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MATERIALS AND METHODS
SURGICAL PREPARATION
The experimental methods were similar to those used in our lab 
in the past (Uglesich et al., 2009). Housing, surgical and record-
ing procedures were in accordance with the National Institutes 
of Health guidelines and the Mount Sinai School of Medicine 
Institutional Animal Care and Use Committee. Adult macaque 
monkeys were anesthetized initially with an intramuscular injec-
tion of xylazine (Rompun, 2 mg/kg) followed by ketamine hydro-
chloride (Ketaset, 10 mg/kg), and then given propofol (Diprivan) 
as needed during surgery. Local anesthetic (xylocaine) was used 
profusely during surgery, and was used to infi ltrate the areas around 
the ears. Anesthesia was maintained with a mixture of propofol 
(4 mg/kg-hr) and sufentanil (0.05 µg/kg-hr), which was given 
intravenously (IV) during the experiment. Propofol anesthesia has 
been shown to cause no changes in blood fl ow in the occipital cor-
tex (Fiset et al., 1999), and appears to be optimal for brain studies. 
Cannulae were inserted into the femoral veins, the right femoral 
artery, the bladder, and the trachea. The animal was mounted in 
a stereotaxic apparatus. Phenylephrine hydrochloride (10%) and 
atropine sulfate (1%) were applied to the eyes. The corneas were 
protected with plastic gas-permeable contact lenses, and a 3-mm 
diameter artifi cial pupil was placed in front of each eye. The blood 
pressure, electrocardiogram, and body temperature were measured 
and kept within the physiological range. Paralysis was produced by 
an infusion of pancuronium bromide (Norcuron, 0.25 mg/kg-hr), 
and the animal was artifi cially respired. The respiration rate and 
stroke volume were adjusted to produce an end-expiratory value of 
3.5–4% CO

2
 at the exit of the tracheal cannula. Penicillin (750,000 

units) and gentamicin sulfate (4 mg) were administered IM to 
provide antibacterial coverage, and dexamethasone was injected 
IV to prevent cerebral edema. A continuous IV fl ow (3–5 ml/kg-
hr) of lactated Ringer’s solution with 5% dextrose was maintained 
throughout the experiment to keep the animal properly hydrated, 

INTRODUCTION
The brain processes information, and it is therefore natural to 
estimate the amount of information that a neuron transmits to 
its targets. In the past, several methods that derive such estimates 
from the fi ring pattern (Optican and Richmond, 1987; Richmond 
and Optican, 1987; Richmond et al., 1987; Bialek et al., 1991; Rieke 
et al., 1997; Strong et al., 1998; Brenner et al., 2000) or membrane 
potential (Borst and Theunissen, 1999; DiCaprio, 2004) of indi-
vidual neurons have been used. The information from spike trains 
was estimated by calculating the entropy associated with the vari-
ous temporal patterns of spike discharge, using Shannon’s formula 
(Shannon and Weaver, 1949).

Since all brain functions involve many neurons, it is desirable 
to provide similar information estimates for a neuronal popula-
tion (Knight, 1972). To simply add up the information amounts 
from individual neurons in the population would be valid only if 
the neurons were all independent of one another, an assumption 
that usually is incorrect (see, for example, Zohary et al., 1994; Bair 
et al., 2001; Pillow et al., 2008). Approaches like the Direct Method 
(Strong et al., 1998) are impractical for a population, because the 
multi-dimensional space occupied by many spike trains can be 
sampled only sparsely by most neurophysiological experiments. 
Calculating the information carried by a population of many neu-
rons thus has remained a challenge (Brown et al., 2004; Quiroga 
and Panzeri, 2009). At the same time, the need for such estimates 
has become increasingly urgent, since the technology of record-
ing simultaneously from many neurons has become much more 
affordable and wide-spread, and data from such recordings are 
becoming common.

We describe here a method that estimates the amount of infor-
mation carried by a population of spiking neurons, and demon-
strate its use, fi rst with simulated data and then with data recorded 
from the lateral geniculate nucleus (LGN) of an anesthetized 
macaque monkey.
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and the urinary catheter monitored the overall fl uid balance. Such 
preparations are usually stable in our laboratory for more than 
96 h. The animal’s heart rate and blood pressure monitored the 
depth of anesthesia, and signs of distress, such as salivation or 
increased heart rate, were watched for. If such signs appeared, 
additional anesthetics were administered immediately.

