Rockefeller University
Digital Commons @ RU

Knight Laboratory Laboratories and Research

1979
Nonlinear Analysis with an Arbitrary Stimulus
Ensemble

Jonathan D. Victor

Bruce Knight

Follow this and additional works at: http://digitalcommons.rockefeller.edu/knight laboratory
& Part of the Life Sciences Commons

Recommended Citation
Victor, J.D., Knight, BW,, Jr. (1979) Nonlinear Analysis with an Arbitrary Stimulus Ensemble. Quart. Appl. Math. 37, 113-136.

This Article is brought to you for free and open access by the Laboratories and Research at Digital Commons @ RU. It has been accepted for inclusion

in Knight Laboratory by an authorized administrator of Digital Commons @ RU. For more information, please contact mcsweej@mail.rockefeller.edu.


http://digitalcommons.rockefeller.edu?utm_source=digitalcommons.rockefeller.edu%2Fknight_laboratory%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/knight_laboratory?utm_source=digitalcommons.rockefeller.edu%2Fknight_laboratory%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/laboratories_and_research?utm_source=digitalcommons.rockefeller.edu%2Fknight_laboratory%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/knight_laboratory?utm_source=digitalcommons.rockefeller.edu%2Fknight_laboratory%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=digitalcommons.rockefeller.edu%2Fknight_laboratory%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mcsweej@mail.rockefeller.edu

QUARTERLY OF APPLIED MATHEMATICS

VoLuME XXXVII July 1979 No. 2

NONLINEAR ANALYSIS WITH AN ARBITRARY STIMULUS
ENSEMBLE*

By
JONATHAN D. VICTOR anp BRUCE W. KNIGHT

The Rockefeller University

Abstract. A family of Wiener-type methods is discussed in a general context. These
methods share the concept of expansion of an unknown transducer as an orthogonal
series. The terms of the series are drawn from a hierarchy of subspaces of transducers that
are orthogonal with respect to a particular stimulus ensemble. Choices of specific stochas-
tic ensembles lead to previously described analytical methods, including the classical one
of Wiener.

It is proposed that a sum of incommensurate or nearly incommensurate sinusoids
forms a signal that leads to a useful orthogonal expansion. The family of orthogonal
subspaces are presentcd explicitly. Projection of an unknown transducer into an ortho-
" gonal subspace amounts to isolation of Fourier components of the output of the unknown
transducer at certain harmonics and combination frequencies of the input frequencies.
Practical advantages of this technique include i) the ease of computation of the higher-
order kernels, and ii) the opportunity for digital filtering of the response, which enhances
the signal-to-noise ratio.

Finally, it is shown that the kernels obtained using a sum-of-sinusoids signal approach
the Fourier transforms of the Wiener kernels as the number of sinusoids grows without
bound. Thus, the sum-of-sinusoids technique retains a major theoretical advantage of the
Wiener white-noise method: the kernels of simple model transducers have simple analytic
forms.

Introduction. The practical application of functional analysis to the understanding
of biological transducers is a rapidly expanding endeavor at the present time. This
development stems naturally from the evident need to understand the function of biologi-
cal organs in quantitative detail, from the great recent growth of laboratory techniques
and of instrumentation which has arisen in response to that need, and from the recent
availability of powerful computers which may be conveniently programmed to process the
large arrays of numbers which the laboratory furnishes.

The current situation offers an unusual challenge to the theorist. Here we find not the
familiar task of deducing the consequences of a well-defined set of dynamical laws, but
rather the inverse challenge of organizing observed consequences in such a way that the
underlying laws themselves may be deduced. The theorist’s task is to propose experimental

* Received April 20, 1978. This research was supported, in part, by research grants from the National Eye
Institute.
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procedures which, in conjunction with powerful computational facilities, will lead to an
enlightening description of the dynamical laws which govern the response of a given
biological transducer.

The discipline which is sometimes called ““nonlinear system identification in biology™
and which is the subject of this paper, has a history which might be marked by four
outstanding innovations:

. Toward the end of the nineteenth century Volterra commenced his systematic
exploration of functionals [56], or of functions which depend on a continuous set of values
of other functions. Volterra observed that various familiar notions which apply to func-
tions of several discrete variables survive a ““passage from the discrete to the continuous™.
Thus a Taylor series in several variables passes naturally to a series of multiple integrals: a
constant plus a single weighted integral over a given function plus a double integral over
the products of all pairs of values of that given function, and so on. The whole series is the
“Volterra series,” and the weighting functions within the integrands—the analogues of
Taylor coefficients—are the “Volterra kernels” of the various orders. It has long been
common understanding that the present output of a transducer is a functional of its past
input in Volterra’s sense, and that a large class of nonlinear transducers may thus be
characterized in terms of the Volterra series, which series takes the form of a sum of
homogeneous functionals of the past input.

2. During and shortly after the Second World War, Wiener [58] explored the notion
that a nonlinear transducer might be synthesized by using observations of its response to
“*Gaussian white noise’”, which noise eventually approximates, with arbitrary accuracy,
any given input stimulus of fixed length. Gaussian white noise represents the *““passage to
the continuous” of a discrete set of variables which have a joint Gaussian probability
distribution, and Wiener noted that just as such a distribution gives to a Taylor series a
natural reorganization in terms of orthogonal Hermite polynomials, so likewise the
passage to the continuous yields a reorganized description of a transducer in terms of
component “Hermite polynomial” functionals, which are orthogonal transducers in the
sense that they give zero cross-correlation in response to white noise. Just as series of
orthogonal functions converge to a far larger set of functions than do Taylor series, so
Wiener’s series of orthogonal functionals encompassed not only transducers expressible in
terms of Volterra series, but also included the full gamut of transducers which one might
réasonably care to consider. The weighting functions in his orthognal expansion which
characterize the individual transducer are now known as Wiener kernels, and Wiener
advanced a clever analogue-electronic scheme whereby these kernels for an actual trans-
ducer might be evaluated.

3. In 1965, which was a time when computers with very large number-handling
capacity were becoming available, an algorithm was advanced by Lee and Schetzen [29]
for the direct evaluation of the Wiener kernels, by means of numerically cross-correlating
the measured transducer response with products of Hermite polynomials of the white-
noise input chosen at various time lags. Lee and Schetzen thus furnished the practical
means for constructing the Wiener kernels of a given transducer.

