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HOW HAMILTONIAN DYNAMICAL THEORY IN THE COMPLEX DOMAIN YIELDS ASYMPTOTIC
SOLUTIONS TO THE NON-HERMITIAN INTEGRAL EQUATIONS OF VISUAL NERVE-NETWORKS

Bruce W. KNIGHT

Laboratory of Biophysics, Rockefeller University, New York, NY 10021

1. INTRODUCTION

The development of useful theoretical tools is the distinctive province of
mathematical physics, and in that spirit my remarks here will concern some new
tools that furnish a convenient solution to a generally important practical
problem which arises in my own work. My Tlaboratory studies the dynamics of real
nerve networks]’2’3’4’5’6’7
problem

Ky = Ay (1.1)
where the linear operator K is well defined at the outset, while the eigen-

. That study encounters the classical eigenvalue

vector y and its eigenvalue A are to be found. Our own problem in more de-
tai1®? is

Jdy K{x,y u(y) = aw(x) (1.2)
where the integral operator K{x,y} acts on functions which live on a fully
infinite two-space with points x. In our case of greatest practical interest,
when x and y are fixed then K is a complex number, and appears in (1.2) without
major traditional simpifying features (such as Hermitian or unitary structure),
though it is analytic in the components of x and y. Our problem offers one
feature for technical exp1o1‘tat1‘on:8’9’10’11 If wé re-express K in terms of
difference and average arguments

X+y

KOGYY = Kx-ys 57) (1.3)
(with no loss of generality) then the K which our problem gives us is (techni-
cally) slow in the second argument (x+y)/2. This observation leads to an
asymptotic method of solution which is so robust that "slowness" may be regard-
ed almost as a catalyst rather than a 1imitation.8’9’10 In particular, valu-
able qualitative features of the spectrum and eigenfunctions of K emerge, and
if the spectrum has more than a few discrete points thgn our results are
asymptotic for "large enough n" with no demand for "slowness" in K itself.

Presented at the VIIth INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS,
Boulder, Colorado, 1983.
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Below we will see how the kernel K{x,y} is related by a linear transformation

11

to another function R(Q,g) which leads to asymptotic solution™  of the eigen-

value problem (1.2) through solution of the Hamiltonian equations

n

4 = K/ep

By = -aK/aqm 5 (1.4)

The spectrum of K in (1.2) has qualitative features which we will be able to
relate to singular points of the ordinary differential equations (1.4), and the
eigenvalues may be developed asymptotically by recourse to the machinery of
Hamiltonian mechanics. If K is Hermitian then K is real, and some interesting
relations between eigenvalue problems and Hamiltonian dynamics emerge. If K

is not Hermitianlz’l3 then the singular points of interest may 1ie at complex

p and g, where the analytic Hamiltonian procedures may still be justified, and
this sheds a somewhat different 1ight on both Hamiltonian theory and the eigen-
value problem.

It is my utmost hope that inventive mathematical physicists may exploit my
remarks here in ways I cannot guess. In particular, the eigenvalue problem
which is "easy" in some respects might become useful in exploring hard parts of
Hamiltonian theory.

My intent below is to help insight, not to establish proof. 1 will sketch a
Tine of reasoning which stands by itself, but the general familiarity of mathe-
matical physicists with classical and quantum mechanics will be used freely to
underscore key ideas.

2. BACKGROUND

A Laboratory of Biophysics is where I work. We study the dynamics of real
neural networks, particularly those of the eye and the visual part of the brain
because visual stimulation furnishes us a firm handhold on our experimental
material. In our work reported here there is no clear border between theory
and experiment, but I would roughly classify my closest colleagues as follows.
In early experimental work: Frederick Dodge, Keffer Hartline, Floyd Ratliff,
Jun Toyoda. In more recent experimental work: Scott Brodie, Stevan Dawis,
Floyd Ratliff, Robert Shapley, Lawrence Sirovich. In recent theory Lawrence
Sirovich has been my close collaborator.

This work was sheltered and encouraged in what was traditionally Keffer
Hartline's laboratory; his recent death at 79 we feel keenly.

By the organizers' mandate, I will now give a lightning-like review of the
bijophysical background of the present theoretical problem. Figure 1 is a
microscope picture of a neural network. This is a bit of the retina of the
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Impulse rate

Figure 1. A bit of the neural network in the horseshoe crab's retina, with
schematic of transducers and information pathways superimposed.
Micrograph by William H. Miller.

horseshoe crab, which retina plays a role in real-network dynamics similar to
that -of Kepler motion in classical mechanics, or the hydrogen atom in quantum
theory; in a well-defined sense it is an exactly solvable system.

