboxylase and 

methylmalonyl-CoA mutase (Munoz-Elias and McKinney, 2006).  

 Interestingly, Tian et al. (2005) did not detect KGDH activity in M. bovis or 

M. smegmatis. This suggests that the KGDH bypass by the combined activities of 

KGD and SSADH may be a general feature of mycobacteria. Analysis of the M. 

smegmatis genome revealed that M. smegmatis does possess a homolog of kgd 

(rv1248c), annotated as MSMEG5037. When testing protein extracts from M. 

tuberculosis, M. bovis, and M. smegmatis for TCA cycle enzyme activities, Tian et 

al. (2005) detected malate dehydrogenase (MDH) activity in M. tuberculosis and 

M. bovis, but did not detect it in M. smegmatis. As shown in Table 2.1, searches 

with M. tuberculosis mdh failed to reveal a homolog in M. smegmatis, suggesting 

the saprophyte may rely solely on MQO, malate-quinone oxidoreductase, to 

oxidize malate to fumarate. M. smegmatis lacks a homolog of the M. tuberculosis 

malic enzyme (mez) but has a protein similar to the E. coli malic enzyme (maeB). 
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Figure 2.9. Tricaboxylic acid cycle and associated anaplerotic pathways. CIT, ACN and 
IDH catalyze the oxidative branch (blue arrows), while MDH/MQO, FUM, FRD/SDH and 
SUC comprise the reductive branch (red arrows) of a bifurcated cycle. Bifurcation occurs 
when bacteria grow aerobically in excess glucose or anaerobically on any carbon source. 
Anaplerosis (green arrows) is achieved by PPC or PCA during growth on sugars or by ICL 
and MLS during growth on acetate or fatty acids. TCA cycle and glycolysis intermediates 
that are also used for biosynthetic purposes are boxed. See Table 2.1 for gene names. 
BOC, β-oxidation; MCC, methylcitrate cycle. Reproduced from Muñoz-Elías and McKinney 
(2006) 
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2.6. Anaplerosis 

The term “anaplerosis” was coined by Hans Kornberg to describe the “filling up” 

reactions that replenish intermediates in central metabolic pathways (Kornberg, 

2003). Since TCA cycle intermediates are used as precursors for biosynthetic 

reactions, bacteria must replenish them through reactions complementary to the 

TCA cycle (Figure 2.9). The first anaplerotic enzyme discovered by Kornberg was 

PEP carboxylase (PPC), which produces oxaloacetate from PEP. E. coli ppc 

mutants are auxotrophic for succinate when grown on sugars but can grow on 

acetate, lactate, or malate without supplementation (Kornberg, 1966). Residual 

growth of ppc mutants on sugars correlates with expression of the glyoxylate 

shunt (Peng et al., 2004), likely due to suppressor mutations that increase 

expression of the glyoxylate shunt genes (Sauer and Eikmanns, 2005).  

 Although Corynebacterium glutamicum possesses a functional PPC, 

carboxylation of pyruvate to oxaloacetate, mediated by PCA, appears to be the 

main anaplerotic pathway (Peters-Wendisch et al., 1998). Similarly, Bacillus 

subtilis pca mutants are unable to grow on substrates that enter glycolysis 

upstream of pyruvate unless supplemented by TCA cycle intermediates 

(Diesterhaft and Freese, 1973). PPC is the more widely distributed anaplerotic 

enzyme, as few bacteria aside from C. glutamicum and B. subtilis use PCA 

exclusively for anaplerosis (Sauer and Eikmanns, 2005). 

PCA appears to be the main anaplerotic pathway in M. tuberculosis, as 

ppc is missing (Table 2.1), and pca mutants grow poorly on plates containing 
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both dextrose and glycerol as carbon sources (Sassetti et al., 2003). In constrast, 

M. smegmatis has a homolog of the E. coli ppc gene and two homologs of the M. 

tuberculosis pca gene. A recent report implicated PCA as the major anaplerotic 

enzyme in M. smegmatis (Mukhopadhyay and Purwantini, 2000), but additional 

experiments are needed to reconcile the biochemical data in this report with the 

existence of a ppc gene in addition to two pca genes. pca appears to be the only 

anaplerotic gene in M. bovis and M. leprae, as determined by genomic analysis. 

 When grown on acetate or fatty acids instead of carbohydrates, E. coli 

depends on the glyoxylate shunt enzymes isocitrate lyase and malate synthase 

for anaplerosis (Kornberg and Krebs, 1957; Kornberg, 1966). The enzymes of the 

glyoxylate shunt in E. coli are encoded by aceA and aceB, respectively, and they 

reside in an operon with a third gene, aceK, which encodes IDH kinase-

phosphatase, which is involved in regulating carbon flow through the shunt by 

phosphorylation-mediated inactivation of IDH (Cronan and LaPorte, 1996). 

Expression of the aceBAK genes is induced by acetate or fatty acids; it is under 

the direct negative control of IclR and indirect negative control of FadR; FadR 

exerts inhibition by enhancing the expression of the iclR gene (Gui et al., 1996). 

IclR inhibition of the aceBAK operon is relieved by PEP (Cortay et al., 1991) while 

FadR repression is obviated by FadR interaction with fatty acyl-CoA molecules. E. 

coli possesses a second malate synthase, encoded by glcB, which functions in 

growth on glyoxylate and glycolate as sole carbon sources (Molina et al., 1994).  
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Some bacteria can grow on C2 compounds as sole carbon sources 

independent of isocitrate lyase activity, due to alternative anaplerotic pathways. 

Streptomyces collinus uses crotonyl-CoA reductase (CCR), which catalyzes the 

conversion of two acetyl-CoA molecules to butyryl-CoA; ccr mutants exhibit 

reduced growth on acetate. Disruption of a second gene, meaA, which may 

encode an enzyme similar to isobutyryl-CoA mutase, also impairs growth of S. 

collinus on acetate. Interestingly, S. collinus can use isocitrate lyase to grow on 

fatty acids but not on acetate, which requires induction of ccr and meaA (Han 

and Reynolds, 1997). Recent evidence suggests the existence of a third pathway 

for assimilation of acetate in S. cinnamonensis, which is capable of growth on 

acetate even if the glyoxylate cycle and butyryl-CoA pathway are mutationally 

inactivated (Akopiants et al., 2006).  

 Most methylotrophic bacteria also lack isocitrate lyase and convert acetyl-

CoA to glyxolyate through butyryl-CoA and propionyl-CoA intermediates. 

Korotkova et al. (2002) demonstrated that the acetyl-CoA assimilation cycle in 

Methylobacterium extorquens is linked to the polyhydroxybutyrate cycle and the 

serine cycle for assimilation of C1 compounds. Two acetyl-CoA molecules are 

converted to crotonyl-CoA → propionyl-CoA → succinyl-CoA → malyl-CoA, which 

is broken down to glyoxylate and acetyl-CoA. Glyoxylate then enters the serine 

cycle, which assimilates C1 and C2 compounds. This complex cycle regenerates 

glyoxylate in the absence of isocitrate lyase. 
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2.7. Glyoxylate assimilation pathways 

The reacton catalyzed by isocitrate lyase produces succinate and glyoxylate from 

isocitrate. Malate synthase condenses glyxoxylate with acetyl-CoA to produce 

malate. As mentioned already, E. coli has two malate synthases, which are 

induced by acetate and fatty acids (20 fold induction of aceB) or by glycolate 

(1,000 fold induction of glcB) (Clark and Cronan, 1996). Malate synthase A 

(aceB) is needed for growth on acetate as the sole carbon source; malate 

synthase G (glcB) is dispensable for growth on glycolate or glyoxylate, as 

glyoxylate induces glyoxylate carboligase (gcl) (Ornston and Ornston, 1969). 

 Glyoxylate carboligase activity was initially described by Krakow and 

Barkulis (1956) as the conversion of glyoxylate to hydroxypyruvate. Biochemical 

characterization of the enzyme indicated that GCL converts two glyoxylates into a 

molecule of tartronate semiladehyde, with the release of carbon dioxide (Krakow 

et al., 1961) (Figure 2.10). The purified enzyme is a FAD flavoprotein requiring 

thiamine pyrophosphate and magnesium for activity (Gupta and Vannesland, 

1964). The tartronate semialdehyde is reduced to d-glycerate, which is converted 

by glycerate kinase to 3-phosphoglycerate, an EMP intermediate (Kornberg and 

Sadler, 1960; Kornberg and Gotto, 1961; Hansen and Hayashi, 1962). Tartronate 

semialdehyde can be converted to hydroxypyruvate by a hydroxypyruvate 

isomerase, but the reduction to glycerate represents the relevant conversion for 

anaplerotic purposes. Malate synthase G does not play a role in this pathway 

(Ornston and Ornston, 1969). 
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Figure 2.10. Glyoxylate utilization pathways in bacteria. Glyoxylate can be generated 
from glycolate by glycolate oxidase (GOX, #1 above), from isocitrate by isocitrate lyase 
(ICL, not shown), or other pathways in ICL-negative bacteria. It can then be utilized via 
the glyoxylate shunt TCA cycle (5, 6, 11); d-glycerate pathway (2, 3, 4); or erythro-β-
hydroxyaspartate pathway (7, 8, 9). Numbered enzymes: 2, glyoxylate carboligase; 3, 
tartronic semialdehyde reductase; 4, glycerate kinase; 5, malate synthase; 6, malate 
dehydrogenase; 7, glycine dehydrogenase; 8, β-hydroxyaspartate aldolase; 9, β-
hydroxyaspartate dehydratase; 10, glyoxylate reductase; 11, citrate synthase. Modified 
from Kornberg and Morris (1965) and Ornston and Ornston (1969).  
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The glcB gene is unlinked to either the aceBAK operon or gcl region in E. coli. gcl 

maps at min. 12 on the E. coli chromosome, while glcAB is at min. 64 and 

aceBAK is at min. 90 (Clark and Cronan, 1996). The gcl gene was identified by 

Chang et al. (1993); subsequent work by Cusa et al. (1999) demonstrated the 

presence of both gcl, glxR (encoding the tartronate semialdehyde reductase), 

and glxK (glycerate kinase). These genes are grouped with genes involved in 

allantoin metabolism; allantoin is a product of purine degradation and can be 

used as a nitrogen source by E. coli. Ashiuchi and Misono (1999) located the 

hydrohypyruvate isomerase (hyi) gene between gcl and glxR. The glc locus, 

besides the glcB gene, also contains glcE and glcD, encoding glycolate oxidases, 

glcF, an iron-sulfur oxidase, and the positive regulator glcC (Pellicer et al., 1996). 

 Micrococcus denitrificans does not possess glyoxylate carboligase activity 

but can grow on glycolate or glyoxylate as the sole carbon source by using the β-

hydroxyaspartate pathway (Kornberg and Morris, 1965). A molecule of glyoxylate 

is first reduced to glycine by glycine dehydrogenase; then β-hydroxyaspartate 

aldolase condenses one glyoxylate and one glycine to form a C4 unit, β-

hydroxyaspartate, which is next converted to oxaloacetate by β-hydroxyaspartate 

dehydratase (Figure 2.10). Oxaloacetate can be converted to PEP by the PEP 

carboxykinase (PCK) to generate C3 units and acetyl-CoA. While this pathway 

completely bypasses the d-glycerate pathway, it has been described only in M. 

denitrificans and in Paracoccus denitrificas, which also possesses a D-3-

hydroxyaspartate aldolase (Liu et al., 2003). 
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2.8. The in vivo importance of the glyoxylate cycle  

The first study that in retrospect would suggest a role for the glyoxylate cycle in 

the ability of intracellular bacteria to survive in the tissues of infected hosts 

(Segal and Bloch, 1956) was published one year before the glyoxylate cycle was 

described in bacteria by Kornberg and Krebs (1957). Using a novel method to 

isolate pathogenic mycobacteria from the lungs of infected mice, Segal and Bloch 

(1956) compared their ability to respire carbohydrates, benzoates, and fatty 

acids to the respiratory profile of bacteria grown in vitro. Importantly, they 

noticed that while the in vitro-grown bacteria rapidly oxidized glucose, glycerol, 

pyruvate and acetate, as well as sodium salicylate and fatty acids, bacteria 

recovered from infected tissues had a respiratory response only to salicylic acid 

and fatty acids. The long-chain oleic acid (C18) was oxidized more readily than 

heptanoic acid (C7) or octanoic acid (C8) (Segal and Bloch, 1956). These 

observations suggested that the metabolism of bacteria in the lungs was adapted 

for catabolism of fatty acids. 

Kanai and Kondo (1974) measured fatty acid oxidation in mycobacteria 

grown in vivo as well. Kondo et al. (1970) demonstrated an association between 

lipids and bacilli harvested from the lungs of mice, by developing an in vitro 

system of lechitin-cholesterol liposomes to study lipid-mycobacteria interactions 

and then showing that bacilli could metabolize liposomes and release fatty acids. 