VISUAL STIMULATION
The eyes were refracted, and correcting lenses focused the eyes 
for the usual viewing distance of 57 cm. Stimuli were presented 
monocularly on a video monitor (luminance: 10–50 cd/m2) driven 
by a VSG 2/5 stimulator (CRS, Cambridge, UK). The monitor 
was calibrated according to Brainard (1989) and Wandell (1995). 
Gamma corrections were made with the VSG software and pho-
tometer (OptiCal). Visual stimuli consisted of homogeneous fi eld 
modulated in luminance according to a pseudo-random natu-
ralistic sequence (van Hateren, 1997). Eight second segments of 
the luminance sequences were presented repeatedly 128 times 
(‘repeats’), alternating with 8 s non-repeating (‘uniques’) segments 
of the sequence (Reinagel and Reid, 2000). In addition, we used 
steady (unmodulated) light screens and dark screens, during which 
spontaneous activity was recorded.

ELECTROPHYSIOLOGICAL RECORDING
A bundle of 16 stainless steel microwires (25 µ) was inserted into a 
22 gauge guard tube, which was inserted into the brain to a depth 
of 5 mm above the LGN. The microwire electrodes were then 
advanced slowly (in 1 µ steps) into the LGN, until visual responses 
to a fl ashing full fi eld screen were detected. The brain over the LGN 
was then covered with silicone gel, to stabilize the electrode bun-
dle. Based on the electrode depth, dominant eye sequence and cell 
properties (Kaplan, 2007), we are confi dent that all the electrodes 
were within the parvocellular layers of the LGN. The receptive fi elds 
of the recorded cells covered a relatively small area (∼4° in diam-
eter), which suggests that the electrodes bundle remained relatively 
compact inside the LGN.

The output of each electrode was amplifi ed, band-pass fi ltered 
(0.75–10 kHz), sampled at 40 kHz and stored in a Plexon MAP 
computer for further analysis.

DATA ANALYSIS
Spike sorting
Sorting procedures. The spike trains were fi rst thresholded (SNR 
≥5) and sorted using a template-matching algorithm under visual 
inspection (Offl ine Sorter, Plexon Inc., Dallas, TX, USA). In most 
cases, spikes from several neurons recorded by a given electrode 
could be well-separated by this simple procedure. In more diffi cult 
cases, additional procedures (peak- or valley- seeking, or multi-

 variate t-distributions) (Shoham et al., 2003) were employed. 
Once the spikes were sorted, a fi ring times list was generated for 
each neuron and used for further data analysis.

Quality assurance. To ensure that all the spikes in a given train 
were fi red by the same neuron, we calculated for each train the 
interspike interval (ISI) histogram. If we found intervals that were 
shorter than the refractory period of 2 ms, the spike sorting was 
repeated to eliminate the misclassifi ed spikes. We ascertained that 
all the analyzed data came from responsive cells by calculating the 
coeffi cients of variation of the peristimulus time histogram bin 
counts for the responses to the repeated and unique stimuli, and 
taking the ratio of these two coeffi cients. Only cells for which that 
ratio exceeded 1.5 were included in our analysis.

Generation of surrogate data
To test our method we generated synthetic spike trains from a 
Poisson renewal process, in which the irregularities of neuronal 
spike times are modeled by a stochastic process whose mathematical 
properties are well defi ned. Recent interest and success in mod-
eling a neuron spike-train as an inhomogeneous Poisson process 
(Pillow et al., 2005, 2008; Pillow and Simoncelli, 2006) led us to 
that choice.

Firing rates and input. Our modeling necessarily addressed two 
major features of the laboratory data. The nine real neurons show 
a range of mean fi ring rates, from 3.04 impulses per second (ips) 
to 28.72 ips, which span an order of magnitude. To mimic this, we 
gave our 12 model cells 12 inputs which consecutively incremented 
by a factor of 10(1/11), to give fi ring rates spanning an order of mag-
nitude. The second major feature was that our laboratory neurons 
evidently received inputs processed in several ways following the 
original retinal stimulus. To make a simple caricature of this, we 
drove each of our Poisson model neurons with a separate input that 
was a weighted mean admixture of two van Hateren-type stimuli. 
The fi rst was that which we used in the laboratory and the second 
was the time-reversal of that stimulus. Calling these A and B, the 
stimuli were of the form S = (1 − x)·A + x · B, where the admixture 
variable x took on 12 equally spaced values starting with 0 and end-
ing with 1. As shown in Table 1, the pairs (admixture, mean rate) 
were chosen in a manner that allowed the whole grouping of model 
cells to be divided into smoothly changing subsets in different ways, 
and evenly distributed the range of properties across all cells.