The black object marked "1" is a visual cell which contains, within an
insulating membrane, biophysical machinery of molecular size which produces
voltage in response to 1light. From the visual cell proceeds a nerve fiber,

a narrow tube of conducting fluid bounded by insulating membrane. The region
marked "2" generates relaxation-oscillations, nerve impulses which proceed
(downward in the picture) to the brain. The rate of impulse generation at "2"
is modulated by the level of voltage generated at "1". The function of the box
marked "3" is to convert impulse rate back into voltage which, as shown, is
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done both for the cell's own signal (a feedback loop) and for signals arriving”
from nearby cells. We are looking at a typical neural information-processing
network which performs a quite profound transformation on the information it
receives.

Through a microelectrode inserted in the Tiving visual cell we may measure
the way voltage responds to Tight at "1", or conversely we may mandate a voltage
at the microelectrode and observe the response in impulse rate at "2"; or we
may vary the 1ight on the nerby cell and measure through the microelectrode the
back-conversion of impulse rate to voltage at "3". We may also drive "3" by
ourselves sending a train of impulses backwards up the optic nerve and measur-
ing the consequent voltage transduction at "3". By doing these manipulations
in combination we may obtain a very detailed understanding of the dynamics of
this network.

Figure 2 shows some laboratory data [from (3)]. The signal input in each
case was sinusoidal in time, and in each case the output is sinusoidal as well.
Here we are characterizing the performance of the signal transducers of Fig-
ure 1. Each transducer is characterized by the amplitude and phase of the
sinusoid with which it responds to an input sinusoid of standard amplitude and
phase.

Returning to Figure 1, if the amplitude-and-phase characterization is appro-
priate, we should be able to predict how the optic nerve fiber responds to
sinusoidal light: simply multiply the measured amplitudes for transducers "1"
and "2", and algebraically add their measured phases. Figure 3 [from (3)]
justifies this observation. Amplitude and phase are plotted versus frequency.
On the left the filled circles show amplitude and phase data for transducer
"1" and open circles for transducer “2". Multiplication of amplitudes, and
addition of phases predicts the solid curves on the right, which are in nice
agreement with the measured data points.

We note the combined transduction of Figure 3 is by no means an "identity"
transduction: higher frequencies are more emphasized than low ones, and this
corresponds to the creature's need to detect sudden changes in visual environ-
ment.,

A second type of experiment (14) shows that when the network responds to
simultaneous inputs, it responds simply with the algebraic sum of what the in-
puts would have yielded individually.

The above information in fact tells us how to mathematically combine the
component transducer responses of the neural network of Figure 1 (or any net-
work of generally similar organization) into rules that predict the dynamics
of the total system. The prescription is simply the natural formalization of
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ANTIDROMIC STIMULUS RATE JAA
Left frames relate to the

INHIBITION OF SPIKE- FREQUENCY
SUMMED INHIBITORY POTENTIAL

lPOTENTIAL ( MODULATED LIGHT )
10 sec

SPIKE FREQUENCY ' ( LIGHT a SINE -WAVE CURRENT )

GENERATOR

Experimental raw data for various input-output pairs.

three component experiments of Figure 3.

SPIKE FREQUENCY ( MODULATED LIGHT )

i)
\

Figure 2.

what we said above. Proceed thus: start with sinusoidal input and represent
the amplitude and phase of each transducer as a complex number. The neuro-
anatomy of the network, with known directions of information flow, may be
depicted as a net (or "graph") of directed Tines, with a transducer at each
vertex. Assign a symbol (a "signal variable") to each line. Add together
the symbols of 1ines that converge on a vertex, multiply their sum by the

435
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Figure 3. How responses of.transducers in sequence combine. Left (bottom)
frames show responses of component transducers. Open circles
light-to-voltage, solid circles voltage-to-impulse rate. Right
frames: curve predicted from left frame, circles observed light-
to-impulse rate.
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complex number which represents that transducer, and set the result equal to
the output signal variable of the vertex. The result is simultaneous equations
which may be solved algebraically for any signal variable in the network. Each
signal variable so found is a complex number, whose amplitude and phase relate
directly to the amp]itu&es and phases of the network's sinusoidal inputs. Fin-
ally, the neural network's dynamical response to arbitrary input may be calcul-
ated by using Fourier analysis to represent that input as a sum of temporal
sinusoids. This prescription stems from familiar mathematical physics or sig-
nal theory.

