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necessary to take for a and 8 the appropriate
linear combinations of the solutions (4.7) of Eq.
{(4.6). It is obvious that the computation of a
and 8 presents formidable numerical difficulties
even though the convergence of the series in
Eq. (4.7) is rapid for (B*/we)>10~* webers?-sec/
meterst. There are two special cases for which
the computational labor can be reduced by the
use of approximate solutions of Eq. (4.6). If
K |ic+b?|, the term in ¢? in Eq. (4.6) may be

neglected, and the approximate solutions

w,(2) =cosgs
and ' 7 (4.9)

w2 (2) = (1/g)isingz,

where ¢*=n-1%, may be used. If |¢| is large and
[6/¢| is small, asymptotic series* for the Weber
functions may be used.

4 Reference 3, p. 184; E. T. Whittaker and G. N. Watson,

Modern Analysis (Cambridge University Press, Cambridge,
reprinted 1950), fourth edition, pp. 347-349.

Canonical Field Theory—A Prototype Example*

Bruce W. KniGHT, JR.1
Dartmouth College, Hanover, New Hampshire

{Received September 10, 1952)

The equations of a field may be put into a standard ‘“Lagrangian’’ form from which several
conservation laws follow directly. As an illustrative example, a string free to vibrate in two
directions is investigated; this example clearly illustrates the outstanding features of the
canonical theory, while avoiding the notational and physical complications encountered in
most systems of practical interest. The conservation laws are interpreted for the string. The
theory is further developed to express the field’s behavior in terms of canonical coordinates
and momenta. Quantum conditions are introduced, as in meson theory and quantum electro-
dynamics. It is shown that the mathematics of the “quantized string” is that of several charged

particles occupying a set of energy states.

N exploring the behavior of a system of parti-

cles, we commonly use two different tech-
niques. The first is the specific approach: We
discover the details of our system’s behavior by
considering the details of its construction. The
second is the canonical approach: The system is
characterized by a Lagrangian function and the
details of behavior are obtained by operating
on this function in standard ways. These tech-
niques are complementary; the one is intuitive
and emphasizes the peculiarities of the indi-
vidual system, the other is formal and empha-
sizes underlying uniformities.

Both methods are adaptable to the study of
continuous systems, but here the advantages
of the canonical technique are not often so
widely exploited. It is the purpose of this paper
to develop the behavior of a taut string as an
illustrative example of the canonical technique
for continuous systems.

* This paper is based upon a senior paper submitted to
the Department of Physics, Dartmouth College.
1 Now at Cornell University, Ithaca, New York.

The canonical formulation is based upon the
possibility of constructing a Lagrangian function
L depending on the dynamical variables of the
system, such that L fulfills Hamilton’s principle

f
5 f Ldt=0, (1)
to

when we demand that our dynamical variables
satisfy, as mathematical functions of time, the
relationships which they actually satisfy in
nature. The basic dynamical variables of a con-
tinuous system are its ‘“field components,”
which we will denote by ¢,, functions of space
coordinates and time. The Lagrangian may be
expressed as

L= f £dR, 2)
R

where R is the region occupied by the system,
and £= £y, ¥, Oy /8%xy, - - -, Ya, ooy Xy, v, )
is the “Lagrangian density”’ at a given point.
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According to the familiar procedures of varia-
tional analysis,! Hamilton’s principle is ful-
filled if the field components satisfy the Euler
equations

1L 9

Y,

The Lagrangian density £ must be so chosen that
Eq. (3) will be the equations of motion for our
system, a task which usually is not very difficult.
Because these equations are homogeneous in £,
we may give £ the dimensions of energy density
without loss of generality.

Now we may state a number of conservation
laws. We define a “Hamiltonian density”

i 0. (3
Z.ax,a(a¢ Jox)  of dd. )

5CZ ,/, (4)

o

and likewise an ‘‘energy current’ vector with

components
2%
T 8oyl k)

Hamiltonian density 3¢ may be regarded as the
energy density of the system, as it satisfies the
differential conservation law 93C/dt-+divS=0;
for

&)

=2 v
ot i 0x; 4

a3 aS; ) (a 9L
ot I,

L aL
2wy
i 0x; 0(0Y./0x:) Oy,

+[z ( f"+af,

4L .\ 9L
>.: 3(3y./ x:) 6x,-)—:97]=0. ©)

The first term vanishes because of Eq. (3), and
the second identically if £ is not an explicit
function of ¢ If £ were to depend explicitly on ¢,
the second term would not vanish and the
equation would express the transfer of energy
between our field and some coexistent system.