Estimation of the information delivered by a subset of neurons
If we have data from numerous parallel spike trains, the familiar 
Direct method (Strong et al., 1998) for computing signal infor-
mation delivered requires an impractical time span of data. As a 

Table 1 | Parameters for stimulating the surrogate neurons. Each surrogate neuron was driven by a mixture of two van Hateren inputs, chosen to cover 

uniformly the range of fi ring rates and mixture ratios.

Cell #  1 2 3 4 5 6 7 8 9 10 11 12

Firing rate 4.98 6.18 7.58 9.38 11.42 14.13 17.47 21.64 26.79 32.74 40.60 50.09

Admixture 0 0.27 0.55 0.82 0.09 0.36 0.64 0.91 0.18 0.45 0.73 1
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practical alternative we advance a straightforward multi-cell gen-
eralization of a method of information computation from basis-
function coeffi cients.

Shannon has observed (Shannon and Weaver, 1949, Chapter 4; 
see also Shannon, 1949) that the probability structure of a stochastic 
signal over time may be well approximated in many different ways 
by various equivalent multivariate distribution density functions 
of high but fi nite dimension. He further observed that when some 
specifi c scheme is used to characterize both the distribution of 
 signal-plus-noise and the distribution of noise alone, the infor-
mation quantity one obtains for the signal alone, by taking the 
difference of the information quantities (commonly called ‘entro-
pies’) evaluated from the two distributions, has a striking invari-
ance property: the value of the signal information is universal, and 
does not depend on which of numerous possible coordinate systems 
one has chosen in which to express the multivariate probability 
density (see extensive bibliography, and discussion, in Rieke et al., 
1997, chapter 3). We will follow Shannon (1949), whose choice of 
orthonormal functions was Fourier normalized sines and cosines, 
over a fi xed, but long, time span T. This choice has the added virtue 
of lending insight into the frequency structure of the information 
transfer under study.

Here we outline our approach for obtaining the signal-
 information rate, or ‘mutual information rate’, transmitted by the 
simultaneously recorded spikes of a collection of neurons. The 
mathematical particulars are further elaborated in the Appendix. 
Following Shannon (1949), if one has a data record that spans a 
time T, it is natural to use the classical method of Fourier analysis 
to resolve that signal into frequency components, each of which 
speaks of the information carried by frequencies within a frequency 
bandwidth of 1/T. If this is repeated for many samples of output, 
one obtains a distribution of amplitudes within that frequency 
band. In principle, that probability distribution can be exploited 
to calculate how many bits would have to be generated per second 
(the information rate) to describe the information that is being 
transmitted within that frequency band.

However, part of that information rate represents not useful 
information but the intrusion of noise. To quantify our overesti-
mate we may repeat the experiment many times without variation 
of input stimulus, and in principle may employ the same hypo-
thetical means as before to extract the ‘information’, which now 
more properly may be called ‘noise entropy’. When this number is 
subtracted from the previous, we obtain the mutual information 
rate, in bits per second, carried by the spikes recorded from that 
collection of neurons.

In order to reduce the above idea to practice, we have exploited 
the following fact (which apparently is not well known nor eas-
ily found in the literature): if our response forgets its past his-
tory over a correlation time span that is brief compared to the 
experiment time span, T, then the central limit theorem applies, 
and our distribution of signal measurements within that nar-
row bandwidth will follow a Gaussian distribution. If we are 
making simultaneous recordings from a collection of neurons, 
their joint probability distribution within that bandwidth will be 
multivariate Gaussian. A Gaussian with known center of gravity 
is fully characterized by its variance, and similarly a multivariate 
Gaussian by its covariance matrix. Such a covariance matrix, 
which can be estimated directly from the data, carries with it 
a certain entropy. By calculating the covariance matrices for 
responses to both unique and repeated stimuli, one can deter-
mine the total signal information fl owing through each frequency 
channel for a population of neurons.

To verify that our Gaussian assumption is valid, we have applied 
to our Fourier-coeffi cient sample sets two standard statistical tests 
that correctly identify a sample as Gaussian with 95% accuracy. 
For our 12 surrogate cells and 9 laboratory LGN cells, the degree 
of verifi cation across the frequency range for 2560 distribution 
samples (160 Hz × 8 bins/Hz × 2, with each sine and cosine term 
sampled 128 times) is shown in Table 2. Because of its importance, 
we return to this issue in the Discussion, where further evidence is 
provided for the Gaussian nature of the underlying distributions.