It is notable that the rules we advance are appropriate for a system of
linear components, and our biological network conforms well to these rules not
by any necessity of underlying physical laws but rather by what looks 1like care-
ful design. The same may be said, for example, about a public address system,
and presumably similar demands of careful signal processing in both cases under-
1yig this linearity. If the horseshoe crab's retina is confronted with a huge
dynamic range of input, in fact it shows a nonlinearity in the form of a clever
gain control; and in vetebrate retinas far more sophisticated gain controls are
found. (Parenthetically, published discussion of nerve networks, which refers
to feedback and nonlinearity as the same thing, perpetrates an unwitting con-
fusion of the theoretical fundamentals).

Our prescription above in a mathematical sense furnishes a procedure for ex-
actly predicting the outputs of a network of linear transducers. However, the
horseshoe crab's eye contains more than 10® transducers interconnected by 10°
signal channels, and the human eye contains 10°® transducers. A procedure with
the two goals of insight and efficiency must go fruther and deal systematically
with these large numbers by use of further knowledge about the network's organ-
ization. It is an easy step to anticipate the replacement of sums by integrals,
which will give the dynamical rules in terms of integral equations with complex-
valued kernels. To explicitly state such an integral formulation requires know-
lTedge of the density of signal paths connecting separated points in the network.
But it is fairly evident that we can state the general form of the rule which
relates stimulus input at points y on the retina to response of a transducer
type at point x on the rgtina: if the stimulus input (sinusoidal in time at
frequency w/2n) is s()!)ewt where s{y) is a complex number that specifies how
both amplitude and phase depend on y, then the consequent transducer response
r()g)ei“’t will be related by a Tinear integral map of the form

r(x) = sdyKix,y}s(y) (2.1)
where the (complex valued) two-point function K depends only on the nature of
the nerve network and on the frequency w/2w. In particular, in (2.1) the res-
ponse r(x) can be the signal output on an optic nerve fiber at point x; thus
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the network's dynamical input-output relationship will be determined once we
determine the corresponding K in (2.1).

Now Figure 1 suggests the anatomy of the hoseshoe crab's retina is invariant
under translations in the retina's plane, namely, that in equation (2.1) we
have ‘

Kix,y} = K(x-y) (2.2)

This is in fact the case, and in consequence a stimulus which is spatially a
sinusoidal plane wave which depends only on p-x (where p is the wave vector)

will induce a Tikewise sinusoidal spatial dependence in every signal variable
in the network. In result the relations among transductions lose their depend-
ence on position, reduce to simple algebra (parametric in g) and we may fully
solve the network's dynamics in simple terms. Experimentally, we stimulate the
eye with a spatial sinusoid; mathematically this corresponds to letting s=s,exp
ip:y and r=r; expip-x in (2.1) which with (2.2) easily relates response to
stimulus by

r,= R(D,m)% (2.3)

where E(p,w) is the spatial Fourier transform of K(x).

Table 1 [adapted from (7)] shows what this combination of theory and experi-
ment yields: a full characterization of the network's dynamics in terms of
component transductions, with parameters evaluated. Detailed inspection of
these expressions shows that the effect of the network upon the spatial struc-
ture of the image is "Laplacian-like": changes of gradient are emphasized, and
thus so are parts of the visual field where transitions in light intensity
occur.

To test whether our theory works we have used it to predict how the horse-
shoe crab's retina responds to a moving step of light intensity. This is shown
in the left frame of Figure 4. Predicted responses to steps moving at four
velocities are shown vertically. The center column shows how the center of the
retina should respond:.we have resolved the step into running sinusoids and
multiplied each by the top expression of Table 1. The left and right columns
show what we predict at the left and right terminations of the neural network,
by applying (7,15) the classical Wiener-Hopf theory for truncated translation
kernels to our situation. The right frame of Figure 4 shows the result of the
corresponding experiments. The twelve theory-versus-experiment pairs exhibit
trends in numerous distinguished features, all of which are nicely captured by
the dynamical theory:

The review above summarizes the work of about 15 years by a very small club,
and in whiph society made a dollar investment which alternatively could Buy
about 7/100 of an MX missile.
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Table 1
Description Equation
Spatiotemporal . ~ L
transfer function K(p,sw) = E(w) G(m)w~(p)
14+ (0)T () A(p)
) _ et 1 \"d 1 \" R
Generator potential G(w) = e (l (lﬁtd“’) '(lﬁtb‘*’) '(1+itam)
it.w n
) a p
A (30m7)
1+1taw
Encoder E(w) = 1
1+ k
1+itw
s 1,11 C . 1
Lateral inhibition T\ () = 1% (Tiey © Trge - T Tins