1See, for example, W. F. Osgood, Advanced Calculus
(Macmlllan Company, New York, 1925) Chap. 17, Sec. 6.
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On the same pattern let us define a ‘‘momen-
tum density” vector

Gom -3 22 2V M
I Tt -
T a¢a axk
and a ‘“‘stress tensor’’
0L e
w=—2, — — Léu, (8)
e 9(0y./dxs) Oxx
where the familiar ‘‘Kronecker delta” is 1 or

0 depending on its subscripts. Proceeding much
as in Eq. (6), we may demonstrate that

Gy, 0T s
—+2 =0, )
ot i 0x;

provided £ is not an explicit function of xs. The
‘‘stress tensor’’ characterizes the flux of momen-
tum through the system.

Certain cases lead to yet another differential
conservation law. We can form new field vari-
ables out of combinations of the old, and these
will satisfy Euler equations of the same form,
because of the invariance of Hamilton’s prin-
ciple. Consider the case of only two field vari-
ables; form a linear combination by multiplying
the first with a real and the second with a pure
imaginary constant. This combination, say ¢,
and its complex conjugate ¢* determine the two
original field components. Equations (4) through
(9) will still hold, with the summation extending
over ¥ and ¥*. This complex representation has
particular virtues in the special case where £ is
invariant under transformations which change

‘only the phase of the complex variables. That is,

letting ¢ =voe'®,

LYo, #’0*, a\lfo/axl, cee)= £(¢, v*, axp/axl’ .. .)
= 53(111065“, ‘l/o*e_ia, a¢o/axleia, .. )

Equivalently, d £/da=0. Now

dy/de =1y, dp*/da= —i}*,
d oy oy
da axl —zaxl '
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so that
ag [6.81# oL *+3£i 9L %
—_— —y— ) —
da Loy  ay* oy ayr
e oy
+ (—————
Z 3(3y/ 9x;) oz

0L ay*
—_— =0. (1
a(a¢*/ax) ax,)} 0. 10

The vanishing of this last expression leads us to
the additional conservation law. We consider

the scalar
b= _u(f’f‘b_ﬁw) (1)
W oY
and the vector
) e °e
”’:—“(a(a'p/ax.-)*'—a(a,p*/ax;)v ) (12
Then with the aid of Egs. (3) and (10),
dp _ do;
o T om
R
Y op* o ayr
e
+Z1-(a(awax.») P
e ay*
 8(ay*/ o) ax;)]=0' (13

In the canonical terminology the scalar p and
the vector ¢ are called the ‘‘electric charge
density” and the ‘‘electric current” and e is
chosen to make their dimensions fit.?

Now for the taut string. Let p and 7 be its
constant linear density and tension. Distance
along the string we will denote by x. Because
x is the only spatial dimension of the system, the
summation over ¢ in the formulas above reduces
to a single term. The string may be given two
independant displacements at right angles to

2 This whole development has been adapted from G.

Wentzel's Quantum Theory of Fields (Interscience Publica-
tions, New York, 1949),

FIELD THEORY
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its length, £ and %, our “field components.” It is
reasonably evident that the kinetic and potential
energy densities are $p(£2+4%) and 37[(8%/9x)?
+-(dn/8x)%], provided the derivatives are not too
large ; these expressions are incidental to our sub-
sequent development.

The first step of the canonical formalism is to
concoct a Lagrangian density which will yield
the proper equations of motion. It is natural to
try the difference between kinetic and potential
energies, so we set

£=%#(€2+ﬁ2)*%T[(g)z—i—(%)j- (19

The Euler equations reduce to

9L
dy 0x 0(dq/0x) ot 39

or

a9y

r——ui=0
ox?

(3a)

and an exactly similar equation for £ This is of
course just the familiar wave equation for a taut
string, and justifies our choice of £.