In vitro models of non-replicating persistence (NRP), which aimed to 

imitate the chronically infected lung environment, also detected the induction of 
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enzymes to utilize alternative energy sources (Wayne and Sohaskey, 2001). 

Murthy et al. (1973) reported a decrease in the activity of TCA cycle enzymes in 

aging M. tuberculosis cultures, combined with a five-fold induction of isocitrate 

lyase activity. Wayne and Lin (1982) saw a comparable induction of isocitrate 

lyase (ICL) activity in the NRP model, but no change in malate synthase (MLS) 

activity. Instead, they observed a ten-fold induction in glycine dehydrogenase 

activity, which catalyzes the reductive amination of glyoxylate to glycine while 

oxidizing NADH to NAD+ (Goldman and Wagner, 1962). Wayne and Lin (1982) 

proposed that the main purpose of glyoxylate → glycine reduction was the 

replenishment of NAD+ to support microaerobic metabolism. The gene encoding 

this glycine dehydrogenase activity has not been identified; a likely candidate, 

gcvB, appears to be essential in M. tuberculosis (Sassetti et al., 2003). 

 The importance of ICL for the in vivo survival and persistence of M. 

tuberculosis was demonstrated by genetic studies of bacteria lacking icl1 or icl2 

or both genes (McKinney et al., 2000; Munoz-Elias and McKinney, 2005). An M. 

tuberculosis ∆icl1 mutant successfully established infection in the lungs of mice, 

but failed to persist in the face of the host immune response as the number of 

∆icl1 bacteria in the lungs decreased over time (McKinney et al., 2000). An M. 

tuberculosis ∆icl1∆icl2 mutant failed to replicate in the lungs of mice, and was 

cleared from the lungs by two weeks post-infection. ∆icl1∆icl2 bacteria were also 

avirulent in mice lacking the macrophage-activating cytokine interferon-γ, which 
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are exquisitely sensistive to wild-type M. tuberculosis, demonstrating that ICL is 

absolutely required for in vivo survival (Munoz-Elias and McKinney, 2005). 

ICL activity has been implicated in the virulence of a number of other 

bacterial and fungal pathogens (Lorenz and Fink, 2002; Idnurm and Howlett, 

2002; Wang et al., 2003; Fang et al., 2005; Wall et al., 2005). Similarly, loss of 

MLS activity has been shown to attenuate pathogenicity in Rhodococcus fascians 

(Vereecke et al., 2002) and Stagonospora nodorum (Solomon et al., 2004). Thus, 

either glyoxylate shunt enzyme, ICL or MLS, could be a viable target for drug 

development. The existence of two ICL isoenzymes in M. tuberculosis 

necessitates a dual-specific inhibitor that is effective against both. Muñoz-Elías 

and McKinney (2005) showed that 3-nitropropionate inhibits both ICLs, implying 

that the development of one drug targeting both enzymes might be possible. 

Availability of the X-ray crystal structures of ICL1 (Sharma et al., 2000) and MLS 

(Smith et al., 2003) should facilitate drug development.  

 The crystal structure of M. tuberculosis MLS suggests that it might be a 

more attractive drug target than ICL1/ICL2. The active site in MLS is at the end 

of ~ 15 angstrom tunnel which accommodates coenzyme-A; this tunnel appears 

to be an attractive target for inhibitor binding (Smith et al., 2003). Attempts to 

delete the M. tuberculosis glcB gene encoding MLS have been unsuccessful so 

far, suggesting that glcB might be essential (Muñoz-Elías, 2005). We decided to 

evaluate the role of MLS in mycobacterial metabolism using the saprophyte M. 

smegmatis, a non-pathogenic relative of M. tuberculosis, as a model system. 
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CHAPTER 3 

Studies of the Glyoxylate Shunt in M. smegmatis 

3.1. Deletion of the malate synthase gene (glcB) in M. smegmatis 

Mycobacteria, unlike E. coli, possess only one gene encoding malate synthase 

(MLS); the protein encoded by it is more homologous to malate synthase G than 

malate synthase A. The MLS protein [2.3.3.9] of M. smegmatis is encoded by the 

glcB gene and is annotated as MSMEG3646 in The Institute of Genomic Research 

(TIGR) Comprehensive Microbial Resource (CMR) database. The M. smegmatis 

MLS has 732 amino acids, 9 fewer than the M. tuberculosis MLS; the two 

proteins share 80 percent identity and 86 percent similarity.  

 The M. smegmatis glcB gene was deleted by homologous recombination, 

using a two-step counter-selection method (Figure 3.0). An internal 1.9 kb MscI 

fragment was removed to create an in-frame deletion (Figure 3.1), and the 

deletion was confirmed by Southern blot. The mutant was complemented with 

an integrative plasmid carrying the M. tuberculosis glcB gene. 

 An ethanemethylsulfonate (EMS)-induced mutant carrying a point 

mutation in the icl1 gene was unable to grow on agar plates containing acetate 

as the sole carbon source (McKinney et al., 2000). Thus, we tested the ability of 

the ∆glcB mutant to grow on minimal media plates containing glucose, short-

chain fatty acids (C2-C5), and a long-chain fatty acid, methylpalmitate (C16). 

Wild-type M. smegmatis forms colonies on glucose or propionate (C3) in 3 days, 

acetate (C2) in 4 days, and butyrate (C4) and valerate (C5) in 5 days. Growth of  



 43

 
 
 
 
 
 
 
Figure 3.0. Construction of the ∆glcB mutant. The knockout vector contains the aph 
kanamycin resistance marker (Kmr), the sacB sucrose sensitivity marker (Scs), and oriC 
for replication in E. coli. The glcB knockout plasmid contains the ∆glcB allele with an in-
frame deletion (black) in the glcB ORF (grey) and ~ 500 bp of 5’/3’ flanking sequences 
(white). The ∆glcB knockout vector is electroporated into M. smegmatis; transformants 
are selected on 7H10 agar + 25 µg ml-1 Km. The knockout vector does not contain a 
mycobacterial ori; Kmr transformants can only arise by insertion of the plasmid in the 
chromosome. Recombination between the ∆glcB allele and the chromosome upstream 
(1) or downstream (2) of the internal glcB deletion results in plasmid insertion and 
merodiploid formation with the configurations shown. Outgrowth of Kmr colonies in the 
absence of Km allows accumulation of Kms cells in which plasmid excision from the 
chromosome occurred by reverse recombination. The Kms progeny retain wild-type glcB 
(3,6) or ∆glcB (4,5) in the chromosome. The excised plasmid, which cannot replicate, is 
lost during successive rounds of cell division. The reverse recombinants are selected by 
plating on 7H10 agar + 5% sucrose, which kills cells expressing the Scs marker. 
Individual Kms Scr colonies are cloned and PCR-screened to identify ∆glcB mutants, 
which are confirmed by Southern blot. Figure was kindly provided by Dr. John McKinney. 
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Figure 3.1. Southern blot to confirm the deletion of the glcB gene in wild type M. 
smegmatis. Selected restriction sites of the genomic region are shown for the wild-type 
(top) and mutant (bottom) alleles. Genomic DNA was digested with PstI for the 
Southern blot (right), and the BlpI-MscI fragment downstream of the gene was used as 
a probe. Expected bands: 1,464 bp for the wild-type, 2,708 bp for the glcB mutant. 
Strain 208-1-10 is a ∆glcB single mutant. 
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Figure 3.2. Phenotype of the ∆glcB mutant of M. smegmatis after 5 days on minimal 
media plates, with the indicated compounds (glucose, acetate, propionate, butyrate or 
valerate) added as the sole carbon sources. Growth of wild type M. smegmatis (wt) and 
the complemented mutant (comp) is also shown. The “comp” strain is the ∆glcB mutant 
complemented with the M. tuberculosis glcB gene carried on a single-copy integrative 
plasmid. 
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the ∆glcB mutant on plates with various carbon substrates was therefore 

inspected at day 5 (Figure 3.2). As expected, by 5 days wild type (wt) M. 

smegmatis had formed colonies on all carbon sources, as had the complemented 

(comp) ∆glcB mutant. The ∆glcB mutant formed colonies on agar plates 

containing glucose and propionate, as we had observed with the icl1 EMS 

mutant, confirming that the glyoxylate shunt is dispensable for growth of 

mycobacteria on carbohydrates, and that propionate assimilation in M. 

smegmatis does not require the glyoxylate shunt, in contrast to M. tuberculosis 

(Muñoz-Elías et al., 2006). However, at day 5, the ∆glcB strain had failed to form 

colonies on plates containing acetate or the short-chain fatty acids (SCFA) 

butyrate and valerate as the sole carbon sources. 

 However, when the plates were inspected after 10 days of incubation, 

small colonies of the ∆glcB mutant had appeared on the acetate and valerate 

containing plates (Figure 3.3). After 15 days, the ∆glcB mutant formed colonies 

on all substrates. Furthermore, the ∆glcB mutant could grow, albeit not robustly, 

on solid media containing methylpalmitate as the sole carbon source. Thus, 

unlike icl1 in M. smegmatis, glcB is not required for growth on solid media 

containing acetate or SCHA as the sole carbon source, although glcB is required 

for optimal growth. 

 MLS was also dispensable for growth on solid media containing glyoxylate 

as the sole carbon source. In fact, the ∆glcB mutant grew just as well as the wild 

type strain on glyoxylate plates (Figure 3.4), suggesting the existence of another,  
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Figure 3.3. MLS is not essential for growth of M. smegmatis on acetate and short-
chain fatty acids (butyrate and valerate); however, MLS is required for optimal growth 
on these compounds as sole carbon sources. The ∆glcB mutant grows fastest on plates 
with propionate, then glucose, then valerate, then acetate and then butyrate.  
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Figure 3.4. MLS is dispensable for growth on acetate (top) and glyoxylate (bottom) in 
M. smegmatis. While the ∆glcB mutant (left) does not grow as well as wild type on 
acetate, it is indistinguishable from wild type (right) on glyoxylate.  
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MLS-independent, pathway for the assimilation of glyoxylate. This alternative 

pathway appears to be the dominant pathway for growth on glyoxylate as the 

sole carbon source and MLS does not seem to play an essential role in it. We 

considered the possibility that a second MLS might exist in M. smegmatis, 

although we were not able to detect it by Southern blots. To test this possibility, 

we performed enzyme assays on cell-free extracts (Figure 3.5). 

The wild type, ∆glcB mutant, and complemented strains were grown in 

minimal liquid media containing glucose, acetate, propionate, or short-chain fatty 

acids as sole carbon sources, and the MLS activity of cell-free extracts was 

measured using the method of Smith et al. (2003). In wild type M. smegmatis, a 

two- to three-fold induction of MLS activity by acetate and short-chain fatty 

acids, was observed. The smallest induction was observed with hexanoic acid 

(C6). In contract, the MLS activity of the complemented strain (controlled by the 

M. tuberculosis glcB promoter) was not induced by any carbon source.  

These data agree with Smith et al. (2003), who measured the activity of 

MLS in cell-free extracts of M. tuberculosis and saw no induction of enzyme 

activity by acetate, palmitate, or glucose. Smith et al. (2003) observed a two-fold 

increase in activity when glycolate was the sole carbon source. It appears that M. 

smegmatis may regulate the expression of MLS depending on the available 

carbon source, which is not the case in pathogenic M. tuberculosis.  Importantly, 

the cell-free extracts from ∆glcB bacteria had no detectable MLS activity, 

irrespective of the amounts of substrates or protein used in the assays.  
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MLS activity of M. smegmatis , ∆glcB  mutant, and complemented mutant
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Figure 3.5. MLS activity in cell-free extracts of wild-type M. smegmatis (wt), ∆glcB 
mutant (∆g), and the ∆glcB mutant complemented with the M. tuberculosis glcB gene 
(g+). Bacteria were grown to early log phase in M9 minimal media with 0.1 % glucose 
(dex), acetate (ace), propionate (pro), butyrate (but), valerate (val), or hexanoate (hex) 
as the sole carbon source, and MLS activity of the cell-free extracts was measured. 
Three cultures were grown for each strain in each medium, and duplicate measurements 
of MLS activity were obtained from each extract. 
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3.2. Deletion of the isocitrate lyase genes (icl1, icl2) in M. smegmatis 

The unexpected finding that MLS activity is not absolutely required for growth of 

M. smegmatis on minimal media with acetate or fatty acids as the sole carbon 

source led us to reconsider the anaplerotic role of the glyoxylate shunt of M. 

smegmatis. Prior genetic studies of the gloxylate shunt in our laboratory were 

done with a mutant obtained by chemical mutagenesis; sequencing of the icl1 

gene of the mutant revealed a nonsense mutation in the coding sequence, 

indicating the icl1 gene was likely inactive (A. Upton, personal communication). 