Fourier transform of ip) = k- 1-(p/a)?
inhibitory kernel (p/b) + 2(p/c)2 +1

Point spread W(p) = exp(-s*p3/4)
Parameter Dimension Value
ty seconds 0.038
td seconds 0.0076
ny 3
tb seconds 0.017
R 0.75
té1 seconds 0.030
np 0.25
1.5
i seconds 0.40
Ty seconds 0.036
T seconds 0.055
Ts seconds 0.036
Ty seconds 0.019
C 0.1
K 1.0
a Rad/eye width 17.56
b Rad/eye width 23.61
c Rad/eye width 24.83
s eye widths 0.00951
nb 3
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3. KERNELS WITH A SLOW SECOND DEPENDENCE

The kernel of equation (2.1) in the exercise above had the special feature
that it was independent of its second ("mean position") argument in equations
(1.3). In consequence its eigenfunctions in equation (1.2) were spatial sinu-
soids (and eigenvalueé given by the Fourier transform K(p) of K(x) ). The full
%g]ution of the dynamical response problem was achieved by representing the
3{mu1us as a superposition of those eigenfunctions of (1.2). Evidently the
same method would work for more general K{x,y} once we were in possession of
its eigenfunctions and eigenvalues; in this ;ense the solution of (1.2) would
solve the dynamical response problem for Tess ideal neural networks.

A mammalian retina (such as our own or a cat's) has a region of most acute
resolution at its center, and this is reflected in the transduction kernel K,
as shown in Figure 5 (shown schematically for =0 whence K is without temporal
phase shifts and is real). The departure of K from translational invariance is
on a space scale slow compared to the space-scale of K's transduction profile.
This suggests that we insert a "parameter of slowness", e¢ in equation (1.2) and
study our problem for small e :

sdy K(&-X,s%l) u(y) = 2u(x) (3.1)

Asymptotic solution of (3.1) in detail will be discussed in section five
below, but first we gain some good insight about (3.1) by studying K in a man-
ner patterned after the previous section (where (3.1) had ¢=0). Define fast
and slow variables

u o= X-y
q = e(x+y)/2 (3.2)

and as above Fourier transform in the fast variable, to now obtain
K(p»q) = 7 duexp(-ip-u) K(u,q) = WKx,y} , (3.3)

which is an evidently invertable linear transform of K introduced by Wigner
(16) to quantum statistical mechanics long ago. The Wigner transform K reveals
much about its inverse transform K.

Laboratory measurements (still underway) suggest
malian retinas (cat or man) have a transfer kernel K whose Wigner transform is

17,18,19,20 that some mam-

fairly well represented by the three-parameter expression
. 1+q2

2 2\ p2 = 2N =2
R RS (3.4)
Ho
Here the frequency dependence stems entirely from the complex number z, which

is measured at each temporal frequency. We have divided another overall
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complex number from (3.4) and have scaled q to give another parameter the value
unity. The eigenfunctions and the spectrum (which proves part discrete and
part continuous) implied by (3.4) are our immediate goa1521’22 but our approach
is general.

The features of R in the p»q "phase space" may be related to the spectrum of
K as follows. If K has the generic spectral representation
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K{x,y} = ﬁ An¥n (%) Pply) = Zrn Enlx,y} (85)

(where the | are the adjoint eigenfunctions bi-orthonormal to the y) then we
may define the "major projection operator"

1 =
s (s-K)™* = e B (3.6)

F

where the inverse operator may be represented as

¥, = (s-K)"* =3 —— E (3.:7)

and (3.6) follows at once by the Cauchy residue theorem with a contour c as
shown in Figure 6. We will estimate how the image WF. = EC appears 1in phase
space; first we note from equation (3.3) that

Ws(x-y) = 1. (3.8)

Also we anticipate that formally for the operator product AB of two kernels
A{x,y} and B{x,y} the phase-space image will be

W(AB) = A(p,q) B(p,q)+o(c) (3.9)

as in the 1imit ¢ -0, AB is exactly a convolution of two translation kernels,
and W(AB) = AB is exactly the product of their Fourier transforms. If we Tet
A=s-Kand B=Rg as in (3.7), then W(AB) =1 and formally to O(e) equation
(3.9) gives