We are now in a position to specialize the
various expressions given earlier.
Canonical energy density:

et (2) +(2)] @

Canonical energy current:
0L
8 (9¢/ r')x)

oL
a(an/ax)

- _T(-—é+a—n) (5a)

Canonical momentum density:

3L 3t 0L on 9t 9y
G283 280m_ —-u(é——-l-ﬁ—)- (72)
0f 9x 99 Ox dx dx
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Canonical stress tensor :
e 9t 9L on
3(0¢/9x) 9x 9(d4/0x) ox

T[(-gf)2+(—:—2)2]+%n<éz+ﬁ2>. (3a)

These equations are open to easy physical in-
terpretation. There can be little doubt that 3¢
is an energy density in good standing. .S satisfies
the conservation law (6) jointly with 3¢, and
so is a bona fide energy current; more simply, S
is the inner product of transverse tension and
velocity, hence the flux of energy. According to
Eq. (5a) there can be no energy current flowing
at the fixed ends of the string where £=4=0.
The integral of 3C over the whole string, the
total energy of the system, is constant in time,
because of Eq. (6). The canonical momentum
density G of Eq. (7a) is not so clear-cut a case.
The physical set up forbids actual momentum in
the x direction. We note that G={(u/7)S and
according to the wave equation (3a) the constant
p/T=1/v* is the inverse square of the string’s
propagation velocity. The situation is reminiscent
of that in electromagnetic theory, where the
momentum density of the field is proportional to
the energy flux and inversely proportional to the
squared velocity of light. Equation (8a) shows
that the flux of canonical momentum is equal to
the energy density. According to Eq. (8a), in
general, T need not vanish at the string’s ends.
However, so long as 8¢/dx and 84/8x vanish in
the end regions, the integral of G over the whole
string will be constant in time as may be seen
from Eq. (9). Thus the integral of energy
current S=92G will likewise remain constant
until the disturbance reaches an end of the
string, a situation we would hardly have looked
for, had it not been for our canonical theory.

The axial symmetry of the system suggests a
further exploration. Let

¥=(&+1n)/V2,

Rof

(15a)
so that

E=(W+HYN /N2, n=—i—y¥*)/V2

The Lagrangian density becomes

(15b)

(14a)

W. KNIGHT, JR.

and the Euler equation for v,

T—— uy =0, (3b)

dx?

Equations (4a), (5a), (7a), and (8a) become

. oy oy*

I =pff*+ 77— — (4b)
dx Ox

I+ a

S=—+ -——¢+—‘f¢*) (5b)
ax ox
ap* Iy

G= —u(—~¢+—¢*) (7b)
ox ax
Ay dy*

T =ud*+r— (8b)
dx ox

The Lagrangian (14a) is evidently invariant
under phase changes in ¢. Thus we have canonical
electric charge density:

p=—ieu(Y*Y—yy*). (11a)
Canonical electric current:
oy aY*
o=—terl —yPp¥——y ). (12a)
ox ax

Our dislocated terminology does not mean that
these expressions are fantasies, however. Sub-
stituting Eq. (15a) into Eqgs. (11a) and (12a),

p=eu(én—nf),
dn 0%

o’=e'r($—-—r)—— .
dx dx

Aside from the unfortunate dimensional coeffi-
cient, p is the angular momentum density of the
system. We might call ¢ the ‘‘torque potential”
as ¢! times its space derivative

do 0%y &
(212

dx dx®:  Ix?

is evidently the torque density acting about the
axis of the system. Thus our final conservation
law in this case simply states that the angular
acceleration of a bit of string is proportional to
the torque exerted upon it. At the end points ¢
must vanish with ¢ so that the integral of p, and
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the total angular momentum, will be constant in
time, as may be seen from Eq. (13).

The canonical field theory can be brought even
closer to that of particles. The field function ¢
may be regarded as a set of canonical coordinates
in the ordinary mechanical sense, one for each
point x. With the string fixed at two points,
x=0 and x=!, we can make a linear transforma-
tion to a new set of coordinates,

N nw
q,,_—_—l—f ¥ sinA,xdx, where >\n=7 (16a)
0

whose inverse transformation is

¥=vV2 3 g sind.x. (16b)
We will call the infinite set of ¢’s ‘“‘modes of
motion.” Equation (16b) may now be used
with Eq. (2) to express the integrated Lagrangian
in terms of new arguments,

L=f e, ¥, d/ax, - -)dx

=L(q1, ql’ 2, qﬂr .t ')' (17)

Hamilton’s principle (1) is equivalent to the
Euler equations

(d/dt)(L/8¢.) — (0L/dq.) =0, n= (18)

which are just Lagrange’s equations of motion.
With very minor notational elaborations this
development may be made as general as that
beginning this paper.