4. In 1972 M armarelis and Naka [32] (see also Mgller [36]) combined the algorithm of
Lee and Schetzen, and the use of a large modern computer, with very advanced experi-
mental techniques of cellular electrophysiology; they thereby recorded the responses to a
white-noise-modulated light stimulus of individual visual nerve-cells in the retina of the
catfish. In this way they characterized the response of visual cells in terms of Wiener
kernels. Their pioneering work has been followed by a great influx of scientific effort into
this general area.
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Aside from the procedures associated with the names of Volterra and Wiener, the use
of theoretical systems analysis in conjunction with inputs of specially chosen functional
forms to characterize biological transducers has a substantial recent history. The items
cited below are only a sparse sample. Detection of sinusoidal flicker superimposed on
steady light, by human subjects, was used by Ives [24] in an essentially system-analytic way
before the general theory of linear transducer response to sinusoidal input was put in its
modern form by Bode [6]. The classical sine-flicker threshold studies of deLange [12] bring
together the work of Ives and Bode. An early application of the Bode methodology to
electrophysiology data was that of Pringle and Wilson [42], who analyzed the modulated
firing rate of a cockroach-leg mechanoreceptor cell in response to sinusoidal input derived
from the vibrations of a weighted hacksaw-blade. The bulk electrical response of the wolf-
spider’s eye to sinusoidally modulated light was similarly analyzed by DeVoe [13]. Hughes
and Maffei [23] analyzed the modulation in firing rate of gangion cells in the cat's retina in
response to sine-flickering light. Spekreijse [48, 49] has used a battery of stimuli derived
from both Gaussian noise and sine waves, in conjunction with very detailed theoretical
system-analytic tools, to study both the linear and nonlinear response of the vertebrate
visual system. An early system-analytic study of the crayfish stretch-receptor by Borsel-
lino, Poppele, and Terzuolo [7] has led to a comparative study by Fohlmeister, Poppele
and Purple [16, 17] of nerve-impulse generating transducers. The linear frequency re-
sponse of the lateral eye of the horseshoe crab Limulus was given early investigation by
Pinter [40], by Biederman-Thorson and Thorson [5, 52], and by Dodge, Knight and
Toyoda [14, 26, 43]. Over the past decade a very detailed and predictively accurate linear
system-analytic model has evolved for the visual neurophysiology of Limulus (8, 9, 44].

There now have been a substantial number of experimental forays unto applying
methods of nonlinear system identification, in the general spirit of Wiener’s proposal, to
biological transducers [15, 19, 20, 28, 30, 32, 33, 35-37, 45, 46, 53, 55, 57]. Concurrently,
the theoretical state of the subject has continued to advance. It was recognized before 1963
by Barrett [2] that Wiener's white-noise approach is just one member of a wide class of
analytic procedures, each based on its own particular ensemble of input test signals.
Recently this idea has been elaborated in some detail [25, 39, 60]. Specific procedures have
also been advanced which adapt Wiener’s orthogonal functional approach to an input
ensemble which is a Poisson point process [27] and to an input ensemble which is a
multilevel discrete noise [34]. Here we will discuss these theories as a class, hoping to gain
insight into their common structure. The exposition below will begin with the presentation
of a general theoretical framework which is easily specialized to recover any one of the
various Wiener-like procedures which have been advanced to date.

All the Wiener-type identification procedures proposed to date manifest two common
drawbacks when they are applied in the laboratory to biological transducers. The first
drawback stems from the fact that in the laboratory the input test signal represents only a
sample of the stochastic test ensemble from which it is drawn. To the degree to which that
sample is statistically atypical of the whole input ensemble, the identification algorithm
(which is based on statistical properties of the ensemble and not on the sample) may yield
misleading results. The second drawback is that biological transducers typically generate
substantial autonomous “noise” of their own, which noise the identification algorithm
misinterprets as the response to input. The straightforward cure for both of these diffi-
culties is to collect enough data to ensure adequate statistical accuracy; but here experi-
mental biology does not cooperate, as it is often impractical to maintain the living
transducer in a steady vital state for the time span which statistical accuracy demands.

The primary goal of the present paper is to introduce a family of test signals which



116 JONATHAN D. VICTOR AND BRUCE W. KNIGHT

avoids the first of the two drawbacks mentioned above and which much reduces the
second. The new test signal is the sum of sinusoids, which in recent laboratory use has
proven very effective in the analysis of linear [8], slightly nonlinear [59] and very nonlinear
[46, 53, 55] neutral transducers. Although a sum of sinusoids has been used previously for
the analysis of nonlinear systems [3, 31, 49, 50, 61], the use of this signal as the core of a
Wiener-type procedure is novel.

The sum-of-sinusoids signal is deterministic rather than stochastic, which obviates the
first drawback above which was the hazard of drawing an atypical input from a stochastic
ensemble. Moreover, a nonlinear transducer will respond to a sum of sinusoids with only a
discrete set of output frequencies at the harmonics and combination frequencies of the
input. Thus the response may be numerically processed with sharply tuned digital filters
set at these known frequencies, and the great majority of the noise which the transducer
generates autonomously will be rejected because it appears at other frequencies. Thus the
second drawback of the prior Wiener-type approaches is greatly reduced.

The sum-of-sinusoids procedure has further advantages: it proves simple to carry out
preliminary online computer analysis, so that interpretations and judgements may be
made in the laboratory, and acted upon while the experiment progresses.

Finally, the sum-of-sinusoids procedure has one very important theoretical advantage:
for a wide class of nonlinear systems the kernels obtained in this way are closely related, in
a clear way, to the kernels of Wiener's original procedure. In consequence, the kernels
obtained from simple model systems with the sum-of-sinusoids technique have simple
analytic forms (a virtue not shared by other implemented generalizations of Wiener's
original procedure). This feature of the method allows the experimental data to suggest
simple nonlinear transducers that may be appropriate for initial attempts at model-
building. -

In view of the length of the exposition to follow, we summarize its organization: in
Secs. 1 and 2, we review the class of Wiener-like methods of nonlinear analysis. In Sec. 3,
we specialize this general structure to the particular case in which the test signal is a sum of
incommensurate sinusoids. The correspondence between the sum-of-sinusoids technique
and the original method of Wiener is shown in Sec, 4. Sec. 5 shows how the results of Sec.
3 and 4 can be applied in a practical laboratory procedure in which the frequencies of the
components of the sinusoidal sum are commensurate.

1. Wiener-type theories of nonlinear analysis. The Wiener-type theories of nonlinear
analysis basically consist of a procedure for the expression of the input-output relation of
an arbitrary transducer as a series of orthogonal functionals. The partial sums of this
orthogonal series are themselves transducers. Each partial sum of the series is that
transducer within a specified category that is the best approximation to the transducer
under study. The specified category of transducers enlarges as the partial sums extend.
Thus, the sequence of partial sums forms a sequence of improving approximations to the
system under study.

The category of transducers from which the nth approximating transducer is drawn is
the same in all theories considered here. It is the category of functions whose Volterra
expansions [56] have terms of order no greater than n. However, the criterion of “best
approximation” depends on the input signal used, and thus differs from theory to theory.
The notion of “*best approximation” relies on a notion of **distance’ between transducers.
The distance between two transducers is asserted to be the root-mean-squared discrepancy
between their output, averaged over the entire stimulus ensemble. This distance induces an
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inner product in the space of transducers which is fundamental for the development of
orthogonal expansions.

The distance, and thus the inner product, depend strongly on the choice of input
signal. A Gaussian white noise leads to Wiener’s original theory [58]; other choices result
in the variations referred to above. The dependence of the geometry of the space of
transducers on the choice of input signal is the primary source of the differences among the
Wiener-type theories of nonlinear analysis. It reflects the fact that two nonlinear trans-
ducers may have different degrees of apparent dissimilarity when tested with different
signals.

In the orthogonal expansion of a given transducer, each term of the series must be
orthogonal to all transducers in the categories from which the previous terms were drawn.
This condition is not satisfied by a series in which each term is a homogeneous functional
of a different order, such as a Volterra series. Rather, the terms of the orthogonal series are
inhomogeneous functionals that may be obtained by rearranging a Volterra series. A
prescription for this rearrangement forms one principal element of a Wiener-type theory.
In Sec. 2, we will show how this rearrangement may always be accomplished by a Gram-
Schmidt procedure.