1

= (3.10)
-K (Esg)

Rs(psq) =
Take the Wigner transform of (3.6) and use (3.10) to evaluate the integrand of
the residue integral. For the s-contour integration, K(E’H) is simply a para-
meter, and we see

Felpsq) = —lv fcds 1 (3.11)
-K(p,q)
approximately (whi1e we note [from (3.6)] that
o . 3
Fe(Psq) = 5 inc En(p>q) (3.12)
is exact). Equation (3.11) gives at once
F(paq) = (& 1 K(R2g) in ¢, (3.13)

c\b 0 otherwise

Thus [to the extent K Tets us ignore 0(e) and obtain (3.10)] the major
projective operator F.{x,y}, which Teaves intact those ¥n{x) whose A, are en-
closed in the contour and which annihilates their complementary subspace in
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s - plane

Figure 6. The contours c, c,, ¢, on the s-plane, with the real points a,b.
The set of isolated points depict the discrete spectrum.

function space, has a Wigner image which is a "characteristic function" that
assigns unity to a subset of the p,q phase space and assigns zero to its com-
plementary subset. Subdivision of the contour ¢ (as into ¢ and ¢, in Fig

ure 6) subdivides function spéce EFC: Fc1+Fcz)and subdivides the characteristic
function in phase space (F¢= Fcl+FC2). i

The exact result (3.12) states that FC depends only on point spectrum encir-
cled and is otherwise independent of how ¢ is routed. From this we conclude
that if the approximation (3.11) is to be fairly good then R(E,g) can take on
only values near those of the point spectrum of K. 1In particular, choose a
contour which consists of small circles which surround the enclosed spectrum;
we see that each En(g,g) can be substantial only near those points (p,q) where
K (psq) = 2.

We can furthermore measure the point set which supports the characteristic
function FC(B,g). From (3.3) it is straightforward to show in general [from
the s-function's Fourier representation, and using (3.2)] that

7 dadp R(p,q) = (2re)® rdgkig,qd = (2ne)? Tr(K) (3.14)
where D is the dimensionality of the vector q. As Tr (E ) =1, we have from (3,IJZ)
the measure of the set where FC (B,g) =1

7 dqdp Fe(p,q) = (2me)D.N (3.15)
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where N is the number of spectral points enclosed by c.

If Kix,y} is Hermitian then its A, are real and its En Hermitian, and a
further result emerges. Complex conjugation of (3.3) shows directly that
R(E,g) is real in this case. A "surface in phase space" where Ec(p,q) descends
from 1 to 0 in this case must occur at points p,q where R(E,q) has~tﬁe real
value assumed where c crosses the real axis. Suppose such réa] crossing values
are called "a" and "b". Then from (3.15) we can write the number of eigen-
values between "a" and "b" as

1

N = X {Volume of phase space between K(p,q) = a and K(p,q) = b}.
(2me) (3.16)

This is a weaker (but more generally applicable) form of the "area rule" given
below. From (3.16) we see that the Wigner image of (3.5),

K(p,q) = Ehn Ep (p»q) (3.17)

is a sum of terms which decompose phase space into "layers of an onion" with
the nth layer contributing only near where K= Ap-

We now see how k(g,g) may be used to find whether the operator K has a
region of continuous spectrum, and estimate the eigenvalue where the continuum

begins. The equation
K(p,q) = A (3.18)

specifies a "surface in phase space" (parametric in r) which may either be
closed or may extend all way to infinity, and a critical A value which divides
between these two conditions typically will divide between finite volume and
infinite volume in equation (3.16). Infinite volume in (3.16) corresponds to
eigenvalues packed with indefinite closeness, whence the critical » from (3.18)
corresponds to the start of the continuous spectrum. Our explicit K of equa-
tion (3.4), for real z betw%fn 0 andll, and 0 <k <1, easily yields such a

critical A . (It is A=K(1-3)/(az)élTl with the continuum below.) For complex

K a proper analysis of the continuum's edge must look deeper.