RESULTS
ANALYSIS OF SIMULATED SPIKE TRAINS
Entropy vs temporal frequency
In anticipation of analyzing simultaneous laboratory records of 
actual neurons, we have created 12 Poisson model neurons with 
fi ring rates that overlap those of our laboratory neurons and with 
inputs as discussed above in Section ‘Materials and Methods’, pre-
sented at the same rate (160 Hz) used in the laboratory experi-
ments. Figure 1 shows, for a single simulated cell, the entropy rate 
per frequency, for responses to unique and repeat stimuli. The 
entropy from the responses to the unique stimulus (signal plus 
noise) exceeds that of the responses to the repeated stimulus (noise 
alone) at low frequencies, and the two curves converge near the 
monitor’s frame-rate of 160 Hz, beyond which signal-plus-noise is 
entirely noise. Hence we will terminate the sum in (Eq. A26) at that 
frequency. The difference between the two curves at any temporal 
frequency is the mutual information rate at that frequency.

Table 2 | The Fourier coeffi cients for the surrogate and LGN data follow a Gaussian distribution. We sampled the Fourier coeffi cients 128 times for each 

of the 2560 sine and cosine terms that we tested for each cell. Each distribution was tested with two standard tests for normality: the Shapiro–Wilk’s test and 

the Lilliefors test. The percentage of distributions that passed each test at the p < 0.05 signifi cance level was calculated for each cell, and the table gives the 

mean and standard deviation for the test results.

 Repeats (% passed) Uniques (% passed)

TEST SHAPIRO–WILK LILLIEFORS SHAPIRO–WILK LILLIEFORS

Surrogate data (12 cells) 95.3 ± 0.31 95.2 ± 0.34 95.3 ± 0.41 95.1 ± 0.3

LGN cells (9 cells)  94.9 ± 1.62 94.6 ± 0.35 93.9 ± 1.31 94.6 ± 0.45
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Single cell information
For the 12 model cells, the cumulative sum of information over fre-
quency (Eq. A26) is given in Figure 2 (left frame). We note that all 
the curves indeed fi nish their ascent as they approach 160 Hz. More 
detailed examination shows a feature that is not obvious: the output 
information rate of a cell refl ects its input information rate, and the 
input information rate of a mixed, weighted mean input is less than 
that of a pure, unmixed input. This accounts for the observation that 
the second-fastest cell (cell 11, with a near even mixture) delivers 
information at only about half the rate of the fastest (cell 12).

Group information
We turn now to the information rate of a group of cells, fi ring in 
parallel in response to related stimuli. We proceed similarly to what 
is above, but use the multi-cell equation (Eq. A25) and its cumulative 
sum over frequencies. As a fi rst exercise we start with the slowest-fi r-
ing surrogate cell and then group it with the next-slowest, next the 
slowest 3 and so on up to the fastest; the set of cumulative curves we 
obtain from these groupings are shown in the left frame of Figure 3. 
Again we see that the accumulation of information appears to be 
complete earlier than the frame-rate frequency of 160 Hz.

REDUNDANCY AND SYNERGY AMONG NEURONS IN A POPULATION
Redundancy
The mutual information communicated by a group of cells typically 
falls below the sum of the mutual information amounts of its con-
stituent members. This leads us to defi ne a measure of information 
redundancy. The redundancy of a cell with respect to a group of 
cells can be intuitively described as the proportion of its information 
already conveyed by other members of the group. For example, if a 
cell is added to a group of cells and 100% of its information is novel, 
then it has 0 redundancy. If, on the other hand, the cell brings no new 
information to the group, then it contains only redundant informa-
tion, and it therefore has redundancy 1. With this in mind, we defi ne 
the redundancy of a cell C, after being added to a group G, as:

r I c I g c I g I cc g, / .= ( ) − +( ) − ( )( )( ) ( )

According to this formula, if all the information of the additional 
cell appears as added information in the new group, then that cell’s 
redundancy is zero.

The procedure of information redundancy evaluation is gen-
eral, and can be applied to the addition of any cell to any group 
of cells. Thus for the cell groups of Figure 3, we can evaluate the 
redundancy of each newly added cell not only upon its addition 
to the group but also thereafter. This is shown for the 70 resulting 
redundancies, in Figure 4 (Left).

Synergy
When the total information conveyed by several neurons exceeds 
the sum of the individual ones, the neurons are synergistic (Gawne 
and Richmond, 1993; Schneidman et al., 2003; Montani et al., 
2007). When this happens, our formula yields a negative redun-
dancy value.

ANALYSIS OF MONKEY LGN SPIKE TRAINS
We now apply the same techniques to simultaneous laboratory 
recordings of 9 parvocellular cells from the LGN of a macaque 
monkey, responding to a common full-fi eld naturalistic stimulus 
(van Hateren, 1997; Reinagel and Reid, 2000).