The second principal element of Wiener-type theories is a method for the determina-
tion of the approximating functionals from experimental data. Wiener proposed an
analogue method [58] in his original theory. Lee and Schetzen [29] introduced a computa-
tional method based on the cross-correlations between the input signal and the trans-
ducer’s response, which is suitable for Gaussian input signals. French [ 18] has suggested
that those calculations may be performed more efficiently in the frequency domain.
Krausz [27] and Marmarelis [34] propose procedures appropriate for their respective
discrete non-Gaussian inputs. Most of these methods [27, 28, 34] are special cases of the
methods of Klein and Yasui [25], which are applicable to Gaussian, white, and discrete
input signals. For another kind of input signal, the sum-of-sinusoids signal, the determina-
tion of the approximating functionals is especially simple. This is shown in Sec. 3.

2. The orthogonal-series representation. In this section we review the general theory
of the orthogonal decomposition of functionals [2] in order to provide a framework for
the ensuing material.

The vector space of distinguishable transducers. The fundamental object of interest is
the single-input, single-output transducer. Such transducers form a vector space in a
natural way: addition in the vector space corresponds to parallel composition of the
transducers. That is, if u and v are two transducers, then the response of the transducer
w + » to a given signal is just the pointwise sum of the responses of 1 and v to the signal s:

(e + v)(s)t) = pu(s)N) + v(s))-

A natural scalar multiplication may also be defined in a pointwise fashion as a simple
change in gain:

(aep)s)t) = uls)t) .
We restrict consideration to *‘stationary” transducers, which satisfy
uls:) (1) = p(s)t + 7) (h
for
s()=s(t+ 1) -
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The choice of input ensemble leads to a natural notion of “‘distance” between two
transducers. Let Q be a probability space from which the input signals s are drawn, We
assume that Q is also stationary: the weight of an input signal s and the weights of its time-
shifts s, are identical. Then we define the squared distance between two transducers u and
v in terms of their responses at time zero:

e = vll* = <[ = vXNO)>q

where < >, indicates an average taken over the stimulus ensemble. This distance corre-
sponds to the bilinear form

(e, v) = <u(s)0) - »(s)0)>q - (2)

Let 917 denote the vector space of stationary transducers for which the expression (u, u)
(or || u]|?) exists and is finite. The expression (2) is not an inner product on 97 only because
we might have (u, u) = 0 for some nonzero transducers g in 9. But the transducers u
which satisfy (u, u) = 0 are those transducers whose response is zero almost everywhere in
the stimulus ensemble Q. Therefore, these transducers form a subspace 97, of 97T, 97T,
consists of those transducers that cannot be distinguished from the zero transducer by an
identification scheme based on the ensemble €.

This suggests that we direct our attention to the quotient space M = 9M/9, . An
element of 9 consists of a transducer u of 97 together with all other transducers x' of 9
that cannot be distinguished from u with the testing ensemble Q. That is, elements of M
are just those classes of transducers that can be distinguished from each other by the input
ensemble 2. We focus on the space M, and henceforth will use the symbols u, v, - -+ to
indicate the images in 9 of the corresponding transducers in 97. Thus, u, v, -+ now
represent classes of distinguishable transducers.

The form (u, v) of Eq. (2) is an inner product in 0. It yields the fully positive-definite
distance ||| = (4, )2 on M. The space M may now be completed in the usual way to
form a Hilbert space.

We remark that the three paragraphs above were needed only for reasons of tidiness
and rigor. The “almost non-responding’ transducers will manifest themselves only by
perverse choice of transducer or of input ensemble. Consequently, we will shorten the term
“transducer class” to “transducer’ in what follows.

A sequence of orthogonal subspaces. Let M; denote the subspace in 91 of all distinguish-
able transducers that are functionals homogeneous of order j in the stimulus s(¢). An
element u; of M, is determined by a symmetric function [u,] of j prior times (u;: (IR* Y —
IR). The function [u,] (7, 72, - 7;) indicates how the input signal levels at j previous
times interact to produce the current output. That is,

uisXe) = ff ks f (s, 72y ooy 7)) s(t = 74)
st — 7)o s(t— 7p)drdry - dry,  j=1  (3)
and po(s)(t) = [wo], a constant.
The function [u;] may be a generalized function (cf. [38]). Thus, transductions such as

J
D,x(s)t) = [I stt— Tv) 4)

k=1

are included in (3), by choosing

J
[D)xl(ri, 72, -y 1) = ¢ [] 8(re — To)
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With the above notation, the Volterra expansion [56] of any transducer u which has such
an expansion may be written

“zzﬂj» p;inM;.

This representation exists only for the “analytic” elements in 9 [21]. Non-analytic
transductions such as rectifiers [22, 48, 49, 55] and fractional power laws [15, 47] are often
contemplated as models in biology. The ability to include such transductions is a principal
advantage of the Wiener approach.

The Wiener procedure extends the usefulness of the Volterra series through a term-by-
term reorganization of that series into a new series of functionals. Each functional is
related to a homogeneous counterpart in the Volterra series but is orthogonalized to all
lower terms with respect to the inner product which is furnished by the input ensemble.
This orthogonalization strengthens the convergence of the Wiener series in the same way
that infinite series of orthogonal polynomials (Legendre, Hermite, Laguerre, for example)
successfully converge to a set of functions far larger than the set expressed by convergent
Taylor series [51].

In formal terms, orthogonal subspaces {K;} are constructed with the properties

®K,=@® M; K.LK, for j<n. 5)
j=0 i=0

If the subspaces {K,} span the full space 91, then every transduction u will have a
representation as an orthogonal series of “orthogonal transducers”

H = ZK}. Kj in Kj. (6}

J=0

This program may be implemented explicitly by a Gram-Schmidt procedure. Suppose
we have a Volterra functional u, which is homogeneous of nth order and that we wish to
find that part of it, »,, which is orthogonal to all polynomial functionals of all lower
orders. Suppose further that (by induction) we have established in each subspace K, of
lower order j a complete orthonormal basis {x;g} which are orthogonal in turn to all
polynomial functionals of order lower than j. Then

n—1
Vo= fn— D, %: (tn > K1.8)K)8
j=0

manifestly is orthogonal to all the lower order subspaces. It also is invariant under
orthogonal transformations among the {x,s}, and therefore is independent of how the
bases {x, s} were chosen. We proceed in the same way with a complete bases set {u,.} Of
homogeneous nth-order functionals. This yields a transformation ¢,: s o — ¥n o, Where
the {vnq} satisfy

(Vs k;8) =0 for all j < n. @)

Extending the transformation ¢,: fn.« — ¥ne by linearity to the subspace M, defines the
counterpart subspace K, = ¢.(M,) of orthogonal functionals. Each image function v, 4
has the homogeneous functional w,, as its leading term, which demonstrates the relation
(5). The Gram-Schmidt reduction of the set {v,,} to an orthonormal basis {x, s} completes
the induction. (The process may be started by assuming «, = 1.)

Once the orthonormal bases have been constructed for the orthogonal subspaces, an
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explicit prescription is on hand for the presentation of an arbitrary transduction as an
orthogonal series in the form of Eq. (5). The prescription is

u= i { g: (ms 'fj.ﬂ)'(.r‘ﬂ}

J=0

where the bracketed sum on g gives

Ky = ; (1y K1.8)1.8 (8)

for the vector «, of Eq. (6). Again, that bracketed term does not depend on the choice of
basis. Eq. (8) expresses the jth element of the orthogonal expansion (6) in terms of the
experimentally observable cross-correlations (g, «;,3) between the transducer and a stan-
dard set of transductions {x,g}.

