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Treatment of nerve impulse data for comparison with theory

BRUCE W. KNIGHT*, SCOTT E. BRODIE*, AND LAWRENCE SIROVICH**
*The Rockefeller University, New York, New York 10021; and *Brown University, Providence, Rhode Island 02912

Communicated by Floyd Ratliff, August 28, 1979

ABSTRACT A procedure is given for the comparison of
nerve impulse data with model predictions. This method utilizes
information in the nerve impulse train that is ignored by the
post-stimulus-onset histogram and thereby gives an improved
signal-to-noise ratio. Comparison of observed responses in the
Limulus retina with predictions derived from a detailed model
gives good agreement.

The theory of the dynamical response of nerve networks has
now advanced to the point such that detailed comparison can
be made, in some cases, between nerve-impulse data collected
in the laboratory and the theoretical prediction of how a neural
network should respond to a specified input. This note presents
some mathematical tools that facilitate an accurate comparison
between theory and experiment.

An example of the situation that is treated below is shown in
Fig. 1. Fig. 1A shows neural response data as they are com-
monly presented, in terms of a “post-stimulus-onset histogram.”
The histogram was constructed from responses, to 128 replicate
stimuli, of a neuron in the retinal network of the Limulus lateral
eye. Fig. 1B shows the theoretical prediction that corresponds
to Fig. 1A (1-3). The theoretical variable shown, which cor-
responds to the post-stimulus-onset histogram, is the “population
firing rate” (4). We note that the noise level in the post-stimu-
lus-onset histogram prevents a detailed comparison between
theory and experiment. '

Fig. 1C treats the same nerve-impulse raw data in a different
way, and it shows far less contamination by noise. It represents
the estimated “mean individual rate” of the neuron. The su-
perior signal-to-noise quality of this laboratory variable is
achieved by a data treatment that utilizes information which
the post-stimulus-onset histogram ignores—namely, that the
impulse train of the Limulus visual neuron is not much affected
by chance fluctuations in impulse arrival times. (Such a neuron
will be referred to below as “sure-firing.”) Fig. 1D shows the
theoretically predicted mean individual rate, the counterpart
of Fig. 1C (3). The quality of Fig. 1C is such that a detailed
comparison with theory (Fig. 1D) is feasible; the noise problem
in Fig. 1A has been surmounted. We observe, however, that the
theoretical variable in Fig. 1D, the mean individual rate, is
different from the population firing rate of Fig. 1B. It is in fact
a step removed from the primary theoretical analysis of the
neural network dynamics, which proceeds in terms of the
population firing rate. The derivation of the individual rate
from the population rate will be presented below.

To summarize, after the firing times of the sure-firing neu-
ron’s response have been recorded in the laboratory, the time
course of that neuron’s activity may be expressed by its “mean
individual firing rate.” On the other hand, the quantitative
modeling of the response of a real neural network is phrased
more naturally in terms of a different measure of activity, the
“population firing rate.” In order that theory may be used to
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predict the results of experiment, the convenient theoretical
measure of activity must be transformed to the low-noise lab-
oratory measure. That transformation, and the consequent
quantitative comparison of theory with experiment, is the
subject of this note.

MEASURES OF ACTIVITY

Neurons may be classified, according to their firing behavior,
into two broad categories: “irregular-firing” neurons whose
firing periods show chance fluctuations under the best con-
trolled circumstances, and “sure-firing”” neurons whose firing
periods are little affected by chance. Very different procedures
are appropriate for summarizing the response activity of neu-
rons at the extremes of these two categories.

Population Rate. For an irregular-firing neuron, the effect
of chance fluctuations upon the firing-time data necessitates

. numerous repetitions of the same stimulation conditions. The
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data are naturally displayed in terms of a post-stimulus-onset
histogram—that is, the time after the stimulus onset is divided
into intervals, or “bins,” and the histogram plots a sequence of
heights that show the number of impulses that fell within each
bin. The area under the histogram may be normalized to the
average number of impulses per run, so that the histogram'’s
height indicates the expected behavior of the neuron, inde-
pendent of the number of runs. For good time resolution, the
histogram must have narrow bins, and this, in turn, demands
numerous run repetitions to achieve statistical accuracy within
each bin. The limit of the normalized histogram for very narrow
bins but also for indefinitely good statistical precision within
each bin is called the population rate for the neuron under
study. If a nerve cell receives parallel synaptic input from a
population of similar neurons, then its expected intracellular
postsynaptic potential will be related directly to the population
firing rate of a representative neuron in that presynaptic pop-
ulation (5, 6).