Figure 2 (right frame) shows the single cell cumulative informa-
tion of these neurons as frequency increases. In two obvious ways 
their behavior differs from that of the Poisson model neurons. 
First, at low frequency there is a qualitative difference indicative 
of initially very small increment, which differs from the Poisson 
model’s initial linear rise. Second, the real geniculate neurons show 
a substantial heterogeneity in the shape of their rise curves. For 
example, the second most informative cell (cell 8), has obtained 
half its information from frequencies below 40 Hz, while the most 
informative cell (cell 9) has obtained only 11% of its information 
from below that frequency.

The right frame of Figure 3 shows for LGN cells the accumulat-
ing multineuron group information, while the left frame shows it 
for the surrogate data.

E
nt

ro
py

 (b
its

/s
)

Frequency (Hz)

FIGURE 1 | Entropy per frequency conveyed by a single surrogate neuron. The signal-plus-noise entropy (derived from the unique stimuli) is shown in blue, and 
the noise entropy (from the repeated stimulus) is shown in red. The data shown are typical of data from other cells.
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FIGURE 2 | Cumulative information rate vs frequency for 12 surrogate Poisson model neurons and 9 LGN cells. The fi ring rates of the various neurons in the 
two groups were similar.

FIGURE 3 | Group information vs frequency for our Poisson model surrogate neurons and 9 LGN cells. The group size is indicated to the right of the cumulative 
curve for each group. The neurons were ranked according to their fi ring rate. The fi rst group contained only the slowest fi ring neuron, and each new group was 
formed by adding the next ranking cell.

FIGURE 4 | Accumulating redundancy as more cells are added to a population. The cells are added in order of their mean fi ring rates, starting with the slowest 
fi ring cells, with each cell taking its turn as a starting point for a new population.
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Redundancy in surrogate and real LGN neurons
Figure 4 (right frame) compares the redundancy over the 9 LGN 
cells with what was shown for the fi rst 9 Poisson model neurons 
in Figure 4 (left frame). The pair of sharp features at cells 4 and 7 
might be attributed to diffi culties in spike separation. Note that the 
redundancy of real neurons appears to be quite different from that 
of their Poisson model counterparts: as cluster size increases, real 
cells manifest a stronger tendency than our simulated neurons to 
remain non-redundant. This implies that the different LGN neu-
rons are reporting with differences in emphasis on the various 
temporal features of their common stimulus.

DISCUSSION
THE VALIDITY OF THE GAUSSIAN ASSUMPTION
Our method exploits the theoretical prediction that the distribu-
tion of each stochastic Fourier coeffi cient of our data should be 
Gaussian. Our evidence supports this prediction. A standard visual 
check is to normalize a distribution by a Z-score transformation and 
plot its quantiles against those of a standard Gaussian. If the dis-
tribution is likewise Gaussian, the points will fall near a unit-slope 

straight line through the origin. Figure 5 shows two typical cases, 
each with 128 points: surrogate data in the left frame and LGN cell 
data on the right. Both show good qualitative confi rmation of the 
Gaussian assumption.

We have proceeded to apply to our numerous Fourier coef-
fi cient distributions two standard statistical tests for Gaussian 
distribution: the Shapiro–Wilk test and the Lilliefors test. Both 
are designed to confi rm that a sample was drawn from a true 
Gaussian distribution in 95% of cases. Table 2 shows that in almost 
all cases for both unique and repeat responses of our 12 surrogate 
and 9 LGN cells our distributions passed both tests at the 95% 
signifi cance level.

SMALL SAMPLE BIAS
In the extraction of mutual information from spike data, traditional 
methods suffer from a bias due to the small size of the sample. We 
checked the Fourier method for such bias by dividing our sets of 
128 runs into subsets of 64, 32 and 16 runs. The results for one sur-
rogate cell (number 12) and one LGN cell (number 8) are shown in 
Figure 6. These results are typical, and show no clear small- sample 

FIGURE 5 | Q–Q plots for the Fourier coeffi cients of one surrogate cell (#6) and one LGN cell (#4). The data are typical of data from other cells. The fact that the 
data points hug the y = x line demonstrates the Gaussian nature of the distributions of the Fourier coeffi cients.

FIGURE 6 | The effect of the number of trials on information calculation. Data are from surrogate cell #12 and LGN cell #8, which were typical of other cells. Solid 
symbols show the information calculated from individual segments of the record. The solid line connects the medians of the samples. Note the rapid convergence of 
the information estimates as the number of trials increases.
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bias. We also notice that, for these data, a sample of 64 runs gives a 
mutual information estimate reliable to better than ±10%. A sum-
mary of small-sample bias and estimated reliability for several recent 
techniques for calculating spike-train mutual information is given 
by Ince et al. (2009) (their Figure 1).