The orthogonal expansion (6) may be separated into two sums at the nth term:

p=2 gt X oK.
J=0 Jm=n+1
Clearly the two sums are mutually orthogonal. We may regard the first sum as an estimate
of u and the second sum as an error term not included in that estimate. The estimate vector
and the error vector are at right angles, whence this estimate is the best possible estimate
which can be chosen from within the nth-order subspace: its error vector has no com-
ponent parallel to the estimate vector itself, and thus is smaller than the error vector for
any other choice within the nth-order subspace, in the least-squares sense.

Convergence of the series (6) is guaranteed, since 3,2, [l x|? < [|u||% We note that
this is convergence as functionals in 91, not pointwise in Q. Whether the representation (6)
exists for all elements u of 9N (that is, whether equality is attained in the previous relation)
depends on whether the subspaces {K)} span 9. When Q is Gaussian white noise,
conditions sufficient for spanning M are given in [10]. Conditions sufficient for the
existence of the representation (6) are considered for other “white” noises in [39]; we
consider this question for the sum-of-sinusoids signal in Sec. 3.

For particular ensembles @, the procedure indicated by Eq. (8) can be made entirely
explicit. If @ is Gaussian white noise as originally proposed by Wiener, a choice of D, r
(Eq. (4)) for u,, leads to the Lee and Schetzen procedure [29] which explicitly evaluates
the Wiener functional series. Choosing the Fourier transforms of D,y as basis elements
results in French’'s modification [18]. Other choices for bases of M, lead to Wiener’s
original analogue procedure [58] and the more general Cameron-Martin expansion [10].
For specific input ensembles that are white or discrete but not Gaussian, the procedure of
Eq. (8) has been worked out by Marmarelis [34] and Krausz [27]. Klein and Yasui [25]
and Palm and Poggio [39] have considered the general discrete non-Gaussian case. When
Q is Gaussian but not white, there is also a substantial simplification of (8), as is shown by
Yasui [60] and Lee and Schetzen [29]. In Sec. 3, we specialize Eq. (8) for the sum-of-
sinusoids signal.

3. The sum-of-sinusoids signal. The considerations of Sec. | suggested the use of a
sum of a large number of sinusoids as a test signal for the analysis of nonlinear trans-
ducers. In this approach, the transducer’s response is characterized by frequencies that are
equal to sums, differences, and higher harmonics of frequencies in the input signal. A test
signal, which only probes the response at discrete frequencies, may overlook features
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which are “local in frequency space,” and may be less than ideal for the “synthesis”
problem. But this limitation from the *synthesis” point of view is balanced by an
advantage from the ‘“‘analysis” standpoint: because responses are measured at only a
discrete mesh of frequencies, intrinsic noise of the transducer may be removed by digital
filtering techniques. This advantage is especially important in neurophysiological appli-
cations [53, 54], where significant intrinsic noise is commonplace. Other practical advan-
tages will be discussed below.

The inner product. Consider an input ensemble @ whose members are each a sum of @
sinusoids,

se®) = 3 a,cos (et + 4. ©)
r=1
The coefficients a, are fixed and the initial phases ¢ = (¥, - * -, ¥) are arbitrary. To begin
with, we stipulate that the frequencies be a fixed sequence of increasing incommensurate
positive numbers. For incommensurate frequencies a, , a well-chosen time translation ¢,
will bring one member of the ensemble sy(r + 1,) arbitrarily close to another, s «(¢), as all
the (., + ¥,) mod 2= simultaneously may be brought arbitrarily close to any correspond-
ing ' by searching a long enough time span for the best ¢, . However, no choice of f, leads
to perfect registration in general. We complete the definition of our ensemble by postulat-
ing that sy with distinct { appear with equal weight in the ensemble Q2. According to Eq.
(9), the parameterization ¢ of the members of the ensemble @ forms a Q-dimensional
torus 79 = [0, 27) X [0, 27) X - -+ X [0, 2x).
Because all test signals sy are weighted equally in ©, the inner product (2) becomes

(1, v) = (uls)0) Us)O)) ¢ i 70 = ﬁ f #(s4)(0) - (s )(0)d. (10)

For a large class of transducers, the average (10) over phases may be replaced by the time
average in response to a single input.

The aim of the rest of this subsection is to give rigorous conditions sufficient for the
ensemble average and the time average to be equal. That is, we give conditions sufficient
for the relation

(1, ¥) = (u(so)(7) ¥(s0)(7))+ (1)

to be valid, where the subscript ‘0" stands for the vector of zero phases ¥, =0, y, =0, - - +.
To prove Eq. (11), two technical conditions are required of the transducers u and »:
Cl. |u(sy)0)] is less than some bound B(u);
C2. uis a continuous functional in the W2 sense. That is, for any ¢ > 0, there exists a
6 > 0 such that

D (sy — sy) < & implies D ,(u(sy) — ulsy)) < e
The distance Dy- is a mean-squared distance on the real line [4, pp. 71-72]:

DyAf) = lim  u.b. {-}- f:H (f(;'))zdr'}m— (12)

= t in{-=,®)

The topology of the signals sy in the Dy=norm is equivalent to the topology of the
phase vectors ¢ in the euclidean norm on the torus of phases 7%, because

Dydsy — syr) = { gl 2a2 sin’(%-Tw)} m.
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Therefore, the signals

sAt) = i a, cos (a/(t + 7))
r=1
form a family that is dense in the ensemble of signals €, since the phase vectors { = re are
dense in T7.

By stationarity (1), the right-hand side of Eq. (11) is equal to (u(s,)(0)- {s,)(0)},, an
average over the dense subset {s.} of 2. We now show that the smoothness conditions Cl
and C2 allow us to replace the full ensemble average (10) by an average over the dense
subset {s;}. Define s, [(r) = sy (¢t + 7). Sweeping 7 over a range of values is equivalent to
sweeping 1 along a one-dimensional trajectory on the torus 7°. Moreover, the entire torus
may be regarded as the cluster of all such distinct trajectories. Formally, the phase vectors
¢ in 7% fall into equivalence classes based on whether the corresponding sum-of-sinusoids
signals are identical, except for a translation in time. That is, ¢ and (' are equivalent if
there exists a time-translation 7 such that sy, = sy/0. Let T,? be a subset of 7% which
contains exactly one member of each such equivalence class. Then

(1(5)(0) A5 Oy in 7% = (1(5¢,)0) sy, DOV g in 7,0 =

(W )7) v )T g in 700

where we have used the stationarity condition (1) in the last step.

It remains to be shown that conditions C1 and C2 permit us to replace the last average
over T,? by simple evaluation at ¢ = 0. Define p(sy)(7) = u(s¢)(7)¥(s)(7). The Schwartz
inequality and condition C1 imply

D,ya(p(sy) — p(s0)) < B(v)* Dyalulsy) — u(s0)) + Blw): D alv(sy) — (v(s0)).

Since both » and u are hypothesized to be continuous in the W-sense, the above inequality
shows that p is also continuous in the same sense. This in turn implies that the number
(p{.FlL.)(T)}, is a continuous function of sy , in the W?-sense. But since the frequencies {a,}
are incommensurable, by Eq. (12) the subset T,° may always be chosen with all of its
elements satisfying Dwsy — so) < & for arbitrarily small 8 > 0. Thus, (p(sy)(7)); =
{p(50)(7));, and the result (11) is obtained.