4. THE END OF THE POINT SPECTRUM AND THE SUMMIT OF K

The considerations above should lead us to expect (at least if K is real
and ¢ is small) that if two different kernel transforms K both yield, over some
range of A, very similar phase-space surfaces for the so]utionvof k(g,g) =2,
then over that range of X their eigenvalue spectra A, will be close and so will
be their corresponding projection operators wn(g) ¥ (¥) =W'1En(g,g)-and hence
their eigenfunctions. This stems, most briefly, from the partition of phase
space by equation (3.17).
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In particular, near its "summit" at (95’95)' K may be expanded through
quadratic terms. in p-pg, q-qg, giving an approximate ks whose largest eigen-
values and corresponding eigenfunctions should well approximate those for the
exact K. Now it was already well known to Wigner16 that any K which is a
(real) polynomial in p corresponds to a K=W"'K which is a specific (Hermitian)
differential operator: (For example, notice that the generalized function

K(x,y} = -38"(x-y) + V(e 3¥) 8(x-y) (4.1)

when substituted in (3.1) gives

dZ
Kp(x) = (-3 g+ V(ex))v(x) (4.2)
which is Schrodinger's Hamiltonian operator with coordinate ex = q and e taken
as Planck's constant, while substitution in (3.3) gives

K= 1p* +V(a), (4.3)

the corresponding classical Hamiltonian function. For each of the polynomial
terms in our case the demonstration is exactly similar. In summary, we have a
well defined (Hermitian) second-order differential operator K¢, and near the
top part of the spectrum, the eigenvalues and eigenvectors of our original
integral operator K are well approximated by the solution of the eigenvalue
differential equation

Ksll’n(f) = Xn‘l’n()f) (4.4)

where K¢ consists only of constants and linear, bilinear, and quadratic terms
in the components of x and of 3/3x. For such an operator (4.4) can be solved
exactly. Its spectrum is composite of D (the dimension of g) separate equally
spaced component spectra with different spacings determined by a diagonaliza-
tion of the coefficients of ks and each starting a half-step down from the
maximum R(Bs,gs). The eigenfunctions Y, are in closed form in terms of Hermite
functions. (In short, (4.4) has a solution like that of a quantum harmonic
oscillator in D dimensions.) The spectrum and eigenfunctions will be good up
to that n [and A, from (4.4)] where the two equations ﬁ(g,g) = Ap and

.ks(g,g) = Ap yield appreciably different p,q surfaces. We note that as agree-
ment deteriorates with increasing n, the value of An descends from the maximum
of R toward smaller values. In a sense we have solved the "important" part

of the eigenvalue problem, in that the answer of the question "what is the
action of K on f(x)" by eigenfunction expansion, depends less critically on
estimating those y, which go with small A,. (In. our application to the retina
the largest A, corresponds to a wn(g) which is the spatial pattern to which the
retina is most sensitive, see refs. 21 and 22.)
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For the special case of an integral equation in one dimension (D=1) phase
space reduces to the (p,q) phase plane, on which the equation
Ks(a,p) = A (4.5)

yields a (A-dependent) family of concentric ellipses each enclosing area A(A),
and (4.4) is an ordinary differential equation which features the same coeffi-
cients10 as does (4.5). Exact solution for the An shows that when A =iy in
(4.5) then the elliptical (q,p) Tocus encloses

A(xp) = (n+23) « 2me (4.6)

a stronger version of (3.16) which in fact (as we will discuss in the next sec-
tion) holds, to o(e) also for the eigenvalues of the exact K and area A()) en-
closed by the locus of k(p,q) =x. [Equation (4.6) we call the "area rule".]

If, instead of expanding about a summit point of K, we obtain Rs by freely
assigning real values to its various coefficients, then (4.5) may yield a
second generic locus pattern which is concentric hyperbolas. For every A the
(p,q) Tocus extends to infinity and by the previous section we anticipate a
continuous spectrum for the differential equation (4.4) which is confirmed by
its exact solution in terms of parabolic cylinder functions.

Between ellipse and hyperbola, a contrived choice of real coefficients in
(4.5) yields a locus-family of congruent parabolas symmetric about a horizontal

line. Continuous spectrum is again indicated, and in this case equation (4.4)
solves exactly in terms of the Airy Ai function, a fact important to our asymp-
totic considerations below.

Finally, suppose K is not Hermitian so that k(g,g) is not reall2s>13 ye may
still find a (complex p,q) solution to the equations