Mean Individual Rate. A sure-firing neuron yields far more
information in a few runs, or even in a single run, than would
be revealed by a post-stimulus-onset histogram of those few data
with any choice of bin width. After a single run, a revealing
estimate of the neuron’s activity may be obtained by assigning,
to each time ¢, a rate estimate that is simply the reciprocal of
the duration of the inter-impulse interval in which ¢ falls. (A
graph of this activity estimate resembles a set of steps of varying
height that may rise or descend at firing times.) If several runs
are available, we may average their individual activity estimates
to obtain a smoother mean individual rate. In a real experiment,
in which data acquisition time is severely limited, a sure-firing
neuron will yield a stable activity estimate by this method after
a far smaller investment of experiment time than is necessary
to obtain a respectable post-stimulus-onset histogram. When
the population firing rate changes only slightly between two
firing times, the mean individual firing rate gives an accurate
portrayal of the population firing rate.
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Fi1G. 1. Comparison of predicted and observed responses of
Limulus retinal neuron to moving-step stimulus. (4) Observed
post-stimulus-onset histogram (24-msec bin width). (B) Predicted
population rate. (C) Observed mean individual rate response, and the
stimulus light intensity pattern (below curve). (The records in A and
C were computed from the same impulse train data, obtained in re-
sponse to 128 presentations of the moving stimulus.) (D) Predicted
mean individual rate response, obtained from B by means of algorithm
described in the text. (Data from ref. 3.)

THEORY

In the circumstances of the laboratory (or of the creature in its
natural environment), the activity level of a set of similar
neurons may undergo a substantial change between the con-
secutive impulses of a typical member, and if this is the case
there is no trivial relationship between the two measures of
activity defined above. However, the mean individual unit rate
may be derived from the population rate in a precise way.

The population firing rate, which we call r(t), has been so
defined that, for an ensemble of identical neurons, the fraction
that fire in a short time, dt, will be given by

r(t)dt. (1]

(The ensemble may be regarded as a very large number of re-
peated runs upon a single neuron or as a large set of indepen-
dent neurons responding simultaneously to the same stimulus.)
Between two times, £, and ¢, the number of firings will equal
the number of neurons in the ensemble if

J:tz dtr(t)=1 2]

We now make the assumption that, if the identical neurons are
sure-firing, between the firing times of a given member no
other member of the ensemble will either fail to fire or fire more
than once. (This assumption will hold for realistic causal impulse
firing models, although unrealistic counterexamples can be
contrived.) Thus, for a sure-firing neuron, Eq. 2 is the condition
that if a neuron fires at time ¢, that same neuron will next fire
at time 25,

Given that Eq. 2 relates the population rate to successive
firing times, we may now relate the population rate to several
variables that are relevant to the laboratory data-processing
situation. The “instantaneous firing period” 7(¢) (the time in-
terval between a firing time ¢ and the previous firing) is given
implicitly by the relation

t
j:-m) dt’'r(t’) = 1. [3]

Similarly, the “successor interval” 6(t) (the time interval from
t to the next firing) is given implicitly by

j: O ey = 1. (4]
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We now observe that, at time ¢, the mean individual rate o(t)
will be the average of the instantaneous rate 1/7(t’) over values
of t” ranging from ¢ to ¢ + 6(t). This average is to be taken over
each small interval dt’ with a weight proportional to the
number of firings within that interval—namely, with weight
r(t")dt’. Thus, we have for the mean individual rate

_ t+0(t) /M
olt) = j: ar . (5]

Egs. 3, 4, and 5 furnish the transformation from the population
rate to the mean individual rate. (This transformation is non-
linear because it does not satisfy the superposition property: If
r1(t) yields o1(¢) and ro(t) yields a5(t), the superposed popu-
lation rate r(¢) = r1(t) + ro(t) does not in general yield o:(t)
+ 04(t) as its mean instantaneous firing rate.

In practice, a numerical calculation based on a theoretical
model for a neural network determines the population rate r(t)
on a mesh of discrete time points separated by a small time step
dt. From this we may predict the mean individual rate o(t) as
follows. Starting at time t, we sum r(t’)dt’ backward in time
until the sum exceeds unity and then interpolate to determine
the fraction of the last step that yields the value of 7(t) that
satisfies Eq. 3. We do this at each time step. Likewise we sum
forward in time and similarly determine 6(t) in Eq. 4 at each
time step. With 7(¢’) and #(¢’) now on hand, ¢(¢) may be eval-
uated from Eq. 5 by simple numerical integration.