The smoothness conditions C1 and C2 are not strong conditions. The continuity isin a
mean-squared sense over 2, and is not point-wise. Thus, static transductions u(s)(t) =
f(s(1)) conform to C2 even if f has a countable number of discontinuities which have finite
total displacement. The condition Cl1 applies only to responses to signals in §, and thus is
also fairly weak. In particular, these *‘reasonable smoothness” conditions do not exclude
any reasonable biological transducers we might expect to encounter, unidentified, in the
laboratory. However, these conditions allow us to construct a complete set of orthogonal
functionals, as shown below,

The Fourier representation. We may anticipate that a wide variety of nonlinear trans-
ducers will respond to the sum of Q sinusoids, Eq. (9), with a response in the form of a
Fourier sum

p(so)(t) = %: #(B) exp(iBr) (13)

where the discrete set of real numbers 8 belong to the set of all sums, differences, and
positive and negative integer multiplies of the Q incommensurate input frequencies, and
where the real value of u(t) evidently demands that i(—8) = 4(3).
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Among all the real values of 8 we may select the discrete set above by means of the
Fourier integral

i
58) = tim [ w)r) exp (<) dr = w()(r) exp (~iBr) (14)

Evidently the Fourier integral evaluates to zero unless 3 is drawn from the subset of values
which appear in the Fourier sum of the previous equation. The discrete set of coefficients
a(8) of Eq. (14) forms the Fourier resolution of the transducer p.

For a pair of transducers which permit a replacement of ensemble average by time
average we have, by simple time average of the product of their Fourier sums,

(u,v) = );ﬁ_umm (15)

and in particular,

el = ; la@) . (16)

These Parseval relations affirm that inner product and quadratic distance take their
natural forms in the vector space of the Fourier resolution.

The Fourier resolution has two other useful properties, which may be verified at once
by use of Eq. (14). First, a linear transducer L with transfer function L(w) has a Fourier
resolution

LB) =4a.LB) for B = *a,,
= 0 otherwise.

Second, if u is a transducer consisting of the arbitrary transducer » followed by the linear
transducer L, then

A@B) = ¥B)LB). (17)

Clearly the Fourier resolution falls short of a full characterization of the corresponding
transducer, as the linear example above shows: a linear transducer chosen (perversely)
with nulls at the Q frequencies «, will map to the zero vector via the Fourier resolution.
However, the laboratory challenge of an unclassified transducer is not so much unique
identification, but rather an approximate description which is reasonably accurate and
also concise. An input sum of Q sinusoids will, for example, uniquely specify a single
linear transducer from a family of linear transducers whose transfer functions are rational
functions of frequency and analytic in 2Q parameters or less. Nonlinear transducers yield
Fourier coefficients at the much larger set of frequencies {|3,]}, so the opportunity for
identification of parameters is even greater than in the linear case.

We conclude the section by presenting rigorous and permissive conditions under which
the Fourier resolution (14) will exist: the Fourier resolution exists for any transducer
which satisfies the above smoothness conditions Cl and C2. First we note that such a
transducer is completely characterized by its response to the input signal s, . For if
r(so) () = p(so)(¢) for almost all ¢, then the transducer classes u and » are equal:

e = )OO =0=2 @ —v,u—v)=0=p =y

by Eq. (11).
We may now invoke the classical machinery which is used in the study of almost
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periodic functions, The condition C2 states that u(s,)(r) is an almost periodic function of
t, of class W2 [4, p. 77]. In consequence the Fourier resolution (14) exists and is nonzero
on a set of real values of 8 which is denumerable [4, p. 104].

For almost periodic functions, the Parseval relation

{Dw(u(so)}* = ; |a8)?

holds [4, p. 107] and is bounded by condition C1.
Hence the Fourier sum (13) converges in the W?*-sense. By (11), convergence in the W*-
sense implies convergence in 91, for

Il = o) = s, = tim 1 [ s}

= {Dwu(s0))}*,

which establishes Eq. (16).

The orthogonal subspaces. For the sum-of-sinusoids ensemble Q, we demonstrate that
1) the hierarchy of orthogonal subspaces {K;} of Sec. 2 may be determined without
recourse to the Gram-Schmidt procedure, and 2) these subspaces are complete for trans-
ductions which satisfy conditions C1 and C2 above.

The subspace M; of homogeneous jth-order transductions is certainly spanned by the

“multiple time lag” transductions D,y of Eq. (4). The Fourier resolution D,1(83) is

obtained by substituting Eq (9) into Eq. (4), and the result into the definition (14) of the
Fourier resolution:

By28) = tim 1 [ exp (=i87) Dyt )i

llm f exp (—i@r) H i (exp (iar(t — Tn)) + exp (—ia(r — Tn)))a, dr.

m=1 r=1
The frequencies for which D, 1(8) # 0 are integer combinations of at most j of the input
frequencies {a,}:

B = fn,ar, where i |n.| <j, and n, in {0, £1, £2,--+}. (18)
r=1

r=1

We will call the set of frequencies 3 satisfying (18) the lattice frequencies of order . If 3
is a lattice frequency of order j but not of order j — 1, we will call 8 a lattice frequency
primitive at order j. In other words, a lattice frequency primitive at order j is first
encountered at order j, and equality holds in (18). In this case, we will call the vector on
integers n = (n,, ny,* * -, ng) a lattice point of order j.

Thus, we have proven:

all the transducers in the jth-order polynomial subspace ®{., M, have a Fourier
resolution (13) that is zero except on lattice frequencies of orders only up through
order j.

Conversely, we now prove:

any transducer which yields a Fourier resolution which is nonzero only on lattice
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frequencies (or lattice points n) of orders up through j is an element of &{_, M, ,
the space of polynomial transducers of order j.

The proof follows from three simple observations: (1) A Fourier resolution which vanishes
outside the lattice frequencies (or lattice points) of orders up through j may be expressed
as a sum of Fourier resolutions each of which vanishes on all lattice points except on lattice
points corresponding to a particular (unsigned) lattice frequency |8| primitive at order
k < j:(2) a homogeneous transduction of order k < j followed by a linear transduction
yields a composed transduction still of order k; (3) a linear transduction may be chosen
which nulls all lattice frequencies of order j except for the values +3, and this linear
transducer may be preceded by a homogeneous transducer of order k whose Fourier
resolution includes the unsigned frequency |8] (see Eq. (17)). (For example, we may pick
the homogeneous transducer D, r from above.) Thus the set of Fourier resolutions which
vanish outside of lattice frequencies (or lattice points) of order j or less represent exactly
the set of polynomial transducers of order j (in the quotient space M), the transducers
which form the subspace ®¢_, M, .

The orthogonal subspaces K, may now be determined. K, is that part of ®{., M, that
is orthogonal to @Yz} M, , the space of all functional polynomials of order less than j. By
the characterization in the above paragraph, K| is exactly the subspace of transducers that
are orthogonal to all transducers with nonzero Fourier resolutions on lattice frequencies
of order up through j — 1. The expression (15) for the inner product in terms of the
Fourier resolution characterizes this category simply: K, is the subspace of transducer
classes whose Fourier resolutions are zero except on the lattice frequencies primitive at
order j.