In addition to the number of data segments, the number 
of spikes used in estimating the mutual information is also 
an important factor, and we discus it further at the end of 
the Appendix.

SUMMARY AND CONCLUSIONS
We have presented a new method for calculating the amount 
of information transmitted by a neuronal population, and have 
applied it to populations of simulated neurons and of monkey LGN 
neurons. Since the method can be used also to calculate the infor-
mation transmitted by individual cells, it provides an estimate of the 
redundancy of information among the members of the population. 
In addition, the method reveals the temporal frequency bands at 
which the communicated information resides.

The new method fi lls a gap in the toolbox of the modern neu-
rophysiologist, who now has the ability to record simultaneously 
from many neurons. The methodology presented here might per-
mit insights regarding the mutual interactions of neuronal clusters, 
an area that has been explored less than the behavior of single 
neurons or whole organisms.

APPENDIX
Suppose we have a stochastic numerical data-stream that we will 
call u(t), and which becomes uncorrelated for two values of t that 
are separated by a time interval greater than a maximum correlation 
time-interval t*. That is to say, if t

2
 − t

1
 > t*, then u(t

2
) and u(t

1
) are 

independent random variables in the probability sense. Suppose 
now that in the laboratory, by running the probabilistically identical 
experiment repeatedly, we gather N realizations (samples) of u(t), 
the nth of which we will call u(n) (t). Suppose further that we collect 
each data sample over a time-span T that is large compared to the 
correlation time interval t*.

We can represent each sample u(n) (t) to whatever accuracy we 
desire, as a discrete sequence of numbers in the following way. Over 
the time interval t = 0 to t = T, we choose a set of functions ϕ

m
(t) 

that are orthonormal in the sense that they have the property:

dt t t q r
T

q r qr

0

1 0∫ = = = =ϕ ϕ δ( ) ( ) ( , ).if else  (A1)

Then u(n) (t) may be represented as a weighted sum of these 
basis functions:

u t u tn
q
n

q
q

( ) ( )( ) ( )= ∑ ϕ  (A2)

where the weighting coeffi cients um
n( ) may be evaluated from the 

data by,

u dt t u tm
n

m

T
n( ) ( )( ) ( ).= ∫ ϕ

0

 (A3)

This claim can be verifi ed if we substitute (Eq. A2) into (Eq. A3) 
and then use (Eq. A1) to evaluate the integral. Here our choice of 
the ϕ

m
 (t) will be the conventional normalized sinusoids:

ϕm t
T m t T m

T m t T m
( )

/ sin (( )/ )( / )

/ cos ( / )
=

+⎧
⎨

2 2 1 2

2

π

π

for odd

for even

⎪⎪

⎩⎪
 (A4)

It is a straightforward exercise to show that these functions have 
the property required by (Eq. A1).

Now let us see what follows from T >> t*. Divide the full time-
span T into K sub-intervals by defi ning the division times:

t k K Tk = ( )/  (A5)

and defi ne the integrals over shorter sub-intervals:

A dt t u tm k
n

m
n

t

t t

k

k

,
( ) ( )( ) ( )

*

=
−

−

∫ ϕ
1

 (A6)

B dt t u tm k
n

m
n

t t

t

k

k

,
( ) ( )( ) ( )

*

=
−
∫ ϕ  (A7)

from which (Eq. A3) tells us that the Fourier coeffi cient um
n( ) is given 

by,

u A Bm
n

m k
n

k
m k
n

k

( )
,

( )
,

( ) .= +∑ ∑  (A8)

But we note that the measure of the support of the integral 
(Eq. A7) is smaller than that of (Eq. A6) by the ratio t*/((T/K) − t*) , 
and if we can pick T long enough, we can make that ratio as close to 
zero as we choose. So the second sum in (Eq. A8) is negligible in the 
limit. But now note that, because they are all separated from each 
other by a correlation time, the individual terms in the fi rst sum are 
realizations of independent random variables. If the distribution of 
an individual term in the sum is constrained in any one of a number 
of non-pathological ways, and if there are a suffi cient number of 
members in the sum, then the central limit theorem states that the 
distribution of the sum approaches a Gaussian.

In the more general case, where we have several simultaneous 
correlated numerical data-streams, the argument runs exactly the 
same way. If, for many repeated samples, at a particular frequency 
we compute the Fourier coeffi cient for each, to estimate a multi-
variate probability density, then from a long enough time span, by 
the multivariate central limit theorem that density will approach 
a multivariate Gaussian. Simply because the notation is easier, we 
elaborate the univariate case fi rst.