8K/3p = 0, 3R/3q = 0. (4.7)

and develop a ks through quadratic terms around that point in complex phase
space. From this Rs by our same procedures as above we may obtain the approx-
imate eigenvalue equation (4.4) (now no longer Hermitian) which is still form-
ally solved by the same closed analytic expressions for y,, ip which solved
before, whence a discrete spectrum of complex A, emerges formally. Because K
is analytic in p,q, a point distinguished by (4.7) is generically a saddle
point in complex phase space. The discrete spectrum applies if two conditions

are fulfilled: (1) the functions R(E,g)‘and ks(p,q) should agree over a region
of complex phase space which includes a "section" on which p,q are real, and
(2) the formal eigenfunctions solving (4.4) must go to zero as we go to infin-
ity for real x. If the second condition is not fulfilled, then on the "real
section" we have a case like that of the "hyperbolic locus" above, and a con-
tinuous spectrum is indicated.
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These are explicit rules for estimating the more significant end of the
discrete spectrum. For example, in our particular case (3.4) if our original
kernel variable x (and hence p,q) was one dimensional, there are saddles where

g = 0and pg =% [(In az)/(a-l)]é which is complex along with z, and the esti-

mated spectrum is
-1

an(2) = (1- 2)(az)* Ll-e(2n +1) (1n az)®) (4.8)

The corresponding eigenfunctions are given in ref. 10 and they go to zero as
we take X to « provided (1n az)% lies in the right half of the complex plane.

The "c1iff" between FC =1 and F =0 in fact has a width roughly of
O(E/n1ast). More detailed deve]opment23 10 of (3.9) gives

Pm 3qm aqm ePm

B-ed (8A 28 oA 2B ) + 0(c2x 2" derivatives). (4.9)

Thus neglect of &*

appears justified on the basis of (3.13) except near the
cliff where such neglect suddenly becomes very bad, and a more sensitive exam-
ination in "stretched" coordinates appears appropriate. The isomorphic quantum-
mechanical question, "what is the Wigner transform, in semi-classical approx-
imation, of a minimal Von Neuman density" has been elegantly elucidated by
Berry.24 Further results for .near the cliff, which emerge from the framework

discussed above, are in preparation by Lawrence Sirovich and myself.

5. THE EIGENFUNCTIONS AND HAMILTONIAN MECHANICS

For the structure of ordinary or partial differential equation eigenvalue
problems with a slow scale, such as (4.2) and (4.4), a revealing asymptotic
analysis has been achieved by Keller25 and by Keller and Rubinow.26 A solution
is assumed in the form

p{x) = kv, (x) = zeXP s(b)(ez e) (5.1)

where each (generally complex) S is of the form
S(g,e) = So(q) + €S,(q) + 0(e?) (5.2)

and the sum in (5.1) is over "branches". Typically each term of (5.1) gives a
breakdown by going infinite on some subset of x, and a second form of asymptot-
ic expansion valid near that set is matched to the terms of (5.1). Consistency
of all matches [single-valuedness of ¢ in (5.1)] proves possible only for cer-
tain discrete eigenvalues.

Our integral equation (3.1) proves to be a straightforward extension for
this procedure.]] Let ex = q as in (5.1), (5.2), let x -y =u and substitute
(informally--in "hope") one term of (5.1) in (3.1) to find
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/S duK(u,q- %— u) exp-g{S(g-eg) - S(g)} = A (5.3)

In the Timit ¢ +0 the difference-quotient in the exponent becomes a derivative
in the -y direction and we have by comparison with (3.3)

K (35, (9)/29, ) = A. (5.4)
There is a standard reduction (due to Monge; see Fritz. John,27 also ref. 11)
of this nonlinear first order partial differential equation to the solution
of a system of ordinary differential equations. Introduce the gradient of S,
as an auxiliary vector field

P =05,/99 =Soq (5.5)

and solve the ordinary differential equations (1.4) for p(t), q(t). Then along
the line gq(t) integrate
ds,/dt = E(t)-(dg(t)/dt) . (5.6)

and S, along that 1ine will be embedded in a solution of (5.4). Thus K plays
the role of a Hamiltonian in classical mechanics; our frequently useful

(p q) = ) above chooses an egergy surface to which trajectories are confined,
the continuous spectrum's end value is the energy at which classical motion
can become unbounded, and the spectrum-ending "summits" given by (4.7) are
singular points of (1.4). If (1.4) had been given to us, (5.4) would be our
Hamilton-Jacobi equation.

By developing (5.3) through ¢! we find the foHowing:11 Let exp iS;(q) =A(q)
(S1 proves imaginary generally for real K) then
(K 2 -
(3/59) (KE(SME »q) A*(q)) =0, (5.7)

a zero-divergence equation for the indicated vector field, which is colinear
with the vector field kp which directs dg(t)/dx according to (1.4). While
(5.7) devolves naturally from the usual partial differential equations which
contain an exact conservation law, it is remarkable for our non-local operator
which does not. Equation (5.7) tells us that where RE goes to zero, (or more
generally at "caustics" where different flow Tines q(t) touch) A becomes infin-
jte, and that is the breakdown of (5.1). As differential operators like (4.2)
are subsumed in our approach, we may (proceeding with sensible caution) apply
the results of the program stated by Keller to our broader context here.