The results of such a program are shown in Fig. 1. In this
experiment (taken from ref. 3), a spatio-temporal transfer
function for a Limulus ommatidium was empirically deter-
mined, in terms of the population rate 7, by measurement of
the response of this unit to sinusoidal grating stimuli flickering
according to a sum-of-sinusoids signal (1). This empirical
transfer function was then used to calibrate a Hartline-Ratliff
model transfer function for use in theoretical calculations (2).
We thus obtained the prediction for the response of this unit
in terms of the population rate r (Fig. 1B). The depressions in
the impulse rate that precede and follow the principal excita-
tory transient of the response reflect the inhibitory action of
nearby ommatidia on the unit being monitored. These features
are significantly attenuated, however, in the passage from the
population rate to the mean individual rate (computed by
means of the procedure described above), as shown in Fig. 1D.
Nevertheless, this record agrees closely with the observed mean
individual rate response (Fig. 1C).
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FIG. 2. Comparison of algorithms for conversion of population
rate to mean individual rate. Top records: predicted population rate
responses to low-contrast moving stimuli. Middle records: mean
individual rate responses calculated from population rate by the exact
nonlinear algorithm which is based on Egs. 3, 4, and 5. Bottom records:
mean individual rate responses calculated from population rate by
means of linear transfer function of Eq. 10. Stimulus contrast for
records at right is double that for records at left.
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COMPARISON OF MEAN RATE AND
HISTOGRAM PROCEDURES

It is natural to ask how the classical histogram procedure
compares to the mean individual rate procedure, under real
laboratory circumstances in which there is some stochastic
variability in the impulse train. A comparison of the variances
that the two procedures yield from a time-stationary impulse
train should be indicative. In the nonstochastic limit of impulses
generated by ticks of a clock, the individual rate gives zero
variance. The variance of the histogram in that limit ranges
from zero, if the binwidth (expressed in interpulse times) is an
integer, up to a maximum of 1/4 (expressed in terms of the
square of the interpulse time), if the binwidth is an odd half-
integer. An average of this variance over binwidths from 1/2
to 3/2 interpulse intervals gives an honest comparison with the
other procedure. The equal-weighted average of the variance
is 1/6, a number stable to other sensible averaging methods. On
the other hand, for entirely uncorrelated event times (Poisson
occurrences) the variance of the individual rate is infinite while
the same binwidth-average as above for the histogram variance
yields unity. (All variances are expressed as multiples of squared
mean interval.) Thus, our choice of procedure must depend on
the degree of interpulse irregularity.

Both .of the abcve extremes are limiting cases of the “T'-
renewal” process for which uncorrelated intervals are dlS—
tributed with a probability density of the form p,(¢) = (1/

7)t/7)""1/((n — 1))exp(—t/7); n = 1 yields the Poisson case,
and n — o yields the clock. For general n, the interpulse in-
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FI1G. 3. Response to slowly moving stimulus. From top to bottom
the records depict: predicted population rate response, predicted
mean individual rate response calculated by the linear perturbation
method, predicted mean individual rate response calculated by the
full nonlinear procedure, and observed mean individual rate response
obtained by averaging reciprocal inter-impulse data from 14 pre-
sentations of the stimulus. The light intensity pattern of the stimulus
is shown at bottom. (Data from ref. 1.)
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tervals have a coefficient of variation (standard deviation by
mean) of 1/+/n . The variance of the individual rate is easily
evaluated as n2/(n — 1)3(n — 2). The variance of the histogram
is far more elaborate; however, its binwidth average, asymptotic
for large n, is (1/6) + 1/n, an expression that is within 8% of
the exact result for n = 2, within 4% forn = 3, and <1% forn
= 5. Hence, it may be used across the entire range of n. The
ratio of the variances consequently is R(n) = (n + 6)(n — 1)3(n
— 2)/6n3. For R(n) < 1 the histogram procedure is more ac-
curate. However, the inequality reverses and the individual rate
procedure becomes the better when n exceeds about 6.25,
which corresponds to an interpulse coefficient of variation of
1/4/6.25 =1/2.5 = 0.4; smaller coefficients of variation imply
that the mean individual rate will furnish the more accurate
result. For the Limulus eccentric cell, the coefficient of vari-
ation is about 0.1 (5, 7) which gives n = 100 and R(100) = 17.
The implication is that, to achieve a post-stimulus onset histo-
gram as accurate as the mean individual rate record with similar
time resolution, under these circumstances one would have to
collect the histogram data over 17 times as many runs.