Specializing, for cell response we use the spike train itself, 
expressed as a sequence of δ-functions, so for the r th realization 
u(r) (t) of the stochastic spike-train variable u(t), we have:

u t t tr
r n

n

Nr
( )

( )( ) ( )= −
=

∑δ
1

 (A9)

where t
(r)n

 is the time of the nth spike of the r th realization, and N
r
 

is the total number of spikes that the cell under discussion fi res in 
that realization.
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Substituting this and also (Eq. A4) into (Eq. A3) we see that 
the integral may be performed at once. In the cosine case of 
(Eq. A4) it is,

u T m t Tm
r

n

N

r n

r
( )

( )/ cos ( / )=
=

∑2
1

π  (A10)

Before proceeding further we look back at Eq. A8 and note that, 
because a cosine is bounded between +1 and −1, every term in the 
sums of (Eq. A8) is bounded in absolute value by 2/T  times 
the number of spikes in that sub-interval. As real biology will not 
deliver a cluster of spikes overwhelmingly more numerous than 
the local mean rate would estimate, the distribution of each term 
in the stochastic sum cannot be heavy-tailed, and we may trust the 
central limit theorem.

Thus we may estimate that the probability density function for 
the stochastic Fourier coeffi cient variable u

m
 is of the form,

p u V u u Vm m m m m m( ) ( ) ( ( ) / )./= − −−2 21 2 2π exp  (A11)

where,

u u
R

um m p m
r

r

R

m
= ≅

=
∑1

1

( ),( )  (A12)

V u u
R

u um m
r

m p m
r

m
r

R

m
= 〈 − 〉 ≅

−
−

=
∑( ) ( ) .( ) ( )2 2

1

1

1
 (A13)

The right-hand-most expressions in (Eq. A12), (Eq. A13) tes-
tify that um and V

m
 can be estimated directly from the available 

laboratory data.
What is the information content carried by the Gaussian 

(Eq. A11)? The relevant integral may be performed analytically:

I p du p u p u e Vm m m m m m m( ) ( ( )) ( ) (( ) ).= − =∫ ln ln
1

2
2π  (A14)

For a signal with fi nite forgetting-time the stochastic Fourier 
coeffi cients (Eq. A10) at different frequencies are statistically 
independent of one another, so that the signal’s full multivari-
ate probability distribution in terms of Fourier coeffi cients is 
given by,

p u u p um
m

m( , , ) ( ).1 2 … = ∏  (A15)

It is easily shown that if a multivariate distribution is the prod-
uct of underlying univariate building blocks, then its information 
content is the sum of the information of its components, whence

I p I p e Vm
m

M

m

M

m( ) ( ) ln(( ) ).= =
=

−

=

−

∑ ∑
0

1

0

11

2
2π  (A16)

Observing (Eq. A13) we note that this can be evaluated from 
available laboratory data.

Generalization of the information rate calculation to the case of 
multiple neurons is conceptually straightforward but notationally 
messy due to additional subscripts. The rth realization’s spike train 
from the qth neuron (out of a total of Q neurons) may be defi ned 
as a function of time u tq

r
( )
( )( ) just as in (Eq. A9) above, and from our 

orthonormal set of sines and cosines we may fi nd the Fourier coef-
fi cient u q m

r
( )
( ) . This number is a realization drawn from an ensemble 

whose multivariate probability density function we may call:

p u u um m m Q m( , ,.., ).( ) ( ) ( )1 2  (A17)

This density defi nes a vector center of gravity um  whose Q com-
ponents are of the form:

u u
R

uq m q m p q m
r

r

R

m( ) ( ) ( )
( ) ,= 〈 〉 ≅

=
∑1

1

 (A18)

and similarly it defi nes a covariance matrix V
m
 whose (q,s)th matrix 

element is given by,

V u u u u

R
u u u

q s m q m q m s m s m p

q m
r

q m
r

m
( , ) ( ) ( ) ( ) ( )

( ) ( )

( )( )

( )(

= − −

≅
−

−1

1 (( ) ( ) ).s m
r

s m
r

r

R

u−
=

∑
1  

(A19)

This covariance matrix has a matrix inverse A
m
:

A Vm m= −1.  (A20)

Clearly (Eq. A18) and (Eq. A19) are the multivariate generaliza-
tions of (Eq. A12) and (Eq. A13) above. The central limit theorem’s 
multivariate Gaussian generalization of (Eq. A11) is,

p u u

V u u A

m m Q m

Q
m q m q m

( ,.., )