Now to apply this new machinery. We first
notice that by Eq. (16b)

6!]/
6x

1,2,

=VZ 3 Angn COSAaX,

(provided ¢ is a physically permissible function).
From (17) the total Lagrangian of our string
system is

e 2o

!
=2uf (X G sinAnx)
0 n

X (3 Gum* sink,x)dx

425

1
~-2r f (3 Angn COSAx)
0 n
XA Amgm* cOSAnux)dx

=2 lugngn™ —ITNA"ga"qn %, (17a)
where the last step follows from the orthogo-
nality of the various functions. Putting this
Lagrangian into Eq. (18) (and taking conjugates
for notational convenience), we get the equa-
tions of motion

g+ IlrN2g.=0 or §.,+1°\2¢.=0, (18a)

which integrate at once to
Gn=gn® COSA T+ (N2)"1¢, sinA0t.

This result may now be substituted back into
Eq. (16b). Given the initial state of our system
we can determine the constants g, and ¢a°
from Eq. (16a). Substituting back into Eq.
(15b) we obtain ¢ and 5 as explicit functions of
position and time; and the full solution of the
string problem.

We may easily express the total energy and
“‘charge” in terms of the modes of motion of
the system. Proceeding exactly as in Eq. (17a),
we find

l
H= f Hdx = Z l#(inq.n*‘*‘lTknzgnQﬂ* (19)
0 n

i
Q=f pdx = —1telp Z q'n*Qn_Qn*q.n- (20)
0 n

Having come so far, it is practical to take the
field theory yet a step further, and bring it into
“Hamiltonian form.” With every mode coordi-
nate ¢, we associate a conjugate momentum

Da=0L/0n.

From Eq. (17a) we get p,
and (20) become

(21)
=lug,*. Equations (19)

1
H=3 Z_Pn*Pn+lT)‘n29nqn* (19a)
toip

Q= —1ie ; Dudn—Pn*qn™. (20a)
The Hamiltonian (19) determines the equa-
tions of motion (18a) by means of Hamilton’s
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canonical equations ¢,=038H/3p,, pn=—0H/3q,
as may be quickly checked. For brevity's sake we
omit the rather long general proof.

While the use of complex dynamical variables
has made our work very compact, it has dis-
guised some familiar features of the mechanical
system. Thus we briefly revert to real coordi-
nates X, ya:

gn= (Xn+1ya)/V2

and proceeding as in Eq. (21) to find their con-
jugate momenta pan, pyn deduce that

Pn= (Pzn_'ipvn)/\/z—~

Substituting these results into Eq. (19a), we
find

It a2
H Z(""‘P:n xn2)

2
2
+(——— n y,,z). (19b)
ZZ;LP”

But this is just the Hamiltonian of a collection
of independent simple harmonic oscillators. We
can do even a little better: the contribution of
the nth set of variables is the Hamiltonian of a
two-dimensional isotropic oscillator with ‘“can-
onical mass’ m =g, “‘canonical spring constant’
E.=Ilr\;2 and angular frequency w,= (k./m)}
= (r/uw)\,. ]

The outstanding use of the general theory we
have developed here is in the quantum theory of
fields. While the quantized string is hardly so
common as its classical counterpart, it is none
the less worth investigating because of the ease
with which it demonstrates general principles.
Field quantization follows from postulated
quantum conditions of the familiar form,

YnDyn— Dyn¥n =1k, (21)

while the various other combinations commute.?
From this easily follows the condition g.p.— paga
=4k for the complex modes and their momenta.
Because the Hamiltonian is arbitrary to the
extent of an additive constant, we may subtract
hwn, from the contribution of the nth mode,

an zn Pxnxn

3 Field quantization may be approached from several
different angles. Ours is roughly that found in Heitler’s
Q;&r;tum Theory of Radiation (Clarendon Press, Oxford,
1

BRUCE W. KNIGHT,

JR.

obtaining

H=73 m™'p*pnt-mwa’gagn*—hwa (19c)

in order to avoid a convergence difficulty later.
From here on the quantum analysis is fairly
standard. If we let

@n= (2mhw, ) (pr+imwag.*®),
= (2mhw) (P ¥ +imwag,) (22a)

h ]
qn‘_"i( ) (@n*~by),
2mw,
mhwn\ }
Pn=( 9 ) (an+bn*)r

it is quickly demonstrated that Eq. (21a) is
equivalent to

so that

(22b)

@ U — CnOn* =0 %0y — b0 * =1 (23)

with all other fundamental pairs commuting.
The operators Non=0a.0.* and Ny,=b,b.* are
evidently Hermitian. In a brief and elegant proof
Dirac has shown* that Eq. (23) insures that the
eignevalues of N,, must be

N,an=0:11 273"' ’ (24)

and similarly for Ny,. An even briefer, if less
compelling, argument® runs like this: Represent
a, and b, as independant basic oscillator matrices,
satisfying Eq. (23); then Eq. (24) follows at
once. Or by forsaking the convenience of our
complex modes, we may deduce the same results
more laboriously from the Schrédinger equation
of an isotropic oscillator.