The component of a transducer class u that lies in K, may easily be obtained from the
Fourier resolution (14) of u. One merely deletes all components at lattice frequencies
primitive at order other than j. That is,

k,(8) = i(B), B a lattice frequency primitive at order j
= 0 otherwise.

This is precisely the result that would be obtained by the general procedure (8), by
choosing transductions with Fourier resolutions nonzero on single primitive lattice point
pairs as an orthogonal basis for X .

As a matter of rigor, to demonstrate completeness of the subspaces K, , we need only
show that the Fourier resolution (14) must be zero at any frequency that is not a lattice
frequency. Suppose on the contrary that i(8) # 0, and that 3 is not of the form (18). Then,
according to the theory of almost-periodic functions [4] either 8 is incommensurate with
the input frequencies {a,} or it is a submultiple of a lattice frequency. In either case, there
exists an # > 0 such that for any § > 0, it is possible to choose a §- W?-almost period L; of s,
such that |8L;| > h (mod 2r). This implies that

Dutu(s0) = u(s2)) > (2 lsin 2 |- [53)],

which contradicts condition C2.

Thus the frequencies 8 at which a Fourier estimation x(8) may be nonzero are of the
form (18). This permits a change in notation that will facilitate later work. We index the
components of the Fourier resolution by lattice points n rather than lattice frequencies:

#(n) = f(n-). (19)
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This indexing, combined with the relation (11), provides another useful form for the
Fourier resolution:

a(n) = (ulsy)0)-exp (—in-i)y (20)

4. Comparison with the Wiener technique. We have discussed the sum-of-sinusoids
technique as a special case of the class of Wiener-type theories for the analysis of nonlinear
systems. We have suggested that the technique has certain practical advantages owing to
the deterministic nature of the input signal. In this section we wish to show that the sum-
of-sinusoids technique retains a fundamental similarity to the original Wiener technique.
We will also show that the Fourier resolution of a transducer on lattice points of order j
approaches the Fourier transform of that transducer’s jth-order Wiener kernel. The
original Wiener technique [29, 58] relies on Gaussian noise as an input signal, and has
been widely used in biology [19, 20, 30, 32, 33, 35-37, 45, 49, 57].

The correspondence between the Wiener kernels and the frequency resolution is
important because it shows that the sum-of-sinusoids technique retains a key advantage of
the Wiener theory, that the Wiener kernels of many nonlinear transducers have simple and
distinctive functional forms. Thus, the qualitative features of the experimentally-deter-
mined frequency resolution of a transducer may suggest simple nonlinear models [55].

We prove the correspondence between the Wiener kernels and the frequency resolution
by proving it for each element of a convenient basis set of transducers. These transducers
consist of an arbitrary linear filter L, , followed by a static nonlinearity whose operating
curve is a Hermite polynomial, followed by a second linear filter, L;. These basis
transducers are chosen because their Wiener kernels are particularly simple (Eq. (34)
below).

To see that these transducers are a basis for the space of all transducers with con-
vergent Wiener expansions, we show that each of the multiple time-lag transducers D; ¢
(Eq. (4)) is in the span of the linear-Hermite-linear transducers. The output of a trans-
ducer D, r is the product of its inputs at j previous times. It therefore can be expressed as a
finite sum of transducers, each of which is a linear filter followed by jth-power law static
nonlinearities, since

XXy Xy =i 1y T KXo n).

Ji k=1 Byt <8y
The jth-power law static nonlinearities can be expressed as a finite sum of Hermite
polynomial static nonlinearities, so the proof is complete.

Even though the second linear filter L, is not necessary to generate a spanning set of
transducers, we include it because it presents no additional complexities and because the
linear-static nonlinear-linear sandwich model is frequently used as a model for biological
transductions [15, 49, 55].

The nub of the calculation of the frequency resolution of the linear-static nonlinear-
linear sandwich is the calculation of the frequency resolution of a static Hermite poly-
nomial transducer. This we accomplish first; then we show how the calculation extends to
the full sandwich.

Hermite polynomial nonlinearities. In this subsection, we calculate the Fourier resolu-
tion (20) of static nonlinear transducers whose operating curves are Hermite polynomials.
The Hermite polynomials are constructed with respect to a Gaussian distribution whose
variance is the variance P of the sum-of-sinusoids signal:
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P=(P =43 a. @1)

The Hermite polynomials for a Gaussian of variance P may be defined by the generating
function [51]

o

J 2
Gz, x)= Y j—, H,(x) = exp (—P % + zx), (22)
o
where H,(x) is the jth Hermite polynomial, parametric in P.

We treat the generating function (22) as a transducer parametric in z. The calculation
of its frequency resolution G(z, n) involves estimation of a product of independent terms.
We substitute (22) into the expression (20) for the Fourier resolution, and use the
expression (9) for sy to obtain

Gz = 3 2 Hym)

J=0
= exp{z( 2 ar COS%) - P? - ‘.n°¢}> ¢
= i]l: <exp {za, cos Y, — Yafz® — 1‘n,¢,}>¢- - f;l; Fr. (@), (23)

where

Foa) = exp (—iaizt) 5[ exp (=iny + 20, cosy) dy.

Thus, F, is simply related to the Bessel function J,, , , [1, Eq. (9.1.21)] and this allows us
to expand F, as a power series:

Fu(a) = (ﬁ) ( i‘ ,l. (‘1"322)') ( P kr(fizjif,n*)

The first few terms of the series for F, are

a.z\'" aﬁzf( | n.| )
Fn,(ar) | |, ( ) {I+ 4 I"rl 1
a::‘( |t + |a,] —1 ) }
e\ a0l T T+ 2y 2
We now consider the behavior of F, (a,) as Q, the number of sinusoids in the input
signal, grows. We assume that the power in the input signal, Eq. (21), remains constant.

We also assume that no single sinusoid dominates the input signal. These conditions may
be formulated

max%=$=((é)- (25)

Now let us fix the lattice point n of order N = 3"9_,|n,.| and consider the behavior of
the final product in Eq. (23) as Q approaches infinity under the condition (25). Nearly all
of the terms of this product have n, = 0. For these terms, an asymptotic estimate of F,, (a,)
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derived from (24) has an initial error term of P?z4/164%, which is O(Q@~?). At most N of the
terms in the product of Eq. (23) have n, nonzero. For each of these terms, the asymptotic
estimate derived from (24) has an initial error term which is O(Q~"). Thus, the product in
Eq. (23) is estimated by

Q

II Fta) ) ‘
I‘EPITL'T (e |2+ (5 rapks) + 5l + o0,
ey

r=1
where the last term contains only even powers of z > 4.
We now equate like powers of z on both sides of Eq. (23) to obtain formulae for H,(n):

Hy(n) = UN, n, a), (26a)
Q
HN+!(n) = U(N i n 2, n, a) : _{1 Zi ITll%)i (26b)
P2
Hyin)= UN +4,n,a) - (*lj‘% + O(Q")), (26c)
H/(n) = U@, n, a)  O(Q%,j>N+4 and j= N (mod?2) (26d)
H(n)=0,j<N or j# N (mod?2) (26e)

where
Q

UG, n,a) =7 I Fi!_!(‘*"’)'""'

r=1

Thus, we have determined the Fourier resolution of a jth-order Hermite polynomial static
nonlinearity H, on an Nth-order lattice point n. Unless the order j of the Hermite
polynomial and the order N of the lattice point are equal, this value approaches zero as the
number of frequencies increases. The rapidity of the approach is O(@Q~') ifj = N + 2 or
j = N + 4, and is O(Q~?) or faster if j is greater than N + 4, butj and N have the same
parity. When j is less than N or if j and ¥ have opposite parities, the Fourier resolution
H (n) is identically zero.