(( ) ) exp ( )

( ) ( )

( / )
( ) ( ) (

1

1 22
1

2

=

− −−π det qq s m s m s m
q s

u u, ) ( ) ( )
,

( ) .−
⎛

⎝⎜
⎞

⎠⎟
∑

 (A21)

This expression becomes less intimidating in new coordinates 
Z

(q)
 with new origin located at the center of gravity and orthogo-

nally turned to diagonalize the covariance matrix (Eq. A19). We 
need not actually undertake this task. Call the eigenvalues of the 
covariance matrix

λ λ( ) ( ),.., .1 m Q m  (A22)

Under the contemplated diagonalizing transformation, the dou-
ble sum in the exponent collapses to a single sum of squared terms, 
and in the new coordinates p

m
 becomes,

ˆ ( ,.., ) ( ) exp ( / ),( )
/

( )p Z Z Zm Q q m q q m
q

Q

1
1 2 2

1

2 2= −−

=
∏ πλ λ  (A23)

a form that is familiar from (Eq. A15) above. Its corresponding 
information is the sum of those of the individual terms of the 
product and is

I p em
q

Q

q m( ) ln(( ) ).( )=
=

∑1

2
2

1

π λ  (A24)

Shannon (1949, chapter 4), in a formally rather analogous con-
text, has noted that much care is needed in the evaluation of expres-
sions similar to (Eq. A24) from laboratory data. The problem arises 
here if the eigenvalues approach zero (and their logarithms tend 
to −∞) before the sum is completed. However, the information in 
signal-plus-noise in the mth coeffi cient, expressed by (Eq. A24) is 
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not of comparable interest to the information from signal alone. 
With some caution, this signal-alone information contribution may 
be obtained by subtracting from (Eq. A24) a similar expression for 
noise alone, taken from additional laboratory data in which the 
same stimulus was presented repeatedly. If we use ‘µ’ to annotate 
the eigenvalues of the covariance matrix which emerges from these 
runs, then the information difference of interest, following from 
(Eq. A24) is

I e em q m q m
q

Q

( ) ln(( ) ) ln(( ) )( ) ( )signal alone

l

= −{ }

=

=
∑1

2
2 2

1

2

1

π πλ μ

nn ( )λ
μ

q m

q mq

Q

( )

.
⎛

⎝
⎜

⎞

⎠
⎟

=
∑

1

 (A25)

Equation A25 expresses the multi-cell information contributed 
by the mth frequency component. To obtain the total multi-cell 
information, it is to be summed over increasing m until further 
contributions become inappreciable.

An entirely analogous procedure applies to obtain the informa-
tion of signal alone for an individual cell. Call the variance of the 
mth frequency component of the unique runs V

mu
, and that of the 

repeat runs V
mr

. Each will yield a total information rate expressed 
by (Eq. A16) above, and their difference, the information rate from 
signal alone, consequently will be:

I
V

Vm

M
mu

mr

cell signal alone, ln .( ) =
⎛
⎝⎜

⎞
⎠⎟=

−

∑1

2 0

1

 (A26)

In the data analysis in the main text, the single-cell sums 
(Eq. A16), for both uniques and repeats, approached a common, 
linearly advancing value which they achieved near 160 Hz, which 

is the stimulus frame-rate. Consequently, the summation over fre-
quency of signal only information was cut off at that frequency, 
both for single cells (see Eq. A26) and for combinations of cells.

In both the simulations and the experiments, each run was of 
T = 8 s duration. In consequence the orthonormalized sines and 
cosines of (Eq. A4) advanced by steps of 1/8 Hz.

EFFECT OF THE NUMBER OF RESPONSE SPIKES
With reference to small-sample bias, a further word is appropri-
ate here regarding our methodology. If the number of runs is 
modest, the total number of spikes in response to the repeated 
stimulus may show a signifi cant statistical fl uctuation away from 
the total number of spikes in response to the unique runs. In 
this case, the asymptotic high-frequency entropy values, as seen 
in our Figure 1, will not quite coincide, and consequently the 
accumulated mutual information will show an artifactual small 
linear drift with increasing frequency. This introduces a bit of 
uncertainty in the cut-off frequency and in the total mutual 
information. This asymptotic drift may be turned into a more 
objective way to evaluate the total mutual information. In cases 
where the problem arises, we divide our repeat runs into two 
subsets: the half with the most spikes and the half with the least. 
Accumulating both mutual information estimates at high fre-
quency, we linearly extrapolate both asymptotic linear drifts back 
to zero frequency, where they intersect at the proper value of 
mutual information.
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