PERTURBATION ANALYSIS

Under certain circumstances the population and mean indi-
vidual rates may be more simply related. For example, if the
population rate is a constant, rg, it follows that

ro=fp=—=21. 6]
gg 7To

More generally, we may consider small perturbations from the
steady state. Specifically, we write
r(t) =ro + ery(t)

in which e is small, 0 < € « 1, and the ratio r(t)/r¢ is order
unity. Under these conditions we seek a solution in perturbation
form:

7(t;€) = 7o + €7)(t) + O(€?)

0(t;e) = 0o + €b,(t) + O(€?)

o(t;e) = oo + €oy(t) + O(€2).
To obtain the O(¢) quantities 6, 73, o1, we substitute these

relations into Egs. 3, 4, and 5 and expand in the powers of €. To
O(1) we recover the steady relation 6, and to O(e) we obtain

0o=rfit) + 7

0 =ro7y(t) + J:m r(t')dt’
= o t+0 () _ 1o _ |y
o1(t) = 04(t) To + J: [ e Ty(t )ldt .

7o

ri(t")dt’

From the first of these we have

] T
t)=—= (" Cnandr=-L [ n@ar. 1
To Jt T0
From the second we have
1
Ti(t)=—— ri(t’)dt’. (8]
10 t—710

Finally, when these are substituted into the last relation, we

obtain
ai(t) =— f Hmd ! j:,_m dt” ry(t”) (9]

Eq. 9 is the desnred linear relationship between the mean
individual rate, o}, and the population rate, r,. This relationship
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F1G. 4. Effect of mean impulse rate. (Upper) Predicted population rate responses to moving stimuli for hypothetical neurons with mean
impulse rates of 5, 10, and 15 impulses per sec. (Lower) Corresponding mean individual rate responses.

also may be stated in terms of a transfer function. Thus, if the
underlying stimulus is of the form exp(iwt), it follows that

71 = ri(w)exp(iwt),
a1 = g)(w)exp(iwt).

Then, if these are substituted into Eq. 9, elementary integrations
yield the transfer function

o1(w) _ 2(1 = coswTg) =
= = BB, 10
r1(w) (wr0)? (10]
which was also derived in ref. 1 by other methods. The form
Y e)'(p(—iwro) (11
1WTo

gives the transduction from the population rate to the “in-
stantaneous frequency”” of the neuron (4).

A theoretical example of the application of the perturbation
analysis presented above is given in Fig. 2. The mean individual
rate records at the bottom of the figure were obtained by
computing the inverse Fourier transform of the product of
transfer function 10 and the Fourier transform of the population
rate. There is good agreement between the linear and nonlinear
algorithms for stimuli of very low contrast. As the contrast is
increased, the response can no longer be treated as a small
perturbation, and the linear and nonlinear algorithms begin to
produce divergent results.

The two algorithms (exact and linear approximations) for the
conversion of the population rate to the mean individual rate
also agree closely for the case of very slowly moving stimuli, as
shown in Fig. 3. In this situation, there is essentially no differ-
ence between the population rate and the mean individual rate,
and neither algorithm produces any significant alteration of
the response record.

It is also of interest to note the effect of the mean impulse rate
of the neuron under study on the transduction between popu-
lation rate and mean individual rate (Fig. 4). Even for rapidly

moving stimuli and large contrast, the two output variables
approach each other as the mean impulse rate increases.

In an experiment in which the population rate makes large
departures from its mean value and substantial changes in the
population rate occur between successive impulses of a single
neuron, the full nonlinear algorithm given here is needed to
make the conversion from population rate to mean individual
rate, to compare theory with experiment. A sequence of ex-
periments and comparison calculations, where this full treat-
ment was necessary, will be published elsewhere (3).

In conclusion, a measure of neuron activity that we have
called the mean individual rate can be estimated with much
greater precision under common laboratory circumstances than
can the population firing rate as estimated by classical post-
stimulus-onset histogram. We have given an algorithm for the
conversion of theoretical predictions from population rate to
mean individual rate, and we have shown an example in which
that conversion was both necessary and sufficient to give good
agreement between theory and experiment.
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