Finally, we obtain a rough estimate in dimensionless terms of the disparity between the
orthogonal subspaces constructed with respect to the sum-of-sinusoids inner product and
those constructed with respect to the Gaussian inner product. To do this, we consider the
frequency resolutions of the transducers h,;, which are the static nonlinearities H; normal-
ized to unity in the Gaussian norm. Thus, the transducers 4, are vectors of unit length in
the jth orthogonal subspace constructed with respect to the Gaussian inner product. These
transducers are given by

h, = (1/G'P)")H, .

We assume that the input sinusoids have equal amplitude, so that g = Q in the condition
(25). Using Egs. (26), we find

hin(n) = (g—,ﬁ)m fI () (27a)

]!

r=i
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Ava@)| _ (N+ DN+ 2\ & | (N + 1XN + 2)\ ¥

in(n) ( 0 ) & Tl +1 S""(*——4—(2—) . (27b)

h-\u..‘ 1/2

3:}(5:;) ((N + YN + :;.%(g + 3N + 4)) B GiG5, oy

;;((I:l)) =0(Q°%,j>N+4 and j=N (mod?2), (27d)
Ffn)=0,j<N or j#N (mod?2). (27¢)

The second inequality in Eq. (27b) follows from

i L] = & for i |n.| =N,

ret |”rl +1 -—f, r=1

with the maximum occurring when exactly N of the n.'s are equal to £1.

Thus, we estimate that, up to O(Q'), the frequency resolutions at Nth-order lattice
points are “contaminated’ only by (¥ + 2)nd-and (¥ + 4)th-order Wiener kernels. The
fraction of the value of the frequency resolution at an Nth-order lattice point that
represents spillover from a unit-higher-order Wiener kernel is approximately N?/4Q for
the (N + 2)nd-order Wiener kernel, and N?/16Q for the (N + 4)th-order Wiener kernel.

Nonstatic nonlinearities. In this subsection, we generalize the above results concerning
the relationship of the Wiener kernels to the Fourier resolution obtained with a sum of
sinusoids. We will show that the normalized frequency resolution of a linear-Hermite
polynomial-linear sandwich approaches points on the Fourier transforms of the Wiener
kernels of this transducer as the number of sinusoids in the input signal becomes large. As
pointed out at the beginning of this section, these sandwich transducers are a basis for the
space of transducers whose Wiener series are convergent, so the result has similar breadth.

We first define the normalized Fourier resolution. This is essentially the Fourier
resolution (20), corrected for the amplitudes of the input sinusoids and the combinatorial
coefficients of (27). The normalized Fourier resolution 2°%n) of a transducer u on a lattice
point n of order N is defined by

vz 9
wom) =) (20)" T tayln . (28)

Thus, according to Eq. (27), the normalized Fourier resolution A of the transducer Ay is 1
at all Nth-order lattice points, and at most O(Q~!) at all other lattice points.

Now that we have shifted consideration to nonlinear systems that are not necessarily
static, it is necessary to consider the limiting behavior of the frequencies {«,} as well as that
of the amplitudes {a,}. As the number of sinusoids becomes large, we must require that the
power spectrum of the sum-of-sinusoids signal approaches the power spectum @ (w) of
some particular Gaussian noise, in an appropriate integral sense. That is, we must choose
the frequencies (@) and the amplitudes a.(Q) so that

lim 3 §a§=f”’o>(w)dw. (29)

Q—= w Zar<wy

This is a strengthened version of the condition (25) that sufficed in the discussion of
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Hermite polynomial static nonlinearities. The condition (29) can be satisfied for smooth
® (w) with finite total power

P=f:(§’(w}dw.

We now determine the limiting behavior of the frequency representation of a nonlinear
transducer u; composed of a linear filter L, with transfer function L.(w), followed by a
Hermite polynomial static nonlinearity, followed by a second linear filter L, with transfer
function L,(w). We choose the static nonlinearity to be a Hermite polynomial of order j
orthogonalized with respect to a Gaussian of variance equal to the power passed by the
initial linear filter. This power, P, , is given by

P, = fm (L(w))*® (w)dew = lim ) fa¥(Li(w)) (30)

1
Qo rm
We writeu; = L, © hy;p, © Ly, where hyp, denotes the normalized Hermite polynomial of
degree j constructed with respect to a Gaussian weighting of variance P .

It suffices to calculate the Fourier resolution of u; = L, o h;.p, since, according to Eq.
(17) and (19),

fn) = #(n) + Ly(e - n). (31

The initial linear filter L, transforms the input sum-of-sinusoids signal into a similar
signal in which the amplitudes and phases of the component sinusoids are altered by the
amplitudes and phases of L, . Thus, the response of the transducer », to the signal s is
identical to that of the static transducer hj:le which acts on an altered sum-of sinusoids
signal s";

v(syX7) = h;;rh(ﬁ"ﬂy.‘, X7),
where

Q
s¢'(1) = 2 |Liar)|ar cos (art + ¢r), & = (arg(Li(ay)), - -, arg(Li(aq))).

According to Eq. (20),
7n) = (hyp, (5 ¢+£)(0) exp(—in & My in 1o
exp(in-£) (hy;p, (5¢)(0)" €xp(—in- ¢ Dy —gin 1o
= exp(in- & j;p, (n). (32)

Here, h"}:p“(n) denotes the Fourier resolution of the static transducer 4., with respect to
the input ensemble Q' composed of the signals s{ . The results of the previous section are
now applicable, except for the fact that the power in each signal s/ is not exactly P, , but
only approaches this value as @ grows (Eq. (29)). However, by re-expanding the poly-
nomial A;p, in terms of Hermite polynomials orthogonal with respect to a Gaussian of
variance equal to the power of the elements s; of @', it may be seen that this problem does
not affect the outcome of the present calculation. We therefore apply Eq. (27) (using input
amplitudes a,| L;(a)| ) to obtain

i

[}
lim e, (1) = VPP T Ty el L)y,

Q= r=1

;im | Ryip, (R)/Akie, ()] = O, j#N.
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Next, we substitute the above result in Egs. (31) and (32) to obtain

lim Gx(n) = lim exp(in - §)A)p, (n) L n)
Q- g-=

N1\ Q 0 ) .
= ((PLl)N) . [z{a-ﬂ) E I?T_r]f Ba.L,(c,sgn(n, )}
and
lim a(n)/in(n) =0, j#N,

where we have recombined the amplitudes and phases of L(a,) = | Li(a,)| exp(iE,).
We now obtain the desired expression for the limiting behavior of the normalized
frequency resolution ij(n) by substitution of the above result in Eq. (28):

lim 2%n) = (L)mz i L’( ©n) - I:( in,l

o fj(n P, 20 N l! {Ly(cersgn(ng )},

lim g%(n) =0, j#N. (33)
Q-

By the method of Lee and Schetzen [29] and Price’s theorem [41], it may be shown (for
example [49]) that the Fourier transform of the Nth Wiener kernel of u, measured with
Gaussian noise of spectrum @ (w) is

N
(Pr) Ly + -+ + wn) [I L),  j=N

k=1

0, J#N. (34)

Except for a factor of PV/?, this agrees with Eq. (33), if we choose the NV frequencies {w,} so
that exactly |n.| of them are equal to a,sgn(n,).