However, to make certain that our studies were done with a truly ICL-null strain 

of M. smegmatis, we deleted the icl1 and icl2 genes, individually and in 

combination. 

 The icl1 gene was deleted by homologous recombination. An internal 855 

bp SfoI fragment was removed, giving rise to a shortened protein lacking 285 

amino acids and missing the ICL catalytic KKCGH motif (Sharma et al., 2000; 

Figure 3.6). The icl1 gene was deleted in wild-type M. smegmatis and in the 

∆glcB strain, which generated a mutant deficient in both steps of the glyoxylate 

cycle (∆icl1 ∆glcB). Ernesto Muñoz-Elías in the laboratory had generated a ∆icl2 

strain of M. smegmatis and he used the icl1 knockout construct to create a 

double mutant (∆icl1 ∆icl2). All of the mutated alleles were constructed as 

unmarked in-frame deletions, using the strategy depicted in Figure 3.0, in order 

to avoid polar effects on expression of downstream genes. 
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Figure 3.6. Southern blot to confirm the deletion of the icl1 gene in wild type M. 
smegmatis, in the ∆glcB strain, and in the ∆icl2 strain. Selected restriction sites of the 
genomic region are shown for the wild type (top) and mutant (bottom) alleles. The 855 
bp SfoI site was removed to create an in-frame delection. Genomic DNA was digested 
with FspI for the Southern blot (right), and a 677 bp region upstream of the gene was 
used as a probe. Expected bands: 2,958 bp for the wild type, 2,103 bp for the mutant.  
Strains 220-1-1,3,4 are ∆icl1 single mutants; 220-4-1 is the ∆icl1∆glcB double mutant; 
and strain 4.4-12 is the ∆icl1∆icl2 double mutant.  
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Figure 3-7. The glcB and icl2 genes are dispensable for growth on acetate and short 
chain fatty acids (C4-C6). The ∆icl2 mutant is indistinguishable from wild type on all 
substrates, while the ∆glcB strain has a growth delay on acetate, butyrate and valerate. 
The ∆icl1 and ∆icl1∆icl2 mutant grow in liquid media supplemented with valerate (C5) as 
the sole carbon source (not shown), but grow poorly on plates with valerate.  
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 The wild-type, ∆icl1, ∆icl2, ∆icl1 ∆icl2, and ∆glcB strains were directly 

compared for growth on minimal solid media containing glucose, short-chain 

fatty acids, or the long chain fatty acid methylpalmitate as sole carbon sources 

(Figure 3.7). The ∆glcB single mutant was compared to the icl mutants in order 

to dissect the role of the individual glyoxylate cycle enzymes in the anaplerotic 

growth of M. tuberculosis on C2 substrates. Several aspects of the glyoxylate 

cycle in M. smegmatis become apparent from Figure 3.7. First, the icl2 gene is 

dispensable for bacterial growth on any carbon substrate; on solid media and in 

liquid media, the ∆icl2 mutant behaves like the wild-type strain. Second, the 

presence of a single functional copy of the icl2 gene under the control of its 

native promoter fails to rescue the icl1 deficiency. However, overexpression of 

the icl2 gene on a multi-copy epidomal plasmid did enable growth of the ∆icl1 

and ∆icl1 ∆icl2 mutants on acetate and fatty acids (Ernesto Muñoz-Elías, personal 

communication), suggesting that most likely the endogenous icl2 gene is 

functional but is not expressed at sufficient levels to compensate for the loss of 

the icl1 gene.  

 Third, the ability of M. smegmatis to grow on acetate and on fatty acids is 

dependent on the icl1 gene. The ∆icl1 ∆glcB double mutant cannot grow on C2 

substrates, similarl to the ∆icl1 and ∆icl1 ∆icl2 mutants (Figure 3.8). However, 

the ∆icl1 ∆glcB mutant will grow on glucose or propionate, confirming that the 

glyoxylate shunt is dispensable in M. smegmatis when sugars or propionate are 

utilized as sole carbon sources. Lastly, it appears that M. smegmatis uses a MLS- 
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Figure 3.8. The ∆icl1 ∆icl2 mutant (A) cannot grow on plates containing acetate or 
the fatty acid methylpalmitate as carbon sources, while the ∆glcB mutant (B) does grow, 
albeit slowly. As expected, the ∆icl1 ∆glcB mutant cannot grow on acetate or 
methylpalmitate, but grows on gloucose and propionate (C).  
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independent but ICL-dependent pathway for anaplerotic growth on acetate and 

fatty acids. Such a pathway has not been described in mycobacteria, but it is 

logical that this other gene, or set of genes, will assimilate glyoxylate. Searches 

of the published mycobacterial genomes did not reveal any homologs of known 

glyoxylate utilization genes, although M. tuberculosis possesses at least one 

homolog of the E. coli glycolate oxidases, which convert glycolate to glyoxylate. 
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3.3. Deletion of the alanine dehydrogenase (ald) gene in M. smegmatis 

The concomitant induction of glycine dehydrogenase activity and ICL activity in 

aging or non-replicating cultures of M. tuberculosis (Murthy et al. 1973; Wayne 

and Lin, 1982) suggested that glycine dehydrogenase might be responsible for 

ICL-dependent, MLS-independent growth of M. smegmatis on acetate and fatty 

acids. An obstacle to testing this hypothesis was the fact that the gene(s) 

encoding glycine dehydrogenase activity had not been identified in mycobacteria. 

The M. tuberculosis genome contains at least three putative glycine 

dehydrogenase (gcv) genes; the product of the most likely candidate gene, gcvB, 

is thought to preferentially catalyze the decarboxyation of glycine rather than the 

amination of glyoxylate (Cole et al., 1998; Wayne and Sohaskey, 2001).  

 Alanine dehydrogenase of M. smegmatis was reported to have preference 

for the reductive amination of pyruvate to alanine; furthermore, it was induced in 

M. smegmatis during dormancy, similarly to the glycine dehydrogenase activity in 

the “Wayne model” of non-replicating persistence (Hutter and Dick, 1998). Usha 

et al. (2002) purified the glycine dehydrogenase activity from M. smegmatis 

grown under microaerobic conditions, and reported that the purified protein 

could catalyze glyoxylate and pyruvate amination and L-alanine deamination. 

They suggested that the alanine dehydrogenase (ALD) of M. smegmatis might be 

responsible for metabolizing glyoxylate. Searches of the TIGR databases revealed 

one ald gene in M. smegmatis, encoding a 371 aa protein. The ald gene was  
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Figure 3.9. Southern blot to confirm the deletion of the ald gene in wild-type M. 
smegmatis and in the ∆glcB strain. Selected restriction sites of the genomic region are 
shown for the wild type (top) and mutant (bottom) alleles; the deletion introduced an 
EcoRI site in the mutant strain. Genomic DNA was digested with PstI for the Southern 
blot and the 800 bp region upstream of the gene was used as a probe. Expected bands: 
2,664 bp for wild-type, 1,575 bp for ∆ald mutant. Strain 208-1-10 is the ∆glcB single 
mutant; strain 213-2-9 is the ∆ald single mutant; strain 213-6-6 is the ∆glcB ∆ald double 
mutant.  

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

EcoRI    1
PstI    2
XcmI    4

Smeg Ald
Ald

500 1000 1500 2000 2500 3000 3500 4000

EcoRI    2
PstI    2
XcmI    4



 59

deleted by creating an unmarked in-frame deletion that removed all but the first 

6 and last 6 amino acids (Figure 3.9). The ald gene was deleted in wild type M. 

smegmatis and in the ∆glcB strain. If ALD represented the ICL-dependent, MLS-

independent activity, which enabled the ∆glcB mutant to grow on acetate and 

glyoxylate, then the ∆glcB ∆ald double mutant should not grow on solid media 

containing acetate or fatty acids as the sole carbon source. However, the ∆glcB 

∆ald double mutant grew as well as the parental ∆glcB strain on media 

contaioning acetate (Figure 3.10) or glyoxylate (not shown). It is thus clear that, 

even if the M. smegmatis ALD could catalyze glyoxylate deamination, the product 

of the ald gene is not essential for glyoxylate assimilation.  

 At the time the ∆ald and ∆glcB ∆ald mutants were generated in our lab, a 

published report described the disruption of the ald gene in M. smegmatis (Feng 

et al., 2002). In this study, the ald mutant had a defect in utilizing alanine as the 

sole nitrogen source, and grew poorly under microaerobic conditions; however, 

its glycine dehydrogenase activity remained at wild type levels, indicating that 

another M. smegmatis enzyme was responsible for the reductive amination of 

glyoxylate. Although the report by Feng et al. (2002) made it unnecessary to test 

the glycine dehydrogenase activity in our ∆ald and ∆glcB ∆ald mutants, it 

provided no indication as to which gene was encoding glycine dehydrogenase 

activity and, more importantly, which other gene(s) encoded the ICL-dependent, 

MLS-dependent pathway for growth on acetate and fatty acids. 
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Figure 3.10. Alanine dehydrogenase (ALD) is not required for growth on acetate (or 
glyoxylate or methylpalmitate, not shown). Thus, ALD does not seem to be required for 
the assimilation glyoxylate, acetate, or fatty acids by M. smegmatis. 
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3.4. Screen for C2 mutants in MLS-deficient M. smegmatis 

To identify mutants that were defective in the putative ICL-dependent, MLS-

independent pathway for growth on acetate and fatty acids, we created a library 

of transposon mutants in the ∆glcB strain of M. smegmatis. Since the ∆glcB 

mutant grew on acetate and fatty acids, albeit slowly, we screened for 

transposon mutants that were completely unable to form colonies on agar plates 

containing acetate and methylpalmitate as sole carbon sources. We then 

transformed these Ace- Mep- mutants individually with a plasmid containing the 

M. tuberculosis glcB gene, and screened for complementation of growth on 

acetate and methylpalmitate. If we could restore a mutant’s ability to grow on 

acetate and fatty acids by complementation with glcB, this would indicate that 

the mutant was defective in the putative ICL-dependent, MLS-independent 

pathway we were seeking (Figure 3.11).  

 We constructed a library of ~ 50,000 transposon mutants in the glcB-

deficient strain by using the transposon donor phagemid φMycoMarT7 (Sassetti 

et al., 2003), which was a generous gift from Dr. Eric Rubin (Harvard School of 

Public Health). More than 4,000 transposon mutants were screened to identify 

mutants that were capable of grow on glucose but not on acetate or 

methylpalmitate. Of the 4,000 mutants screened, more than 50 were retested to 

confirm their phenotypes; 24 bred true on retesting, and these were transformed 

individually with a plasmid carrying a copy of the M. tuberculosis glcB gene. The 

sites of transposon insertion in the 24 mutants were identified by subcloning the  
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Figure 3.11. Top: Strategy to identify genes in M. smegmatis that are essential for 
the function of the putative ICL-dependent, MLS-independent pathway for growth on 
acetate and fatty acids as the sole carbon source. Figure provided by Dr. John 
McKinney. Bottom: Southern blot of selected transposon mutants. Genomic DNA was 
digested with BamHI or ApaLI (neither enzyme cuts within the phiMycoMarT7 
transposon) and probed with the kanamycin resistance cassette from the transposon. 
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transposon, along with flanking genomic DNA sequences, and sequencing the 

genomic DNA by using a primer that hybridizes at the end of the kanamycin 

resistance cassette internal to the transposon. Genomic DNA from the 24 

mutants selected for complementation was subjected to sequencing and 

Southern blotting to confirm that each mutant contained only one insertion 

(Figure 3.11). Several of the transposon insertions were in the icl1 gene, which 

was expected; all of the icl1 mutants failed to grow on both acetate and 

methylpalmitate, and they were not complemented by glcB. Another transposon 

insertion was in pckA encoding the gluconeogenic PEP carboxykinase; this 

mutant also failed to grow on both acetate and palmitate, and was not 

complemented by glcB. A large number of insertions mapped to the acs gene, 

which encodes acetyl-CoA synthase; all of the acs mutants grew on 

methylpalmitate but not on 0.1% acetate, the concentration of acetate used in 

the plates for the screen. Several of the transposon insertions were in genes that 

had no homologs in M. tuberculosis; several of the genes that did have clear 

homologs in M. tuberculosis encoded hypothetical proteins of unknown function. 

The identifies of the mutants generated in this screen and a screen to identify C2 

transposon mutants in wild type M. smegmatis, are showin in Appendix A and B. 