We now substitute Eq. (22b) into Eqgs. (19¢)
and (20a) to obtain

H= Z (Nan_l_an)hwﬂ (19(1)

and

Q=Y ei(Nan— Ns,). (20b)

The energy and ‘‘charge’’ eigenstates of our
system will be the simultaneous eigenstates of

4 Principles of Quantum Mechanics (Clarendon Press,
Oxford, 1947), third edition, p. 136
5G. Wentzel reference 2, Sec. 8
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all the N’'s. The eigenvalues of H and Q may be
obtained by substituting the various eigenvalues
of the N’s into Egs. (19d) and (20a).

All that remains is to remark on the “‘canonical
interpretation” of these results. The quantum
string represents a system of ‘‘particles.” The
wave equation (3a) is the Schrodinger equation
of one such particle (or better the Schrédinger-
Gordon equation, as it is second order in time).
If the particle is “‘confined in a box" by the end
conditions at x=0 and x=I/, according to ele-
mentary quantum mechanics it is limited to a
discrete set of possible energy eigenstates, the
classical string’s discrete modes of motion. Upon
“second quantization” the system contains
several particles; the operator Ngu-+ N, repre-
sents the number of particles in the nth energy
state, as its contribution to the total energy
operator (19d) clearly shows. There are two
sorts of particles present, carrying, respectively,
positive and negative canonical electric charges
of value ek. In the nth energy state there are
Nan positive and Ni, negative particles, as dem-
onstrated by the contribution of the nth state to
the total charge within the system [Eq. (20b)].
Finally, the formalism makes no statements at
all concerning which particles are in which states;
the particles satisfy the Bose-Einstein statistics.

In one respect our example differs from the
ordinary situation in quantum field theory. The
displacement field must vanish at the two fixed
ends of the string. So to preserve the realism of
our treatment we expanded the displacement
field as a sine series, each term vanishing at the
ends. Such boundary conditions are not common;
the ordinary procedure is to expand the field as
a Fourier series of complex exponentials and
argue that by making the domain of the ex-
pansion much larger than the interesting region
of the system, we may make boundary effects as
negligible as we please. In the typical boundary-

427

free problem the total canonical momentum is
constant; this is not the case in our problem, for
the stress-tensor need not vanish at the ends of
the string, and canonical momentum may be
transferred between the string and its end
supports. This may also be seen by the fact that,
were we to expand our field in exponentials, we
could express the canonical momentum as the
sum of contributions of the various modes, as we
have done for energy and canonical charge in
Eqgs. (19) and (20). This is not possible in the case
of the sine expansion, for in the momentum
density expression sines and cosines become
mixed in the same products, and we lose the
crucial orthogonality property. On the basis of
quantum mechanics this momentum difficulty
is just what one would expect from the end condi-
tions imposed, for in the equivalent ‘“box
problem’’ the energy states are not momentum
eigenfunctions but rather represent particles
traversing the box in both directions. The
particles are reflected at the ends with the
momentum change this reflection brings about.

There is a very great deal more that might be
said concerning the physical situation implied
by the mathematical analysis of the quantum
string. We will not enter into this long story,
but simply remark that its major pieces are
already in our hands. For we have shown that
by choosing the proper coordinates we may
separate our field into a set of independent
oscillators. And we know, according to basic
quantum mechanics, both the physical inter-
pretation of a single oscillator and that of a sys-
tem which can be separated into subsystems of
known character. This is indeed our foremost
justification for investigating the quantized
string: it is an excellent conceptual link, a
system within the scheme of quantum me-
chanics and also the simplest prototype of sys-
tems dealt with by the quantum theory of fields.

Erratum: Analysis and Synthesis of Optical Images

J. ELMER RHODES, JR.
Georgia Institute of Technology, Atlanta, Georgia
(Am. J. Phys. 21, 337, 1953)

IN Eq. (6) of the above paper, instead of (—i/2\}) read (—9)#/2)\3,
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