Thus, we have found that the normalized Fourier resolution of the transducers L, ©
hy.p, © L, approaches values of the Fourier transforms of the Wiener kernels of this
transduction. This correspondence, which extends to all transducers that have a Wiener
expansion, is a crucial result. It allows one to calculate the frequency resolutions of simple
classes of transducers, which is necessary for a rational approach to the development and
evaluation of models for biological transductions [46, 55].

5. Commensurable frequencies. In Secs. 3 and 4, we assumed that the multiple
sinusoids of the input had incommensurate frequencies. In a laboratory implementation,
there are several practical advantages of using sinusoids whose frequencies are high
multiples of a common repeat period. Such a signal is easy to generate on a digital
computer, and the time average (14) may be evaluated for all lattice frequencies by a single
application of a discrete Fourier transform. In this section, we discuss the transition from
incommensurate to commensurable frequencies. The result of this generalization is a
practical technique that has been applied with success in the analysis of biological
transductions [8, 9, 46, 53, 54, 55, 59].

The transition to commensurable frequencies. In the preceding sections, the fact that the
Q superimposed sinusoids of the input had incommensurate frequencies was a conve-
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nience but was not essential. The incommensurate nature of the frequencies was helpful in
two ways. Every lattice point n = (n, , m, ,* - -, ng) leads to a unique frequency, § = n-a.
Thus the output frequencies themselves could be used to index the coeflicients of the
Fourier resolution. Once commensurate input frequencies are allowed, evidently some
distinct choices of lattice points will lead to identical output frequencies, and that necessi-
tates indexing the components of the Fourier resolution with the lattice points themselves.
The hypothesis of incommensurate frequencies also allowed replacement of the phase
ensemble average by the time average. This followed from the fact that the phase shifts
resultant from the progress of time ultimately sample the torus of phases T? densely.
Conversely, a choice of frequencies @ which are commensurate must lead to an eventual
common period of the sinusoids, at which period the trajectory in the torus of phases will
close and no additional phase points will be sampled. In consequence, the theoretical
discussion which involves ensemble averages, which are averages over phases, is not
immediately and rigorously applicable to averages over time with a single input signal. As
a practical laboratory procedure, the use of commensurate sinusoids permits precise
digital filtering methods which rely upon the signal’s repetition at the long but finite
common period. On the other hand, there is the question whether the phase trajectory of a
single input signal makes a sufficiently fine-grained sampling of the phase torus to allow
the replacement of phase average by time average (in the same way that a Riemann
integral may be replaced by an approximating sum). Otherwise, adequate approximation
will require that data be taken in several passes, each starting with an inequivalent set of
initial phases.

The treatment of incommensurate frequencies is applicable to the commensurate case,
if we confine our attention to transducers u which satisfy the further (and very permissive)
condition:

C3: The transduction g at time zero is a continuous function of the frequencies a.
Transducer with finite memory satisfy this condition, and so will a much broader set of
transducers whose memories fade arbitrarily close to zero after a long enough time.

Condition C3 guarantees that the Fourier resolution, Eq. (20), is a continuous function
of the set of frequencies . Thus, all the results that we have proven for an in-
commensurate set of frequencies carry over to a general set of frequencies, since there are
incommensurate frequency sets arbitrarily close to any given frequency set.

In the case of commensurable frequencies, the time average (14) may be evaluated by
an integration span which extends only over the finite common period of the sinusoids.
However, that finitely-evaluated time average now represents only an incomplete sampling
of the phase ensemble, and is no longer equal to the exact result (20) for the Fourier
resolution. It is evident that by appropriate choice of inequivalent initial phases (' the
phase ensemble average (20) may be approximated to arbitrary accuracy by an expression
of the form '

() = lim g 3 (u(seXr) exp (~ia-nr), (35)

where the sum ranges over k inequivalent phase vectors '*. Without proof, we quote a
practical example. Let Q = 8, with a; = (2/*? — I )a, . Choose 8 inequivalent phase sets ¥,
so that M,; = exp i® is the entry in the kth row and jth column of the Hadamard matrix:
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(S U RS T T B B
-1 1—=1 1 1 — -1
I=1 1 1-=1-1-1 1
I 1 1=1-1-1 1-1
M=f1 1-1-1-1 1-1 1 (36)
I=1—=1 1-=1 1 1-=1I
=1 —=1-1 1-1 1 1
1 1=1 1 1-1-1-1I

Then, in the approximation above, the evaluation of Fourier coefficients at lattice points
of second order will not be contaminated by Fourier coefficients primitive at third, fourth,
fifth, sixth, or seventh order [54].

Practical advantages of the sum-of-sinusoids method. The sum-of-sinusoids technique
has been successful in analyzing linear [8, 9] and nonlinear [46, 53, 54, 55] neural
transductions. Here we would like to suggest possible reasons for this success.

The sum-of-sinusoids signal is a deterministic one, in contrast to the Gaussian,
Poisson, and other popular stochastic test signals. This means that the correlation proper-
ties of the actual test signal are known; for stochastic signals the correlation properties are
known only for the abstract ensemble.

With stochastic signals, the problem often arises that the experimentally-determined
characterization sequence becomes a poorer approximation to the transducer under study
(in the mean-squared sense, as determined by the actual test signal) as higher-order terms
are added [20, 28]. Presumably, this apparent paradox arises because the algorithm for
extracting the terms of the orthogonal sequence, such as the Lee-Schetzen method [29],
assumes that the ideal correlation properties of the ensemble are realized by the test signal.
A failure of the mean-squared error to improve with successive terms thus indicates that
the characterization procedure is focussing on the departure of the test signal from the
ensemble average, rather than on properties of the transducer itself.

Here this undesirable outcome is avoided because of intrinsic features of the sum-of-
sinusoids technique that stem from the use of a deterministic test signal. Experimental
estimates of the approximating transducers x; (Eq. (6)) are essentially Fourier components
2(8) (Eq. (14)) or i(n) (Eq. (35)) of the transducers output. Hence, inclusion of additional
terms of the orthogonal expansion (8) can only increase the goodness of approximation to
the transducer under study, since this procedure amounts to including additional terms of
a Fourier expansion.

Additional advantages of the sum-of-sinusoids procedure are manifest if all of the
input frequencies a are large integer multiples of a very low frequency, whose period is
long in comparison to the time constants of interest in the system under study. In this
instance, the ensemble Q is composed of periodic signals. The average over v in Eq. (35)
may be calculated for all lattice points simultaneously by a single application of the Fast
Fourier Transform [11]. This results not only in a great saving of computation, but in an
enhancement of the signal-to-noise ratio. This is because all power in Fourier coefficients
other than the lattice frequencies of interest may be disgarded as undriven responses. Such
digital filtering is very helpful in testing transducers that are noisy or that have discontin-
uous outputs, or both (such as neural transducers).

Contributions from distinct lattice points n that share the same lattice frequency
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cannot be resolved without an average over inequivalent initial phases. In a finite length of
time, a sampling of initial points may be explored. For certain sets a, an efficient
procedure for such exploration (Eq. (36)) has been advanced [54, 55]. This procedure
samples at a lattice of points of high density and symmetry. This sampling procedure has
demonstrated the existence of significant fourth-order components in a biological trans-
duction, that of the cat retinal ganglion Y -cell [54].
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