 Importantly, 3 of the 24 mutants were unable to grow on acetate or 

methylpalmitate, and were complemented by transformation with glcB (Figure 

3.12). The first mutant, 2AH6 (Figure 3.12, F) grew rather poorly on glucose, 

and did not grow at all on acetate or methylpalmitate. Addition of glcB improved  
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Figure 3.12. Transposon mutants 2AH6 (F), 14AG2 (H), and 17BB5 (J) grow on 
glucose (left) but cannot grow on acetate (middle) or methylpalmitate (right) as sole 
carbon source; these mutants are complemented by glcB. Serial dilutions of late log-
phase cells were spotted on agar plates with 0.1% glucose or acetate, or 0.5% methyl-
palmitate. A, ∆glcB plus vector; B, ∆glcB plus M. tuberculosis glcB; C, wild-type plus 
glcB; D, ∆icl1; F, mutant 2AHG plus vector; G, 2AHG plus glcB; H, mutant 14AG2 plus 
vector; I, 14AG2 plus glcB; J, mutant 17BB5 plus vector; K, 17BB5 plus glcB.  
 

   GLUCOSE                     ACETATE             METHYLPALMITATE

A 
 
B 
 
C 
 
D 
 
 
F 
 
G 
 
H 
 
I 
 
J 
 
K 



 65

the growth of this mutant on all three carbon sources but the complementation 

was partial (Figure 3.12, G). The second and third mutants, 14AG2 and 17BB5 (H 

and J in Figure 3.12, respectively), grew as well as the ∆glcB strain on glucose 

but did not grow on acetate or methylpalmitate unless they were complemented 

with the glcB gene (I and K in Figure 3.12, respectively). As expected, 

transformation of the M. tuberculosis glcB gene into the ∆glcB strain 

complemented its moderate growth defect on solid media containing acetate or 

methylpalmitate (A and B in Figure 3.12).  
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3.5. Genomic characterization of the ∆glcB C2 transposon mutants 

The identity of the three mutants of interest, 14AG2, 17BB5, and 2AH6, was 

determined by sequencing the DNA immediately downstream of the transposon 

insertion sites. The gene disrupted in mutant 14AG2 encoded a protein that had 

homology to a group of acetolactate synthases in the M. tuberculosis genome; a 

BLAST search against the non-redundant protein databases revealed that the 

protein was homologous to glyoxylate carboligases in other species. Several kb 

of DNA sequence upstream and downstream of the insertion site were 

downloaded from TIGR’s databases and assembled with Vector NTI. Putative 

ORFs were identified and the conceptual translation products were compared to 

protein databases to deduce the identities of the genes in the region. Glyoxylate 

carboligase appears to be in an operon along with genes encoding three 

enzymes and a transcriptional regulator (Figure 3.13, A). The transposon 

insertion in mutant 17BB5 mapped to a homolog of M. tuberculosis fadD1. The 

M. smegmatis fadD1 gene lies upstream of an operon encoding ribosomal 

proteins, and downstream of a gene cluster for threonine biosynthesis (Figure 

3.13, B). The transposon insertion in 2AH6 mapped to an approximately 100 bp 

intergenic region between two divergently transcribed genes predicted to encode 

enzymes for the production of thiamine. As thiamine pyrophosphate is an 

essential cofactor of several important enzymes, including pyruvate 

dehydrogenase, transketolase, acetolactate synthase, pyruvate decarboxylase, 

and glyoxylate carboligase (Schorken and Sprenger, 1998), it seems unlikely that  
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Figure 3.13. Genomic structure of the (A) glyoxylate carboligase (GCL), (B) FadD1, 
and (C) thiamine biosynthesis (ThiE/O) regions in M. smegmatis. Annotation of the 
regions was done after sequencing the sites of transposon insertions in the mutants. 
About 5-7 kb of sequence upstream and downstream of the insertion site were obtained 
from TIGR’s unfinished genomes database, and BLAST searches were done with the 
putative ORFs against the M. tuberculosis genome and against NCBI’s protein databases. 
The names of the closest homologues are provided. Black line in C indicates the site of 
transposon insertion in the intergenic region between thiE and thiO. The transposon 
inserted in the coding regions of gcl and fadD1. 
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2AH6 is a complete thiamine auxotroph, and we suspect that the mutant may be 

impaired (but not null) for thiamine production by the insertion (Figure 3.13, C). 

Upon annotating the genes surrounding gcl, it became apparent that gcl 

forms a hypothetical operon with the preceding two genes. The stop codon of 

hypI is 30 basepairs upstream of the translation start site of tsaR; the stop codon 

of tsaR overlaps the start site of gcl. A 107 bp intergenic region separates the 3’ 

end of the gcl gene and the start site of gclR. The 27 bp palindromic sequence 

ccactattcc acaccgc ggaatagtgg is located at nucleotides -27 to -53 upstream of 

the gclR start codon; the 19 bp palindromic sequence ttttccg tattg cggaaaa is 

found at nt -24 to -42 of hypI. Palindromic sequences upstream of genes can be 

binding sites for the helix-turn-helix (HTH) transcriptional regulators of the 

AraC/XylS family; a few representative members of this family are AraC, Crp, 

GntR, IclR, LuxR and TetR (Callegos et al., 1997). It thus appears that the 

hypothetical operon might be under the control of HTH regulators. 

 The gcl gene encodes for a putative protein of 599 amino acids. Searches 

with the hypothetical M. smegmatis GCL sequence against the NCBI’s Conserved 

Domains databases revealed that it contains two thiamine pyrophosphate (TPP) 

binding sites in its N-terminal and central regions; it aligns closely with COG3960 

(glyoxylate carboligase) from other species and has more limited similarity to 

other TPP-requiring enzymes such as acetolactate synthase and pyruvate 

carboxylase (Figure 3.14, A). The hypothetical product of tsaR is 305 aa in length 

and has a hypothetical NAD+ binding domain in its N-terminus. TSAR appears to 
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be a β-hydroxyacid dehydrogenase and is homologous to the well-characterized 

enzymes β-hydroxyisobutyrate dehydrogenase, a requisite enzyme for valine 

catabolism, and 6-phosphogluconate dehydrogenase, a NADP+-dependent 

enzyme that plays a role in the pentose phosphate pathway by oxidizing 6-

phosphogluconate. The tartronate semialdehyde reductase of E. coli is a β-

hydroxyacid dehydrogenase with homology to β-hydroxyisobutyrate 

dehydrogenase and 6-phosphogluconate dehydrogenase (Njau et al., 2000). 

Given the location of the M. smegmatis tsaR gene just upstream of gcl and the 

homology between the hypothetical tsaR product and known TSAR proteins 

(Figure 3.14, B), it is likely that tsaR encodes a tartronate semialdehyde 

reductase.  

 The gene product just upstream of tsaR has homology to hydroxypyruvate 

isomerases (COG3622). Makato and Misuno (1999) demonstrated that the E. coli 

hyi gene, located immediately downstream of gcl and upstream of glxR encodes 

a 258 aa hydroxypyruvate isomerase protein, which catalyzes the conversion of 

tartronic semialdehyde to hydroxypyruvate. M. smegmatis hypI encodes a 278 aa 

protein, most likely a hydroxypyruvate isomerase (Figure 3.14, C). Finally, the 

gclR gene encodes a 255 aa peptide with an N-terminal HTH motif typical of the 

IclR family of transcriptional regulators, and has significant overall homology to 

IclR (Figure 3.14, D).  
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Figure 3.14. Alignment of proteins in the gcl region with NCBI’s Conserved Domains 
databases. GCL (A) belongs to the family of TPP (thiamine pyrophosphate)-dependent 
enzymes. TSAR (B) is related to 3-hydroxyisobutyrate dehydrogenases and 6-
phosphogluconate dehydrogenases. HYPI (C) appears to be a hydroxypyruvate 
isomerase, while the GclR protein (D) belongs to the IclR family of regulators. 
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Figure 3.15. (A) tBLASTX of M. smegmatis GCL against NCBI’s databases. (B-D) 
BLASTP of GCL (B), TSAR (C) and HYPI (D) proteins against M. tuberculosis genomes. 
mmsB (C) is annotated as a 3-hydroxyisobutyrate dehydrogenase in the H37Rv genome.   
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The gene names used here were assigned on the basis of results from 

protein homology searches and comparison of the regions flanking the 

transposon insertion in M. smegmatis to the gcl operon in the E. coli 

chromosome (Cusa et al., 1999). In TIGR’s databases, these genes are assigned 

MSMEG numbers 5454 (gclR), 5455 (gcl), 5456 (tsaR) and 5457 (hypI); 

MSMEG5455 is annotated as glyoxylate carboligase, while the other three 

proteins have not been assigned functions. 

The protein sequences of the gcl locus were aligned against the genomes 

of pathogenic mycobacteria on TIGR’s website (http://tigrblast.tigr.org/cmr-

blast/). The gcl gene is absent from the genomes of all sequenced pathogenic 

species (M. avium, M. bovis, M. leprae, and M. tuberculosis). The ilv genes, 

encoding acetolactate synthases, were the closest homologs of gcl in M. 

tuberculosis (Figure 3.15, B). Similarly, the best tsaR matches were the M. 

tuberculosis genes encoding β-hydroxyisobutyrate dehydrogenase and 6-

phosphogluconate dehydrogenase (Figure 3.15, C). No hits were obtained for 

HYPI, suggesting that this protein is also missing in M. tuberculosis. 

 The gene disrupted in mutant 17BB5, on the other hand, had an obvious 

homolog in M. tuberculosis (Figure 3.16). It is 62 percent identical to the FadD1 

protein, with lesser homology to FadD17 and FadD6. Both FadD17 (Trivedi et al., 

2004) and FadD6 (Arora et al, 2005) were shown to synthesize the formation of 

fatty acyl-CoA and not fatty acyl-AMP; FadD6 also showed broad specificity for 

the length of its fatty acid substrates. These data indicate that FadD1 is probably 
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Figure 3.16. tBLASTX of the M. smegmatis fadD1 locus against the H37Rv genome 
(A), and the NCBI Conserved Domains databases (B). FADD1’s significant alignment 
against COGs 0318, 0365, and 1022 suggests that it is a fatty acyl-CoA synthase. 
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a fatty acyl-CoA ligase and does not play a role in polyketide synthesis. 

The location of fadD1 in the genome of M. smegmatis suggests that it is 

transcribed independently of surrounding genes (Figure 3.13, B). Interestingly, in 

M. tuberculosis, the threonine biosynthesis (thr) gene cluster resides immediately 

upstream of the ribosomal peptide genes. The order and orientation of the thr 

and ribosomal synthesis genes are conserved in M. smegmatis, but fadD1 and 

the putative transcriptional regulator gene AcrR are inserted in the middle. 
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3.6. Metabolic characterization of the ∆gclB C2 mutants 

The carbon requirements of the ∆glcB gcl and ∆glcB fadD1 mutants were more 

fully characterized. The 2AH6 mutant, hypothesized to be partially defective for 

synthesis of thiamine pyrophosphate, grew poorly on all carbon sources, 

including glycerol and glucose, and complementation with glcB only partially 

restored growth on all substrates (Figure 3.19). As thiamine pyrophosphate is a 

cofactor necessary for the enzymatic activity of glyoxylate carboligase (Krakow et 

al., 1961; Schorken and Sprenger, 1998) as well as other enzymes, 2AH6 was 

not characterized as fully as the ∆glcB gcl and ∆glcB fadD1 mutants in 

subsequent experiments. 

 The ∆glcB, ∆glcB gcl, and ∆glcB fadD1 mutants, as well as the 

corresponding complemented strains carrying the M. tuberculosis glcB gene on a 

plasmid, were assayed for growth in liquid minimal media containing glucose or 

glyoxylate as carbon sources (Figure 3.17). All strains grew as well as wild type 

M. smegmatis on glucose; however, only the wild type, ∆glcB, and 

complemented ∆glcB strains grew at all on glyoxylate. This demonstrated that, 

similarly to E. coli (Ornston and Ornston, 1969), the activity of malate synthase is 

dispensable for growth on glyoxylate, and that glyoxylate carboligase is 

absolutely required for assimilaiton of glyoxylate into the general metabolism of 

M. smegmatis. Surprisingly, the ∆glcB fadD1 strain also failed to grow on 

glyoxylate, regardless of whether malate synthase activity was present or not 

(Figures 3.17, 3.18). Given that fadD1 appears to encode a fatty acyl-CoA ligase  
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Figure 3.17. Growth of wild type M. smegmatis, mutant strains, and mutant strains 
complemented with MTB glcB in M9 minimal media containing either 0.1% dextrose (top 
panel) or 0.1% glyoxylate (bottom panel) as sole carbon sources. The growth studies 
were done at least three times for each strain and carbon source; a representative 
experiment is shown. 
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Figure 3.18. Growth of M. smegmatis glyoxylate shunt mutants on glyoxylate as the 
sole carbon source. Serial dilutions of early log-phase cultures of wild-type M. smegmatis 
(A) and mutants were spotted on solid plates containing agar (top, square plates) or 
agarose (bottom, round plates) as the solidifying agent, and 0.2% glyoxylate as the sole 
carbon source. The ∆ald (D), ∆glcB (E, M) mutants, and the ∆glcB mutant 
complemented with the MTB glcB gene (F, N) grew as well as wild-type bacteria, 
indicating that ald and glcB are dispensable for growth on glyoxylate. Interestingly, the 
∆icl1 (B) and ∆icl1 ∆icl2 (C) mutants appeared to have a slight growth defect on 
glyoxylate plates, which was not the case with the ∆icl2 mutant (not shown). The 
∆glcB gcl (I, O) and ∆glcB fadD1 (K, Q) strains did not grow on glyoxylate, even when 
transformed with a plasmid containing the MTB glcB gene (J, P; L, R).  
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(FACL), and FACLs have not been shown to play a role in the assimilation of 

glyoxylate, it is unclear why the ∆glcB fadD1 strain is unable to grow on 

glyoxylate media. 