For a 1-dimensional integral equation, we may solve K(p,q) =2 for p =pb(q,A)
as shown in Figure 7. In this case the differential equations (5.6), (5.7)
integrate at once, yielding to 0(e)

UORPENCIRS R (py (@)} expd s%p, (a)dg . (5.8)
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Evidently (5.8) allows us to "follow the phase" of any Y the phase advances
like 1/¢ times the area under the py (9,1) curve up to given q. Where the
Tevel 1ine K(p,q) = x becomes vertical, kp vanishes and (5.8) breaks down. But
in this region p(q,\) becomes a horizontal parabola for which we have (as noted
in the Tast section) an explicit solution for ¢ in terms of the Airy function.
This solution matches to (5.8) and shows explicitly that the phase of S changes
by +(or -) /2 as we round a parabola that turns our path rightward (or left-
ward). In this way we find the phase change around the total path, which must
be 2un if y is to be single valued, -and the area rule (4.6) (see refs. 8,9,10)
follows at once: if A(x) = 2me (n+4%) then the value of K on the Tevel Tine
K(p,q) = A is the eigenvalue removed nth away from a singular point, distin-
guished by (4.7), which the level line encloses.

The area rule continues to hold good beyond the "equally-spaced-spectrum"
estimate of the last section. For ordinary differential operators it reduces

to the familiar W.K.B. result. Not surprisingly, it also applies (with proper
technical care) for multi-dimensional kernels which correspond to separable
Hamiltonians K. Our example (3.4), which has two ignorable angles (as does the
classical "central force" Hamiltonian), is a case in point.

Now the solution p{g,r) to R(p,q) = x is locally analytic in A, and analytic
in q also except at branch points where kp =0. The closed curve of Figure 7
corresponds to a prescription for choosing a contour vy {avoiding branch cuts)
on the complex q plane to evaluate the area:

A= pr(q; A, z)dg (5.9)

where the further locally analytic "z" dependence, as in (3.4), has been expli-
citly recognized. In principle we may Tocally invert the analytic relation
(5.9):

A= A(A,z). (5.10)

A thoughtful review of the area rule (4.6) reveals that it is a condition for
single-valued y(q) on the complex q-plane, with no demand that K be Hermitian
nor that the isolated branch points of p(q,A) be at real qJ2’13; see also 28,29
Thus for small e, (5.10) and the area rule asymptotically solve our eigenvalue
problem:

A z) = A (2re(n+d),2) (5.11)

which gives complex x, as a function of complex z. 10

The technical challenge of inverting (5.9)-to (5.28) may be met in several
practical ways. We conclude with one: the infamous Birkhoff transformation§0’31
(Infamous in classical mechanics for D 22 and non-separable Hamiltonian, in

which case it is generically divergent.). The Birkhoff transformation, limited
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q
b=3
b=4

Figure 7. Locus of K(p,q) =X on the phase plane, showing 4 branch points
and 4 branches of solutions pb(q,x). The cross depicts the en-
closed extremum of K.

to the phase plane,
p = P(ﬁ’a)
q = Q(p,q) (5.12)

proceeds, by an algebraic algorithm, to develop (5.12) as power series which
converge, if at all, to an area preserving map which takes level lines of K(p,q)
(as in Figure 7) to concentric circles on the (real) p,q plane. Substitution
of (5.12) into K(p,q) gives

= K(p,q32) = T(p? +§?%,2) (5.13)
as a power series in p2+q2 with functions of z as coefficients. As (5.12) is
area preserving, this implements the inversion (5.10) and (5.11) becomes expli-

citly
An(z) =T(e(2n+1),2) , (5.14)
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a series in ¢(2n+1) which (for a 1-dimensional or separable Hamiltonian) con- ~
verges up to €(2n+1) = 0(1). Our example (4.8) in fact gave this series
through its first two terms; the next term, elaborate but straightforward
(carried out in ref. 22), tells us how the complex point spectrum first departs
from uniform spacing. )

The question (which is not a pressing one for our laboratory's present appli-
cation), of what the same procedure tells us about the true discrete spectrum
near a singular point of a non-separable R(g,g), is an intriguing question that
connects the eigenvalue problem with the really difficult part of Hamiltonian
mechanics.
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