The mutant strains were further tested for their ability to grow on agar 

plates or liquid minimal media supplemented with short-chain fatty acids as the 

sole carbon sources. Agar plates containing C2, C4, C5, and C6 compounds were 

checked for growth after one and three weeks of incubation at 37˚C. The ∆glcB 

mutant had formed microscopic colonies on C2 and C6 after a week, and formed 

large colonies on all plates after three weeks (Figure 3.19, left-most column). 

The ∆glcB gcl mutant did not grow on C2, C4, or C6 fatty acids at any time; 

restoration of malate synthase activity enabled it to assimilate these even-chain 

fatty acids. Interestingly, the ∆glcB gcl strain did form colonies on valerate (C5) 

after three weeks (Figure 3.19, left middle). 

 The ∆glcB fadD1 mutant behaved similarly to the ∆glcB gcl mutant, with a 

few exceptions: it formed noticeable colonies on C5 sooner and it formed small 

but discernable colonies on C4 and C6 after three weeks. Thus, the ∆glcB fadD1 

mutation appeared to be slightly but perceptibly leaky on butyrate and hexanoic 

acid. However, the ∆glcB fadD1 mutant, like the ∆glcB gcl strain, absolutely failed 

to grow on C2 (acetate) unless complemented with glcB (Figure 3.19, right 

middle column). Lastly, the 2AH6 mutant (∆glcB thi) eventually grew on all fatty 

acids, regardless of whether it had malate synthase activity or not; in fact, 

complementation enhanced its growth only on acetate, but rather minimally. 
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Figure 3.19. Complementation of ∆glcB gcl and ∆gclB fadD1 mutants with the MTB 
glcB gene (panels marked “+ tb glcB”) restores wild type growth on even-chain fatty 
acids (acetate, C2; butyrate, C4; hexanoate, C6) as sole carbon sources. The ∆glcB thi 
mutant can grow on media containing these substrates as sole carbon sources, albeit 
poorly. The ∆glcB gcl mutant fails to grow on even-chain fatty acids even after 3 weeks, 
while ∆gclB fadD1 forms small, but discernable, colonies on C4 (butyrate) and C6 
(hexanoate) after 3 weeks. 2AH6 (∆glcB thi) grows slowly on all carbon sources, 
including glucose (not shown); complementation with the MTB glcB gene enhances 
growth of the ∆glcB thi mutant on acetate. “1” = one week of growth at 37˚C; “3” = 
three weeks of growth at 37˚C.  
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Figure 3.20. Growth of M. smegmatis in M9 liquid media containing 0.1% of the 
indicated C2, C4, C5, C6, and C7 compounds as the sole carbon source. Strains: 
(A,D,G,J,M) wild-type (squares), ∆glcB (empty triangles), and compl. ∆glcB (filled 
triangles); (B,E,H,K,N) ∆glcB gcl (empty circles) and compl. ∆glcB gcl (filled circles); 
(C,F,I,L,O) ∆glcB fadD1 (empty diamonds) and compl. ∆glcB fadD1 (filled diamonds). 
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 These results suggested that the ∆glcB gcl and ∆glcB fadD1 strains might 

have different growth kinetics on fatty acids, and that they behave differently on 

even- vs. odd-chain fatty acids. To address this issue, we grew these strains in 

M9 minimal liquid media supplemented with C2-C7 fatty acids (Figure 3.20). In 

M9 liquid media, the growth delay of the ∆glcB mutant was less pronounced than 

on solid media, but nonetheless significant and reproducible (Figure 

3.20A,D,G,J,M). The ∆glcB strain lagged behind wild-type bacteria when grown 

on acetate (Figure 3.20A), which was not due to adaptation problems, as the lag 

was not eliminated by pre-adaptation of ∆glcB cells to acetate (not shown). A 

clear lag was also observed when the ∆glcB strain was cultured in C4 (Figure 

3.20D), C6 (Figure 3.20J), or C7 (Figure 3.20M) media, but was very slight when 

cells were grown in C5 medium (Figure 3.20G).  

 The ∆glcB gcl and ∆glcB fadD1 strains failed to grow in media containing 

even-chain fatty acids of C2 (Figure 3.20B,C), C4 (Figure 3.20E,F), or C6 (Figure 

3.20K,L) chain length. However, both strains were able to grow on media 

containing C5/valerate (Figure 3.20H,I) and, to a lesser degree, C7/heptanoate 

(Figure 3.20N,O). The ∆glcB fadD1 mutant consistently grew better than the 

∆glcB gcl strain on C5 and C7 substrates; in fact, growth of the ∆glcB fadD1 

(Figure 3.20I) and wild-type (Figure 3.20G) strains on C5/valerate was similar.  

 In media containing odd-chain fatty acids, the ∆glcB gcl and ∆glcB fadD1 

strains grew better on C5/valerate than C7/heptanoate. A molecule of 

C7/heptanoate is degraded, via β-oxidation, to yield two acetyl-CoA (C2) units  
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Figure 3.21. Growth of M. smegmatis in liquid media containing acetate, propionate, 
or a mixture of acetate and propionate as the sole carbon sources, as indicated. Strains: 
(A,E,I,M) wild-type, ∆glcB, comp. ∆glcB; (B,F,J,N) ∆glcB gcl, comp. ∆glcB gcl; 
(C,G,K,O) ∆glcB fadD1, comp. ∆glcB fadD1; (D,H,L,P) ∆icl1, ∆icl2, ∆icl1∆icl2. Note: 
“comp” indicates that the corresponding mutant strain was complemented with MTB 
glcB to restore malate synthase activity.  
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and one propionyl-CoA (C3) unit, whereas β-oxidation of C5/valerate yields one 

acetyl-CoA unit and one propionyl-CoA unit. We considered the possibility that, in 

the absence of a functional glyoxylate shunt, the ∆glcB gcl and ∆glcB fadD1 

strains might oxidize acetyl-CoA via the TCA cycle for energy generation and 

assimilate propionyl-CoA via the methylcitrate cycle for anaplerosis. However, 

our observations suggested that acetyl-CoA might exert a dominant inhibitory 

effect in the absence of an intact glyoxylate shunt. We propose that catabolism 

of longer odd-chain fatty acids would result in higher acetyl-CoA:propionyl-CoA 

ratios in the cells, thereby increasing growth inhibition in proportion to chain 

length. We tested this hypothesis by growing the ∆glcB gcl and ∆glcB fadD1 

strains in M9 minimal media containing mixtures of propionate (C3) and acetate 

(C2) in different ratios. We also tested the strains that lacked one, or both, of 

the isocitrate lyase (icl) genes in these conditions. As shown in Figure 3.21D, the 

∆icl1 and ∆icl1 ∆icl2 mutants, but not the ∆icl2 mutant, failed to grow on acetate, 

as did the ∆glcB  gcl (Figure 3.21B) and ∆glcB  fadD1 (Figure 3.21C) strains. The 

∆glcB mutant grew on 0.5 percent acetate (Figure 3.21A), but the lag was more 

pronounced than when it was grown on 0.1 percent acetate (Figure 3.21E). As 

expected, all strains grew well in media containing 0.1 percent propionate 

(Figure 3.21E,F,G,H). 

 Interestingly, addition of acetate inhibited the ability of the ∆icl1 and 

∆icl1 ∆icl2 mutants to grow on media containing propionate (Figure 3.21L,P). 

There are several possible explanations for this phenomenon: a) acetate is toxic 
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to cells unless they can assimilate it via the glyoxylate cycle; b) high 

concentrations of acetate may inhibit some enzymes, or the transcription of 

some genes, which are involved in propionyl-CoA metabolism; c) ACKA converts 

acetate to acetyl-phosphate, which is a global regulator of gene expression in E. 

coli (Wolfe, 2005), and acetyl-phosphate-mediated changes in gene expression 

could be growth-inhibitory in mycobacteria; d) acetate is converted to acetyl-

CoA, which, at high levels, can be inhibitory to a number of important enzymes. 

Also of note is the fact that the presence of a functional icl2 gene can partially 

compensate for the loss of icl1 at moderate concentrations of acetate in the 

media (Figure 3.21L) but not at high acetate concentrations (Figure 3.21P). It 

appears that icl1 can effectively buffer loss of icl2, inasmuch as deletion of icl2 

alone had no effect on bacterial growth on any substrates or substrate mixtures 

examined (Figure 3.21D,H,L,P). 

The ∆glcB mutant grew well in mixtures of 0.5 percent acetate and 0.1 

percent propionate (Figure 3.21I), suggesting that GCL can effectively 

metabolize the glyoxylate that is produced by isocitrate lyase at this acetate 

concentration. However, in mixtures of 1.0 percent acetate and 0.1 percent 

propionate (Figure 3.21M), growth of the ∆glcB strain was paritally inhibited, 

perhapse due to accumulation of glyoxylate or acetyl-CoA under these 

conditions. 

 The ∆glcB  gcl mutant was unable to grow on 0.1 percent propionate in 

the presence of 0.5 percent (Figure 3.21J) or 1.0 percent (Figure 3.21N) acetate, 
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despite being capable of normal growth on media containing 0.1 percent 

propionate alone (Figure 3.21F). We hypothesize that isocitrate lyase converts 

acetate to glyoxylate, which accumulates to inhibitory levels in the absence of 

GlcB and GCL. Consistent with this hypothesis, glyoxylate-mediated growth 

inhibition has been demonstrated in a malate synthase mutant of Rhodococcus 

fascians (Vereecke et al., 2002).  

Interestingly, the ∆glcB  fadD1 mutant is capable of growth on propionate 

alone (Figure 3.21G) as well as mixtures of acetate and propionate (Figure 

3.21K,O), despite being completely unable to utilize acetate alone (Figure 

3.21C). Since either malate synthase (Figure 3.21J,N) or glyoxylate carboligase 

(Figure 3.21I,M) appears to be sufficient for growth in media containing 

acetate/propionate mixtures, the ∆glcB  fadD1 mutant may induce glyoxylate 

carboligase activity when provided with propionate plus acetate, or with odd-

chain fatty acids, as the carbon source. We propose a model in which FadD1 is 

required to upregulate (probably indirectly) the expression or activity of 

glyoxylate carboligase during growth on acetate (or even-chain fatty acids) as 

the sole substrate; this requirement would be partially bypassed during growth 

on mixtures of acetate and propionate (or odd-chain fatty acids), via an unknown 

mechanism. 
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3.7. FadD1-mediated regulation of the gcl operon 

To examine the possible regulation of the gcl operon by FadD1, cell-free extracts 

were prepared from wild-type bacteria grown on glucose, valerate (C5), or a 1:1 

mixture of acetate (C2) and propionate (C3), and the activity of TSAR (tartronate 

semialdehyde reductase) was measured spectrophotometrically in a coupled 

enzyme assay. Each molecule of the reduced tartronic semilaldehyde oxidizes a 

molecule of NADH to NAD+, so the conversion of tartronic semialdehyde to d-

glycerate can be quantified by measuring the disappearance of NADH at 340 nm 

(Hansen and Hayashi, 1962). Tartronic semialdehyde was generated in situ from 

glyoxylate by GCL upon the addition of MgCl2 and TPP (see Schematic in Figure 

3.22A) 

Cell-free extracts of wild-type M. smegmatis grown on glucose contained 

no appreciable GCL-TSAR activity (Figure 3.22B, filled diamonds), but activity 

was readily detected in extracts from bacteria grown in media containing 

valerate (Figure 3.22B, crosses) or acetate+propionate mixtures (Figure 3.22B, 

filled triangles). Production of tartronic semialdehyde was apparently dependent 

on glyoxylate carboligase activity, because reactions in which thiamine 

pyrophosphate (TPP) and MgCl2 were omitted were negative for NADH oxidation 

(Figure 3.22B, empty squares). Extracts from ∆glcB  fadD1 bacteria grown in 

valerate or acetate+propionate mixtures contained substantially reduced GCL-

TSAR activity (Figure 3.22B, righthand panel), as compared to extracts from 

wild-type bacteria grown under the same conditions (Figure 3.22B, lefthand  
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A. 

 
B.  

 
 
 
 
 
 
Figure 3.22. A functional copy of fadD1 is required for the full induction of GCL-TSAR 
activity in M. smegmatis. (A) Schematic of the coupled GCL-TSAR assay in cell-free 
extracts. The reaction mixture contains glyoxylate as the substrate; upon the addition of 
TPP and MgCl2, two molecules of glyoxylate are condensed to one tartronic 
semialdehyde (by GCL), which is reduced to glycerate with concomitant oxidation of 
NADH to NAD+ (by TSAR). NADH oxidation is measured spectrophotometrically at 340 
nm. (B) In wild-type M. smegmatis (left panel), GCL-TSAR activity was not detected in 
cultures grown on glucose (glu) or when TPP/MgCl2 were not added to the reaction mix 
(- tpp). GCL-TSAR activity was strongly induced in cultures grown on acetate/propionate 
(a/p) or valerate (val). Extracts from ∆glcB fadD1 bacteria grown on acetate/propionate 
or valerate contained reduced, but still detectable, GCL-TSAR activity (right panel), 
suggesting that a FadD1-independent mechanism for induction of GCL-TSAR activity 
might exist in M. smegmatis. 
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panel). Nonetheless, TSAR activity was still detectable in extracts from the 

∆glcB  fadD1 bacteria grown in valerate or in acetate+propionate, suggesting 

that a second, FadD1-independent mechanism for regulation of the gcl operon 

might exist in M. smegmatis. This mechanism might involve activation by a C3 

unit, which could be generated from metabolism of propionate or odd-chain fatty 

acids. 
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3.8. In-frame deletions of gcl and fadD1 in M. smegmatis 

The experiments described so far were carried out in strains of M. smegmatis 

that harbored in-frame deletions in glcB and ald, as well as tranposon insertions 

in glyoxylate carboligase (gcl), fatty acyl-CoA ligase 1 (fadD1), and the intergenic 

space between thiO and thiE. To rule out the possibility of polar effects of the 

transposon insertions on genes downstream of the transposon insertion sites, we 

generated strains that carried unmarked, in-frame deletions in either gcl or 

fadD1 on both the wild type background and the ∆glcB background. These four 

strains (∆gcl, ∆fadD1, ∆glcB∆gcl, and ∆glcB∆fadD1) were then plated on agar 

plates containing glucose, glyoxylate, or various chain-length fatty acids (from 

C2/acetate to C5/valerate) as the sole carbon substrates. 

None of these four strains could grow on glyoxylate plates, confirming 

that, in M. smegmatis, both GCL and FadD1 activities are necessary for utilization 

of glyoxylate as the sole carbon source (not shown). The single ∆gcl and ∆fadD1 

mutants grew as well as wild-type bacteria on all other carbon sources, including 

acetate and the short chain fatty acids butyrate (C4) and valerate (C5), 

confirming that malate synthase is the dominant anaplerotic pathway for 

assimilation of the glyoxylate produced by isocitrate synthase when M. 

smegmatis grows on acetate or fatty acids. Finally, similarly to what we observed 

with the transposon-induced double mutants, the ∆glcB∆gcl and ∆glcB∆fadD1 

strains could not grow on acetate or butyrate as the sole carbon sources, but 

could form colonies on valerate after prolonged incubation (not shown). The 
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phenotypes of the ∆glcB gcl and ∆glcB fadD1 transposon mutants were thus 

solely due to loss of GCL and FadD1 activities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 91

CHAPTER 4 

Understanding Glyoxylate Metabolism In Mycobacteria 

4.1. The role of malate synthase in pathogenic mycobacteria 

Muñoz-Elías and McKinney (2005) reported that the two isocitrate lyases (ICL) of 

M. tuberculosis are jointly required for virulence in the lungs of infected mice. 

They also demonstrated that the two enzymes were necessary for bacterial 

growth on acetate (C2), butyrate (C4), laureate (C12) and palmitate (C16). Thus, 

it appears that, in M. tuberculosis, the ability to assimilate fatty acids (or at least 

even-chain fatty acids) through the glyoxylate shunt may correlate with the 

ability of the tubercle bacillus to grow and persist in vivo.  

 This correlation between the ability to carry out β-oxidation in the lungs of 

infected hosts and the ability to cause disease is consistent with evidence 

presented by Segal and Bloch (1956), Kanai and Kondo (1974) and Bharadwaj et 

al., (1987), which suggested that lipid, rather than carbohydrate, catabolism was 

of crucial importance to the in vivo survival of pathogenic mycobacteria. 

Similarly, Raynaud et al.’s (2002) report that exported phospholipase C isoforms 

may be required for virulence lends further support to the idea that β-oxidation 

may be important in vivo. The results presented by Muñoz-Elías and McKinney 

(2005) suggest that novel drugs that can target both ICLs of mycobacteria could 

be effective new therapeutics for treating active mycobacterial infections. 

 However, despite the unambiguous importance of ICLs in mycobacterial 

pathogenesis, it is not clear if the other enzyme of the glyoxylate shunt, malate 
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synthase (MLS), is equally important for M. tuberculosis virulence. So far, for 

reason unknown, it has not been possible to isoalte a strain of M. tuberculosis 

harboring a null mutation in the glcB gene (Muñoz-Elías, 2005, Ph.D. thesis). It is 

possible that MLS activity is essential in pathogenic mycobacteria, and that a 

∆glcB strain will never be obtained. In that case, MLS could still be a viable 

target for novel drug development. The potential essentiality of glcB needs to be 

demonstrated experimentally, however; experiments to that end are ongoing in 

our laboratory. 

 It is also plausible that the importance of ICL1/ICL2 in vivo is due to their 

participation in a pathway that does not involve MLS. One such pathway is the 

methylcitrate cycle, which appears to be the dominant pathway for metabolism 

of propionyl-CoA in bacteria (Figure 4.1; Textor et al., 1997; Horswill and 

Escalante-Semerena, 1999; Claes et al., 2002). The putative involvement of M. 

tuberculosis ICL, but not MLS, in the methylcitrate cycle came from the 

unexpected observation that ICL1/ICL2 were jointly required for in vitro growth 

of M. tuberculosis on propionate, and from the fact that M. tuberculosis lacks a 

prpB homolog encoding methylisocitrate lyase (Muñoz-Elías and McKinney, 2005; 

Muñoz-Elías and McKinney, 2006). Recently, however, Muñoz-Elías et al. (2006) 

reported that, although ICL1/ICL2 in fact do have have methylisocitrate lyase 

activity and participate in the methylcitrate cycle, the methylcitrate cycle (and 

perhaps, by extension, propionate metabolism) is not important for the ability of 

M. tuberculosis to establish and maintain infection in the lungs of mice. Thus, the 
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Figure 4.1. Glyoxylate cycle (GC), top; methylcitrate cycle (MCC), bottom. Diagrams 
were modified from Clark and Cronan (1996).  



 94

importance of ICL1/ICL2 in vivo seems to be restricted to, or in addition to, their 

role in the glyoxylate cycle. A scenario could be envisaged, however, in which 

despite the essentiality of ICLs in vivo, it is the glycine dehydrogenase activity 

reported by Wayne and Lin (1982), and not the MLS activity of glcB, that would 

be critical for the ability of the tubercle bacillus to survive and persist in host 

tissues. Thus, Boshoff and Barry (2005) propose that ICLs may be crucial as 

members of a pathway to regenerate reducing equivalents when no external 

electron acceptors (such as oxygen) are available, rather than as anaplerotic / 

gluconeogenic activities. They suggest that the importance of glyoxylate 

generation by ICL might lie in the fact that glyoxylate reduction by glycine 

dehydrogenase would reoxidize one molecule of NADH. Under these 

circumstances, MLS activity might not be essential.  

 Such questions will not be answered conclusively until strains lacking MLS 

or glycine dehydrogenase activities are generated and tested for in vivo survival 

and virulence. As discussed already, creating a strain of M. tuberculosis lacking 

glycine dehydrogenase is could be problematic since it is still not known exactly 

which gene encodes this activity. The most likely candidate, gcvB, might encode 

a protein that selectively decarboxylates glycine (Cole et al., 1998; Wayne and 

Sohaskey, 2001). Another potential confounder for genetic studies is that gcvB 

might be an essential gene (Sassetti et al., 2003). Therefore, generating a strain 

of M. tuberculosis lacking MLS activity, and then evaluating its properties in vivo, 

could be the only way to ascertain, unambiguously, the reason why ICL activity 
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is essential in vivo: for generating reducing equivalents, or for achieving 

anaplerosis (and initiating gluconeogenesis) during growth on fatty acids as the 

major available carbon source in the lungs of infected mammals. 
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4.2. The role of malate synthase in non-pathogenic M. smegmatis 

We report here that malate synthase (MLS) activity is non-essential in M. 

smegmatis. The ICL (icl1, icl2) and MLS (glcB) genes can be deleted in M. 

smegmatis without affecting growth on glucose, glycerol, or propionate as the 

sole carbon source. While icl1 is essential for M. smegmatis growth on acetate 

and even-chain fatty acids, glcB is dispensable for growth on these substrates, 

although it is required for optimal growth under these conditions. The icl2 gene 

appears to be completely dispensable for growth on all substrates tested. 

 The ∆glcB strain has a significant phenotype on acetate and even-chain 

fatty acids. Compared to wild-type M. smegmatis, the ∆glcB mutant grows more 

slowly on solid media containing acetate or even-chain fatty acids as the sole 

carbon source, and it exhibits a reproducible growth lag in M9 liquid media 

conatinaing acetate (C2), hexanoate (C6), and, to a lesser extent, butyrate (C4) 

(Figure 3.20). Furthermore, increased concentrations of acetate exacerbate the 

growth defect of the ∆glcB strain, even when a metabolizable carbon source 

such as propionate is provided (Figure 3.21). 

 An intact copy of glcB clearly improves the ability of M. smegmatis to grow 

on acetate and fatty acids; indeed, MLS is the dominant anaplerotic enzyme for 

glyoxylate assimilation during growth on these substrates. Expression of MLS 

activity completely masks the loss of glyoxylate carboligase activity on all carbon 

substrates tested, with the exception of glyoxylate. ICL-MLS thus represents the 

main anaplerotic pathway on acetate or fatty acid substrates in M. smegmatis. 
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4.3. The role of glyoxylate carboligase in M. smegmatis 

This thesis provides the first idenfication of mycobacterial genes encoding an 

operon for the utilization of glyoxylate as the sole carbon source. Glyoxylate 

carboligase activity was first reported in E. coli (Krakow and Barkulis, 1956) and 

in Pseudomonas sp. (Kornberg and Sadler, 1960). This “d-glycerate pathway” 

comprises the enzymes glyoxylate carboligase, tartronate semialdehyde 

reductase, and glycerate kinase, which convert two molecules of glyoxylate (C2) 

into one molecule of d-glycerate (C3) and then 3-phosphoglycerate (Ornston and 

Ornston, 1969; see Figure 2.10). The significance of this pathway to the 

physiology of M. smegmatis is that it enables the organism to grow on poor 

carbon substrates like glyoxylate. M. smegmatis also appears to have at least 

two homologs of E. coli glycolate oxidases, which can convert glycolate to 

glyoxylate, so M. smegmatis might also be capable of growth on glycolate. 

Unlike in E. coli, the M. smegmatis gcl operon represents a second 

pathway, besides MLS, for assimilation of the glyoxylate that is produced by ICL 

during growth on acetate or fatty acids. In this context, the d-glycerate pathway 

can perform an anaplerotic role similar to the glyoxylate shunt. The anaplerotic 

role of glyoxylate carboligase during growth on acetate or fatty acids would 

normally be masked by the presence of MLS. The reaction catalyzed by MLS 

produces malate, a four-carbon molecule, from two C2 units; glyoxylate 

carboligase produces a three-carbon molecule from two C2 units, so this reaction 

is not as efficient at assimilating carbon, unless glyoxylate is the sole substrate.  
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The experiments performed here allow us to revisit the work of Ornston 

and Ornston (1969) on the fate of the 3-phosphoglycerate molecule produced by 

the d-glycerate pathway. Kornberg and Sadler (1960) had proposed the 

existence of a dicarboxylic acid cycle, in which MLS activity was required for the 

oxidation of glyoxylate by E. coli. Hansen and Hayashi (1962) argued that 

glyoxylate was eventually oxidized by the tricarboxylic acid cycle, obviating the 

need for MLS and the glyoxylate shunt (Figure 4.2). Our experiments with M. 

smegmatis argue that glyoxylate is indeed oxidized through the TCA cycle, as the 

∆glcB mutant grows on glyoxylate as well as wild-type bacteria. Therefore, the 

dicarboxylic acid cycle, although it may operate in M. smegmatis, is apparently 

not essential for the oxidation of glyoxylate. This conclusion was also reached by 

Ornston and Ornston (1969), when they obtained E. coli mutants lacking malate 

synthase G activity.  

 However, the TCA cycle oxidation model of Ornston and Ornston (Figure 

4.2B) needs to be updated, as it implies the existence of an anaplerotic step for 

the formation of malate, which would be catalyzed by malate synthase A. While 

that may be the case in E. coli, where two malate synthases exist, it cannot be 

the case in M. smegmatis, as deletion of the sole MLS gene (glcB) still allows 

growth on glyoxylate. Most likely, 3-phosphoglycerate is converted to PEP or 

pyruvate, followed by conversion of PEP to oxaloacetate by PEP carboxylase, or 

by conversion of pyruvate to oxaloacetate by pyruvate carboxylase (Figure 4.3). 

M. smegmatis has one ppc and two pca genes in its genome. 
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Figure 4.2. Pathways for oxidation of glyoxylate in E. coli. Solid lines stand for 
oxidative reactions, dashed lines represent anaplerotic reactions. (A) According to the 
dicarboxylic acid cycle mechanism (Kornberg and Sadler, 1960), malate synthase is an 
oxidative enzyme. (B) In the tricarboxylic acid cycle diagram, glyoxylate carboligase is 
an oxidative enzyme, and anaplerosis is achieved by malate synthase A (Hansen and 
Hayashi, 1962). Drawings were reproduced from Ornston and Ornston (1969). 
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4.4. The Role of FadD1 in M. smegmatis 

The deletion of both the glcB and gcl genes resulted in a mutant that behaves 

exactly like the ∆icl1 ∆icl2 mutant: it cannot grow on acetate or even-chain fatty 

acids. It thus appears that the d-glycerate pathway is the ICL-dependent, MLS-

independent anaplerotic pathway that we set out to discover. However, 

disruption of fadD1 resulted in a phenotype very similar to that obtained by 

disruption of gcl, inasmuch as the ∆glcB gcl and ∆glcB fadD1 mutants could not 

grow on acetate or even-chain fatty acids. More importantly, the double mutants 

could not use glyoxylate as the sole carbon source, while the ∆glcB single mutant 

could. These results suggest that FadD1 might activate the expression of the gcl 

operon. The assays shown in Figure 3.22 suggests that the activity of FadD1 is 

partially required to induce the gcl operon during growth on valerate or 

acetate/propionate, indicating that another activator of the gcl operon may exist. 

 FadD1 is most likely a fatty acyl-CoA ligase, and fatty acyl-CoAs have been 

shown to inactivate the regulator FadR in E. coli (Black and DiRusso, 2003). 

When FadR binds the fatty acyl-CoA molecule, it dissociates from the operators 

in its target promoters and allows for transcription of the downstream genes. It 

is tempting to suggest a similar mechanism for FadD1. However, mycobacteria 

do not have an obvious FadR homolog, and little is known about how gene 

regulation works in mycobacteria. The hypothetical product of the GclR gene has 

homology to the IclR transcription factor in E. coli. It is known that IclR 

represses the aceBA genes in E. coli, and this repression is relieved by the 
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binding of PEP to IclR (Cortay et al., 1991). FadR also activates expression of iclR 

(Gui et al, 1996).  

It is currently unknown whether a similar transcriptional control 

mechanism exists in M. smegmatis. The gcl operon has two palindromic sites, 

which could serve as binding sites for transcriptional activators/repressors: one 

upstream of hypI, and one upstream of gclR. GclR itself may be involved in the 

regulation of the expression of the gcl operon, but the mode of regulation needs 

to be determined experimentally. Since little is known about the modulation of 

gene expression in mycobacteria, regulation of the gcl operon could involve a 

novel mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 



 102

4.5. The malate synthase of pathogenic mycobacteria 

The malate synthase activity in M. smegmatis is dispensable for growth on C2 

units because of the presence of the d-glycerate pathway. As it was pointed out, 

however, the genes of the d-glycerate pathway are not found in any pathogenic 

Mycobacterium species. The closest homologs of glyoxylate carboligase that are 

found in the M. tuberculosis genome are the acetolactate synthases. In E. coli, it 

was shown that acetolactate synthase could catalyze condensation of two 

glyoxylate molecules to form tartronate semialdehyde; however, this reaction 

was so inefficient that it would be probably be physiologically meaningless 

(Chang et al., 2003). M. smegmatis possesses a number of genes encoding 

acetolactate synthase homologs, yet these genes apparently cannot compensate 

for the loss of glyoxylate carboligase activity.  

The ∆glcB and ∆glcB gcl strains of M. smegmatis complemented with a 

copy of the M. tuberculosis glcB gene could be useful tools for testing potential 

inhibitors of the M. tuberculosis MLS. Should MLS be essential for survival of M. 

tuberculosis in vivo, as has been shown for ICL1/ICL2, MLS inhibitors could serve 

as leads for the development of novel drugs for treatment of tuberculosis. 
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Figure 4.3. Glyoxylate assimilation in M. smegmatis. Abbreviations: ICL, isocitrate 
lyase; MLS, malate synthase; GCL, glyoxylate carboligase; TSAR, tartronic semialdehyde 
reductase; GLXK, glycerate kinase. 
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CHAPTER 5 

Materials and Methods 

5.1. Bacterial strains and media 

M. smegmatis mc2155 was stored at -80C in 15% glycerol.  

Bacteria were grown at 37˚C; in Middlebrook 7H9 broth (DIFCO) with 10% ADS 

(DIFCO), 0.5% glycerol, and 0.05% Tween-80; on Middlebrook 7H10 agar 

(DIFCO) containing 10% ADS and 0.5% glycerol.  

Antibiotics: hygromycin (50 µg/ ml), kanamycin (25 µg /ml) (Sigma) 

M9 minimal media: M9 salts (DIFCO), 0.1 mM CaCl2, 2mM MgSO4; agar was 

added at 15 grams per liter. Carbon substrates (from Sigma) were added at 

(w/v) 0.1%, 0.2%, or 0.5% (for methylpalmitate). 

 

5.2. Growth curves in minimal media/growth on agar plates 

M. smegmatis mc2155 and mutant strains were grown in Middlebrook 7H9 broth 

to OD600 of 1.0, then diluted to final OD600 in M9 media + 0.1% glucose, grown 

again to OD600 of 1.0, then diluted in M9 media + 0.1% or 0.2% of the indicated 

carbon sources. For plating on M9 solid media, cells grown in M9 media plus 

0.1% dextrose were serially diluted in PBS + 0.1% Tween 80, plated on solid 

media, and incubated at 37˚C for the indicated times  

 

5.3. Construction of transposon libraries 
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The φMicoMarT7 transposon donor phagemid was provided by Dr. Eric Rubin 

(Harvard School of Public Health). M. smegmatis mc2155 was grown to OD600 of 

1.0 in 7H9 media, washed twice with MP buffer (50 mM Tris, pH 7.5, 150 mM 

NaCl, 10 mM MgSO4, 2 mM CaCl2) and resuspended in 1/10th original volume in 

MP buffer. 1010 PFU (plaque-forming units) of phage per ml of original culture 

was added for 3 hrs at 37˚C. Infected cells were plated on 7H10 agar with 10% 

ADS, 0.5% glycerol, 0.5% glucose, and 25 µg/ml kanamycin. After 3 days, 

distinct colonies were individually picked with sterilized toothpicks in 96 well 

plates containing 7H9 plus 0.5% glucose for 2 days, then spotted with a multi-

channel pippetor on M9 agar plates containing 0.1% dextrose, 0.1% acetate, or 

0.5% methylpalmitate as sole carbon source. Plates were incubated at 37˚C for 

5 days. Original 96 well master plates were stored at –80˚C. Mutants with the 

desired phenotypes were selected, grown in 7H9 media, and then tested for 

growth in M9 liquid or M9 agar. 

 

5.4. Generation of deletion mutants 

5.4.1. Deletion of glcB gene 

A 3.8 kb NotI-XmaI genomic fragment containing the M. smegmatis glcB gene 

was obtained from a cosmid and subcloned in pBSKS (pBluescript) digested with 

NotI and XmaI. The new construct was cut with MscI and the 1.9 kb (smaller) 

fragment was removed. The larger fragment containing upstream and 

downstream regions was purified and re-ligated. The truncated gene was cut out 
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with NotI and XmaI, subcloned into p2NIL digested with NotI and XmaI, then 

ligated into pGOAL19 as described (Parish and Stoker, 2000) to give the glcB 

knockout vector. p2NIL and pGOAL19 have been described previously (Parish 

and Stoker, 2000); they were a generous gift from Dr. Tanya Parish. The glcB 

knockout plasmid was electroporated in M. smegmatis, and mutant strains were 

selected as described in Figure 3.0. The glcB complementing integrative vector 

was pEM186, provided by Ernesto Muñoz-Elías; it contains a 10,107 base pair 

genomic region from H37Rv including the full-length glcB gene. In particular, it 

contains nucleotides 2,081,482 to 2,091,588 of the H37Rv genome, as it is 

annotated on Tuberculist (http://genolist.pasteur.fr/TubercuList/). The cosmid 

contains genes rv1836c, glcB (rv1837c), rv1838c, rv1839c, and rv1840c. It was 

electroporated into the ∆glcB strain and into individual ∆glcB transposon mutants 

and transformants were selected on 7H10 agar containing hygromycin. 

 

5.4.2. Deletion of icl1 gene 

A 2.3kb fragment containing the entire icl1 gene of M. smegmatis was amplified 

by PCR from genomic DNA using primers (the XhoI binding site is underlined): 

smicl1upxhoI: 5-CTCGAGCTTCGACCACATGAACAACG-3;  

smicl1dnxhoI: 5-CTCGAGGATCTTCATGATCGGGATGC-3.   

The PCR product was subcloned into pCR2.1 and sequenced. A 2.3kb EcoRI 

fragment containing the PCR product was subcloned into EcoRI-digested pBSKS 

(pBluescript) then digested with SfoI to remove an 855 bp fragment internal to 
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the icl1 gene (the deletion removes 285 amino acids from the ICL protein, 

including the catalytic site, and results in an in-frame deletion in the ORF). The 

other (5.4kb) SfoI fragment was re-ligated, and then digested with XhoI to 

excise the 1.5kb band containing the truncated icl1 gene. This 1.5kb fragment 

was subcloned into XhoI-digested pJG1100 vector (a gift from Dr. James Gomez) 

to create the icl1 knockout plasmid. It was electroporated in wild type M. 

smegmatis and the ∆icl2 strain and mutants were isolated by the two-step 

counterselection method described in Figure 3.0. 

 

5.4.3. Deletion of the icl2  gene 

The icl2 gene was deleted by Ernesto Muñoz-Elías. For disruption of icl2, a 3.9kb 

AgeI fragment from cosmid pEM353 (the M. smegmatis cosmid genomic library 

was a gift of B. Subramanian, AstraZeneca Research Foundation) carrying icl2 

was cloned into pSL301 to generate pEM701, which was digested with EcoRV to 

obtain a 3.5kb fragment carrying icl2, which was then cloned into the PmeI site 

of pJG1001 to generate pEM902. pEM902 was BstEII-digested to remove a 660-

bp fragment, which generated an unmarked in-frame deletion after re-ligation 

into pEM903. The deletion encompasses amino acids 307-526 of the icl2 ORF. 

pEM903 was electroporated into wild-type M. smegmatis and mutants were 

isolated by the two-step counter-selection method described in Figure 3.0. 

 

5.4.4. Deletion of the ald  gene 
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The upstream and downstream regions of ald were PCR amplified using primers: 

Ald-up-F: TTAATTAAGAGGGCTCGGCCATCTCG (underlined is the PacI site) 

Ald-up-R: GAATTCCGGGATTCCGACGAGCAT (underlined is the EcoRI site) 

Ald-dn-F; GAATTCGCACAGTTCCTGGCGTAA (underlined is the EcoRI site) 

Ald-dn-R: GGCCGGCCGTCCTTGAGGACGACGGT (underlined is the AscI site) 

The upstream and downstream regions (about 800 bp each) were PCR amplified 

and subcloned in pCR2.1 and sequenced. Correct clones were digested with PacI 

- EcoRI (Ald-Up) and AscI - EcoRI (Ald-Dn) and subcloned (3 fragment ligation) 

in PacI-AscI-digested pJG1004 to create the ald knockout plasmid. pJG1004, an 

earlier version of pJD1100, was a gift from Dr. James Gomez. The ald KO 

plasmid was electroporated into M. smegmatis and ald was deleted by the two-

step counter-selection method described in Figure 3.0. 

 

5.4.5. Deletion of the gcl gene 

The upstream and downstream regions of gcl were PCR amplified using primers: 

Gcl-up-L1: TTAATTAACCAGCTGATCGTGGCGGG (PacI site underlined) 

Gcl-up-R1: CCTAGGCATGCGGGTCATGGCCGC (AvrII site underlined) 

Gcl-dn-L1: CCTAGGGCGCTGTTCGATTAGTGA (AvrII site underlined) 

Gcl-dn-R1: GGCGCGCCAGATCGCGGACGTCGTTG (AscI site underlined) 

The upstream PCR product (up primers) was ~400 basepairs, while the 

downstream PCR product (dn primers) was ~600 basebairs. PCR products were 

subcloned in pCR2.1 using the TopoTA kit (Invitrogen) and several clones were 
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sequenced. Fragments with the correct sequence were subcloned in pJG1100 in 

a stepwise fashion: first the upstream region was excised with PacI-AvrII, and 

subcloned into PacI-AvrII-digested pJG1100; then the downstream region was 

excised with AscI-AvrII and subcloned into AscI-AvrII-digested vector. ∆gcl and 

∆glcB∆gcl mutants were isolated by the two-step counter-selection method 

described in Figure 3.0. 

 

5.4.6. Deletion of the fadD1 gene  

The upstream and downstream regions of fadD1 were PCR amplified using 

primers: 

FadD1-up-L1: TTAATTAAACTCCTCGGGTTCGTCGA (PacI site underlined) 

FadD1-up-R1: CCTAGGCTGCAGCGTATCGGCCAT (AvrII site underlined) 

FadD1-dn-L1: CCTAGGGCGCCAGGAATATCCCCT (AvrII site underlined) 

FadD1-dn-R1: GGCGCGCCGAGCTCGCGGGCCGCCTC (AscI site underlined) 

The upstream region PCR fragment (~500 basepairs) and downstream PCR 

fragment (~700 basepairs) were subcloned into pCR2.1 using the TopoTA kit 

(Invitrogen) and sequenced. Correct clones were subcloned into pJG1100 the 

same way the gcl knockout plasmid was generated, and ∆fadD1 mutants were 

isolated using the two-step counter-selection method described in Figure 3.0. 

 

5.5. DNA manipulation 

5.5.1. Identification of transposon mutants 
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M. smegmatis genomic DNA was isolated as described (Muñoz-Elías et al., 2005) 

and digested with BamHI or ApaLI. One half of the digested DNA was used for 

Southern blotting, the other was ligated with T4 ligase (NEB) overnight and 

transform in Pir1 competent E. coli cells (Invitrogen). Kanamycin-resistant 

colonies were isolated, and plasmid DNA was isolated and sequenced using the 

primer cttctgagcgggactctgggg, which hybridizes near one end of the 

φMycoMarT7 transposon. 

 

5.5.2. Southern blots 

5 micrograms of genomic DNA was digested with the indicated restriction 

enzymes, separated on 1% TBE gels, transferred to Hybond N membrane 

(Amersham), and probed with 32P-labeled DNA using the random primer labeling 

kit (Boehringer Mannheim) and hybridized from 2 hours to overnight. The 

hybridized membrane was sequentially washed with 2X SSC, 0.1% SDS and 0.1X 

SSC, and 0.1% SDS before exposing the membrane to autoradiography 

 

5.6. Enzyme assays 

5.6.1. Malate synthase assay 

Cells were harvested, washed three times with PBST (PBS plus 0.05% Tween 

80), and resuspended in Tricine buffer (20 mM Tricine pH 7.5, 5 mM MgCl2, 1 

mM EDTA) supplemented with protease inhibitors (Sigma). The cells were 



 111

disrupted by bead-beating and the cell-free extract was clarified by centrifugation 

in a tabletop centrifuge for 30 min at 14,000 rpm at 4˚C. 

For MLS assays, a protocol modified from Smith et al. (2003) was used. In 

1 ml final volume, 20 mM Tricine-HCl pH 7.5, containing 5 mM MgCl2, 0.8 mM 

EDTA, 0.2 mM glyoxylate, and 0.2 mM acetyl-CoA were mixed with 50 microliters 

of protein extract stored in Tricine-HCl pH 7.5, 5 mM MgCl2, and 0.8 mM EDTA 

buffer, and the reaction was incubated at room temperature for 30 min. The 

reaction was stopped by adding DTNB (Sigma) to a final concentration of 2 mM 

in Tris-HCl pH 8.0. The amount of CoASH released was measured by titrating the 

free thiol groups with the DTNB and measuring change in absorbance at 412 nm. 

 

5.6.2. Tartronate semialdehyde reductase assay: 

Protein extracts were obtained by bead-beating cells in 50 mM KH2PO4 buffer 

(pH 7.0) containing protein inhibitors mix (Sigma) then centrifuging them in a 

tabletop centrifuge for 30 min at 14,000 rpm at 4˚C.  TSAR assays were done 

essentially as described in Hansen and Hayashi (1962). In a 1 ml cuvette at room 

temperature, in 100 mM KH2PO4 buffer (pH 7.0), 0.33 mM NADH, 0.1 mM 

glyoxylate, and 50 microliters of protein extract were mixed. Tartronate 

semialdehyde was generated by adding 10 mM MgCl2 and 0.1 mg TPP at t = 5 

minutes. Generation of d-glycerate from tartronic semialdehyde, catalyzed by 

tartronate semialdehyde reduction, was measured by recording the disappeance 

of NADH at 340nm.  
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Appendix A. 
 
MycoMarT7 transposon mutants on the ∆glcB∆ald (dg-tn) mutant strain 
of Mycobacterium smegmatis with growth phenotypes on minimal 
media plates containing glucose (G), acetate (A) or methyl-palmitate 
(M) as the sole carbon sources. 
 

Mutant 
Name 

Phenotype Identity of 
Rv 

homolog 

Annotated Function  
in TubercuList 

dg-tn-1AC5 D+A-M+ fadD28 Fatty acyl-CoA ligase 

dg-tn-1BD1 D~A+M+ n.a. n.a. 

dg-tn-2AH6 D~A-M- thiO/thiE Thiamine synthesis 
oxidoreductases 

dg-tn-4AA4 D+A-M- icl1 Isocitrate Lyase 1 

dg-tn-8AD4 D+A~M~ fixA Electron transfer 

flavoprotein 

dg-tn-8BA4 D+A~M- Rv0338c Fe-S binding reductase 

dg-tn-9AH2 D+A-M+ acs Acetyl-CoA synthase 

dg-tn-12AA3 D+A-M- icl1 Isocitrate lyase 1 

dg-tn-13BD1 D-A+M+ dut dUTP pyrophosphatase 

dg-tn-14AA4 D+A~M~ Rv2974c Conserved hypothetical 

dg-tn-14AG2 D+A-M- gcl Glyoxylate carboligase 

dg-tn-15BD3 D+A-M- icl1 Isocitrate lyase 1 

dg-tn-15BF2 D~A-M+ ctaB Cytochrome c oxidase 

dg-tn-17BA1 D+A-M+ acs Acetyl-CoA synthase 

dg-tn-17BB5 D+A-M- fadD1 Fatty acyl-CoA ligase 

dg-tn-17BD5 D+A-M- icl1 Isocitrate lyase 1 
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dg-tn-19AH6 D+A-M+ acs Acetyl-CoA synthase 

dg-tn-20BB5 D+A-M+ n.a.  n.a. 

dg-tn-23BH1 D+A-M+ acs Acetyl-CoA ligase 

dg-tn-25AG3 D+A-M+ acs Acetyl-CoA synthase 

dg-tn-54C2 D+A-M- sdhD Succinate dehydrogenase D 

dg-tn-56B5 D+A-M- icl1 Isocitrate lyase 1 

 
Approximately 4,000 mutants containing the φMycoMarT7 transposon (a kind gift 
from Dr. Eric Rubin, Harvard School of Public Health) were screened for loss of 
the ability to grow on glucose, acetate or methyl-palmitate as the sole carbon 
source in minimal basal agar plates. Mutants with desired phenotypes were then 
re-screened and the insertion site of the transposon was identified by sequencing 
the region downstream of the insertion. DNA sequences were aligned against the 
Mycobacterium tuberculosis genome http://genolist.pasteur.fr/TubercuList/. Two 
mutants did not have clear homologs in M. tuberculosis. 
 
All 24 mutants were transformed with an integrative copy of the M. tuberculosis 
malate synthase (glcB) gene under the control of the endogenous promoter, and 
the transformants were tested for complementation of the respective phenotypes 
by glcB. 3 of the 24 mutants were complemented by glcB: mutant 2AH6, mutant 
14AG2, and mutant 17BB5. These three mutants are underlined in the table.  
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Appendix B. 
 

Mycobacterium smegmatis φMycoMarT7 transposon mutants with 
growth phenotype on minimal media plates containing glucose (G), 
acetate (A) or methyl-palmitate (M) as the sole carbon sources. 
 

Mutant Name Phenotype Identity 
of  
Rv 

homolog 

Annotated Function  
in TubercuList 

mc-tn-2D8 D+A-M- icl1 Isocitrate lyase 1 

mc-tn-6C3 D+A~M+ Rv3588c Carbonic anhydrase 

mc-tn-6C7 D-A+M+ ppgK Polyphosphate glucokinase 

mc-tn-7A11 D+A-M- Icl1 Isocitrate Lyase 1 

mc-tn-11C7 D+A~M+ gltA2 Citrate synthase 

mc-tn-11C11 D+A-M+ n.a. n.a. 

mc-tn-11D1 D+A-M+ acs Acetyl-CoA synthase 

mc-tn-13E5 D+A-M+ acs Acetyl-CoA synthase 

mc-tn-21B6 D+A-M- icl1 Isocitrate lyase 1 

mc-tn-22D8 D+A-M+ acs Acetyl-CoA synthase 

mc-tn-24D5 D+A-M+ acs Acetyl-CoA synthase 

mc-tn-26D2 D+A-M- icl1 Isocitrate lyase 1 

mc-tn-31F4 D+A-M+ Rv3662c Conserved hypothetical 

mc-tn-33C11 D+A-M+ acs Acetyl-CoA synthase 

mc-tn-37B5 D+A-M- icl1  Isocitrate lyase 1 

mc-tn-38B8 D+A~M+ Rv1342c Conserved membrane 

protein 
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mc-tn-39E7 D+A~M- Rv0338c Fe-S binding reductase 

mc-tn-43H1 D+A-M+ acs  Acetyl-CoA synthase 

mc-tn-45C8 D~A~M~ argH Argininosuccinate lyase 

mc-tn-45F8 D+A-M+ acs Acetyl-CoA synthase 

mc-tn-47G4 D~A~M~ nirA Nitrite reductase 

mc-tn-49E11 D+A~M- Rv0338c Fe-S binding reductase 

mc-tn-53H5 D-A-M+ Rv2974c Conserved hypothetical 

mc-tn-54D8 D+A-M+ acs Acetyl-CoA synthase 

mc-tn-54H4 D~A~M~ nirA Nitrite reductase 

mc-tn-58B7 D+A-M- pckA Phosphoenolpyrivate 
carboxykinase 

mc-tn-60B9 D+A~M~ Rv1841c Conserved hypothetical 

mc-tn-67H8 D+A~M~ glcB Malate synthase 

mc-tn-68C6 D+A-M+ Rv2468c Conserved hypothetical 

mc-tn-69F10 D+A~M+ n.a. n.a. 

 
 
Approximately 7,000 mutants containing the fMycoMarT7 transposon (a kind gift 
from Dr. Eric Rubin, Harvard School of Public Health) were screened for loss of 
the ability to grow on glucose, acetate or methyl-palmitate as the sole carbon 
source in minimal basal agar plates. Mutants with desired phenotypes were then 
re-screened and the insertion site of the transposon was identified by sequencing 
the region downstream of the insertion. DNA sequences were aligned against the 
Mycobacterium tuberculosis genome at http://genolist.pasteur.fr/TubercuList/.  

 
All but two of the mutants had clear homologs in M. tuberculosis. Mutant 11C11 
has some homology to D-amino-acylases from various bacterial species; mutant 
69F10 has homology to “probable transporter proteins”. The work to study these 
mutants, along with the entire 7,000+ library that was generated in this genetic 
screen, was done by Michael Silverman and Lubomir Merkov. 
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